1
|
Karthäuser JF, Hansen J, Smajlji A, Hunsucker K, Yeshi T, Braga C, Patschorke T, Swain G, Rosenhahn A, Laschewsky A. Enhanced Resistance of Zwitterionic Hydrogels against Marine Fouling Using a Zwitterionic Photo Cross-Linker. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:4545-4559. [PMID: 39957142 DOI: 10.1021/acs.langmuir.4c04351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Polyzwitterions have great potential as fouling-resistant materials for biomedical and environmental products, in particular, in the form of hydrogel coatings. While typically these are soft materials, for many applications it is also necessary to achieve sufficient mechanical stability. This may be accomplished by high degrees of cross-linking, which, however, will impair the overall hydrophilicity of the gels for the commonly used hydrophobic cross-linkers. To mitigate this dilemma, a zwitterionic methacrylate monomer was developed that contains a benzophenone moiety as a photo-cross-linkable unit and a hydrophilic zwitterionic sulfobetaine moiety. Copolymers of the standard sulfobetaine methacrylate 3-[N-(2'-methacryloyloxyethyl)-N,N-dimethylammonio] propane-1-sulfonate (SPe) with contents of the new photo cross-linker of up to about 50 mol % were realized, and their films were photocured and analyzed. Subsequently, the resistance against the nonspecific adsorption of model proteins was determined in laboratory assays by surface plasmon resonance spectroscopy. Moreover, the attachment of marine fouling organisms was investigated in laboratory assays under dynamic conditions as well as in short-term field exposures in the sea. Copolymers with sufficiently high cross-linker contents of about 30 mol % were able to maintain a high hydration capability and to substantially reduce marine biofouling even in field tests in the ocean.
Collapse
Affiliation(s)
| | - Jasper Hansen
- Institute of Chemistry─University of Potsdam, Potsdam 14476, Germany
| | - Arben Smajlji
- Analytical Chemistry─Ruhr University Bochum, Bochum 44801, Germany
| | - Kelli Hunsucker
- Center for Corrosion and Biofouling Control─Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Tenzin Yeshi
- Center for Corrosion and Biofouling Control─Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Cierra Braga
- Center for Corrosion and Biofouling Control─Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Tim Patschorke
- Center for Corrosion and Biofouling Control─Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Geoffrey Swain
- Center for Corrosion and Biofouling Control─Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Axel Rosenhahn
- Analytical Chemistry─Ruhr University Bochum, Bochum 44801, Germany
| | - André Laschewsky
- Institute of Chemistry─University of Potsdam, Potsdam 14476, Germany
- Fraunhofer Institute of Applied Polymer Research, Potsdam 14476, Germany
| |
Collapse
|
2
|
Tang Y, Wei J, Liu Y, Chang Y, Zheng J. Machine Learning Aided Design and Optimization of Antifouling Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22504-22515. [PMID: 39412192 DOI: 10.1021/acs.langmuir.4c03553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Antifouling surfaces, renowned for their strong surface resistance to proteins, cells, or tissues in various biological and environmental conditions, have broad applications in implanted devices, antibacterial coatings, biosensors, responsive materials, water treatment, and lab-on-a-chip. While extensive experimental research exists on antifouling surfaces, machine learning studies on this topic are relatively few. This perspective specifically focuses on exploring the complex relationships between the composition, structure, and properties of antifouling surfaces, examining how these factors correlate with surface hydration and protein adsorption. Different machine learning models have been developed to analyze and predict single and multiple protein adsorptions on various types of surfaces, ranging from structureless surfaces to well-ordered and rigid self-assembled monolayers, dynamically ordered polymer brushes, and complex filtration membranes. These models not only identify key descriptors or functional groups critical for antifouling performance (surface hydration, protein adsorption) but also predict the antifouling properties for a specific surface. Recognizing current challenges, this perspective delineates future research directions in the antifouling field. By leveraging and comparing current machine learning approaches, it aims to advance both the design and fundamental understanding of antifouling surfaces, thereby pushing the boundaries of innovation in this critical field.
Collapse
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Jialun Wei
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Yung Chang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
3
|
Dhawan V, Martin PN, Hu X, Cui XT. Investigation of a chondroitin sulfate-based bioactive coating for neural interface applications. J Mater Chem B 2024; 12:5535-5550. [PMID: 38747002 PMCID: PMC11152038 DOI: 10.1039/d4tb00501e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/09/2024] [Indexed: 06/06/2024]
Abstract
Invasive neural implants allow for high-resolution bidirectional communication with the nervous tissue and have demonstrated the ability to record neural activity, stimulate neurons, and sense neurochemical species with high spatial selectivity and resolution. However, upon implantation, they are exposed to a foreign body response which can disrupt the seamless integration of the device with the native tissue and lead to deterioration in device functionality for chronic implantation. Modifying the device surface by incorporating bioactive coatings has been a promising approach to camouflage the device and improve integration while maintaining device performance. In this work, we explored the novel application of a chondroitin sulfate (CS) based hydrophilic coating, with anti-fouling and neurite-growth promoting properties for neural recording electrodes. CS-coated samples exhibited significantly reduced protein-fouling in vitro which was maintained for up to 4-weeks. Cell culture studies revealed a significant increase in neurite attachment and outgrowth and a significant decrease in microglia attachment and activation for the CS group as compared to the control. After 1-week of in vivo implantation in the mouse cortex, the coated probes demonstrated significantly lower biofouling as compared to uncoated controls. Like the in vitro results, increased neuronal population (neuronal nuclei and neurofilament) and decreased microglial activation were observed. To assess the coating's effect on the recording performance of silicon microelectrodes, we implanted coated and uncoated electrodes in the mouse striatum for 1 week and performed impedance and recording measurements. We observed significantly lower impedance in the coated group, likely due to the increased wettability of the coated surface. The peak-to-peak amplitude and the noise floor levels were both lower in the CS group compared to the controls, which led to a comparable signal-to-noise ratio between the two groups. The overall single unit yield (% channels recording a single unit) was 74% for the CS and 67% for the control group on day 1. Taken together, this study demonstrates the effectiveness of the polysaccharide-based coating in reducing biofouling and improving biocompatibility for neural electrode devices.
Collapse
Affiliation(s)
- Vaishnavi Dhawan
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Paige Nicole Martin
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Xiaoming Hu
- Department of Neurology, University of Pittsburgh, PA, USA
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Gu Y, Li Y, Wu Q, Wu Z, Sun L, Shang Y, Zhuang Y, Fan X, Yi L, Wang S. Chemical antifouling strategies in sensors for food analysis: A review. Compr Rev Food Sci Food Saf 2023; 22:4074-4106. [PMID: 37421317 DOI: 10.1111/1541-4337.13209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 04/26/2023] [Accepted: 06/20/2023] [Indexed: 07/10/2023]
Abstract
Surface biofouling induced by the undesired nonspecific adsorption of foulants (e.g., coexisting proteins and cells) in food matrices is a major issue of sensors for food analysis, hindering their reliability and accuracy of sensing. This issue can be addressed by developing antifouling strategies to prevent or alleviate nonspecific binding. Chemical antifouling strategies involve the use of chemical modifiers (i.e., antifouling materials) to strongly hydrate the surface and reduce surface biofouling. Through appropriate immobilization approaches, antifouling materials can be tethered onto sensors to form antifouling surfaces with well-ordered structures, balanced surface charges, and appropriate surface density and thickness. A rational antifouling surface can reduce the matrix effect, simplify sample pretreatment, and improve analytical performance. This review summarizes recent developments in chemical antifouling strategies in sensing. Surface antifouling mechanisms and common antifouling materials are described, and factors that may influence the antifouling effects of antifouling surfaces and approaches incorporating antifouling materials onto sensing surfaces are highlighted. Moreover, the specific applications of antifouling sensors in food analysis are introduced. Finally, we provide an outlook on future developments in antifouling sensors for food analysis.
Collapse
Affiliation(s)
- Ying Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Yonghui Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Qiyue Wu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Zhongdong Wu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Liping Sun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Ying Shang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Xuejing Fan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Lunzhao Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
5
|
Chen L, You S, Wang X, Li D, Ren S, Chen L. Dual carminic acid/hemin-marked DNA probes for simultaneously detecting CV-A16 and EV-A71 based on the mechanism of dimer to monomer transition. Talanta 2023; 265:124884. [PMID: 37392710 DOI: 10.1016/j.talanta.2023.124884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/09/2023] [Accepted: 06/25/2023] [Indexed: 07/03/2023]
Abstract
This study aimed to prepare two hairpin-structure DNA probes by conjugating carminic acid (CA) or hemin into two ends of specific genes of coxsackievirus A16 (CV-A16) and enterovirus A71 (EV-A71) (probeCV-A16-CA and probeEV-A71-hemin). Then, probeCV-A16-CA and probeEV-A71-hemin as the signal molecules were adsorbed onto NH2-MIL-53 (Al) (MOF). Based on these biocomposites, an electrochemical biosensor with dual-signal outputs for simultaneous assay of CV-A16 and EV-A71 was constructed. The stem-loops of probes switched both CA and hemin monomer to dimer, reducing the electrical activity of both CA and hemin. Subsequently, the target-induced opening of the stem-loop switched both CA and hemin dimers to monomers, resulting in two nonoverlapping increasing electrical signals. This sensitively reflected the concentration of targetCV-A16 and targetEV-A17 ranging from 10-10 to 10-15 M with a detection limit of 0.19 and 0.24 fM. This strategy was mainly applied to the simultaneous determination of targetCV-A16 and targetEV-A17 in 100% serum with satisfactory results. The MOF combined with the high loading capacity broke through the intrinsic limitation on sensitivity using the traditional methods. An increase of three orders of magnitude was observed. This study involved simple one-step detection, and only a simple replacement of a gene could trigger its potential in clinical and diagnostic applications.
