1
|
Vinita N, Devan U, Durgadevi S, Anitha S, Govarthanan M, Antony Joseph Velanganni A, Jeyakanthan J, Arul Prakash P, Mohamed Jaabir MS, Kumar P. Impact of Surface Charge-Tailored Gold Nanorods for Selective Targeting of Mitochondria in Breast Cancer Cells Using Photodynamic Therapy. ACS OMEGA 2023; 8:33229-33241. [PMID: 37744785 PMCID: PMC10515365 DOI: 10.1021/acsomega.2c06731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/10/2023] [Indexed: 09/26/2023]
Abstract
Herein, the impact of surface charge tailored of gold nanorods (GNRs) on breast cancer cells (MCF-7 and MDA-MB-231) upon conjugation with triphenylphosphonium (TPP) for improved photodynamic therapy (PDT) targeting mitochondria was studied. The salient features of the study are as follows: (i) positive (CTAB@GNRs) and negative (PSS-CTAB@GNRs) surface-charged gold nanorods were developed and characterized; (ii) the mitochondrial targeting efficiency of gold nanorods was improved by conjugating TPP molecules; (iii) the conjugated nanoprobes (TPP-CTAB@GNRs and TPP-PSS-CTAB@GNRs) were evaluated for PDT in the presence of photosensitizer (PS), 5-aminolevulinic acid (5-ALA) in breast cancer cells; (iv) both nanoprobes (TPP-CTAB@GNRs and TPP-PSS-CTAB@GNRs) induce apoptosis, damage DNA, generate reactive oxygen species, and decrease mitochondrial membrane potential upon 5-ALA-based PDT; and (v) 5-ALA-PDT of two nanoprobes (TPP-CTAB@GNRs and TPP-PSS-CTAB@GNRs) impact cell signaling (PI3K/AKT) pathway by upregulating proapoptotic genes and proteins. Based on the results, we confirm that the positively charged (rapid) nanoprobes are more advantageous than their negatively (slow) charged nanoprobes. However, depending on the kind and degree of cancer, both nanoprobes can serve as efficient agents for delivering anticancer therapy.
Collapse
Affiliation(s)
- Nadar
Manimaran Vinita
- Food
Chemistry and Molecular Cancer Biology Lab, Department of Animal Health
and Management, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | - Umapathy Devan
- Molecular
Oncology Laboratory, Department of Biochemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Sabapathi Durgadevi
- Food
Chemistry and Molecular Cancer Biology Lab, Department of Animal Health
and Management, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | - Selvaraj Anitha
- Food
Chemistry and Molecular Cancer Biology Lab, Department of Animal Health
and Management, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | - Muthusamy Govarthanan
- Department
of Environmental Engineering, Kyungpook
National University, Deagu 41566, Republic
of Korea
- Department
of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India
| | | | - Jeyaraman Jeyakanthan
- Department
of Bioinformatics, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | - Pitchan Arul Prakash
- PG
and Research
Department of Biotechnology and Microbiology, The National College, Tiruchirappalli 620001, Tamil Nadu, India
| | - Mohamed Sultan Mohamed Jaabir
- PG
and Research
Department of Biotechnology and Microbiology, The National College, Tiruchirappalli 620001, Tamil Nadu, India
| | - Ponnuchamy Kumar
- Food
Chemistry and Molecular Cancer Biology Lab, Department of Animal Health
and Management, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| |
Collapse
|
2
|
Liu M, Miao D, Qin S, Liu H, Bai Y. Mass tags-based mass spectrometric immunoassay and its bioanalysis applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Pancaro A, Szymonik M, Georgiou PG, Baker AN, Walker M, Adriaensens P, Hendrix J, Gibson MI, Nelissen I. The polymeric glyco-linker controls the signal outputs for plasmonic gold nanorod biosensors due to biocorona formation. NANOSCALE 2021; 13:10837-10848. [PMID: 34114594 PMCID: PMC8223873 DOI: 10.1039/d1nr01548f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/03/2021] [Indexed: 05/13/2023]
Abstract
