1
|
Selva Sharma A, Marimuthu M, Varghese AW, Wu J, Xu J, Xiaofeng L, Devaraj S, Lan Y, Li H, Chen Q. A review of biomolecules conjugated lanthanide up-conversion nanoparticles-based fluorescence probes in food safety and quality monitoring applications. Crit Rev Food Sci Nutr 2024; 64:6129-6159. [PMID: 36688820 DOI: 10.1080/10408398.2022.2163975] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Upconversion nanoparticles (UCNPs) are known to possess unique characteristics, which allow them to overcome a number of issues that plague traditional fluorescence probes. UCNPs have been employed in a variety of applications, but it is arguably in the realm of optical sensors where they have shown the most promise. Biomolecule conjugated UCNPs-based fluorescence probes have been developed to detect and quantify a wide range of analytes, from metal ions to biomolecules, with great specificity and sensitivity. In this review, we have given much emphasis on the recent trends and progress in the preparation strategies of bioconjugated UCNPs and their potential application as fluorescence sensors in the trace level detection of food industry-based toxicants and adulterants. The paper discusses the preparation and functionalisation strategies of commonly used biomolecules over the surface of UCNPs. The use of different sensing strategies namely heterogenous and homogenous assays, underlying fluorescence mechanisms in the detection process of food adulterants are summarized in detail. This review might set a precedent for future multidisciplinary research including the development of novel biomolecules conjugated UCNPs for potential applications in food science and technology.
Collapse
Affiliation(s)
- Arumugam Selva Sharma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- Division of Molecular Medicine, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Poojapura, Thiruvananthapuram, India
| | - Murugavelu Marimuthu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- Department of Science & Humanities, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - Amal Wilson Varghese
- Division of Molecular Medicine, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Poojapura, Thiruvananthapuram, India
| | - Jizong Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Jing Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Luo Xiaofeng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Sabarinathan Devaraj
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Yang Lan
- Jiangxi Wuyuan Tea Vocational College, Jiangxi, PR China
| | - Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| |
Collapse
|
2
|
Chiechio RM, Caponnetto A, Battaglia R, Ferrara C, Butera E, Musumeci P, Reitano R, Ruffino F, Maccarrone G, Di Pietro C, Marchi V, Lanzanò L, Arena G, Grasso A, Copat C, Ferrante M, Contino A. Internalization of Pegylated Er:Y 2O 3 Nanoparticles inside HCT-116 Cancer Cells: Implications for Imaging and Drug Delivery. ACS APPLIED NANO MATERIALS 2023; 6:19126-19135. [PMID: 37915835 PMCID: PMC10616970 DOI: 10.1021/acsanm.3c03609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/21/2023] [Indexed: 11/03/2023]
Abstract
Lanthanide-doped nanoparticles, featuring sharp emission peaks with narrow bandwidth, exhibit high downconversion luminescence intensity, making them highly valuable in the fields of bioimaging and drug delivery. High-crystallinity Y2O3 nanoparticles (NPs) doped with Er3+ ions were functionalized by using a pegylation procedure to confer water solubility and biocompatibility. The NPs were thoroughly characterized using transmission electron microscopy (TEM), inductively coupled plasma mass spectrometry (ICP-MS), and photoluminescence measurements. The pegylated nanoparticles were studied both from a toxicological perspective and to demonstrate their internalization within HCT-116 cancer cells. Cell viability tests allowed for the identification of the "optimal" concentration, which yields a detectable fluorescence signal without being toxic to the cells. The internalization process was investigated using a combined approach involving confocal microscopy and ICP-MS. The obtained data clearly indicate the efficient internalization of NPs into the cells with emission intensity showing a strong correlation with the concentrations of nanoparticles delivered to the cells. Overall, this research contributes significantly to the fields of nanotechnology and biomedical research, with noteworthy implications for imaging and drug delivery applications.
Collapse
Affiliation(s)
- Regina Maria Chiechio
- Dipartimento
di Fisica e Astronomia “Ettore Majorana”, Università di Catania, Via Santa Sofia 64, 95123 Catania, Italy
- Consiglio
Nazionale delle Ricerche, Istituto per la Microelettronica e i Microsistemi
(CNR-IMM), Via S. Sofia
64, 95123 Catania, Italy
| | - Angela Caponnetto
- Dipartimento
di Scienze Biomediche e Biotecnologiche, Sezione di Biologia e Genetica
“G. Sichel”, Università
di Catania, Via S. Sofia
89, 95123 Catania, Italy
| | - Rosalia Battaglia
- Dipartimento
di Scienze Biomediche e Biotecnologiche, Sezione di Biologia e Genetica
“G. Sichel”, Università
di Catania, Via S. Sofia
89, 95123 Catania, Italy
| | - Carmen Ferrara
- Dipartimento
di Scienze Biomediche e Biotecnologiche, Sezione di Biologia e Genetica
“G. Sichel”, Università
di Catania, Via S. Sofia
89, 95123 Catania, Italy
| | - Ester Butera
- Dipartimento
di Scienze Chimiche, Università di
Catania Viale Andrea
Doria 6, 95125 Catania, Italy
- Institut
des Sciences Chimiques de Rennes, CNRS UMR 6226, Université
Rennes 1, Avenue du général Leclerc, 35042 Rennes, France
| | - Paolo Musumeci
- Dipartimento
di Fisica e Astronomia “Ettore Majorana”, Università di Catania, Via Santa Sofia 64, 95123 Catania, Italy
| | - Riccardo Reitano
- Dipartimento
di Fisica e Astronomia “Ettore Majorana”, Università di Catania, Via Santa Sofia 64, 95123 Catania, Italy
| | - Francesco Ruffino
- Dipartimento
di Fisica e Astronomia “Ettore Majorana”, Università di Catania, Via Santa Sofia 64, 95123 Catania, Italy
- Consiglio
Nazionale delle Ricerche, Istituto per la Microelettronica e i Microsistemi
(CNR-IMM), Via S. Sofia
64, 95123 Catania, Italy
| | - Giuseppe Maccarrone
- Dipartimento
di Scienze Chimiche, Università di
Catania Viale Andrea
Doria 6, 95125 Catania, Italy
| | - Cinzia Di Pietro
- Dipartimento
di Scienze Biomediche e Biotecnologiche, Sezione di Biologia e Genetica
“G. Sichel”, Università
di Catania, Via S. Sofia
89, 95123 Catania, Italy
| | - Valérie Marchi
- Institut
des Sciences Chimiques de Rennes, CNRS UMR 6226, Université
Rennes 1, Avenue du général Leclerc, 35042 Rennes, France
| | - Luca Lanzanò
- Dipartimento
di Fisica e Astronomia “Ettore Majorana”, Università di Catania, Via Santa Sofia 64, 95123 Catania, Italy
| | - Giovanni Arena
- Dipartimento
di Scienze Chimiche, Università di
Catania Viale Andrea
Doria 6, 95125 Catania, Italy
| | - Alfina Grasso
- Environmental
and Food Hygiene Laboratories (LIAA) of Department of Medical, Surgical
Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95124 Catania, Italy
| | - Chiara Copat
- Environmental
and Food Hygiene Laboratories (LIAA) of Department of Medical, Surgical
Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95124 Catania, Italy
| | - Margherita Ferrante
- Environmental
and Food Hygiene Laboratories (LIAA) of Department of Medical, Surgical
Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95124 Catania, Italy
| | - Annalinda Contino
- Dipartimento
di Scienze Chimiche, Università di
Catania Viale Andrea
Doria 6, 95125 Catania, Italy
| |
Collapse
|
3
|
Patsula V, Mareková D, Jendelová P, Nahorniak M, Shapoval O, Matouš P, Oleksa V, Konefał R, Vosmanská M, Machová-Urdziková L, Horák D. Polymer-coated hexagonal upconverting nanoparticles: chemical stability and cytotoxicity. Front Chem 2023; 11:1207984. [PMID: 37426333 PMCID: PMC10327433 DOI: 10.3389/fchem.2023.1207984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/15/2023] [Indexed: 07/11/2023] Open
Abstract
Large (120 nm) hexagonal NaYF4:Yb, Er nanoparticles (UCNPs) were synthesized by high-temperature coprecipitation method and coated with poly(ethylene glycol)-alendronate (PEG-Ale), poly (N,N-dimethylacrylamide-co-2-aminoethylacrylamide)-alendronate (PDMA-Ale) or poly(methyl vinyl ether-co-maleic acid) (PMVEMA). The colloidal stability of polymer-coated UCNPs in water, PBS and DMEM medium was investigated by dynamic light scattering; UCNP@PMVEMA particles showed the best stability in PBS. Dissolution of the particles in water, PBS, DMEM and artificial lysosomal fluid (ALF) determined by potentiometric measurements showed that all particles were relatively chemically stable in DMEM. The UCNP@Ale-PEG and UCNP@Ale-PDMA particles were the least soluble in water and ALF, while the UCNP@PMVEMA particles were the most chemically stable in PBS. Green fluorescence of FITC-Ale-modified UCNPs was observed inside the cells, demonstrating successful internalization of particles into cells. The highest uptake was observed for neat UCNPs, followed by UCNP@Ale-PDMA and UCNP@PMVEMA. Viability of C6 cells and rat mesenchymal stem cells (rMSCs) growing in the presence of UCNPs was monitored by Alamar Blue assay. Culturing with UCNPs for 24 h did not affect cell viability. Prolonged incubation with particles for 72 h reduced cell viability to 40%-85% depending on the type of coating and nanoparticle concentration. The greatest decrease in cell viability was observed in cells cultured with neat UCNPs and UCNP@PMVEMA particles. Thanks to high upconversion luminescence, high cellular uptake and low toxicity, PDMA-coated hexagonal UCNPs may find future applications in cancer therapy.