Collapse
Affiliation(s)
- Lili Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Shuang You
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Xiaotong Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Dong Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Shuna Ren
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Lihua Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
6
|
Iskandar K, Pecastaings S, LeGac C, Salvatico S, Feuillolay C, Guittard M, Marchin L, Verelst M, Roques C. Demonstrating the In Vitro and In Situ Antimicrobial Activity of Oxide Mineral Microspheres: An Innovative Technology to Be Incorporated into Porous and Nonporous Materials. Pharmaceutics 2023; 15:pharmaceutics15041261. [PMID: 37111747 PMCID: PMC10144421 DOI: 10.3390/pharmaceutics15041261] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/26/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The antimicrobial activity of surfaces treated with zinc and/or magnesium mineral oxide microspheres is a patented technology that has been demonstrated in vitro against bacteria and viruses. This study aims to evaluate the efficiency and sustainability of the technology in vitro, under simulation-of-use conditions, and in situ. The tests were undertaken in vitro according to the ISO 22196:2011, ISO 20473:2013, and NF S90-700:2019 standards with adapted parameters. Simulation-of-use tests evaluated the robustness of the activity under worst-case scenarios. The in situ tests were conducted on high-touch surfaces. The in vitro results show efficient antimicrobial activity against referenced strains with a log reduction of >2. The sustainability of this effect was time-dependent and detected at lower temperatures (20 ± 2.5 °C) and humidity (46%) conditions for variable inoculum concentrations and contact times. The simulation of use proved the microsphere's efficiency under harsh mechanical and chemical tests. The in situ studies showed a higher than 90% reduction in CFU/25 cm2 per treated surface versus the untreated surfaces, reaching a targeted value of <50 CFU/cm2. Mineral oxide microspheres can be incorporated into unlimited surface types, including medical devices, to efficiently and sustainably prevent microbial contamination.
Collapse
Affiliation(s)
- Katia Iskandar
- Department of Pharmacy, School of Pharmacy, Lebanese International University, Bekaa P.O. Box 146404, Lebanon
- National Institute of Public Health, Clinical Epidemiology, and Toxicology-Lebanon (INSPECT-LB), Beirut 6573, Lebanon
| | - Sophie Pecastaings
- Laboratoire de Génie Chimique, Faculté de Pharmacie, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse, France
| | - Céline LeGac
- FONDEREPHAR, Faculté de Pharmacie, 31062 Toulouse, France
| | | | | | - Mylène Guittard
- Pylote SAS, 22 Avenue de la Mouyssaguèse, 31280 Drémil-Lafage, France
| | - Loïc Marchin
- Pylote SAS, 22 Avenue de la Mouyssaguèse, 31280 Drémil-Lafage, France
| | - Marc Verelst
- CEMES, UPR CNRS 8011, 29 Rue Jeanne Marvig, CEDEX, 31055 Toulouse, France
| | - Christine Roques
- Laboratoire de Génie Chimique, Faculté de Pharmacie, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse, France
- FONDEREPHAR, Faculté de Pharmacie, 31062 Toulouse, France
| |
Collapse
|
7
|
Manderfeld E, Thamaraiselvan C, Nunes Kleinberg M, Jusufagic L, Arnusch CJ, Rosenhahn A. Bacterial surface attachment and fouling assay on polymer and carbon surfaces using Rheinheimera sp. identified using bacteria community analysis of brackish water. BIOFOULING 2022; 38:940-951. [PMID: 36511186 DOI: 10.1080/08927014.2022.2153333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 11/14/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Biofouling on surfaces in contact with sea- or brackish water can severely impact the function of devices like reverse osmosis modules. Single species laboratory assays are frequently used to test new low fouling materials. The choice of bacterial strain is guided by the natural population present in the application of interest and decides on the predictive power of the results. In this work, the analysis of the bacterial community present in brackish water from Mashabei Sadeh, Israel was performed and Rheinheimera sp. was detected as a prominent microorganism. A Rheinheimera strain was selected to establish a short-term accumulation assay to probe initial bacterial attachment as well as biofilm growth to determine the biofilm-inhibiting properties of coatings. Both assays were applied to model coatings, and technically relevant polymers including laser-induced graphene. This strategy might be applied to other water sources to better predict the fouling propensity of new coatings.
Collapse
Affiliation(s)
- Emily Manderfeld
- Analytical Chemistry- Biointerfaces, Ruhr University Bochum, Faculty for Chemistry and Biochemistry, Bochum, Germany
| | - Chidambaram Thamaraiselvan
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
- Interdisciplinary Centre for Energy Research, Indian Institute of Science, Bengaluru, India
| | - Maurício Nunes Kleinberg
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Lejla Jusufagic
- Analytical Chemistry- Biointerfaces, Ruhr University Bochum, Faculty for Chemistry and Biochemistry, Bochum, Germany
| | - Christopher J Arnusch
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Axel Rosenhahn
- Analytical Chemistry- Biointerfaces, Ruhr University Bochum, Faculty for Chemistry and Biochemistry, Bochum, Germany
| |
Collapse
|
8
|
Multifunctional surface coating using chitosan and its chemical functionalization. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Leonardi AK, Medhi R, Zhang A, Düzen N, Finlay JA, Clarke JL, Clare AS, Ober CK. Investigation of N-Substituted Morpholine Structures in an Amphiphilic PDMS-Based Antifouling and Fouling-Release Coating. Biomacromolecules 2022; 23:2697-2712. [PMID: 35486708 DOI: 10.1021/acs.biomac.1c01474] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biofouling is a major disruptive process affecting the fuel efficiency and durability of maritime vessel coatings. Previous research has shown that amphiphilic coatings consisting of a siloxane backbone functionalized with hydrophilic moieties are effective marine antifouling and fouling-release materials. Poly(ethylene glycol) (PEG) has been the primary hydrophilic component used in such systems. Recently, the morpholine group has emerged as a promising compact alternative in antifouling membranes but is yet to be studied against marine foulants. In this work, the use of morpholine moieties to generate amphiphilicity in a poly(dimethylsiloxane) (PDMS)-based antifouling and fouling-release coating was explored. Two separate coating sets were investigated. The first set examined the incorporation of an N-substituted morpholine amine, and while these coatings showed promising fouling-release properties for Ulva linza, they had unusually high settlement of spores compared to controls. Based on those results, a second set of materials was synthesized using an N-substituted morpholine amide to probe the source of the high settlement and was found to significantly improve antifouling performance. Both coating sets included PEG controls with varying lengths to compare the viability of the morpholine structures as alternative hydrophilic groups. Surfaces were evaluated through a combination of bubble contact angle goniometry, profilometry, X-ray photoelectron spectroscopy (XPS), and marine bioassays against two soft fouling species, U. linza and Navicula incerta, known to have different adhesion characteristics.
Collapse
Affiliation(s)
| | | | | | | | - John A Finlay
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Jessica L Clarke
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Anthony S Clare
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | | |
Collapse
|
10
|
Gnanasampanthan T, Karthäuser JF, Spöllmann S, Wanka R, Becker HW, Rosenhahn A. Amphiphilic Alginate-Based Layer-by-Layer Coatings Exhibiting Resistance against Nonspecific Protein Adsorption and Marine Biofouling. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16062-16073. [PMID: 35377590 DOI: 10.1021/acsami.2c01809] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Amphiphilic coatings are promising materials for fouling-release applications, especially when their building blocks are inexpensive, biodegradable, and readily accessible polysaccharides. Here, amphiphilic polysaccharides were fabricated by coupling hydrophobic pentafluoropropylamine (PFPA) to carboxylate groups of hydrophilic alginic acid, a natural biopolymer with high water-binding capacity. Layer-by-layer (LbL) coatings comprising unmodified or amphiphilic alginic acid (AA*) and polyethylenimine (PEI) were assembled to explore how different PFPA contents affect their physicochemical properties, resistance against nonspecific adsorption (NSA) of proteins, and antifouling activity against marine bacteria (Cobetia marina) and diatoms (Navicula perminuta). The amphiphilic multilayers, characterized through spectroscopic ellipsometry, water contact angle goniometry, elemental analysis, AFM, XPS, and SPR spectroscopy, showed similar or even higher swelling in water and exhibited higher resistance toward NSA of proteins and microfouling marine organisms than multilayers without fluoroalkyl groups.
Collapse
Affiliation(s)
| | - Jana F Karthäuser
- Analytical Chemistry─Biointerfaces, Ruhr University Bochum, Bochum 44780, Germany
| | - Stephan Spöllmann
- RUBION, Central Unit for Ion Beams and Radionuclides, University of Bochum, Bochum 44780, Germany
| | - Robin Wanka
- Analytical Chemistry─Biointerfaces, Ruhr University Bochum, Bochum 44780, Germany
| | - Hans-Werner Becker
- RUBION, Central Unit for Ion Beams and Radionuclides, University of Bochum, Bochum 44780, Germany
| | - Axel Rosenhahn
- Analytical Chemistry─Biointerfaces, Ruhr University Bochum, Bochum 44780, Germany
| |
Collapse
|
11
|
Filgueira D, Bolaño C, Gouveia S, Moldes D. Enzymatic Functionalization of Wood as an Antifouling Strategy against the Marine Bacterium Cobetia marina. Polymers (Basel) 2021; 13:3795. [PMID: 34771352 PMCID: PMC8587834 DOI: 10.3390/polym13213795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
The protection of wood in marine environments is a major challenge due to the high sensitivity of wood to both water and marine microorganisms. Besides, the environmental regulations are pushing the industry to develop novel effective and environmentally friendly treatments to protect wood in marine environments. The present study focused on the development of a new green methodology based on the laccase-assisted grafting of lauryl gallate (LG) onto wood to improve its marine antifouling properties. Initially, the enzymatic treatment conditions (laccase dose, time of reaction, LG concentration) and the effect of the wood specie (beech, pine, and eucalyptus) were assessed by water contact angle (WCA) measurements. The surface properties of the enzymatically modified wood veneers were assessed by X-ray photoelectron spectroscopy (XPS), Fourier transform-infrared spectroscopy (FTIR). Antifouling properties of the functionalized wood veneers against marine bacterium Cobetia marina were studied by scanning electron microscopy (SEM) and protein measurements. XPS and FTIR analysis suggested the stable grafting of LG onto the surface of wood veneers after laccase-assisted treatment. WCA measurements showed that the hydrophobicity of the wood veneers significantly increased after the enzymatic treatment. Protein measurements and SEM pictures showed that enzymatically-hydrophobized wood veneers modified the pattern of bacterial attachment and remarkably reduced the bacterium colonization. Thus, the results observed in the present study confirmed the potential efficiency of laccase-assisted treatments to improve the marine antifouling properties of wood.