Gold nanorods (GNRs) are a promising platform for nanoplasmonic biosensing. The localised surface plasmon resonance (LSPR) peak of GNRs is located in the near-infrared optical window and is sensitive to local binding events, enabling label-free detection of biomarkers in complex biological fluids. A key challenge in the development of such sensors is achieving target affinity and selectivity, while both minimizing non-specific binding and maintaining colloidal stability. Herein, we reveal how GNRs decorated with galactosamine-terminated polymer ligands display significantly different binding responses in buffer compared to serum, due to biocorona formation, and how biocorona displacement due to lectin binding plays a key role in their optical responses. GNRs were coated with either poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA) or poly(N-hydroxyethyl acrylamide) (PHEA) prepared via reversible addition-fragmentation chain-transfer (RAFT) polymerisation and end-functionalised with galactosamine (Gal) as the lectin-targeting unit. In buffer Gal-PHEA-coated GNRs aggregated upon soybean agglutinin (SBA) addition, whereas Gal-PHPMA-coated GNRs exhibited a red-shift of the LSPR spectrum without aggregation. In contrast, when incubated in serum Gal-PHPMA-coated nanorods showed no binding response, while Gal-PHEA GNRs exhibited a dose-dependent blue-shift of the LSPR peak, which is the opposite direction (red-shift) to what was observed in buffer. This differential behaviour was attributed to biocorona formation onto both polymer-coated GNRs, shown by differential centrifugal sedimentation and nanoparticle tracking analysis. Upon addition of SBA to the Gal-PHEA coated nanorods, signal was generated due to displacement of weakly-bound biocorona components by lectin binding. However, in the case of Gal-PHPMA which had a thicker corona, attributed to lower polymer grafting densities, addition of SBA did not lead to biocorona displacement and there was no signal output. These results show that plasmonic optical responses in complex biological media can be significantly affected by biocorona formation, and that biocorona formation itself does not prevent sensing so long as its exact nature (e.g. 'hard versus soft') is tuned.
Collapse
Affiliation(s)
- Alessia Pancaro
- Health Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol, BE-2400, Belgium. and Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre and Biomedical Research Institute, Hasselt University, Agoralaan C, Diepenbeek, BE-3590, Belgium
| | - Michal Szymonik
- Health Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol, BE-2400, Belgium.
| | - Panagiotis G Georgiou
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Alexander N Baker
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Marc Walker
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Peter Adriaensens
- Applied and Analytical Chemistry, Institute for Materials Research, Hasselt University, Agoralaan D, Diepenbeek, BE-3590, Belgium
| | - Jelle Hendrix
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre and Biomedical Research Institute, Hasselt University, Agoralaan C, Diepenbeek, BE-3590, Belgium
| | - Matthew I Gibson
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK. and Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Inge Nelissen
- Health Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol, BE-2400, Belgium.
| |
Collapse
|
4
|
Gu H, Ma K, Zhao W, Qiu L, Xu W. A general purpose MALDI matrix for the analyses of small organic, peptide and protein molecules. Analyst 2021; 146:4080-4086. [PMID: 34052846 DOI: 10.1039/d1an00474c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) has been widely applied for the analysis of large biomolecules. The emergence of inorganic material substrates and new organic matrices extends the use of MALDI MS for small molecule analyses. However, there are usually preferred matrices for different types of analytes. Here, an organic compound, 4-hydroxy-3-nitrobenzonitrile, was found to be a general purpose matrix for the analyses of small organic, peptide and protein molecules. In particular, 4-hydroxy-3-nitrobenzonitrile has a strong UV absorption property, and it provides a clean background in the low mass range. Its analytical performances as a UV-laser matrix were demonstrated for different types of analytes, including organic drugs, peptides, proteins, mouse brain tissue and bacteria. Compared with commercial matrices, this new matrix has better performances when analyzing small molecules, such as drugs, peptides and lipids, while it has similar performances when analyzing proteins.