Collapse
Affiliation(s)
- Vitalii Patsula
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czechia
| | - Dana Mareková
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Department of Neurosciences, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Pavla Jendelová
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Department of Neurosciences, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Mykhailo Nahorniak
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czechia
| | - Oleksandr Shapoval
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czechia
| | - Petr Matouš
- Center for Advanced Preclinical Imaging, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Viktoriia Oleksa
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czechia
| | - Rafał Konefał
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czechia
| | - Magda Vosmanská
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Prague, Czechia
| | | | - Daniel Horák
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
4
|
Chiechio RM, Battaglia R, Caponnetto A, Butera E, Franzò G, Reitano R, Purrello M, Ragusa M, Barbagallo D, Barbagallo C, Di Pietro C, Marchi V, Lo Faro MJ, Contino A, Maccarrone G, Musumeci P. Er:Y2O3 and Nd:Y2O3 Nanoparticles: Synthesis, Pegylation, Characterization and Study of Their Luminescence Properties. CHEMOSENSORS 2022; 11:20. [DOI: 10.3390/chemosensors11010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Lanthanide-doped yttrium oxide nanoparticles can display selective upconversion properties, rendering them invaluable in the field of nanomedicine for both sensing and diagnostics. Different syntheses of Er:Y2O3 and Nd:Y2O3 nanoparticles (NPs) were studied and optimized to obtain small particles of regular shape and good crystallinity. The morphological and compositional characterizations of the nanoparticles were obtained with different techniques and showed that both Er:Y2O3 and Nd:Y2O3 NPs were well dispersed, with dimensions of the order of a few tens of nanometers. The photoluminescence and cathodoluminescence measurements showed that both Er:Y2O3 and Nd:Y2O3 NPs had good emission as well as upconversion. The nanophosphors were functionalized by a pegylation procedure to suppress unwanted reactions of the NPs with other biological components, making the NP systems biocompatible and the NPs soluble in water and well dispersed. The pegylated core/shell nanoparticles showed the same morphological and optical characteristics as the core, promoting their strategic role as photoactive material for theragnostics and biosensing.
Collapse
|
5
|
Qin L, Guo Y, Xu J, Wang L, Zhang Q. Enhanced bright green luminescence from GdOF: Ho3+ up-conversion phosphor via Yb3+ doping. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Rana S, Sharma RK, Fridman N, Kumar A. Structural characterization and bioimaging of Zn 2+ using meta-benziporphodimethene analogue. LUMINESCENCE 2022. [PMID: 36068987 DOI: 10.1002/bio.4382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/23/2022] [Accepted: 09/01/2022] [Indexed: 11/06/2022]
Abstract
"Prevention is better than cure, especially when something has no cure." Cancer, in most patients is detected at the stage beyond which it becomes non-curative. Thus, the early detection of cancer cells can play a crucial role in enhancing the chances of a patient's survival. In this light, we present a non-fluorescent receptor employed for the detection of Zn2+ ion in MDA-MB-231 carcinoma cells that exhibits fluorescence turn-on behaviour upon binding with the metal ion. In this work, the synthesis of 11,16-bis(2,6-difluorobenzene)-6,6,21,21-tetramethyl-meta-benziporpho-6,21-dimethene and its Zn2+ chloride complex have been reported. The compounds were fully characterized using UV-Visible, NMR, IR and mass spectrometry. Furthermore, the X-ray polymorphs of meta-benziporphodimethene analogue have been added. The study of its bioimaging applications in MDA-MB-231 breast cancer cells for the detection of Zn2+ ions have been reported.
Collapse
Affiliation(s)
- Shikha Rana
- Department of Applied Chemistry, Delhi Technological University, Bawana Road, Delhi, India
| | | | - Natalia Fridman
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, Israel
| | - Anil Kumar
- Department of Applied Chemistry, Delhi Technological University, Bawana Road, Delhi, India
| |
Collapse
|
7
|
Karam M, Fahs D, Maatouk B, Safi B, Jaffa AA, Mhanna R. Polymeric nanoparticles in the diagnosis and treatment of myocardial infarction: Challenges and future prospects. Mater Today Bio 2022; 14:100249. [PMID: 35434594 PMCID: PMC9006854 DOI: 10.1016/j.mtbio.2022.100249] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 11/26/2022] Open
Abstract
Myocardial infarction (MI) is the leading cause of morbidity and mortality worldwide. Despite extensive efforts to provide early diagnosis and adequate treatment regimens, detection of MI still faces major limitations and pathological MI complications continue to threaten the recovery of survivors. Polymeric nanoparticles (NPs) represent novel noninvasive drug delivery systems for the diagnosis and treatment of MI and subsequent prevention of fatal heart failure. In this review, we cover the recent advances in polymeric NP-based diagnostic and therapeutic approaches for MI and their application as multifunctional theranostic tools. We also discuss the in vivo behavior and toxicity profile of polymeric NPs, their application in noninvasive imaging, passive, and active drug delivery, and use in cardiac regenerative therapy. We conclude with the challenges faced with polymeric nanosystems and suggest future efforts needed for clinical translation.
Collapse
Affiliation(s)
- Mia Karam
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, Lebanon
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon
| | - Duaa Fahs
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, Lebanon
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon
| | - Batoul Maatouk
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, Lebanon
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon
| | - Brouna Safi
- Department of Chemical Engineering, Maroun Semaan Faculty of Engineering and Architecture, Lebanon
| | - Ayad A. Jaffa
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon
| | - Rami Mhanna
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, Lebanon
| |
Collapse
|
8
|
Klimkevicius V, Voronovic E, Jarockyte G, Skripka A, Vetrone F, Rotomskis R, Katelnikovas A, Karabanovas V. Polymer brush coated upconverting nanoparticles with improved colloidal stability and cellular labeling. J Mater Chem B 2022; 10:625-636. [PMID: 34989749 DOI: 10.1039/d1tb01644j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Upconverting nanoparticles (UCNPs) possess great potential for biomedical application. UCNPs absorb and convert near-infrared (NIR) radiation in the biological imaging window to visible (Vis) and even ultraviolet (UV) radiation. NIR excitation offers reduced scattering and diminished autofluorescence in biological samples, whereas the emitted UV-Vis and NIR photons can be used for cancer treatment and imaging, respectively. However, UCNPs are usually synthesized in organic solvents and are not readily suitable for biomedical application due to the hydrophobic nature of their surface. Herein, we have removed the hydrophobic ligands from the synthesized UCNPs and coated the bare UCNPs with two custom-made hydrophilic polyelectrolytes (synthesized via the reversible addition-fragmentation chain transfer (RAFT) polymerization method). Polymers containing different amounts of PEGylated and carboxylic groups were studied. Coating with both polymers increased the upconversion (UC) emission intensity and photoluminescence lifetime values of the UCNPs, which directly translates to more efficient cancer cell labeling nanoprobes. The polymer composition plays a crucial role in the modification of UCNPs, not only with respect to their colloidal stability, but also with respect to the cellular uptake. Colloidally unstable bare UCNPs aggregate in cell culture media and precipitate, rendering themselves unsuitable for any biomedical use. However, stabilization with polymers prevents UCNPs from aggregation, increases their uptake in cells, and improves the quality of cellular labeling. This investigation sheds light on the appropriate coating for UCNPs and provides relevant insights for the rational development of imaging and therapeutic tools.
Collapse
Affiliation(s)
- Vaidas Klimkevicius
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225, Vilnius, Lithuania.
| | - Evelina Voronovic
- Biomedical Physics Laboratory of National Cancer Institute, Baublio 3B, LT-08406, Vilnius, Lithuania. .,Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Saulėtekio 11, LT-10223 Vilnius, Lithuania.,Life Science Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
| | - Greta Jarockyte
- Biomedical Physics Laboratory of National Cancer Institute, Baublio 3B, LT-08406, Vilnius, Lithuania. .,Life Science Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
| | - Artiom Skripka
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, Université du Québec, 1650, boul. Lionel-Boulet, J3X 1S2, Varennes, QC, Canada
| | - Fiorenzo Vetrone
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, Université du Québec, 1650, boul. Lionel-Boulet, J3X 1S2, Varennes, QC, Canada
| | - Ricardas Rotomskis
- Biomedical Physics Laboratory of National Cancer Institute, Baublio 3B, LT-08406, Vilnius, Lithuania. .,Biophotonics Group of Laser Research Centre, Vilnius University, Saulėtekio 9, c.3, LT-10222, Vilnius, Lithuania
| | - Arturas Katelnikovas
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225, Vilnius, Lithuania.