Collapse
Affiliation(s)
- Daniel Filgueira
- CINTECX, Department of Chemical Engineering, Campus Universitario as Lagoas-Marcosende, Universidade de Vigo, 36310 Vigo, Spain; (D.F.); (C.B.); (S.G.)
- TECNALIA, Basque Research and Technology Alliance (BRTA), Area Anardi 5, 20730 Azpeitia, Spain
| | - Cristian Bolaño
- CINTECX, Department of Chemical Engineering, Campus Universitario as Lagoas-Marcosende, Universidade de Vigo, 36310 Vigo, Spain; (D.F.); (C.B.); (S.G.)
| | - Susana Gouveia
- CINTECX, Department of Chemical Engineering, Campus Universitario as Lagoas-Marcosende, Universidade de Vigo, 36310 Vigo, Spain; (D.F.); (C.B.); (S.G.)
| | - Diego Moldes
- CINTECX, Department of Chemical Engineering, Campus Universitario as Lagoas-Marcosende, Universidade de Vigo, 36310 Vigo, Spain; (D.F.); (C.B.); (S.G.)
- Research Group of Bioengineering and Sustainable Processes, Department of Chemical Engineering, Edificio Fundición, Lagoas Marcosende s/n, University of Vigo, 36310 Vigo, Spain
| |
Collapse
|
12
|
Nong W, Wu J, Ghiladi RA, Guan Y. The structural appeal of metal–organic frameworks in antimicrobial applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Gnanasampanthan T, Beyer CD, Yu W, Karthäuser JF, Wanka R, Spöllmann S, Becker HW, Aldred N, Clare AS, Rosenhahn A. Effect of Multilayer Termination on Nonspecific Protein Adsorption and Antifouling Activity of Alginate-Based Layer-by-Layer Coatings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5950-5963. [PMID: 33969986 DOI: 10.1021/acs.langmuir.1c00491] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Layer-by-layer (LbL) assembly is a versatile platform for applying coatings and studying the properties of promising compounds for antifouling applications. Here, alginate-based LbL coatings were fabricated by alternating the deposition of alginic acid and chitosan or polyethylenimine to form multilayer coatings. Films were prepared with either odd or even bilayer numbers to investigate if the termination of the LbL coatings affects the physicochemical properties, resistance against the nonspecific adsorption (NSA) of proteins, and antifouling efficacy. The hydrophilic films, which were characterized using spectroscopic ellipsometry, water contact angle goniometry, ATR-FTIR spectroscopy, AFM, XPS, and SPR spectroscopy, revealed high swelling in water and strongly reduced the NSA of proteins compared to the hydrophobic reference. While the choice of the polycation was important for the protein resistance of the LbL coatings, the termination mattered less. The attachment of diatoms and settling of barnacle cypris larvae revealed good antifouling properties that were controlled by the termination and the charge density of the LbL films.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Nick Aldred
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, United Kingdom
| | - Anthony S Clare
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | | |
Collapse
|
14
|
Yu W, Wang Y, Gnutt P, Wanka R, Krause LMK, Finlay JA, Clare AS, Rosenhahn A. Layer-by-Layer Deposited Hybrid Polymer Coatings Based on Polysaccharides and Zwitterionic Silanes with Marine Antifouling Properties. ACS APPLIED BIO MATERIALS 2021; 4:2385-2397. [PMID: 35014359 DOI: 10.1021/acsabm.0c01253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Polyelectrolyte multilayer (PEM) assembly is a versatile tool to construct low-fouling coatings. For application in the marine environment, their structure needs to be stabilized by covalent linkage. Here, we introduce an approach for spin coating of silane-based sol-gel chemistries using layer-by-layer assembly of polysaccharide-based hybrid polymer coatings (LBLHPs). The silane sol-gel chemistry allows the films to be cross-linked under water-based and mild reaction conditions. Two different silanes were used for this purpose, a conventional triethoxymethyl silane and a de novo synthesized zwitterionic silane. The polysaccharide-silane hybrid polymer coatings were thoroughly characterized with spectroscopic ellipsometry, water contact angle (WCA) goniometry, attenuated total reflection-Fourier transform infrared spectroscopy, and atomic force microscopy. The coatings showed good stability in seawater, smooth surfaces, a high degree of hydration, and WCAs below or close to the Berg limit. LBLHPs showed low-fouling properties in biological assays against nonspecific protein adsorption, attachment of the diatom Navicula perminuta, and settlement of zoospores of the macroalga Ulva linza.
Collapse
Affiliation(s)
- Wenfa Yu
- Analytical Chemistry-Biointerfaces, Ruhr University Bochum, 44801 Bochum, Germany
| | - Yongxiang Wang
- Analytical Chemistry-Biointerfaces, Ruhr University Bochum, 44801 Bochum, Germany
| | - Patricia Gnutt
- Analytical Chemistry-Biointerfaces, Ruhr University Bochum, 44801 Bochum, Germany
| | - Robin Wanka
- Analytical Chemistry-Biointerfaces, Ruhr University Bochum, 44801 Bochum, Germany
| | - Lutz M K Krause
- Analytical Chemistry-Biointerfaces, Ruhr University Bochum, 44801 Bochum, Germany
| | - John A Finlay
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Anthony S Clare
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Axel Rosenhahn
- Analytical Chemistry-Biointerfaces, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
15
|
Beaumont M, Tran R, Vera G, Niedrist D, Rousset A, Pierre R, Shastri VP, Forget A. Hydrogel-Forming Algae Polysaccharides: From Seaweed to Biomedical Applications. Biomacromolecules 2021; 22:1027-1052. [PMID: 33577286 PMCID: PMC7944484 DOI: 10.1021/acs.biomac.0c01406] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/29/2021] [Indexed: 12/22/2022]
Abstract
With the increasing growth of the algae industry and the development of algae biorefinery, there is a growing need for high-value applications of algae-extracted biopolymers. The utilization of such biopolymers in the biomedical field can be considered as one of the most attractive applications but is challenging to implement. Historically, polysaccharides extracted from seaweed have been used for a long time in biomedical research, for example, agarose gels for electrophoresis and bacterial culture. To overcome the current challenges in polysaccharides and help further the development of high-added-value applications, an overview of the entire polysaccharide journey from seaweed to biomedical applications is needed. This encompasses algae culture, extraction, chemistry, characterization, processing, and an understanding of the interactions of soft matter with living organisms. In this review, we present algae polysaccharides that intrinsically form hydrogels: alginate, carrageenan, ulvan, starch, agarose, porphyran, and (nano)cellulose and classify these by their gelation mechanisms. The focus of this review further lays on the culture and extraction strategies to obtain pure polysaccharides, their structure-properties relationships, the current advances in chemical backbone modifications, and how these modifications can be used to tune the polysaccharide properties. The available techniques to characterize each organization scale of a polysaccharide hydrogel are presented, and the impact on their interactions with biological systems is discussed. Finally, a perspective of the anticipated development of the whole field and how the further utilization of hydrogel-forming polysaccharides extracted from algae can revolutionize the current algae industry are suggested.
Collapse
Affiliation(s)
- Marco Beaumont
- Queensland
University of Technology, Brisbane, Australia
| | - Remy Tran
- Institute
for Macromolecular Chemistry, University
of Freiburg, Freiburg, Germany
| | - Grace Vera
- Institute
for Macromolecular Chemistry, University
of Freiburg, Freiburg, Germany
| | - Dennis Niedrist
- Institute
for Macromolecular Chemistry, University
of Freiburg, Freiburg, Germany
| | - Aurelie Rousset
- Centre
d’Étude et de Valorisation des Algues, Pleubian, France
| | - Ronan Pierre
- Centre
d’Étude et de Valorisation des Algues, Pleubian, France
| | - V. Prasad Shastri
- Institute
for Macromolecular Chemistry, University
of Freiburg, Freiburg, Germany
- Centre
for Biological Signalling Studies, University
of Freiburg, Frieburg, Germany
| | - Aurelien Forget
- Institute
for Macromolecular Chemistry, University
of Freiburg, Freiburg, Germany
| |
Collapse
|
16
|
Zeng W, Huang Y, Xia A, Liao Q, Chen K, Zhu X, Zhu X. Thermoresponsive Surfaces Grafted by Shrinkable Hydrogel Poly( N-isopropylacrylamide) for Controlling Microalgae Cells Adhesion during Biofilm Cultivation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1178-1189. [PMID: 33403849 DOI: 10.1021/acs.est.0c03084] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Microalgae is a promising candidate for reducing greenhouse gas and producing renewable biofuels. For microalgae biofilm cultivation, a strong adhesion ability of microalgae cells onto the surface is a prerequisite to resist the fluid shear stress, while strong adhesion is not of benefit to the biofilm harvesting process. To solve this dilemma, a thermoresponsive surface (TMRS) with lower critical solution temperature of 33 °C was made by grafting N-isopropylacrylamide onto a silicate glass slide. The wettability of the TMRS changed from hydrophilic (contact angle of 59.4°) to hydrophobic (contact angle of 91.6°) when the temperature rose from 15 to 35 °C, resulting in the increase of adhesion energy of the TMRS to Chlorella vulgaris cells by 135.6%. The experiments showed that the cells were more likely to attach onto the TMRS at the higher temperature of 35 °C owing to the surface microstructures generated by the hydrogel layer shrinkage, which is similar in size to the microalgae cells. And the cell coverage rate on TMRS increased by 32% compared to the original glass surface. Conversely, the cells separate easily from the TMRS at a lower temperature of 15 °C, and the cell adhesion density was reduced by 19% due to hydrogel layer swelling to a relatively flat surface.