Collapse
Affiliation(s)
- Hao Gu
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Kang Ma
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Weiqian Zhao
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Lirong Qiu
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Wei Xu
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
5
|
Ebtehaj Z, Malekmohammad M, Hatef A, Soltanolkotabi M. Direct and Plasmonic Nanoparticle‐Mediated Infrared Neural Stimulation: Comprehensive Computational Modeling and Validation. ADVANCED THEORY AND SIMULATIONS 2021. [DOI: 10.1002/adts.202000214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zahra Ebtehaj
- Department of Physics, Faculty of Science University of Isfahan Isfahan 81746‐73441 Iran
| | - Mohammad Malekmohammad
- Department of Physics, Faculty of Science University of Isfahan Isfahan 81746‐73441 Iran
| | - Ali Hatef
- Nipissing Computational Physics Laboratory, Department of Computer Science and Mathematics Nipissing University North Bay Ontario P1B 8L7 Canada
| | - Mahmood Soltanolkotabi
- Department of Physics, Faculty of Science University of Isfahan Isfahan 81746‐73441 Iran
| |
Collapse
|
6
|
Liu Z, Zhang P, Pyttlik A, Kraus T, Volmer DA. Influence of core size and capping ligand of gold nanoparticles on the desorption/ionization efficiency of small biomolecules in AP-SALDI-MS. ANALYTICAL SCIENCE ADVANCES 2020; 1:210-220. [PMID: 38716387 PMCID: PMC10989164 DOI: 10.1002/ansa.202000002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 11/17/2024]
Abstract
Gold nanoparticles (AuNP) are frequently used in surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) for analysis of biomolecules because they exhibit suitable thermal and chemical properties as well as strong surface plasmonic effects. Moreover, the structures of AuNP can be controlled by well-established synthesis protocols. This was important in the present work, which studied the influence of the nanoparticles' structures on atmospheric pressure (AP)-SALDI-MS performance. A series of AuNP with different core sizes and capping ligands were investigated, to examine the desorption/ionization efficiency (DIE) under AP-SALDI conditions. The results showed that both the AuNP core size as well as the nature of the surface ligand had a strong influence on DIE. DIE increased with the size of the AuNP and the hydrophobicity of the ligands. Chemical interactions between ligand and analytes also influenced DIE. Moreover, we discovered that removing the organic ligands from the deposited AuNP substrate layer by simple laser irradiation prior to LDI further amplified DIE values. The optimized AuNP were successfully used to analyze a wide arrange of different low molecular weight biomolecules as well as a crude pig brain extract, which readily demonstrated the ability of the technique to detect a wide range of lipid species within highly complex samples.
Collapse
Affiliation(s)
- Zhen Liu
- Institute of Bioanalytical ChemistrySaarland UniversitySaarbrückenGermany
| | - Peng Zhang
- School of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhouChina
| | - Andrea Pyttlik
- INM‐Leibniz Institute for New MaterialsSaarbrückenGermany
| | - Tobias Kraus
- INM‐Leibniz Institute for New MaterialsSaarbrückenGermany
- Institute of Colloid and Interface ChemistrySaarland UniversitySaarbrückenGermany
| | | |
Collapse
|
7
|
Das CM, Guo Y, Yang G, Kang L, Xu G, Ho H, Yong K. Gold Nanorod Assisted Enhanced Plasmonic Detection Scheme of COVID-19 SARS-CoV-2 Spike Protein. ADVANCED THEORY AND SIMULATIONS 2020; 3:2000185. [PMID: 33173847 PMCID: PMC7646005 DOI: 10.1002/adts.202000185] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/09/2020] [Indexed: 12/24/2022]
Abstract
The beautiful interplay between light and matter can give rise to many striking physical phenomena, surface plasmon resonance (SPR) being one of them. Plasmonic immunosensors monitor refractive index changes that occur as a result of specific ligand-analyte or antibody-antigen interactions taking place on the sensor surface. The coronavirus disease (COVID-19) pandemic has jeopardized the entire world and has resulted in economic slowdown of most countries. In this work, a model of a sandwich plasmonic biosensor that utilizes gold nanorods (Au NRs) for the detection of COVID-19 SARS-CoV-2 spike protein is presented. Simulation results for different prismatic configurations for the basic Kretschmann layout are presented. It is found that a BK7 glass prism-based SPR sensor has an incremental sensitivity of 111.11 deg RIU-1. Additionally, using Comsol Multiphysics the electric field enhancement observed for various aspect ratios and layouts of Au NRs are discussed in depth.