| | - Vitalijus Karabanovas
- Biomedical Physics Laboratory of National Cancer Institute, Baublio 3B, LT-08406, Vilnius, Lithuania. .,Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Saulėtekio 11, LT-10223 Vilnius, Lithuania
| |
Collapse
|
9
|
Zhang L, Jin D, Stenzel MH. Polymer-Functionalized Upconversion Nanoparticles for Light/Imaging-Guided Drug Delivery. Biomacromolecules 2021; 22:3168-3201. [PMID: 34304566 DOI: 10.1021/acs.biomac.1c00669] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The strong upconversion luminescence (UCL) of upconversion nanoparticles (UCNPs) endows the nanoparticles with attractive features for combined imaging and drug delivery. UCNPs convert near-infrared (NIR) light into light of shorter wavelengths such as light in the ultraviolet (UV) and visible regions, which can be used for light-guided drug delivery. Although light-responsive drug delivery systems as such have been known for many years, their application in medicine is limited, as strong UV-light can be damaging to tissue; moreover, UV light will not penetrate deeply into the skin, an issue that UCNPs can now address. However, UCNPs, as obtained after synthesis, are usually hydrophobic and require further surface functionalization to be stable in plasma. Polymers can serve as versatile surface coatings, as they can provide good colloidal stability, prevent the formation of a protein corona, provide a matrix for drugs, and be stimuli-responsive. In this Review, we provide a brief overview of the most recent progress in the synthesis of UCNPs with different shapes/sizes. We will then discuss the purpose of polymer coating for drug delivery before summarizing the strategies to coat UCNPs with various polymers. We will introduce the different polymers that have so far been used to coat UCNPs with the purpose to create a drug delivery system, focusing in detail on light-responsive polymers. To expand the application of UCNPs to allow photothermal therapy or magnetic resonance imaging (MRI) or to simply enhance the loading capacity of drugs, UCNPs were often combined with other materials to generate multifunctional nanoparticles such as carbon-based NPs and nanoMOFs. We then conclude with a discussion on drug loading and release and summarize the current knowledge on the toxicity of these polymer-coated UCNPs.
Collapse
Affiliation(s)
- Lin Zhang
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales (UNSW Sydney), Sydney NSW 2052, Australia
| | - Dayong Jin
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney NSW 2007, Australia
| | - Martina H Stenzel
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales (UNSW Sydney), Sydney NSW 2052, Australia
| |
Collapse
|
10
|
Zhang L, Chen C, Tay SS, Wen S, Cao C, Biro M, Jin D, Stenzel MH. Optimizing the Polymer Cloak for Upconverting Nanoparticles: An Evaluation of Bioactivity and Optical Performance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:16142-16154. [PMID: 33787198 DOI: 10.1021/acsami.1c01922] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The ability of upconversion nanoparticles (UCNPs) to convert low-energy near-infrared (NIR) light into high-energy visible-ultraviolet light has resulted in their development as novel contrast agents for biomedical imaging. However, UCNPs often succumb to poor colloidal stability in aqueous media, which can be conquered by decorating the nanoparticle surface with polymers. The polymer cloak, therefore, plays an instrumental role in ensuring good stability in biological media. This study aims to understand the relationship between the length and grafting density of the polymer shell on the physicochemical and biological properties of these core-shell UCNPs. Poly(ethylene glycol) methyl ether methacrylate block ethylene glycol methacrylate phosphate (PPEGMEMAn-b-PEGMP3) with different numbers of PEGMEMA repeating units (26, 38, and 80) was prepared and attached to the UCNPs via the phosphate ligand of the poly(ethylene glycol methacrylate phosphate) (PEGMP) block at different polymer densities. The in vitro and in vivo protein corona, cellular uptake in two-dimensional (2D) monolayer and three-dimensional (3D) multicellular tumor spheroid (MCTS) models, and in vivo biodistribution in mice were evaluated. Furthermore, the photoluminescence of single-polymer-coated UCNPs was compared in solid state and cancer cells using laser scanning confocal microscopy (LSCM). Our results showed that the bioactivity and luminescence properties are chain length and grafting density dependent. The UCNPs coated with the longest PPEGMEMA chain, grafted at low brush density, were able to reduce the formation of the protein corona in vitro and in vivo, while these UCNPs also showed the brightest upconversion luminescence in the solid state. Moreover, these particular polymer-coated UCNPs showed enhanced cellular uptake, extended in vivo blood circulation time, and more accumulation in the liver, brain, and heart.
Collapse
Affiliation(s)
- Lin Zhang
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales, Sydney, 2052 NSW, Australia
| | - Chaohao Chen
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, 2006 NSW, Australia
| | - Szun S Tay
- EMBL Australia, Single Molecule Science Node, School of Medical Sciences, University of New South Wales, Sydney, 2052 NSW, Australia
| | - Shihui Wen
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, 2006 NSW, Australia
| | - Cheng Cao
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales, Sydney, 2052 NSW, Australia
| | - Maté Biro
- EMBL Australia, Single Molecule Science Node, School of Medical Sciences, University of New South Wales, Sydney, 2052 NSW, Australia
| | - Dayong Jin
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, 2006 NSW, Australia
| | - Martina H Stenzel
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales, Sydney, 2052 NSW, Australia
| |
Collapse
|
11
|
Design and Synthesis of Luminescent Lanthanide-Based Bimodal Nanoprobes for Dual Magnetic Resonance (MR) and Optical Imaging. NANOMATERIALS 2021; 11:nano11020354. [PMID: 33535481 PMCID: PMC7912730 DOI: 10.3390/nano11020354] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/20/2022]
Abstract
Current biomedical imaging techniques are crucial for the diagnosis of various diseases. Each imaging technique uses specific probes that, although each one has its own merits, do not encompass all the functionalities required for comprehensive imaging (sensitivity, non-invasiveness, etc.). Bimodal imaging methods are therefore rapidly becoming an important topic in advanced healthcare. This bimodality can be achieved by successive image acquisitions involving different and independent probes, one for each mode, with the risk of artifacts. It can be also achieved simultaneously by using a single probe combining a complete set of physical and chemical characteristics, in order to record complementary views of the same biological object at the same time. In this scenario, and focusing on bimodal magnetic resonance imaging (MRI) and optical imaging (OI), probes can be engineered by the attachment, more or less covalently, of a contrast agent (CA) to an organic or inorganic dye, or by designing single objects containing both the optical emitter and MRI-active dipole. If in the first type of system, there is frequent concern that at some point the dye may dissociate from the magnetic dipole, it may not in the second type. This review aims to present a summary of current activity relating to this kind of dual probes, with a special emphasis on lanthanide-based luminescent nano-objects.
Collapse
|
12
|
Liang G, Wang H, Shi H, Wang H, Zhu M, Jing A, Li J, Li G. Recent progress in the development of upconversion nanomaterials in bioimaging and disease treatment. J Nanobiotechnology 2020; 18:154. [PMID: 33121496 PMCID: PMC7596946 DOI: 10.1186/s12951-020-00713-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 10/20/2020] [Indexed: 01/02/2023] Open
Abstract
Multifunctional lanthanide-based upconversion nanoparticles (UCNPs), which feature efficiently convert low-energy photons into high-energy photons, have attracted considerable attention in the domain of materials science and biomedical applications. Due to their unique photophysical properties, including light-emitting stability, excellent upconversion luminescence efficiency, low autofluorescence, and high detection sensitivity, and high penetration depth in samples, UCNPs have been widely applied in biomedical applications, such as biosensing, imaging and theranostics. In this review, we briefly introduced the major components of UCNPs and the luminescence mechanism. Then, we compared several common design synthesis strategies and presented their advantages and disadvantages. Several examples of the functionalization of UCNPs were given. Next, we detailed their biological applications in bioimaging and disease treatment, particularly drug delivery and photodynamic therapy, including antibacterial photodynamic therapy. Finally, the future practical applications in materials science and biomedical fields, as well as the remaining challenges to UCNPs application, were described. This review provides useful practical information and insights for the research on and application of UCNPs in the field of cancer.
Collapse
Affiliation(s)
- Gaofeng Liang
- Medical College, Henan University of Science and Technology, Luoyang, 471023, Henan, China.
| | - Haojie Wang
- Medical College, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Hao Shi
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Haitao Wang
- School of Environmental Science and Engineering, Nankai University, Tianjin,, 300350, China
| | - Mengxi Zhu
- Medical College, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Aihua Jing
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Jinghua Li
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Guangda Li
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| |
Collapse
|
13
|
Li Z, Liang T, Wang Q, Liu Z. Strategies for Constructing Upconversion Luminescence Nanoprobes to Improve Signal Contrast. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1905084. [PMID: 31782913 DOI: 10.1002/smll.201905084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/23/2019] [Indexed: 06/10/2023]
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs) can convert two or more lower-energy near-infrared photons to a single photon with higher energy, which makes them particularly suitable for constructing nanoprobes with large imaging depth and minimal interference of autofluorescence and light scattering from biosamples. Furthermore, they feature excellent photostability, sharp and narrow emissions, and large anti-Stokes shift, which confer them the capability of long-period bioimaging and real-time tracking. In recent years, UCNPs-based nanoprobes (UC-nanoprobes) have been attracting increasing interest in biological and medical research. Signal contrast, the ratio of signal intensity after and before the reaction of the probe and target, is the determinant factor of the sensitivity of all reaction-based probes. This progress report presents the methods of constructing UC-nanoprobes, with a focus fixed on recent strategies to improve the signal contrast, which have kept on promoting the bioapplication of this type of probe.