Collapse
Affiliation(s)
- Weida Zeng
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400044, P. R. China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Yun Huang
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400044, P. R. China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Ao Xia
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400044, P. R. China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Qiang Liao
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400044, P. R. China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Keming Chen
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400044, P. R. China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Xun Zhu
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400044, P. R. China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Xianqing Zhu
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400044, P. R. China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, P. R. China
| |
Collapse
|
17
|
Kuliasha CA, Fedderwitz RL, Stafslien SJ, Finlay JA, Clare AS, Brennan AB. Anti-biofouling properties of poly(dimethyl siloxane) with RAFT photopolymerized acrylate/methacrylate surface grafts against model marine organisms. BIOFOULING 2021; 37:78-95. [PMID: 33491472 DOI: 10.1080/08927014.2021.1875216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Biofouling of man-made surfaces by marine organisms is a global problem with both financial and environmental consequences. However, the development of non-toxic anti-biofouling coatings is challenged by the diversity of fouling organisms. One possible solution leverages coatings composed of diverse chemical constituents. Reversible addition-fragmentation chain-transfer (RAFT) photopolymerization was used to modify poly(dimethylsiloxane) (PDMSe) surfaces with polymeric grafts composed of three successive combinations of acrylamide, acrylic acid, and hydroxyethyl methacrylate. RAFT limited conflicting variables and allowed for the effect of graft chemistry to be isolated. While all compositions enhanced the anti-biofouling performance compared with the PDMSe control, the ternary, amphiphilic copolymer was the most effective with 98% inhibition of the attachment of zoospores of the green alga Ulva linza, 94% removal of cells of the diatom Navicula incerta, and 62% removal of cells of the bacterium Cellulophaga lytica. However, none of the graft compositions tested were able to mitigate reattachment of adult barnacles, Amphibalanus amphitrite.
Collapse
Affiliation(s)
- Cary A Kuliasha
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, USA
| | - Rebecca L Fedderwitz
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, USA
| | - Shane J Stafslien
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, USA
| | - John A Finlay
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - Anthony S Clare
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - Anthony B Brennan
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, USA
| |
Collapse
|
18
|
Glycyrrhiza polysaccharide doped the conducting polymer PEDOT hybrid-modified biosensors for the ultrasensitive detection of microRNA. Anal Chim Acta 2020; 1139:155-163. [DOI: 10.1016/j.aca.2020.09.061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/19/2020] [Accepted: 09/29/2020] [Indexed: 11/23/2022]
|
19
|
Wanka R, Koc J, Clarke J, Hunsucker KZ, Swain GW, Aldred N, Finlay JA, Clare AS, Rosenhahn A. Sol-Gel-Based Hybrid Materials as Antifouling and Fouling-Release Coatings for Marine Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:53286-53296. [PMID: 33180471 DOI: 10.1021/acsami.0c15288] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hybrid materials (HMs) offer unique properties as they combine inorganic and organic components into a single material. Here, we developed HM coatings for marine antifouling applications using sol-gel chemistry and naturally occurring polysaccharides. The coatings were characterized by spectroscopic ellipsometry, contact angle goniometry, AFM, and ATR-FTIR, and their stability was tested in saline media. Marine antifouling and fouling-release properties were tested in laboratory assays against the settlement of larvae of the barnacle Balanus improvisus and against the settlement and removal of the diatom Navicula incerta. Furthermore, laboratory data were confirmed in short-term dynamic field assays in Florida, USA. All hybrid coatings revealed a superior performance in the assays compared to a hydrophobic reference. Within the hybrids, those with the highest degree of hydrophilicity and negative net charge across the surface performed best. Alginate and heparin showed good performance, making these hybrid materials promising building blocks for fouling-resistant coatings.
Collapse
Affiliation(s)
- Robin Wanka
- Analytical Chemistry-Biointerfaces, Ruhr University Bochum, Bochum 44780, Germany
| | - Julian Koc
- Analytical Chemistry-Biointerfaces, Ruhr University Bochum, Bochum 44780, Germany
| | - Jessica Clarke
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Kelli Z Hunsucker
- Center for Corrosion and Biofouling Control, Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Geoffrey W Swain
- Center for Corrosion and Biofouling Control, Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Nick Aldred
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - John A Finlay
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Anthony S Clare
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Axel Rosenhahn
- Analytical Chemistry-Biointerfaces, Ruhr University Bochum, Bochum 44780, Germany
| |
Collapse
|
20
|
Kim D, Kang SM. Red Algae-Derived Carrageenan Coatings for Marine Antifouling Applications. Biomacromolecules 2020; 21:5086-5092. [PMID: 33201682 DOI: 10.1021/acs.biomac.0c01248] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We report a facile approach for the fabrication of a marine antifouling coating using the red algae-derived polysaccharide, carrageenan (CAR). Because CAR is hydrophilic and negatively charged, we hypothesized that it would form strong hydration layers upon adsorption onto solid surfaces, thereby exhibiting marine antifouling properties. Although various types of CAR can be used for marine antifouling, a universally applicable coating method has not yet been developed; thus, a systematic study on the marine antifouling property of CAR coating is lacking. Here, we fabricated a versatile CAR coating via ZrIV-mediated multiple cross-linking reactions between the sulfate groups of CAR and metal ions and successfully deposited κ-, ι-, and λ-CAR onto solid surfaces. Specifically, λ-CAR showed superior marine antifouling performance, as evidenced by the results of the marine diatom adhesion assays.
Collapse
Affiliation(s)
- Dahee Kim
- Department of Chemistry, Chungbuk National University, Chungbuk 28644, Republic of Korea
| | - Sung Min Kang
- Department of Chemistry, Chungbuk National University, Chungbuk 28644, Republic of Korea
| |
Collapse
|
21
|
Yu W, Wanka R, Finlay JA, Clarke JL, Clare AS, Rosenhahn A. Degradable hyaluronic acid/chitosan polyelectrolyte multilayers with marine fouling-release properties. BIOFOULING 2020; 36:1049-1064. [PMID: 33251857 DOI: 10.1080/08927014.2020.1846725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/22/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023]
Abstract
Polysaccharide multilayers consisting of hyaluronic acid and chitosan were prepared by layer-by-layer assembly. To be used in seawater, the multilayers were crosslinked to a different degree using thermal or chemical methods. ATR-FTIR revealed different amide densities as a result of the crosslinking conditions. AFM showed that the crosslinking affected the roughness and swelling behavior of the coatings. The stability and degradability of the multilayers in aqueous environments were monitored with spectroscopic ellipsometry. The resistance of the coatings against non-specific protein adsorption was characterized by SPR spectroscopy. Settlement assays using Ulva linza zoospores and removal assays using the diatom Navicula incerta showed that the slowly degradable coatings were less prone to fouling than the strongly crosslinked ones. Thus, the coatings were a suitable model system to show that crosslinking the multilayers under mild conditions and equipping the coatings with controlled degradation rates enhances their antifouling and fouling-release properties against marine fouling organisms.
Collapse
Affiliation(s)
- Wenfa Yu
- Analytical Chemistry- Biointerfaces, Ruhr University Bochum, Bochum, Germany
| | - Robin Wanka
- Analytical Chemistry- Biointerfaces, Ruhr University Bochum, Bochum, Germany
| | - John A Finlay
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Jessica L Clarke
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Anthony S Clare
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Axel Rosenhahn
- Analytical Chemistry- Biointerfaces, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
22
|
Jeong Y, Kang SM. Catechol‐conjugated Dextran for Marine Antifouling Applications: The Adverse Effects of High Catechol Content. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yeonwoo Jeong
- Department of Chemistry Chungbuk National University Cheongju 28644 Korea
| | - Sung Min Kang
- Department of Chemistry Chungbuk National University Cheongju 28644 Korea
| |
Collapse
|
23
|
Jeong JO, Kim S, Park J, Lee S, Park JS, Lim YM, Lee JY. Biomimetic nonbiofouling polypyrrole electrodes grafted with zwitterionic polymer using gamma rays. J Mater Chem B 2020; 8:7225-7232. [PMID: 32638708 DOI: 10.1039/c9tb02087j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bioelectrodes, including metallic and conductive polymer (CP) bioelectrodes, often suffer from biofouling by contamination from microbacteria and/or biomolecules in biological systems, which can cause substantial impairment of biofunctionality and biocompatibility. Herein, we have employed an in situ polymerization of methacryloyloxyethyl phosphorylcholine (MPC) by gamma radiation to introduce fouling-resistant properties onto the surface of the conductive polymer, polypyrrole (PPy). The concentrations of an MPC monomer were varied during the grafting. PPy electrodes modified with MPC (PPy-g-MPC) revealed excellent anti-biofouling properties, as demonstrated by multiple analyses, such as serum protein adsorption, fibroblast adhesion, bacteria adhesion, and scar tissue formation in vivo. Importantly, PPy-g-MPC, which was modified with 0.2 M MPC using gamma radiation, exhibited electrical properties similar to unmodified PPy electrodes, indicating that our MPC grafting strategies did not cause impairment of electrical/electrochemical properties of the original PPy electrodes while successfully introducing anti-biofouling properties. Zwitterionic MPC polymer grafting on PPy electrodes by in situ polymerization with gamma radiation will benefit the development of highly biocompatible and functional bioelectrodes, such as neural electrodes, stimulators, and biosensors.
Collapse
Affiliation(s)
- Jin-Oh Jeong
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea. and Research Division for Industry & Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), 29 Gumgugil, Jeongeup, 56212, Republic of Korea.
| | - Semin Kim
- Department of Biologic and Materials Science, University of Michigan, Ann Arbor, MI 48109, USA
| | - Junggeon Park
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| | - Sanghun Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| | - Jong-Seok Park
- Research Division for Industry & Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), 29 Gumgugil, Jeongeup, 56212, Republic of Korea.
| | - Youn-Mook Lim
- Research Division for Industry & Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), 29 Gumgugil, Jeongeup, 56212, Republic of Korea.
| | - Jae Young Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| |
Collapse
|
24
|
Chen X, Chen S, Zhang Y, Yang H. Study on Functionality and Surface Modification of a Stair-Step Liquid-Triggered Valve for On-Chip Flow Control. MICROMACHINES 2020; 11:mi11070690. [PMID: 32708757 PMCID: PMC7407824 DOI: 10.3390/mi11070690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/31/2022]
Abstract
Distinctive from other forms of microfluidic system, capillary microfluidics is of great interest in autonomous micro-systems due to its well-engineered fluidic control based on capillary force. As an essential component of fluidic control in capillaric circuits, micro-valves enable sequential fluidic operations by performing actions such as stopping and triggering. In this paper, we present a stair-step liquid-triggered valve; the functionality of the valve and its dependencies on geometry and surface modification are studied. The surface contact angle of the microfabricated valves that are coated by polyethylene glycol (PEG) or (3-Aminopropyl) triethoxysilane (APTES) is evaluated experimentally, and the corresponding reliability of the valve structure is discussed. Moreover, the variation in the surface contact angle over time is investigated, indicating the shelf time of the device. We further discuss the overall fluidic behavior in such capillary valves, which benefits the capillaric circuit designs at the initial stage.