Collapse
Affiliation(s)
- Chandreyee Manas Das
- CINTRA CNRS/NTU/THALESUMI 3288Research Techno Plaza50 Nanyang DriveBorder X BlockSingapore637553Singapore
- School of Electrical and Electronic EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Yan Guo
- School of AutomationHangzhou Dianzi UniversityHangzhouZhejiang310018China
| | - Guang Yang
- School of Electrical and Electronic EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Lixing Kang
- CINTRA CNRS/NTU/THALESUMI 3288Research Techno Plaza50 Nanyang DriveBorder X BlockSingapore637553Singapore
- School of Electrical and Electronic EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingDepartment of Biomedical EngineeringSchool of MedicineShenzhen UniversityShenzhen518060China
| | - Ho‐Pui Ho
- Department of Biomedical EngineeringThe Chinese University of Hong KongNew TerritoriesHong Kong SAR999077China
| | - Ken‐Tye Yong
- CINTRA CNRS/NTU/THALESUMI 3288Research Techno Plaza50 Nanyang DriveBorder X BlockSingapore637553Singapore
- School of Electrical and Electronic EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| |
Collapse
|
8
|
Seo MJ, Ryu KR, Kim GW, Ha JW. Effect of chemisorbed thiophenols with an electron donating group on surface-enhanced Raman scattering of gold nanorods. Phys Chem Chem Phys 2020; 22:14832-14837. [PMID: 32579626 DOI: 10.1039/d0cp02708a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surface-enhanced Raman scattering (SERS) is a powerful technique to amplify the weak Raman scattering intensity by molecules chemisorbed on a metallic surface. Herein, we present the interfacial electronic effect of para-substituted aromatic thiophenols (TPs) with an electron donating group (EDG) on SERS of anisotropic gold nanorods (AuNRs) under resonant conditions. Probe molecules with an EDG showed great SERS enhancement in AuNRs at the resonant excitation wavelength. We found that the SERS enhancement with an EDG is caused by the formation of aggregates through intermolecular interactions among probe molecules, such as dimerization with hydrogen bonding via an amino group (-NH2) of p-aminothiophenol (p-ATP) and hydroxyl group (-OH) of p-mercaptophenol (p-MP), resulting in hot-spots between AuNRs. Furthermore, SERS having a stronger EDG (-NH2, p-ATP) with the Hammett constant of -0.66 exhibited greater enhancement than p-MP having hydroxyl (-OH) groups with the Hammett constant of -0.37. We found that the greater enhancement is ascribed to the temporary formation of a positively charged electron withdrawing group (-NH3+) in p-ATP, unlike p-MP, via the interaction of the lone pair of the amino group (-NH2) with ethanol. Therefore, this investigation provides new insightful experimental observations on SERS enhancement of probe molecules with an EDG.
Collapse
Affiliation(s)
- Min Jung Seo
- Department of Chemistry, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic of Korea.
| | - Kyeong Rim Ryu
- Department of Chemistry, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic of Korea.
| | - Geun Wan Kim
- Department of Chemistry, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic of Korea. and Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, 93 Daehak-ro, Nam-gu, 44610, Republic of Korea
| | - Ji Won Ha
- Department of Chemistry, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic of Korea. and Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, 93 Daehak-ro, Nam-gu, 44610, Republic of Korea
| |
Collapse
|
9
|
Singh MR, Persaud PD, Yastrebov S. A study of two-photon florescence in metallic nanoshells. NANOTECHNOLOGY 2020; 31:265203. [PMID: 32197263 DOI: 10.1088/1361-6528/ab81c9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A theory of the two-photon florescence for a metallic nanoshell in the presence of quantum emitters has been developed. The metallic nanoshell is made of a metallic nanosphere as a core and a dielectric material as a shell. An ensemble of quantum emitters is deposited on the surface of the dielectric shell. A probe field is applied to study the two-photon process in the metallic nanoshell. Surface plasmon polaritons are created at the interface between the core and shell due to coupling between probe photons and surface plasmons present at the surface of the metallic nanosphere. The intensity of the surface plasmon polariton field is huge when the probe photon energy is in resonance with the polariton resonance energy. Induced electric dipoles are created in each quantum emitter due to the surface plasmon polariton field and the probe field. Dipoles in quantum emitters interact with each other via the dipole-dipole interaction. The dipole-dipole interaction is calculated using the many-body theory and mean field approximation. It is found that the dipole-dipole interaction has new term which is induced by the surface plasmon polariton field. An analytical expression of the two-photon florescence is derived in the presence the dipole-dipole interaction. Our theory predicts that the intensity of the two-photon florescence is enhanced in the presence of quantum emitters relative to the florescence of the metallic nanoshell in isolation. Physics behind the enhancement is the presence of the dipole-dipole interaction between the ensemble of quantum emitters. It is also found that as the concentration of quantum emitters increases, the dipole-dipole field also increases. This in turn, increases the two-photon florescence as function of the concentration. Finally, we have compared our theory with experiments of a metallic nanoshell which is made for Au nanosphere core and the SiO2 shell. The metallic nanoshell is surrounded by various concentrations of Cadmium-Selenium quantum dots as quantum emitters. A good agreement between theory and experiment is found.