Collapse
Affiliation(s)
- Zhen Li
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Tao Liang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Qirong Wang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Zhihong Liu
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
14
|
Bouras K, Schmerber G, Aureau D, Rinnert H, Rehspringer JL, Ihiawakrim D, Dinia A, Slaoui A, Colis S. Photon management properties of Yb-doped SnO 2 nanoparticles synthesized by the sol-gel technique. Phys Chem Chem Phys 2019; 21:21407-21417. [PMID: 31531453 DOI: 10.1039/c9cp01993f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
SnO2 is a transparent large band gap semiconductor, particularly interesting for optoelectronic and photovoltaic devices, mainly because its conduction can be easily tuned by doping or by modulating the amount of oxygen vacancies. Besides, rare earth doping was successfully exploited for up conversion properties. Here we report on the functionalization of SnO2 nanoparticles with optically active Yb3+ ions using the sol-gel method, which allows UV to NIR spectral (down) conversion. As starting solutions we used stable non-alkoxide metal-organic compounds, which is rather uncommon. Transmission electron microscopy analysis demonstrated the formation of small well-crystallized nanoparticles while X-ray photoelectron spectroscopy measurements have revealed that the Yb is well inserted in the host matrix and has a 3+ valence state. All nanoparticles present large absorption in the UV-visible range (250 to 550 nm) and a band gap that decreases down to 2.72 eV upon doping. The UV energy converted into NIR on the basis of efficient energy transfer from SnO2 to the Yb3+ ions ranges between 250 and 400 nm. Reference undoped SnO2 nanoparticles with a mean size of 20 nm allow converting UV light into broad visible emission centered at 650 nm. The incorporation of up to 3.5 at% of Yb3+ ions into the SnO2 host matrix results in a spectacular decrease of the nanoparticle size down to 6.6 nm. This allowed also the shift of the photoluminescence to NIR in the 970-1050 nm range. The energy level structure of Yb3+ in SnO2 was successfully determined from the deconvolution of the Yb emission. This emission is significantly enhanced by increasing the doping level. All optical measurements suggest that these nanoparticles can be efficiently used as down-shifting converters.
Collapse
Affiliation(s)
- Karima Bouras
- Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie (ICube), UMR 7357 CNRS and Université de Strasbourg, 23 rue du Loess, BP 20 CR, F-67037 Strasbourg Cedex 2, France
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gao Y, Ma X, Kang F, Yang W, Liu Y, Wang Z, Ma W, Wang Z, Li G, Cao X, Wang J. Enhanced Cerenkov luminescence tomography analysis based on Y 2O 3:Eu 3+ rare earth oxide nanoparticles. BIOMEDICAL OPTICS EXPRESS 2018; 9:6091-6102. [PMID: 31065415 PMCID: PMC6491000 DOI: 10.1364/boe.9.006091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/21/2018] [Accepted: 09/26/2018] [Indexed: 06/09/2023]
Abstract
Cerenkov luminescence imaging offers a new diagnostic alternative to radiation imaging, but lacks intensity and penetration. In this study, a Cerenkov luminescence signal and its image quality were enhanced using rare earth oxide nanoparticles as a basis for Cerenkov luminescence excited fluorescence imaging and Cerenkov luminescence excited fluorescence tomography. The results also provided 3D-imaging and quantitative information. The approach was evaluated using phantom and mice models and 3D reconstruction and quantitative studies were performed in vitro, showing improved optical signal intensity, similarity, accuracy, signal-to-noise ratio, and spatial distribution information. The method offers benefits for both optical imaging research and radiopharmaceutical development.
Collapse
Affiliation(s)
- Yongheng Gao
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xiâan 710032, China
- These authors contributed equally to this work
| | - Xiaowei Ma
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xiâan 710032, China
- These authors contributed equally to this work
| | - Fei Kang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xiâan 710032, China
| | - Weidong Yang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xiâan 710032, China
| | - Yi Liu
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xiâan 710032, China
| | - Zhengjie Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xiâan 710032, China
| | - Wenhui Ma
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xiâan 710032, China
| | - Zhe Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xiâan 710032, China
| | - Guoquan Li
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xiâan 710032, China
| | - Xu Cao
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education & School of Life Science and Technology, Xidian University, Xiâan, Shaanxi 710071, China
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xiâan 710032, China
| |
Collapse
|
16
|
KAMIMURA M. Polymer Conjugated Near-Infrared Fluorescent Probes for in vivo Imaging. KOBUNSHI RONBUNSHU 2018. [DOI: 10.1295/koron.2018-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Masao KAMIMURA
- Department of Material Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science
| |
Collapse
|
17
|
Lingeshwar Reddy K, Balaji R, Kumar A, Krishnan V. Lanthanide Doped Near Infrared Active Upconversion Nanophosphors: Fundamental Concepts, Synthesis Strategies, and Technological Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801304. [PMID: 30066489 DOI: 10.1002/smll.201801304] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/31/2018] [Indexed: 06/08/2023]
Abstract
Near infrared (NIR) light utilization in a range of current technologies has gained huge significance due to its abundance in nature and nondestructive properties. NIR active lanthanide (Ln) doped upconversion nanomaterials synthesized in controlled shape, size, and surface functionality can be combined with various pertinent materials for extensive applications in diverse fields. Upconversion nanophosphors (UCNP) possess unique abilities, such as deep tissue penetration, enhanced photostability, low toxicity, sharp emission peaks, long anti-Stokes shift, etc., which have bestowed them with prodigious advantages over other conventional luminescent materials. As new generation fluorophores, UCNP have found a wide range of applications in various fields. In this Review, a comprehensive overview of lanthanide doped NIR active UCNP is provided by discussing the fundamental concepts including the different mechanisms proposed for explaining the upconversion processes, followed by the different strategies employed for the synthesis of these materials, and finally the technological applications of UCNP, mainly in the fields of bioimaging, drug delivery, sensing, and photocatalysis by highlighting the recent works in these areas. In addition, a brief note on the applications of UCNP in other fields is also provided along with the summary and future perspectives of these materials.
Collapse
Affiliation(s)
- Kumbam Lingeshwar Reddy
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175005, India
| | - Ramachandran Balaji
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175005, India
| | - Ashish Kumar
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175005, India
| | - Venkata Krishnan
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175005, India
| |
Collapse
|
18
|
Mannosyl electrochemical impedance cytosensor for label-free MDA-MB-231 cancer cell detection. Biosens Bioelectron 2018; 116:100-107. [DOI: 10.1016/j.bios.2018.05.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 12/18/2022]
|
19
|
Improving the sensitivity of immunoassays by reducing non-specific binding of poly(acrylic acid) coated upconverting nanoparticles by adding free poly(acrylic acid). Mikrochim Acta 2018; 185:220. [DOI: 10.1007/s00604-018-2756-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/02/2018] [Indexed: 11/26/2022]
|
20
|
Lai WF, Rogach AL, Wong WT. Molecular design of upconversion nanoparticles for gene delivery. Chem Sci 2017; 8:7339-7358. [PMID: 29163885 PMCID: PMC5672820 DOI: 10.1039/c7sc02956j] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/29/2017] [Indexed: 12/17/2022] Open
Abstract
Due to their large anti-Stokes shifts, sharp emission spectra and long excited-state lifetimes, upconversion nanoparticles (UCNPs) have attracted an increasing amount of research interests, and have shown great potential for enhancing the practical utility of gene therapy, whose versatility has been limited by existing gene delivery technologies that are basically mono-functional in nature. Despite this, up to now in-depth analysis of the development of UCNPs for gene delivery has been scant in the literature, even though there has been an upsurge of reviews on the chemistry of UCNPs and their applications in bioimaging and drug delivery. To fill this gap, this review aims to present the latest advances in the development and applications of UCNPs as gene carriers. Prior to describing the prominent works published in the field, a critical view on the properties, chemistry and molecular design of UCNPs for gene delivery is provided. With a synopsis of the recent advances in UCNP-mediated gene delivery, challenges and opportunities could be illuminated for clinical translation of works in this nascent field of research.
Collapse
Affiliation(s)
- Wing-Fu Lai
- School of Pharmaceutical Sciences , Health Science Centre , Shenzhen University , Shenzhen , China
- Department of Applied Biology & Chemical Technology , The Hong Kong Polytechnic University , Hong Kong . ;
| | - Andrey L Rogach
- Department of Materials Science and Engineering & Centre for Functional Photonics (CFP) , City University of Hong Kong , Hong Kong
| | - Wing-Tak Wong
- Department of Applied Biology & Chemical Technology , The Hong Kong Polytechnic University , Hong Kong . ;
| |
Collapse
|
21
|
van der Wel C, Bossert N, Mank QJ, Winter MGT, Heinrich D, Kraft DJ. Surfactant-free Colloidal Particles with Specific Binding Affinity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:9803-9810. [PMID: 28847149 PMCID: PMC5618147 DOI: 10.1021/acs.langmuir.7b02065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Colloidal particles with specific binding affinity are essential for in vivo and in vitro biosensing, targeted drug delivery, and micrometer-scale self-assembly. Key to these techniques are surface functionalizations that provide high affinities to specific target molecules. For stabilization in physiological environments, current particle coating methods rely on adsorbed surfactants. However, spontaneous desorption of these surfactants typically has an undesirable influence on lipid membranes. To address this issue and create particles for targeting molecules in lipid membranes, we present here a surfactant-free coating method that combines high binding affinity with stability at physiological conditions. After activating charge-stabilized polystyrene microparticles with EDC/Sulfo-NHS, we first coat the particles with a specific protein and subsequently covalently attach a dense layer of poly(ethyelene) glycol. This polymer layer provides colloidal stability at physiological conditions as well as antiadhesive properties, while the protein coating provides the specific affinity to the targeted molecule. We show that NeutrAvidin-functionalized particles bind specifically to biotinylated membranes and that Concanavalin A-functionalized particles bind specifically to the glycocortex of Dictyostelium discoideum cells. The affinity of the particles changes with protein density, which can be tuned during the coating procedure. The generic and surfactant-free coating method reported here transfers the high affinity and specificity of a protein onto colloidal polystyrene microparticles.