Collapse
Affiliation(s)
- Xi Chen
- Laboratory of Biomedical Microsystems and Nano Devices, Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, China; (X.C.); (S.C.)
| | - Sihui Chen
- Laboratory of Biomedical Microsystems and Nano Devices, Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, China; (X.C.); (S.C.)
| | - Yi Zhang
- Center for Medical AI, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Correspondence: (H.Y.); (Y.Z.); Tel.: +86-755-8639-2675 (H.Y.)
| | - Hui Yang
- Laboratory of Biomedical Microsystems and Nano Devices, Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, China; (X.C.); (S.C.)
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Correspondence: (H.Y.); (Y.Z.); Tel.: +86-755-8639-2675 (H.Y.)
| |
Collapse
|
25
|
Koc J, Schönemann E, Wanka R, Aldred N, Clare AS, Gardner H, Swain GW, Hunsucker K, Laschewsky A, Rosenhahn A. Effects of crosslink density in zwitterionic hydrogel coatings on their antifouling performance and susceptibility to silt uptake. BIOFOULING 2020; 36:646-659. [PMID: 32718200 DOI: 10.1080/08927014.2020.1796983] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/08/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
Hydrogel coatings effectively reduce the attachment of proteins and organisms in laboratory assays, in particular when made from zwitterionic monomers. In field experiments with multiple species and non-living material, such coatings suffer from adsorption of particulate matter. In this study, the zwitterionic monomer 3-[N-(2-methacryloyloxyethyl)-N,N-dimethylammonio] propanesulfonate (SPE) was copolymerized with increasing amounts of the photo-crosslinker benzophenon-4-yloxyethyl methacrylate (BPEMA) to systematically alter the density of crosslinks between the polymer chains. The effect of increasing crosslink density on the antifouling (AF) performance of the coatings was investigated in laboratory assays and fields tests. In both cases, the AF performance was improved by increasing the crosslinker content. The coatings reduced protein, diatom, and barnacle accumulation, and showed better resistance to biomass accumulation. The findings underline that the marine AF performance of hydrogel coatings does not only depend on the specific chemical structure of the polymers, but also on their physico-chemical properties such as rigidity and swelling.
Collapse
Affiliation(s)
- Julian Koc
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, Bochum, Germany
| | - Eric Schönemann
- Institute of Chemistry, Universität Potsdam, Potsdam, Germany
| | - Robin Wanka
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, Bochum, Germany
| | - Nick Aldred
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
- School of Life Sciences, University of Essex, Wivenhoe Park, UK
| | - Anthony S Clare
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Harrison Gardner
- Center for Corrosion & Biofouling, Florida Institute of Technology, Melbourne, FL, USA
| | - Geoffrey W Swain
- Center for Corrosion & Biofouling, Florida Institute of Technology, Melbourne, FL, USA
| | - Kelli Hunsucker
- Center for Corrosion & Biofouling, Florida Institute of Technology, Melbourne, FL, USA
| | - Andre Laschewsky
- Institute of Chemistry, Universität Potsdam, Potsdam, Germany
- Fraunhofer Institute of Applied Polymer Research IAP, Potsdam, Germany
| | - Axel Rosenhahn
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
26
|
Liu Y, Zhang D, Ren B, Gong X, Liu A, Chang Y, He Y, Zheng J. Computational Investigation of Antifouling Property of Polyacrylamide Brushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2757-2766. [PMID: 32118448 DOI: 10.1021/acs.langmuir.0c00165] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Antifouling materials and coatings have broad fundamental and practical applications. Strong hydration at polymer surfaces has been proven to be responsible for their antifouling property, but molecular details of interfacial water behaviors and their functional roles in protein resistance remain elusive. Here, we computationally studied the packing structure, surface hydration, and protein resistance of four poly(N-hydroxyalkyl acrylamide) (PAMs) brushes with different carbon spacer lengths (CSLs) using a combination of molecular mechanics (MM), Monte Carlo (MC), and molecular dynamics (MD) simulations. The packing structure of different PAM brushes were first determined and served as a structural basis for further exploring the CSL-dependent dynamics and structure of water molecules on PAM brushes and their surface resistance ability to lysozyme protein. Upon determining an optimal packing structure of PAMs by MM and optimal protein orientation on PAMs by MC, MD simulations further revealed that poly(N-hydroxymethyl acrylamide) (pHMAA), poly(N-(2-hydroxyethyl)acrylamide) (pHEAA), and poly(N-(3-hydroxypropyl)acrylamide) (pHPAA) brushes with shorter CSLs = 1-3 possessed a much stronger binding ability to more water molecules than a poly(N-(5-hydroxypentyl)acrylamide) (pHPenAA) brush with CSL = 5. Consequently, CSL-induced strong surface hydration on pHMAA, pHEAA, and pHPAA brushes led to high surface resistance to lysozyme adsorption, in sharp contrast to lysozyme adsorption on the pHPenAA brush. Computational studies confirmed the experimental results of surface wettability and protein adsorption from surface plasmon resonance, contact angle, and sum frequency generation vibrational spectroscopy, highlighting that small structural variation of CSLs can greatly impact surface hydration and antifouling characteristics of antifouling surfaces, which may provide structural-based design guidelines for new and effective antifouling materials and surfaces.
Collapse
Affiliation(s)
- Yonglan Liu
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Dong Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Baiping Ren
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Xiong Gong
- Department of Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Aristo Liu
- Copley High School, Copley, Akron, Ohio 44321, United States
| | - Yung Chang
- Department of Chemical Engineering and R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan 320, Taiwan
| | - Yi He
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
- Department of Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
27
|
Sun W, Liu W, Wu Z, Chen H. Chemical Surface Modification of Polymeric Biomaterials for Biomedical Applications. Macromol Rapid Commun 2020; 41:e1900430. [DOI: 10.1002/marc.201900430] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 02/08/2020] [Accepted: 02/16/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Wei Sun
- College of ChemistryChemical Engineering and Materials ScienceCollaborative Innovation Center for New Type Urbanization and Social Governance of Jiangsu ProvinceSoochow University Suzhou 215123 P. R. China
| | - Wenying Liu
- College of ChemistryChemical Engineering and Materials ScienceCollaborative Innovation Center for New Type Urbanization and Social Governance of Jiangsu ProvinceSoochow University Suzhou 215123 P. R. China
| | - Zhaoqiang Wu
- College of ChemistryChemical Engineering and Materials ScienceCollaborative Innovation Center for New Type Urbanization and Social Governance of Jiangsu ProvinceSoochow University Suzhou 215123 P. R. China
| | - Hong Chen
- College of ChemistryChemical Engineering and Materials ScienceCollaborative Innovation Center for New Type Urbanization and Social Governance of Jiangsu ProvinceSoochow University Suzhou 215123 P. R. China
| |
Collapse
|
28
|
Xia Y, Adibnia V, Shan C, Huang R, Qi W, He Z, Xie G, Olszewski M, De Crescenzo G, Matyjaszewski K, Banquy X, Su R. Synergy between Zwitterionic Polymers and Hyaluronic Acid Enhances Antifouling Performance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15535-15542. [PMID: 31478669 DOI: 10.1021/acs.langmuir.9b01876] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Challenges associated with nonspecific adsorption of proteins on sensor surfaces have steered the development of novel antifouling materials and strategies. Inspired by human synovial fluid composition and structure, we designed synergistic antifouling coatings with mixtures of hyaluronic acid (HA) and a zwitterionic bottlebrush polymer (BB). Using a fast and convenient online surface modification method, the polymers were immobilized on the Au surface, significantly increasing its hydrophilicity. Using surface plasmon resonance (SPR), a 10:1 ratio of HA to BB was found optimal to provide the best antifouling performance. Bovine serum albumin (BSA) adsorption on HA-BB coated surfaces was 0.2 ng/cm2, which was 60 times lower than BB or HA alone and 25 times lower than the commonly accepted ultralow adsorption limit (<5 ng/cm2), demonstrating the synergistic effect of HA and BB against nonspecific protein adsorption. This was found to be independent of BSA concentration up to physiological concentrations. Furthermore, the antifouling performance of HA-BB coated surfaces was tested against milk and serum, showing almost 92% lower protein adsorption than that on bare surfaces, suggesting the potential efficacy of this antifouling coating in real life settings.