Collapse
Affiliation(s)
- Casper van der Wel
- Biological
and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O.
Box 9504, 2300 RA Leiden, The Netherlands
| | - Nelli Bossert
- Biological
and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O.
Box 9504, 2300 RA Leiden, The Netherlands
| | - Quinten J. Mank
- Biological
and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O.
Box 9504, 2300 RA Leiden, The Netherlands
| | - Marcel G. T. Winter
- Biological
and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O.
Box 9504, 2300 RA Leiden, The Netherlands
| | - Doris Heinrich
- Biological
and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O.
Box 9504, 2300 RA Leiden, The Netherlands
- Fraunhofer
Institute for Silicate Research, Neunerplatz 2, 97082 Würzburg, Germany
| | - Daniela J. Kraft
- Biological
and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O.
Box 9504, 2300 RA Leiden, The Netherlands
- E-mail:
| |
Collapse
|
22
|
Gulzar A, Xu J, Yang P, He F, Xu L. Upconversion processes: versatile biological applications and biosafety. NANOSCALE 2017; 9:12248-12282. [PMID: 28829477 DOI: 10.1039/c7nr01836c] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Lanthanide-doped photon upconverting nanomaterials are evolving as a new class of imaging contrast agents, offering highly promising prospects in the area of biomedical applications. Owing to their ability to convert long-wavelength near-infrared excitation radiation into shorter-wavelength emissions, these nanomaterials are well suited to yield properties of low imaging background, large anti-Stokes shift, along with high optical penetration depth of NIR light for deep tissue optical imaging or light-activated drug release and therapy. Such materials have potential for significant advantages in analytical applications compared to molecular fluorophores and quantum dots. The use of IR radiation as an excitation source diminishes autofluorescence and scattering of excitation radiation, which leads to a reduction of background in optical experiments. The upconverting nanocrystals show exceptional photostability and are constituted of materials that are not significantly toxic to biological organisms. Excitation at long wavelengths also minimizes damage to biological materials. In this detailed review, various mechanisms operating for the upconversion process, and methods that are utilized to synthesize and decorate upconverting nanoparticles are investigated to elucidate by what means absorption and emission can be tuned. Up-to-date reports concerning cellular internalization, biodistribution, excretion, cytotoxicity and in vivo toxic effects of UCNPs are discussed. Specifically, studies which assessed the relationship between the chemical and physical properties of UCNPs and their biodistribution, excretion, and toxic effects are reviewed in detail. Finally, we also deliberate the challenges of guaranteeing the biosafety of UCNPs in vivo.
Collapse
Affiliation(s)
- Arif Gulzar
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China.
| | | | | | | | | |
Collapse
|
23
|
Kamimura M, Matsumoto T, Suyari S, Umezawa M, Soga K. Ratiometric near-infrared fluorescence nanothermometry in the OTN-NIR (NIR II/III) biological window based on rare-earth doped β-NaYF 4 nanoparticles. J Mater Chem B 2017; 5:1917-1925. [PMID: 32263945 DOI: 10.1039/c7tb00070g] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A novel nanothermometer based on over-1000 nm (OTN) near-infrared (NIR) emission of rare-earth doped ceramic nanophosphors (RED-CNPs) was developed for temperature measurement in deep tissue. Hexagonal-phase β-NaYF4 nanoparticles co-doped with Yb3+, Ho3+, and Er3+ (NaYF4:Yb3+,Ho3+,Er3+ NPs) were synthesized and used as a nanothermometer. The NaYF4:Yb3+,Ho3+,Er3+ NPs displayed two OTN-NIR emission peaks in the second (NIR-II) (at 1150 nm of Ho3+) and third (NIR-III) (at 1550 nm of Er3+) biological window regions under NIR (980 nm) excitation in the first (NIR-I) biological window region. Oleic acid (OA) capped NaYF4:Yb3+,Ho3+,Er3+ NPs were dispersed in non-polar media, i.e., cyclohexane, and showed a temperature-dependent intensity ratio of the emission peaks of Ho3+ and Er3+ (IHo/IEr). The temperature-dependent IHo/IEr of the OA-NaYF4:Yb3+,Ho3+,Er3+ NPs was also evident through imitation tissue. The surfaces of the NaYF4:Yb3+,Ho3+,Er3+ NPs were modified with a poly(ethylene glycol) (PEG)-based block copolymer. The PEGylated NaYF4:Yb3+,Ho3+,Er3+ NPs were dispersed in water and emitted strong NIR-II and III emissions under NIR-I excitation. The PEGylated NaYF4:Yb3+,Ho3+,Er3+ NPs were injected into mice via the tail vein, and the OTN-NIR emissions of the PEGylated NaYF4:Yb3+,Ho3+,Er3+ NPs from the mouse blood vessels were clearly observed using an OTN-NIR fluorescence in vivo imaging system. In a polar media, water, the IHo/IEr of PEGylated NaYF4:Yb3+,Ho3+,Er3+ NPs was inversely related to the temperature. In both non-polar and polar media, the IHo/IEr values of the NaYF4:Yb3+,Ho3+,Er3+ NPs were almost linearly dependent on the temperature. The obtained NaYF4:Yb3+,Ho3+,Er3+ NPs are promising as a novel fluorescent nanothermometer for deep tissue.
Collapse
Affiliation(s)
- Masao Kamimura
- Department of Materials Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| | | | | | | | | |
Collapse
|
24
|
Kamimura M, Yano Y, Kuraoka S, Suyari S, Ube T, Wortmann L, Soga K. Near-Infrared to Visible Upconversion Emission Induced Photopolymerization: Polystyrene Shell Coated NaYF 4 Nanoparticles for Fluorescence Bioimaging and Nanothermometry. J PHOTOPOLYM SCI TEC 2017. [DOI: 10.2494/photopolymer.30.265] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Masao Kamimura
- Department of Materials Science and Technology, Tokyo University of Science
- Imaging Frontier Center (IFC), Research Institute for Science and Technology (RIST), Tokyo University of Science
| | - Yuto Yano
- Department of Materials Science and Technology, Tokyo University of Science
| | - Shuhei Kuraoka
- Department of Materials Science and Technology, Tokyo University of Science
| | - Satoru Suyari
- Department of Materials Science and Technology, Tokyo University of Science
| | - Takuji Ube
- Department of Materials Science and Technology, Tokyo University of Science
| | - Laura Wortmann
- Department of Materials Science and Technology, Tokyo University of Science
| | - Kohei Soga
- Department of Materials Science and Technology, Tokyo University of Science
- Imaging Frontier Center (IFC), Research Institute for Science and Technology (RIST), Tokyo University of Science
| |
Collapse
|
25
|
Kamimura M, Saito R, Hyodo H, Tsuji K, Umeda IO, Fujii H, Soga K. Over-1000 nm Near-infrared Fluorescence and SPECT/CT Dual-modal in vivo Imaging Based on Rare-earth Doped Ceramic Nanophosphors. J PHOTOPOLYM SCI TEC 2016. [DOI: 10.2494/photopolymer.29.525] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Extra-luminal detection of assumed colonic tumor site by near-infrared laparoscopy. Surg Endosc 2015; 30:4153-9. [PMID: 26659227 DOI: 10.1007/s00464-015-4669-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 10/14/2015] [Indexed: 01/05/2023]
Abstract
BACKGROUND Localization of colorectal tumors during laparoscopic surgery is generally performed by tattooing into the submucosal layer of the colon. However, faint and diffuse tattoos may lead to difficulties in recognizing cancer sites, resulting in inappropriate resection of the colon. We previously demonstrated that yttrium oxide nanoparticles doped with the rare earth ions (ytterbium and erbium) (YNP) showed strong near-infrared (NIR) emission under NIR excitation (1550 nm emission with 980 nm excitation). NIR light can penetrate deep tissues. In this study, we developed an NIR laparoscopy imaging system and demonstrated its use for accurate resection of the colon in swine. METHODS The NIR laparoscopy system consisted of an NIR laparoscope, NIR excitation laser diode, and an NIR camera. Endo-clips coated with YNP (NIR clip), silicon rubber including YNP (NIR silicon mass), and YNP solution (NIR ink) were prepared as test NIR markers. We used a swine model to detect an assumed colon cancer site using NIR laparoscopy, followed by laparoscopic resection. The NIR markers were fixed at an assumed cancer site within the colon by endoscopy. An NIR laparoscope was then introduced into the abdominal cavity through a laparoscopy port. RESULTS NIR emission from the markers in the swine colon was successfully recognized using the NIR laparoscopy imaging system. The position of the markers in the colon could be identified. Accurate resection of the colon was performed successfully by laparoscopic surgery under NIR fluorescence guidance. The presence of the NIR markers within the extirpated colon was confirmed, indicating resection of the appropriate site. CONCLUSIONS NIR laparoscopic surgery is useful for colorectal cancer site recognition and accurate resection using laparoscopic surgery.
Collapse
|
27
|
Sedlmeier A, Gorris HH. Surface modification and characterization of photon-upconverting nanoparticles for bioanalytical applications. Chem Soc Rev 2015; 44:1526-60. [PMID: 25176175 DOI: 10.1039/c4cs00186a] [Citation(s) in RCA: 264] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Photon-upconverting nanoparticles (UCNPs) can be excited by near-infrared light and emit visible light (anti-Stokes emission) which prevents autofluorescence and light scattering of biological samples. The potential for background-free imaging has attracted wide interest in UCNPs in recent years. Small and homogeneous lanthanide-doped UCNPs that display high upconversion efficiency have typically been synthesized in organic solvents. Bioanalytical applications, however, require a subsequent phase transfer to aqueous solutions. Hence, the surface properties of UCNPs must be well designed and characterized to grant both a stable aqueous colloidal dispersion and the ability to conjugate biomolecules and other ligands on the nanoparticle surface. In this review, we introduce various routes for the surface modification of UCNPs and critically discuss their advantages and disadvantages. The last part covers various analytical methods that enable a thorough examination of the progress and success of the surface functionalization.
Collapse
Affiliation(s)
- Andreas Sedlmeier
- Institute of Analytical Chemistry, Chemo- und Biosensors, University of Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany.
| | | |
Collapse
|
28
|
Lu J, Chen Y, Liu D, Ren W, Lu Y, Shi Y, Piper J, Paulsen I, Jin D. One-Step Protein Conjugation to Upconversion Nanoparticles. Anal Chem 2015; 87:10406-13. [PMID: 26429146 DOI: 10.1021/acs.analchem.5b02523] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The emerging upconversion nanoparticles offer a fascinating library of ultrasensitive luminescent probes for a range of biotechnology applications from biomarker discovery to single molecule tracking, early disease diagnosis, deep tissue imaging, and drug delivery and therapies. The effective bioconjugation of inorganic nanoparticles to the molecule-specific proteins, free of agglomeration, nonspecific binding, or biomolecule deactivation, is crucial for molecular recognition of target molecules or cells. The current available protocols require multiple steps which can lead to low probe stability, specificity, and reproducibility. Here we report a simple and rapid protein bioconjugation method based on a one-step ligand exchange using the DNAs as the linker. Our method benefits from the robust DNA-protein conjugates as well as from multiple ions binding capability. Protein can be preconjugated via an amino group at the 3' end of a synthetic DNA molecule, so that the 5' end phosphoric acid group and multiple phosphate oxygen atoms in the phosphodiester bonds are exposed to replace the oleic acid ligands on the surface of upconversion nanoparticles due to their stronger chelating capability to lanthanides. We demonstrated that our method can efficiently pull out the upconversion nanoparticles from organic solvent into an aqueous phase. The upconversion nanoparticles then become hydrophilic, stable, and specific biomolecules recognition. This allows us to successfully functionalize the upconversion nanoparticles with horseradish peroxidise (HRP) for catalytic colorimetric assay and for streptavidin (SA)-biotin immunoassays.
Collapse
Affiliation(s)
| | - Yinghui Chen
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology, Sydney, NSW 2007, Australia
| | | | - Wei Ren
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology, Sydney, NSW 2007, Australia
| | | | | | | | | | - Dayong Jin
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology, Sydney, NSW 2007, Australia
| |
Collapse
|
29
|
Lakshmipriya T, Horiguchi Y, Nagasaki Y. Co-immobilized poly(ethylene glycol)-block-polyamines promote sensitivity and restrict biofouling on gold sensor surface for detecting factor IX in human plasma. Analyst 2015; 139:3977-85. [PMID: 24922332 DOI: 10.1039/c4an00168k] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In order to detect an extremely low amount of human coagulation factor IX (FIX), poly(ethylene glycol) (PEG)/aptamer co-immobilized surface was constructed using original PEG-polyamine surface modification agents on surface plasmon resonance (SPR) sensor chip. Initially, a gold (Au) sensor chip of SPR was modified using poly(ethylene glycol)-b-poly[2-(N,N-dimethylamino)ethyl methacrylate] (PEG-b-PAMA) followed by treatment with SH-dT20 and was duplexed with anti-FIX aptamer extended using A24. Furthermore, the co-immobilization of pentaethylenehexamine-terminated poly(ethylene glycol) (N6-PEG) on the sensing surface completely quenched bio-fouling. On this dual tethered PEG-surface, we determined that the dissociation constant for FIX-aptamer interaction was 37 ± 10 pM, and the sensitivity of detection could reach up to 800 fM on using aptamer-FIX-antibody sandwich pattern detected by gold nanoparticle-conjugated anti-mouse antibody. We could detect FIX in the presence of abundant albumin. Furthermore, to mimic the actual detection of FIX in clinical samples, we demonstrated our experimental results with human blood plasma instead of FIX. Higher-sensitivity was attained because of dual polymers immobilized on Au surface, and this can emerge as a common strategy for any aptamer-protein interactions. The selective binding of aptamer in human blood plasma described here indicates the suitability of the present strategy for detection in clinically relevant samples.
Collapse
Affiliation(s)
- Thangavel Lakshmipriya
- Department of Material Sciences, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan.
| | | | | |
Collapse
|
30
|
Yadav RS, Verma RK, Bahadur A, Rai SB. Structural characterizations and intense green upconversion emission in Yb3+, Pr3+ co-doped Y2O3 nano-phosphor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 137:357-362. [PMID: 25233026 DOI: 10.1016/j.saa.2014.08.078] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/20/2014] [Accepted: 08/24/2014] [Indexed: 06/03/2023]
Abstract
We report the structural and optical properties of Yb(3+), Pr(3+) co-doped Y2O3 nano-phosphor synthesized through solution combustion method. The structural studies reveal the nano-crystalline structure of the sample. The energy dispersive spectroscopy (EDS) measurements confirm the presence of Y, O, Pr and Yb elements in the sample. Fourier transform infrared studies show the vibrational features of the samples. The fluorescence spectra of the samples have been monitored on excitation with 976 nm and the intense green upconversion emission observed at 552 nm is due to (3)P0→(3)H5 electronic transition. The concentration of Pr(3+) ion in the sample is optimized and the fluorescence intensity is maximum at 0.08 mol% of Pr(3+). The power dependence studies reveal the involvement of two photons in the emission process. The possible mechanism of upconversion has been discussed on the basis of schematic energy level diagram. The sample annealed at higher temperature enhances the fluorescence intensity up to 8 times and this enhancement is discussed in terms of the removal of optical quenching centers. The nano-phosphor can be applicable in the field of display devices and green laser.
Collapse
Affiliation(s)
- R S Yadav
- Laser & Spectroscopy Laboratory, Department of Physics, Banaras Hindu University, Varanasi 221 005, India
| | - R K Verma
- Laser & Spectroscopy Laboratory, Department of Physics, Banaras Hindu University, Varanasi 221 005, India
| | - A Bahadur
- Laser & Spectroscopy Laboratory, Department of Physics, Banaras Hindu University, Varanasi 221 005, India
| | - S B Rai
- Laser & Spectroscopy Laboratory, Department of Physics, Banaras Hindu University, Varanasi 221 005, India.
| |
Collapse
|
31
|
Sun Y, Feng W, Yang P, Huang C, Li F. The biosafety of lanthanide upconversion nanomaterials. Chem Soc Rev 2015; 44:1509-25. [DOI: 10.1039/c4cs00175c] [Citation(s) in RCA: 235] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The association between the chemo-physical properties of UCNPs and their biodistribution, excretion, and toxic effects is presented in this review.
Collapse
Affiliation(s)
- Yun Sun
- Department of Chemistry & Institutes of Biomedical Sciences & State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
- Shanghai 200433
- P. R. China
| | - Wei Feng
- Department of Chemistry & Institutes of Biomedical Sciences & State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
- Shanghai 200433
- P. R. China
| | - Pengyuan Yang
- Department of Chemistry & Institutes of Biomedical Sciences & State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
- Shanghai 200433
- P. R. China
| | - Chunhui Huang
- Department of Chemistry & Institutes of Biomedical Sciences & State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
- Shanghai 200433
- P. R. China
| | - Fuyou Li
- Department of Chemistry & Institutes of Biomedical Sciences & State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
- Shanghai 200433
- P. R. China
| |
Collapse
|
32
|
Zhou J, Liu Q, Feng W, Sun Y, Li F. Upconversion Luminescent Materials: Advances and Applications. Chem Rev 2014; 115:395-465. [DOI: 10.1021/cr400478f] [Citation(s) in RCA: 1511] [Impact Index Per Article: 137.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jing Zhou
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200433, P. R. China
| | - Qian Liu
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200433, P. R. China
| | - Wei Feng
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200433, P. R. China
| | - Yun Sun
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200433, P. R. China
| | - Fuyou Li
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
33
|
Zako T, Yoshimoto M, Hyodo H, Kishimoto H, Ito M, Kaneko K, Soga K, Maeda M. Cancer-targeted near infrared imaging using rare earth ion-doped ceramic nanoparticles. Biomater Sci 2014. [PMID: 26214189 DOI: 10.1039/c4bm00232f] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The use of near-infrared (NIR) light over 1000 nm (OTN-NIR or second NIR) is advantageous for bioimaging because it enables deep tissue penetration due to low scattering and autofluorescence. In this report, we describe the application of rare earth ion-doped ceramic nanoparticles to cancer-targeted NIR imaging using erbium and ytterbium ion-doped yttrium oxide nanoparticles (YNP) functionalized with streptavidin via bi-functional PEG (SA-YNP). YNP has NIR emission at 1550 nm, with NIR excitation at 980 nm (NIR-NIR imaging). Cancer-specific NIR-NIR imaging was demonstrated using SA-YNP and biotinylated antibodies on cancer cells and human colon cancer tissues. NIR-NIR imaging through porcine meat of 1 cm thickness was also demonstrated, supporting the possible application of deep tissue NIR-NIR bioimaging using YNP as a probe. Our results suggest that non-invasive imaging using YNP has great potential for general application in cancer imaging in living subjects.