Collapse
Affiliation(s)
- Yinqiang Xia
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , P. R. China
| | - Vahid Adibnia
- Faculty of Pharmacy , Université de Montréal , 2900 Édouard-Montpetit , Montreal , Quebec H3C 3J7 , Canada
| | - Cancan Shan
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , P. R. China
| | - Renliang Huang
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering , Tianjin University , Tianjin 300072 , P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , China
| | - Zhimin He
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , P. R. China
| | - Guojun Xie
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Mateusz Olszewski
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Gregory De Crescenzo
- Ecole Polytechnique de Montreal , P.O. Box 6079, Station Centre-Ville , Montreal , Quebec H3C 3A7 , Canada
| | - Krzysztof Matyjaszewski
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Xavier Banquy
- Faculty of Pharmacy , Université de Montréal , 2900 Édouard-Montpetit , Montreal , Quebec H3C 3J7 , Canada
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , China
| |
Collapse
|
29
|
Scalabrini M, Hamon J, Linossier I, Ferrières V, Réhel K. Pseudomonas aeruginosa resistance of monosaccharide-functionalized glass surfaces. Colloids Surf B Biointerfaces 2019; 183:110383. [DOI: 10.1016/j.colsurfb.2019.110383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/16/2019] [Accepted: 07/19/2019] [Indexed: 01/10/2023]
|
30
|
Layer-by-layer constructed hyaluronic acid/chitosan multilayers as antifouling and fouling-release coatings. Biointerphases 2019; 14:051002. [DOI: 10.1116/1.5110887] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
31
|
Ye H, Han M, Huang R, Schmidt TA, Qi W, He Z, Martin LL, Jay GD, Su R, Greene GW. Interactions between Lubricin and Hyaluronic Acid Synergistically Enhance Antiadhesive Properties. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18090-18102. [PMID: 31026132 DOI: 10.1021/acsami.9b01493] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Preventing the unwanted adsorption of proteins and cells at articular cartilage surfaces plays a critical role in maintaining healthy joints and avoiding degenerative diseases such as osteoarthritis. Immobilized at the surface of healthy articular cartilage is a thin, interfacial layer of macromolecules consisting mainly of hyaluronic acid (HA) and lubricin (LUB; a.k.a. PRG4) that is believed to form a co-adsorbed, composite film now known to exhibit synergistic tribological properties. Bioinspired by the composition of cartilage surfaces, composite layers of HA and LUB were grafted to Au surfaces and the antiadhesive properties were assessed using surface plasmon resonance and quartz crystal microbalance. A clear synergistic enhancement in antiadhesive properties was observed in the composite films relative to grafted HA and LUB layers alone. Atomic force microscopy (AFM) normal force measurements provide insight into the architecture of the HA/LUB composite layer and implicate a strong contribution of hydrophobic interactions in the binding of LUB end-domains directly to HA chains. These AFM force measurements indicate that the adhesion of LUB to HA is strong and indicate that the hydrophobic coupling of LUB to HA shields the hydrophobic domains in these molecules from interactions with other proteins or molecules.
Collapse
Affiliation(s)
| | - Mingyu Han
- Institute of Frontier Materials, Australian Centre of Excellence in Electromaterials Science , Deakin University , 75 Pigdons Road , Waurn Ponds , VIC 3216 , Australia
| | | | - Tannin A Schmidt
- Biomedical Engineering Department , University of Connecticut , 263 Farmington Avenue , Farmington , Connecticut 06030 , United States
| | | | | | - Lisandra L Martin
- School of Chemistry , Monash University , Wellington Road , Clayton , VIC 3800 , Australia
| | - Gregory D Jay
- Department of Emergency Medicine, Warren Alpert Medical School, Division of Biomedical Engineering, School of Engineering , Brown University , Providence , Rhode Island 02912 , United States
| | | | - George W Greene
- Institute of Frontier Materials, Australian Centre of Excellence in Electromaterials Science , Deakin University , 75 Pigdons Road , Waurn Ponds , VIC 3216 , Australia
| |
Collapse
|
32
|
Liu Y, Zhang Y, Ren B, Sun Y, He Y, Cheng F, Xu J, Zheng J. Molecular Dynamics Simulation of the Effect of Carbon Space Lengths on the Antifouling Properties of Hydroxyalkyl Acrylamides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3576-3584. [PMID: 30721070 DOI: 10.1021/acs.langmuir.8b04229] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Surface hydration has been proposed as the key antifouling mechanism of antifouling materials. However, molecular-level details of the structure, dynamics, and interactions of interfacial water around antifouling polymers still remain elusive. In this work, using all-atom molecular dynamics (MD) simulations, we studied four different acrylamides (AMs) for their interfacial water behaviors and their interactions with a protein, with special attention to the effect of carbon spacer lengths (CSLs) on the hydration properties of AMs. Collective MD simulation data revealed that although all four AMs displayed strong hydration, N-hydroxymethyl acrylamide (HMAA) and N-(2-hydroxyethyl)acrylamide (HEAA) with shorter CSLs displayed a longer residence time, slower self-diffusion, and lower coordination number of interfacial water molecules than N-(3-hydroxypropyl)acrylamide (HPAA) and N-(5-hydroxypentyl)-acrylamide (HPenAA) with longer CSLs. The shorter CSLs allow water molecules to form bridging hydrogen bonds with different hydrophilic groups in the same AM chain, thus enhancing the hydration capacity of AMs. Consequently, different from HPenAA, which had a weak but detectable interaction with the protein, HMAA, HEAA, and HPAA had almost zero interactions with the protein. This computational work provides a better fundamental understanding of the surface hydration and protein interaction of different AMs with subtle structural changes from structural, dynamic, and energy aspects at the atomic level, which hopefully will guide the design of new and effective nonfouling materials.
Collapse
Affiliation(s)
- Yonglan Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices College of Life Science and Chemistry , Hunan University of Technology , Zhuzhou 412007 , China
- Department of Chemical & Biomolecular Engineering , The University of Akron , Akron , Ohio 44325 , United States
| | - Yanxian Zhang
- Department of Chemical & Biomolecular Engineering , The University of Akron , Akron , Ohio 44325 , United States
| | - Baiping Ren
- Department of Chemical & Biomolecular Engineering , The University of Akron , Akron , Ohio 44325 , United States
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300354 , China
| | - Yi He
- College of Chemical and Biological Engineering , Zhejiang University , Hangzhou , Zhejiang 310027 , China
| | - Fang Cheng
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , China
| | - Jianxiong Xu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices College of Life Science and Chemistry , Hunan University of Technology , Zhuzhou 412007 , China
| | - Jie Zheng
- Department of Chemical & Biomolecular Engineering , The University of Akron , Akron , Ohio 44325 , United States
| |
Collapse
|
33
|
Yeon DK, Ko S, Jeong S, Hong SP, Kang SM, Cho WK. Oxidation-Mediated, Zwitterionic Polydopamine Coatings for Marine Antifouling Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1227-1234. [PMID: 30563337 DOI: 10.1021/acs.langmuir.8b03454] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We synthesized a zwitterionic dopamine derivative ( ZW-DOPA) containing both catechol and amine groups, and we demonstrated an excellent marine antifouling surface by controlling the oxidation of ZW-DOPA. The oxidation was mediated by the deprotonation of catechol or the addition of an oxidant (ammonium persulfate (AP) or sodium periodate (NaIO4)). The oxidation and subsequent molecular transformation of ZW-DOPA was investigated over time by UV-vis spectroscopy. Among the different oxidation conditions tested, NaIO4-induced ZW-DOPA coating was the most efficient and successfully formed on various substrates, such as titanium dioxide, stainless steel, and nylon. Compared with uncoated substrates, ZW-DOPA-coated substrates showed high resistance to marine diatom adhesion. Considering the ease of use and substrate independence of the ZW-DOPA coating, this method shows promise as a basis for inhibiting marine fouling on a variety of substrates used in the marine industry and aquatic environments.
Collapse
Affiliation(s)
- Do Kyoung Yeon
- Department of Chemistry , Chungnam National University , Daejeon 34134 , Korea
| | - Sangwon Ko
- Transportation Environmental Research Team , Korea Railroad Research Institute , Uiwang 16105 , Korea
| | - Seokyung Jeong
- Department of Chemistry , Chungbuk National University , Chungbuk 28644 , Korea
| | - Seok-Pyo Hong
- HC Lab , 235 Creation Hall, 193 Munji Road , Daejeon 34051 , Korea
| | - Sung Min Kang
- Department of Chemistry , Chungbuk National University , Chungbuk 28644 , Korea
| | - Woo Kyung Cho
- Department of Chemistry , Chungnam National University , Daejeon 34134 , Korea
| |
Collapse
|
34
|
Wu HX, Zhang XH, Huang L, Ma LF, Liu CJ. Diblock Polymer Brush (PHEAA- b-PFMA): Microphase Separation Behavior and Anti-Protein Adsorption Performance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11101-11109. [PMID: 30148645 DOI: 10.1021/acs.langmuir.8b02584] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this paper, a series of amphiphilic diblock polymers of poly(hydroxyethylacrylamide)- b-poly(1H,1H-pentafluoropropyl methacrylate) (PHEAA- b-PFMA) were grafted from silicon wafer via surface-initiated atom transfer radical polymerization (SI-ATRP). Surface wettability and chemical compositions of the modified surfaces were characterized by contact angle goniometer and X-ray photoelectron spectroscopy (XPS) respectively. Molecular weight and polydispersity of each block were measured using gel permeation chromatography (GPC). The topography and the microphase separation behavior of PHEAA- b-PFMA surfaces were investigated by atomic force microscope (AFM). The results show that only when the grafting density (σ) and thickness of PHEAA brush were in the range of 0.9-1.3 (chain/nm2) and 6.6-15.1 nm, respectively, and the ratio of PFMA/PHEAA varied from 89/42 to 89/94, could the diblock copolymer phase separate into nanostructures. Further, the antiprotein adsorption performance of the modified surfaces against BSA, fibrinogen, and lysozyme was studied. The results indicated the modified surfaces could reduce the protein adsorption compared to the pristine silicon wafer. For Fibrinogen, the antiadsorption effect of PHEAA- b-PFMA-modified surfaces with microphase segregation was better than that of corresponding PHEAA modified surfaces. The results provide further evidence that surface composition and microphase segregation of fluorinated moieties of block copolymer brushes significantly impact protein adsorption behaviors.