Collapse
Affiliation(s)
- Tamotsu Zako
- Bioengineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Gopinath SC, Tang TH, Citartan M, Chen Y, Lakshmipriya T. Current aspects in immunosensors. Biosens Bioelectron 2014; 57:292-302. [DOI: 10.1016/j.bios.2014.02.029] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 02/11/2014] [Accepted: 02/11/2014] [Indexed: 02/08/2023]
|
35
|
Gopinath SCB, Lakshmipriya T, Awazu K. Colorimetric detection of controlled assembly and disassembly of aptamers on unmodified gold nanoparticles. Biosens Bioelectron 2014; 51:115-23. [PMID: 23948242 PMCID: PMC7125824 DOI: 10.1016/j.bios.2013.07.037] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 05/24/2013] [Accepted: 07/21/2013] [Indexed: 10/27/2022]
Abstract
Aptamers are nucleic acid ligands that are generated artificially by in vitro selection and behave similar to antibodies. The development of aptamer-based sensing systems or strategies has been in vogue for the past few decades, because aptamers are smaller in size, stable, cheaper and undergo easier modifications. Owing to these advantages, several facile aptamer-based colorimetric strategies have been created by controlling the assembly and disassembly of aptamers on unmodified gold nanoparticle probes. As these kinds of assay systems are rapid and can be visualized unaided by instruments, they have recently become an attractive method of choice. The formation of purple-colored aggregates (attraction) from the red dispersed (repulsion) state of GNPs in the presence of mono- or divalent ions is the key principle behind this assay. Due to its simplicity and versatility, this assay can be an alternative to existing diagnostic assays. Here, we have investigated the critical elements involved in colorimetric assays, and have screened different proteins and small ligands to evaluate biofouling on GNPs.
Collapse
Affiliation(s)
- Subash C B Gopinath
- Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology, Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | | | | |
Collapse
|
36
|
Yang Y. Upconversion nanophosphors for use in bioimaging, therapy, drug delivery and bioassays. Mikrochim Acta 2013. [DOI: 10.1007/s00604-013-1139-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
37
|
Hemmer E, Venkatachalam N, Hyodo H, Hattori A, Ebina Y, Kishimoto H, Soga K. Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging. NANOSCALE 2013; 5:11339-61. [PMID: 23938606 DOI: 10.1039/c3nr02286b] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In recent years, significant progress was achieved in the field of nanomedicine and bioimaging, but the development of new biomarkers for reliable detection of diseases at an early stage, molecular imaging, targeting and therapy remains crucial. The disadvantages of commonly used organic dyes include photobleaching, autofluorescence, phototoxicity and scattering when UV (ultraviolet) or visible light is used for excitation. The limited penetration depth of the excitation light and the visible emission into and from the biological tissue is a further drawback with regard to in vivo bioimaging. Lanthanide containing inorganic nanostructures emitting in the near-infrared (NIR) range under NIR excitation may overcome those problems. Due to the outstanding optical and magnetic properties of lanthanide ions (Ln(3+)), nanoscopic host materials doped with Ln(3+), e.g. Y2O3:Er(3+),Yb(3+), are promising candidates for NIR-NIR bioimaging. Ln(3+)-doped gadolinium-based inorganic nanostructures, such as Gd2O3:Er(3+),Yb(3+), have a high potential as opto-magnetic markers allowing the combination of time-resolved optical imaging and magnetic resonance imaging (MRI) of high spatial resolution. Recent progress in our research on over-1000 nm NIR fluorescent nanoprobes for in vivo NIR-NIR bioimaging will be discussed in this review.
Collapse
Affiliation(s)
- Eva Hemmer
- Tokyo University of Science, Center for Technologies against Cancer (CTC), 2669 Yamazaki, 278-0022 Chiba, Japan.
| | | | | | | | | | | | | |
Collapse
|
38
|
Citric acid-assisted phase controlled synthesis of NaYF4:Yb3+,Tm3+ crystals and their intense ultraviolet upconversion emissions. J Fluor Chem 2013. [DOI: 10.1016/j.jfluchem.2013.10.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
39
|
Liu B, Huang PJJ, Zhang X, Wang F, Pautler R, Ip AC, Liu J. Parts-per-Million of Polyethylene Glycol as a Non-Interfering Blocking Agent for Homogeneous Biosensor Development. Anal Chem 2013; 85:10045-50. [PMID: 24067133 DOI: 10.1021/ac4024654] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Biwu Liu
- Department of Chemistry and
Waterloo Institute for Nanotechnology, University of Waterloo, 200 University
Avenue West, Waterloo, Ontario, Canada N2L 3G1
| | - Po-Jung Jimmy Huang
- Department of Chemistry and
Waterloo Institute for Nanotechnology, University of Waterloo, 200 University
Avenue West, Waterloo, Ontario, Canada N2L 3G1
| | - Xu Zhang
- Department of Chemistry and
Waterloo Institute for Nanotechnology, University of Waterloo, 200 University
Avenue West, Waterloo, Ontario, Canada N2L 3G1
| | - Feng Wang
- Department of Chemistry and
Waterloo Institute for Nanotechnology, University of Waterloo, 200 University
Avenue West, Waterloo, Ontario, Canada N2L 3G1
| | - Rachel Pautler
- Department of Chemistry and
Waterloo Institute for Nanotechnology, University of Waterloo, 200 University
Avenue West, Waterloo, Ontario, Canada N2L 3G1
| | - Alexander C−F. Ip
- Department of Chemistry and
Waterloo Institute for Nanotechnology, University of Waterloo, 200 University
Avenue West, Waterloo, Ontario, Canada N2L 3G1
| | - Juewen Liu
- Department of Chemistry and
Waterloo Institute for Nanotechnology, University of Waterloo, 200 University
Avenue West, Waterloo, Ontario, Canada N2L 3G1
| |
Collapse
|
40
|
Hypoxic condition-selective upconversion via triplet–triplet annihilation based on POSS-core dendrimer complexes. Bioorg Med Chem 2013; 21:2678-81. [DOI: 10.1016/j.bmc.2013.03.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/19/2013] [Accepted: 03/21/2013] [Indexed: 11/21/2022]
|
41
|
Soga K. [Application of nanophosphors with near infrared excitation for biomedical imaging]. YAKUGAKU ZASSHI 2013; 133:355-67. [PMID: 23449415 DOI: 10.1248/yakushi.12-00239-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fluorescence bioimaging is an inevitable method for biological, medical and pharmaceutical sciences to visualize substances in biological objects in a highly sensitive, multicolor and dynamic way. Recently, elongation of the fluorescence wavelength is a trend used in this imaging to suppress scattering, which limits the imaging depth to within several millimeters. It has been known that the so-called "biological window" with low loss for a biological tissue has been known to lie in the near-infrared (NIR) wavelength range between 1000 and 1700 nm. The use of fluorescence in the over-1000-nm (OTN) NIR can deepen the observation to several centimeters. The use of imaging devices based on semiconductor silicon has limited the wavelength of the fluorescence bioimaging to less than 1000 nm. However, the appearance of InGaAs CCD on the market, to allow for imaging of the OTN-NIR light, is now changing the situation. On the other hand, rare-earth doped ceramic nanophosphors (RED-CNP) can emit efficient fluorescence in the OTN-NIR wavelength range. The author's group has applied the RED-CNP to OTN-NIR fluorescence bioimaging by hybridizing the RED-CNP with various polymers or molecules. The present paper will review the development of the materials and systems for this OTN-NIR fluorescence bioimaging, together with some applications of the imaging method for biological research and a medical surgery.
Collapse
Affiliation(s)
- Kohei Soga
- Department of Materials Science and Technology, Tokyo University of Science, Chiba, Japan.
| |
Collapse
|
42
|
Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, Stewart MH, Medintz IL. Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev 2013; 113:1904-2074. [PMID: 23432378 DOI: 10.1021/cr300143v] [Citation(s) in RCA: 851] [Impact Index Per Article: 70.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kim E Sapsford
- Division of Biology, Department of Chemistry and Materials Science, Office of Science and Engineering Laboratories, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Hemmer E, Yamano T, Kishimoto H, Venkatachalam N, Hyodo H, Soga K. Cytotoxic aspects of gadolinium oxide nanostructures for up-conversion and NIR bioimaging. Acta Biomater 2013; 9:4734-43. [PMID: 22963845 DOI: 10.1016/j.actbio.2012.08.045] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 07/16/2012] [Accepted: 08/20/2012] [Indexed: 01/21/2023]
Abstract
Bioimaging is an important diagnostic tool in the investigation and visualization of biological phenomena in cells and in medicine. In this context, up-converting Gd(2)O(3):Er(3+),Yb(3+) nanostructures (nanoparticles, nanorods) have been synthesized by precipitation methods and hydrothermal synthesis. Independent of size and morphology, Gd(2)O(3):Er(3+),Yb(3+) powders show up-conversion (550 nm, 670 nm) and near-infrared emission (1.5 μm) upon 980 nm excitation, which makes these structures interesting for application as biomarkers. With regard to their potential application in bioimaging, cytotoxicity is an important aspect and is strongly affected by the physico-chemical properties of the investigated nanostructures. Therefore, the cytotoxic effect of bare and poly(ethylene glycol)-b-poly(acrylic acid) block co-polymer-modified nanostructures on non-phagocytic and phagocytic cells (B-cell hybridoma cells and macrophages) was investigated. The observed cytotoxic behavior in the case of macrophages incubated with bare nanostructures was assigned to the poor chemical durability of gadolinium oxide, but could be overcome by surface modification.
Collapse
|
44
|
Lakshmipriya T, Fujimaki M, Gopinath SCB, Awazu K, Horiguchi Y, Nagasaki Y. A high-performance waveguide-mode biosensor for detection of factor IX using PEG-based blocking agents to suppress non-specific binding and improve sensitivity. Analyst 2013; 138:2863-70. [DOI: 10.1039/c3an00298e] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Naccache R, Rodríguez EM, Bogdan N, Sanz-Rodríguez F, de la Cruz MDCI, de la Fuente ÁJ, Vetrone F, Jaque D, Solé JG, Capobianco JA. High resolution fluorescence imaging of cancers using lanthanide ion-doped upconverting nanocrystals. Cancers (Basel) 2012; 4:1067-105. [PMID: 24213500 PMCID: PMC3712733 DOI: 10.3390/cancers4041067] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 09/20/2012] [Accepted: 10/15/2012] [Indexed: 12/17/2022] Open
Abstract
During the last decade inorganic luminescent nanoparticles that emit visible light under near infrared (NIR) excitation (in the biological window) have played a relevant role for high resolution imaging of cancer. Indeed, semiconductor quantum dots (QDs) and metal nanoparticles, mostly gold nanorods (GNRs), are already commercially available for this purpose. In this work we review the role which is being played by a relatively new class of nanoparticles, based on lanthanide ion doped nanocrystals, to target and image cancer cells using upconversion fluorescence microscopy. These nanoparticles are insulating nanocrystals that are usually doped with small percentages of two different rare earth (lanthanide) ions: The excited donor ions (usually Yb3+ ion) that absorb the NIR excitation and the acceptor ions (usually Er3+, Ho3+ or Tm3+), that are responsible for the emitted visible (or also near infrared) radiation. The higher conversion efficiency of these nanoparticles in respect to those based on QDs and GNRs, as well as the almost independent excitation/emission properties from the particle size, make them particularly promising for fluorescence imaging. The different approaches of these novel nanoparticles devoted to "in vitro" and "in vivo" cancer imaging, selective targeting and treatment are examined in this review.
Collapse
Affiliation(s)
- Rafik Naccache
- Department of Chemistry and Biochemistry, Concordia University, Montreal H4B 1R6, Canada; E-Mails: (R.N.); (E.M.R.); (N.B.)
| | - Emma Martín Rodríguez
- Department of Chemistry and Biochemistry, Concordia University, Montreal H4B 1R6, Canada; E-Mails: (R.N.); (E.M.R.); (N.B.)
| | - Nicoleta Bogdan
- Department of Chemistry and Biochemistry, Concordia University, Montreal H4B 1R6, Canada; E-Mails: (R.N.); (E.M.R.); (N.B.)
| | - Francisco Sanz-Rodríguez
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain; E-Mail: (F.S.-R.); (A.J.F.)
| | | | - Ángeles Juarranz de la Fuente
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain; E-Mail: (F.S.-R.); (A.J.F.)
| | - Fiorenzo Vetrone
- Institut National de la Recherche Scientifique-Énergie, Matériaux et Télécommunications, Université du Québec, Varennes J3X 1S2, Canada; E-Mail:
| | - Daniel Jaque
- Departamento de Física de Materiales, Universidad Autónoma de Madrid, Madrid 28049, Spain; E-Mail:
| | - José García Solé
- Departamento de Física de Materiales, Universidad Autónoma de Madrid, Madrid 28049, Spain; E-Mail:
| | - John A. Capobianco
- Department of Chemistry and Biochemistry, Concordia University, Montreal H4B 1R6, Canada; E-Mails: (R.N.); (E.M.R.); (N.B.)
| |
Collapse
|
46
|
Hemmer E, Takeshita H, Yamano T, Fujiki T, Kohl Y, Löw K, Venkatachalam N, Hyodo H, Kishimoto H, Soga K. In vitro and in vivo investigations of upconversion and NIR emitting Gd₂O₃:Er³⁺,Yb³⁺ nanostructures for biomedical applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:2399-2412. [PMID: 22588504 DOI: 10.1007/s10856-012-4671-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 05/02/2012] [Indexed: 05/31/2023]
Abstract
The use of an "over 1000-nm near-infrared (NIR) in vivo fluorescence bioimaging" system based on lanthanide containing inorganic nanostructures emitting in the visible and NIR range under 980-nm excitation is proposed. It may overcome problems of currently used biomarkers including color fading, phototoxicity and scattering. Gd(2)O(3):Er(3+),Yb(3+) nanoparticles and nanorods showing upconversion and NIR emission are synthesized and their cytotoxic behavior is investigated by incubation with B-cell hybridomas and macrophages. Surface modification with PEG-b-PAAc provides the necessary chemical durability reducing the release of toxic Gd(3+) ions. NIR fluorescence microscopy is used to investigate the suitability of the nanostructures as NIR-NIR biomarkers. The in vitro uptake of bare and modified nanostructures by macrophages is investigated by confocal laser scanning microscopy. In vivo investigations revealed nanostructures in liver, lung, kidneys and spleen a few hours after injection into mice, while most of the nanostructures have been removed from the body after 24 h.
Collapse
Affiliation(s)
- Eva Hemmer
- Center for Technologies Against Cancer, Tokyo University of Science, 2669 Yamazaki, Chiba 278-0022, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Cao P, Tong L, Hou Y, Zhao G, Guerin G, Winnik MA, Nitz M. Improving lanthanide nanocrystal colloidal stability in competitive aqueous buffer solutions using multivalent PEG-phosphonate ligands. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:12861-70. [PMID: 22906305 DOI: 10.1021/la302690h] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The range of properties available in the lanthanide series has inspired research into the use of lanthanide nanoparticles for numerous applications. We aim to use NaLnF(4) nanoparticles for isotopic tags in mass cytometry. This application requires nanoparticles of narrow size distribution, diameters preferably less than 15 nm, and robust surface chemistry to avoid nonspecific interactions and to facilitate bioconjugation. Nanoparticles (NaHoF(4), NaEuF(4), NaGdF(4), and NaTbF(4)) were synthesized with diameters from 9 to 11 nm with oleic acid surface stabilization. The surface ligands were replaced by a series of mono-, di-, and tetraphosphonate PEG ligands, whose synthesis is reported here. The colloidal stability of the resulting particles was monitored over a range of pH values and in phosphate containing solutions. All of the PEG-phosphonate ligands were found to produce non-aggregated colloidally stable suspensions of the nanoparticles in water as judged by DLS and TEM measurements. However, in more aggressive solutions, at high pH and in phosphate buffers, the mono- and diphosphonate PEG ligands did not stabilize the particles and aggregation as well as flocculation was observed. However, the tetraphosphonate ligand was able to stabilize the particles at high pH and in phosphate buffers for extended periods of time.
Collapse
Affiliation(s)
- Pengpeng Cao
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada, M5S 3H6
| | | | | | | | | | | | | |
Collapse
|
48
|
Lin M, Zhao Y, Wang S, Liu M, Duan Z, Chen Y, Li F, Xu F, Lu T. Recent advances in synthesis and surface modification of lanthanide-doped upconversion nanoparticles for biomedical applications. Biotechnol Adv 2012; 30:1551-61. [PMID: 22561011 DOI: 10.1016/j.biotechadv.2012.04.009] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 04/06/2012] [Accepted: 04/21/2012] [Indexed: 12/12/2022]
Abstract
Lanthanide (Ln)-doped upconversion nanoparticles (UCNPs) with appropriate surface modification can be used for a wide range of biomedical applications such as bio-detection, cancer therapy, bio-labeling, fluorescence imaging, magnetic resonance imaging and drug delivery. The upconversion phenomenon exhibited by Ln-doped UCNPs renders them tremendous advantages in biological applications over other types of fluorescent materials (e.g., organic dyes, fluorescent proteins, gold nanoparticles, quantum dots, and luminescent transition metal complexes) for: (i) enhanced tissue penetration depths achieved by near-infrared (NIR) excitation; (ii) improved stability against photobleaching, photoblinking and photochemical degradation; (iii) non-photodamaging to DNA/RNA due to lower excitation light energy; (iv) lower cytotoxicity; and (v) higher detection sensitivity. Ln-doped UCNPs are therefore attracting increasing attentions in recent years. In this review, we present recent advances in the synthesis of Ln-doped UCNPs and their surface modification, as well as their emerging applications in biomedicine. The future prospects of Ln-doped UCNPs for biomedical applications are also discussed.
Collapse
Affiliation(s)
- Min Lin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Biomedical Engineering and Biomechanics Center, Department of Chemistry, Xi'an Jiaotong University, Xi'an, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Soga K, Tokuzen K, Fukuda K, Hyodo H, Hemmer E, Venkatachalm N, Kishimoto H. Application of Ceramic/Polymer Conjugate Materials for Near Infrared Biophotonics. J PHOTOPOLYM SCI TEC 2012. [DOI: 10.2494/photopolymer.25.57] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
Tanaka K, Chujo Y. Advanced functional materials based on polyhedral oligomeric silsesquioxane (POSS). ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c1jm14231c] [Citation(s) in RCA: 403] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|