Collapse
Affiliation(s)
- Hai-Xia Wu
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science , Wuhan University , Wuhan 430072 , P. R. China
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials , Luoyang Normal University , Luoyang 471022 , P. R. China
| | - Xiao-Hong Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science , Wuhan University , Wuhan 430072 , P. R. China
| | - Lin Huang
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science , Wuhan University , Wuhan 430072 , P. R. China
| | - Lu-Fang Ma
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials , Luoyang Normal University , Luoyang 471022 , P. R. China
| | - Chuan-Jun Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science , Wuhan University , Wuhan 430072 , P. R. China
| |
Collapse
|
35
|
Jeong Y, Thuy LT, Ki SH, Ko S, Kim S, Cho WK, Choi JS, Kang SM. Multipurpose Antifouling Coating of Solid Surfaces with the Marine-Derived Polymer Fucoidan. Macromol Biosci 2018; 18:e1800137. [DOI: 10.1002/mabi.201800137] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/04/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Yeonwoo Jeong
- Department of Chemistry; Chungbuk National University; Chungbuk 28644 Republic of Korea
| | - Le Thi Thuy
- Department of Biochemistry; Chungnam National University; Daejeon 34134 Republic of Korea
| | - So Hyun Ki
- Department of Chemistry; Chungnam National University; Daejeon 34134 Republic of Korea
| | - Sangwon Ko
- Transportation Environmental Research Team; Korea Railroad Research Institute; Uiwang 16105 Republic of Korea
| | - Suyeob Kim
- Department of Marine Biomaterials and Aquaculture; Pukyong National University; Busan 48513 Republic of Korea
| | - Woo Kyung Cho
- Department of Chemistry; Chungnam National University; Daejeon 34134 Republic of Korea
| | - Joon Sig Choi
- Department of Biochemistry; Chungnam National University; Daejeon 34134 Republic of Korea
| | - Sung Min Kang
- Department of Chemistry; Chungbuk National University; Chungbuk 28644 Republic of Korea
| |
Collapse
|
36
|
Parallelized microfluidic diatom accumulation assay to test fouling-release coatings. Biointerphases 2018; 13:041007. [PMID: 30021446 DOI: 10.1116/1.5034090] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Assessing the efficiency of the next generation of protective marine coatings is highly relevant for their optimization. In this paper, a parallelized microfluidic testing device is presented to quantify the accumulation of a model organism (Navicula perminuta) under constant laminar flow. Using automated microscopy in conjunction with image analysis, the adhesion densities on the tested surfaces could be determined after exposure to a flow of suspended algae for 90 min. The optimized protocol for the assay is presented, and the reproducibility of the densities of attached diatoms was verified on four identical surfaces (self-assembled dodecanethiol monolayers). A set of well-characterized self-assembled monolayers with different chemical terminations was used to validate the performance of the assay and its capability to discriminate diatom accumulation on different surface chemistries under dynamic conditions. The observed trends are in good agreement with previously published results obtained in single channel accumulation and detachment assays. To demonstrate the practical relevance of the dynamic experiment, diatom attachment on four technically relevant silicone coatings with different fouling-release properties could clearly be distinguished.
Collapse
|
37
|
Martinelli E, Pretti C, Oliva M, Glisenti A, Galli G. Sol-gel polysiloxane films containing different surface-active trialkoxysilanes for the release of the marine foulant Ficopomatus enigmaticus. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.05.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Kim S, Gim T, Jeong Y, Ryu JH, Kang SM. Facile Construction of Robust Multilayered PEG Films on Polydopamine-Coated Solid Substrates for Marine Antifouling Applications. ACS APPLIED MATERIALS & INTERFACES 2018; 10:7626-7631. [PMID: 28853548 DOI: 10.1021/acsami.7b07199] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We report an effective and versatile approach to control marine fouling on artificial surfaces based on specific chemical interactions found in marine mussels. The approach consists of mussel-inspired polydopamine coating, spin-coating-assisted deposition of poly(ethylene glycol) (PEG) catechols, and their cross-linking via catechol-Fe3+-catechol interactions. Using this approach, multilayered PEG films that were highly resistant to marine diatom adhesion were successfully constructed on various substrates, such as stainless steel, nylon, titanium oxide, and silicon oxide. We believe that our results will provide a basis for the construction of a marine antifouling agent that can be applied by a large variety of industries owing to its applicability to different types of substrates and stability under marine environments.
Collapse
Affiliation(s)
- Suyeob Kim
- Department of Marine Biomaterials & Aquaculture , Pukyong National University , Busan 48513 , Republic of Korea
| | - Taewoo Gim
- Department of Marine Biomaterials & Aquaculture , Pukyong National University , Busan 48513 , Republic of Korea
| | - Yeonwoo Jeong
- Department of Chemistry , Chungbuk National University , Chungbuk 28644 , Republic of Korea
| | - Ji Hyun Ryu
- Department of Bioengineering , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| | - Sung Min Kang
- Department of Chemistry , Chungbuk National University , Chungbuk 28644 , Republic of Korea
| |
Collapse
|
39
|
Jakobi V, Schwarze J, Finlay JA, Nolte KA, Spöllmann S, Becker HW, Clare AS, Rosenhahn A. Amphiphilic Alginates for Marine Antifouling Applications. Biomacromolecules 2018; 19:402-408. [DOI: 10.1021/acs.biomac.7b01498] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Victoria Jakobi
- Analytical
Chemistry - Biointerfaces, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Jana Schwarze
- Analytical
Chemistry - Biointerfaces, Ruhr-University Bochum, 44780 Bochum, Germany
| | - John A. Finlay
- School
of Natural and Environmental Sciences, Newcastle University, Newcastle
upon Tyne NE1 7RU, United Kingdom
| | - Kim A. Nolte
- Analytical
Chemistry - Biointerfaces, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Stephan Spöllmann
- RUBION,
Central unit for ion beams and radionuclides, University of Bochum, 44780 Bochum, Germany
| | - Hans-Werner Becker
- RUBION,
Central unit for ion beams and radionuclides, University of Bochum, 44780 Bochum, Germany
| | - Anthony S. Clare
- School
of Natural and Environmental Sciences, Newcastle University, Newcastle
upon Tyne NE1 7RU, United Kingdom
| | - Axel Rosenhahn
- Analytical
Chemistry - Biointerfaces, Ruhr-University Bochum, 44780 Bochum, Germany
| |
Collapse
|
40
|
Nolte KA, Schwarze J, Rosenhahn A. Microfluidic accumulation assay probes attachment of biofilm forming diatom cells. BIOFOULING 2017; 33:531-543. [PMID: 28675050 DOI: 10.1080/08927014.2017.1328058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/02/2017] [Indexed: 06/07/2023]
Abstract
Testing of fouling release (FR) technologies is of great relevance for discovery of the next generation of protective marine coatings. In this paper, an accumulation assay to test diatom interaction under laminar flow with the model organism Navicula perminuta is introduced. Using time lapse microscopy with large area sampling allows determination of the accumulation kinetics of the diatom on three model surfaces with different surface properties at different wall shear stresses. The hydrodynamic conditions within the flow cell are described and a suitable shear stress range to perform accumulation experiments is identified at which statistically significant discrimination of surfaces is possible. The observed trends compare well to published adhesion preferences of N. perminuta. Also, previously determined trends of critical wall shear stresses required for cell removal from the same set of functionalized interfaces shows consistent trends. Initial attachment mediated by extracellular polymeric substances (EPS) present outside the diatoms leads to the conclusion that the FR potential of the tested coating candidates can be deducted from dynamic accumulation experiments under well-defined hydrodynamic conditions. As well as testing new coating candidates for their FR properties, monitoring of the adhesion process under flow provides additional information on the mechanism and geometry of attachment and the population kinetics.
Collapse
Affiliation(s)
- Kim A Nolte
- a Analytical Chemistry - Biointerfaces , Ruhr- Universität Bochum , Bochum , Germany
| | - Jana Schwarze
- a Analytical Chemistry - Biointerfaces , Ruhr- Universität Bochum , Bochum , Germany
| | - Axel Rosenhahn
- a Analytical Chemistry - Biointerfaces , Ruhr- Universität Bochum , Bochum , Germany
| |
Collapse
|
41
|
Zeriouh O, Reinoso-Moreno JV, López-Rosales L, Cerón-García MDC, Sánchez-Mirón A, García-Camacho F, Molina-Grima E. Biofouling in photobioreactors for marine microalgae. Crit Rev Biotechnol 2017; 37:1006-1023. [DOI: 10.1080/07388551.2017.1299681] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Ouassim Zeriouh
- Department of Chemical Engineering, University of Almería, Almería, Spain
| | | | | | - María del Carmen Cerón-García
- Department of Chemical Engineering, University of Almería, Almería, Spain
- Research Center in Agrifood Biotechnology, University of Almería, Almería, Spain
| | - Asterio Sánchez-Mirón
- Department of Chemical Engineering, University of Almería, Almería, Spain
- Research Center in Agrifood Biotechnology, University of Almería, Almería, Spain
| | - Francisco García-Camacho
- Department of Chemical Engineering, University of Almería, Almería, Spain
- Research Center in Agrifood Biotechnology, University of Almería, Almería, Spain
| | - Emilio Molina-Grima
- Department of Chemical Engineering, University of Almería, Almería, Spain
- Research Center in Agrifood Biotechnology, University of Almería, Almería, Spain
| |
Collapse
|
42
|
Grafting Binary PEG and Fluoropolymer Brushes from Mix-Biomimic Initiator as “Ambiguous” Surfaces for Antibiofouling. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700085] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
43
|
Galli G, Martinelli E. Amphiphilic Polymer Platforms: Surface Engineering of Films for Marine Antibiofouling. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201600704] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 12/31/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Giancarlo Galli
- Dipartimento di Chimica e Chimica Industriale and UdR Pisa INSTM; Università di Pisa; 56124 Pisa Italy
| | - Elisa Martinelli
- Dipartimento di Chimica e Chimica Industriale and UdR Pisa INSTM; Università di Pisa; 56124 Pisa Italy
| |
Collapse
|
44
|
Kuliasha CA, Finlay JA, Franco SC, Clare AS, Stafslien SJ, Brennan AB. Marine anti-biofouling efficacy of amphiphilic poly(coacrylate) grafted PDMSe: effect of graft molecular weight. BIOFOULING 2017; 33:252-267. [PMID: 28270054 DOI: 10.1080/08927014.2017.1288807] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/25/2017] [Indexed: 06/06/2023]
Abstract
There is currently strong motivation due to ecological concerns to develop effective anti-biofouling coatings that are environmentally benign, durable, and stable for use by the maritime industry. The antifouling (AF) and fouling-release (FR) efficacy of amphiphilic, charged copolymers composed of ~52% acrylamide, ~34% acrylic acid, and ~14% methyl acrylate grafted to poly(dimethyl siloxane) (PDMSe) surfaces were tested against zoospores of the green alga Ulva linza and the diatom Navicula incerta. The biofouling response to molecular weight variation was analyzed for grafts ranging from ~100 to 1,400 kg mol-1, The amphiphilic coatings showed a marked improvement in the FR response, with a 55% increase in the percentage removal of diatoms and increased AF efficacy, with 92% reduction in initial attachment density of zoospores, compared to PDMSe controls. However, graft molecular weight, in the range tested, was statistically insignificant. Grafting copolymers to PDMSe embossed with the Sharklet™ microtopography did not produce enhanced AF efficacy.
Collapse
Affiliation(s)
- Cary A Kuliasha
- a Department of Materials Science and Engineering , University of Florida , Gainesville , FL , USA
| | - John A Finlay
- b School of Marine Science and Technology , Newcastle University , Newcastle-upon-Tyne , UK
| | - Sofia C Franco
- b School of Marine Science and Technology , Newcastle University , Newcastle-upon-Tyne , UK
| | - Anthony S Clare
- b School of Marine Science and Technology , Newcastle University , Newcastle-upon-Tyne , UK
| | - Shane J Stafslien
- c Office of Research and Creative Activity , North Dakota State University , Fargo , ND , USA
| | - Anthony B Brennan
- a Department of Materials Science and Engineering , University of Florida , Gainesville , FL , USA
| |
Collapse
|
45
|
Antifouling potential of Nature-inspired sulfated compounds. Sci Rep 2017; 7:42424. [PMID: 28205590 PMCID: PMC5304334 DOI: 10.1038/srep42424] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/10/2017] [Indexed: 02/01/2023] Open
Abstract
Natural products with a sulfated scaffold have emerged as antifouling agents with low or nontoxic effects to the environment. In this study 13 sulfated polyphenols were synthesized and tested for antifouling potential using the anti-settlement activity of mussel (Mytilus galloprovincialis) plantigrade post-larvae and bacterial growth inhibition towards four biofilm-forming bacterial strains. Results show that some of these Nature-inspired compounds were bioactive, particularly rutin persulfate (2), 3,6-bis(β-D-glucopyranosyl) xanthone persulfate (6), and gallic acid persulfate (12) against the settlement of plantigrades. The chemical precursors of sulfated compounds 2 and 12 were also tested for anti-settlement activity and it was possible to conclude that bioactivity is associated with sulfation. While compound 12 showed the most promising anti-settlement activity (EC50 = 8.95 μg.mL−1), compound 2 also caused the higher level of growth inhibition in bacteria Vibrio harveyi (EC20 = 12.5 μg.mL−1). All the three bioactive compounds 2, 6, and 12 were also found to be nontoxic to the non target species Artemia salina (<10% mortality at 250 μM) and Vibrio fischeri (LC50 > 1000 μg.mL−1). This study put forward the relevance of synthesizing non-natural sulfated small molecules to generate new nontoxic antifouling agents.
Collapse
|
46
|
Francius G, El Zein R, Mathieu L, Gosselin F, Maul A, Block JC. Nano-exploration of organic conditioning film formed on polymeric surfaces exposed to drinking water. WATER RESEARCH 2017; 109:155-163. [PMID: 27883920 DOI: 10.1016/j.watres.2016.11.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/08/2016] [Accepted: 11/11/2016] [Indexed: 05/16/2023]
Abstract
Adsorption of organic macromolecules onto surfaces in contact with waters forms a so-called conditioning film and induces modifications of the surface properties. Here, we characterized conditioning films formed onto two hydrophobic materials (used as pipe liner) and immersed for 24 h in tap water. Using combination of atomic force microscopy (AFM), and chemical force microscopy (CFM), we detected some changes in roughness and hydrophilic/hydrophobic balance of the surface of the tested coupons, and also the deposition of numerous organic polymers (few millions/cm2) randomly distributed on the surface. The maximum molecular extension of these organic polymers was in the range of 250-1250 nm according to the tested materials. Systematic analysis of the force curves with the theoretical models (WLC and FJC) allowed determining the proportion of rupture events related to the unfolding of both polysaccharide and polypeptide segments, which represented 75-80% and 20-25% of the analyzed curves, respectively. The number of autochthonous drinking water bacteria, which attached to the material within the same period of time was 10000-folds lower than the detected number of polymers attached to the surface. Even in drinking water systems with relatively low organic matter (dissolved organic carbon < 1.1 mg/L), the potential of formation of a conditioning biofilm is important.
Collapse
Affiliation(s)
- Grégory Francius
- CNRS - Université de Lorraine, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, LCPME, UMR 7564, Villers-lès-Nancy, F-54600, France.
| | - Racha El Zein
- CNRS - Université de Lorraine, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, LCPME, UMR 7564, Villers-lès-Nancy, F-54600, France
| | - Laurence Mathieu
- EPHE, PSL Research University, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, LCPME, UMR 7564, Vandoeuvre-lès-Nancy, F-54500, France
| | - Florence Gosselin
- CNRS - Université de Lorraine, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, LCPME, UMR 7564, Villers-lès-Nancy, F-54600, France
| | - Armand Maul
- Université de Lorraine - CNRS, Laboratoire interdisciplinaire des environnements continentaux, LIEC, UMR 7360, Metz, F-57070, France
| | - Jean-Claude Block
- CNRS - Université de Lorraine, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, LCPME, UMR 7564, Villers-lès-Nancy, F-54600, France
| |
Collapse
|
47
|
Pagel M, Beck-Sickinger AG. Multifunctional biomaterial coatings: synthetic challenges and biological activity. Biol Chem 2017; 398:3-22. [DOI: 10.1515/hsz-2016-0204] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 07/29/2016] [Indexed: 12/19/2022]
Abstract
Abstract
A controlled interaction of materials with their surrounding biological environment is of great interest in many fields. Multifunctional coatings aim to provide simultaneous modulation of several biological signals. They can consist of various combinations of bioactive, and bioinert components as well as of reporter molecules to improve cell-material contacts, prevent infections or to analyze biochemical events on the surface. However, specific immobilization and particular assembly of various active molecules are challenging. Herein, an overview of multifunctional coatings for biomaterials is given, focusing on synthetic strategies and the biological benefits by displaying several motifs.
Collapse
|
48
|
Bedair TM, ElNaggar MA, Joung YK, Han DK. Recent advances to accelerate re-endothelialization for vascular stents. J Tissue Eng 2017; 8:2041731417731546. [PMID: 28989698 PMCID: PMC5624345 DOI: 10.1177/2041731417731546] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 08/19/2017] [Indexed: 12/25/2022] Open
Abstract
Cardiovascular diseases are considered as one of the serious diseases that leads to the death of millions of people all over the world. Stent implantation has been approved as an easy and promising way to treat cardiovascular diseases. However, in-stent restenosis and thrombosis remain serious problems after stent implantation. It was demonstrated in a large body of previously published literature that endothelium impairment represents a major factor for restenosis. This discovery became the driving force for many studies trying to achieve an optimized methodology for accelerated re-endothelialization to prevent restenosis. Thus, in this review, we summarize the different methodologies opted to achieve re-endothelialization, such as, but not limited to, manipulation of surface chemistry and surface topography.
Collapse
Affiliation(s)
- Tarek M Bedair
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, Korea
- Chemistry Department, Faculty of Science, Minia University, Minia, Egypt
| | - Mahmoud A ElNaggar
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Korea
| | - Yoon Ki Joung
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Korea
| | - Dong Keun Han
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Korea
- Department of Biomedical Science, CHA University, Gyeonggi, Korea
| |
Collapse
|
49
|
Kim S, Lee KB, Kang SM. Lubrication of Stainless Steel Surfaces for Marine Antifouling Applications. B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.11025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Suyeob Kim
- Department of Fisheries Biology; Pukyong National University; Busan 48513 Republic of Korea
| | - Kyung-Bok Lee
- Division of Bioconvergence Analysis; Korea Basic Science Institute (KBSI); Daejeon 34133 Republic of Korea
| | - Sung Min Kang
- Department of Chemistry; Chungbuk National University; Cheongju 28644 Republic of Korea
| |
Collapse
|
50
|
Kirillova A, Marschelke C, Friedrichs J, Werner C, Synytska A. Hybrid Hairy Janus Particles as Building Blocks for Antibiofouling Surfaces. ACS APPLIED MATERIALS & INTERFACES 2016; 8:32591-32603. [PMID: 27933847 DOI: 10.1021/acsami.6b10588] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Herein, we report a new strategy for the design of antifouling surfaces by using hybrid hairy Janus particles. The amphiphilic Janus particles possess either a spherical or a plateletlike shape and have core-shell structures with an inorganic core and hydrophilic/hydrophobic polymeric shells. Subsequently, these bifunctional Janus particles enable the fabrication of surfaces with modularity in chemical composition and final surface topography, which possess antifouling properties. The antifouling and fouling-release capability of the composite Janus particle-based surfaces is investigated using the marine biofilm-forming bacteria Cobetia marina. The Janus particle-based coatings are robust and significantly reduce bacterial retention under both static and dynamic conditions independent of the particle geometry. The plateletlike (kaolinite-based) Janus particles represent a scalable system for the rational design of antifouling coatings as well as their large-scale production and application in the future.
Collapse
Affiliation(s)
- Alina Kirillova
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Strasse 6, 01069 Dresden, Germany
- Technische Universität Dresden , Fakultät Mathematik und Naturwissenschaften, 01062 Dresden, Germany
| | - Claudia Marschelke
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Strasse 6, 01069 Dresden, Germany
- Technische Universität Dresden , Fakultät Mathematik und Naturwissenschaften, 01062 Dresden, Germany
| | - Jens Friedrichs
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Strasse 6, 01069 Dresden, Germany
- Technische Universität Dresden , Fakultät Mathematik und Naturwissenschaften, 01062 Dresden, Germany
| | - Carsten Werner
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Strasse 6, 01069 Dresden, Germany
- Technische Universität Dresden , Fakultät Mathematik und Naturwissenschaften, 01062 Dresden, Germany
| | - Alla Synytska
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Strasse 6, 01069 Dresden, Germany
- Technische Universität Dresden , Fakultät Mathematik und Naturwissenschaften, 01062 Dresden, Germany
| |
Collapse
|