Collapse
Affiliation(s)
- Mahi R Singh
- Department of Physics and Astronomy, The University of Western Ontario, London N6A 3K7, Canada. F Ioffe Physical-Technical Institute Laboratory of Electrical and Optical Phenomena in Semiconductors, St Petersburg 194021, Russia
| | | | | |
Collapse
|
10
|
Liu Z, Zhang P, Kister T, Kraus T, Volmer DA. Ultrathin Homogenous AuNP Monolayers as Tunable Functional Substrates for Surface-Assisted Laser Desorption/Ionization of Small Biomolecules. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:47-57. [PMID: 32881515 DOI: 10.1021/jasms.9b00038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A series of ultrathin, homogenous gold nanoparticle (AuNP) substrates for surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) were prepared using a simple air/water interface approach. These SALDI substrates enabled soft ionization and provided significant improvements in terms of signal intensities and reduced background levels in comparison to other AuNP morphologies for different analytes such as fatty acids, peptides, amino acids, saccharides, and drugs. Through different microscopic and spectroscopic methods, we determined that the packing homogeneity of the [AuNP]n substrates played a vital role in the efficiency of the SALDI process. We demonstrated that the signal intensities of the investigated analytes were readily optimized by manipulating the thickness of the [AuNP]n substrates. The desorption/ionization efficiency increased as a function of the number of layers and then reached a saturation point. The optimized [AuNP]n substrates not only exhibited high SALDI-MS desorption/ionization efficiencies but also showed excellent reproducibilities of the analyte signals.
Collapse
Affiliation(s)
- Zhen Liu
- Institute of Bioanalytical Chemistry, Saarland University, 66123 Saarbrücken, Germany
| | - Peng Zhang
- School of Materials Science and Engineering, Sun Yat-sen University, Guanghzou 510275, China
| | - Thomas Kister
- INM-Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
| | - Tobias Kraus
- INM-Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
- Institute of Colloid and Interface Chemistry, Saarland University, 66123 Saarbrücken, Germany
| | - Dietrich A Volmer
- Department of Chemistry, Humboldt University of Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| |
Collapse
|
11
|
Nemutlu E, Eroğlu İ, Eroğlu H, Kır S. In Vitro Release Test of Nano-drug Delivery Systems Based on Analytical and Technological Perspectives. CURR ANAL CHEM 2019. [DOI: 10.2174/1573411014666180912125931] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background:Nanotech products are gaining more attention depending on their advantages for improving drug solubility, maintenance of drug targeting, and attenuation of drug toxicity. In vitro release test is the critical physical parameter to determine the pharmaceutical quality of the product, to monitor formulation design and batch-to-batch variation.Methods:Spectrophotometric and chromatographic methods are mostly used in quantification studies from in vitro release test of nano-drug delivery systems. These techniques have advantages and disadvantages with respect to each other considering dynamic range, selectivity, automation, compatibility with in vitro release media and cost per sample.Results:It is very important to determine the correct kinetic profile of active pharmaceutical substances. At this point, the analytical method used for in vitro release tests has become a very critical parameter to correctly assess the profiles. In this review, we provided an overview of analytical methods applied to the in vitro release assay of various nanopharmaceuticals.Conclusion:This review presents practical direction on analytical method selection for in vitro release test on nanopharmaceuticals. Moreover, precautions on analytical method selection, optimization and validation were discussed.
Collapse
Affiliation(s)
- Emirhan Nemutlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100, Sıhhiye, Ankara, Turkey
| | - İpek Eroğlu
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, 06100, Sıhhiye, Ankara, Turkey
| | - Hakan Eroğlu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100, Sıhhiye, Ankara, Turkey
| | - Sedef Kır
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100, Sıhhiye, Ankara, Turkey
| |
Collapse
|
12
|
Kim MJ, Yun TG, Noh JY, Park JM, Kang MJ, Pyun JC. Synergistic Effect of the Heterostructure of Au Nanoislands on TiO 2 Nanowires for Efficient Ionization in Laser Desorption/Ionization Mass Spectrometry. ACS APPLIED MATERIALS & INTERFACES 2019; 11:20509-20520. [PMID: 31074270 DOI: 10.1021/acsami.9b03386] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A combination nanostructured matrix with metal Au nanoislands and semiconductor TiO2 nanowires is presented to enhance both desorption and ionization efficiency in laser desorption/ionization (LDI) mass spectrometry. The heterostructure of Au nanoislands on TiO2 nanowires was fabricated via (1) TiO2 nanowire synthesis through a modified wet-corrosion method and (2) Au nanoisland formation through thermal annealing of a sputtered Au layer on the TiO2 nanowires. Herein, the synergistic effect of this heterostructure for highly efficient ion production was experimentally elucidated in terms of the formation of high temperature on the surface of Au and the creation of a Schottky barrier at the Au-TiO2 interface. Finally, four types of immunosuppressors were analyzed to demonstrate the improved ionization performance of the heterostructure for LDI mass spectrometry.
Collapse
Affiliation(s)
- Moon-Ju Kim
- Department of Materials Science and Engineering , Yonsei University , 134 Shinchon-dong , Seodaemun-gu, Seoul 120-749 , Korea
| | - Tae Gyeong Yun
- Department of Materials Science and Engineering , Yonsei University , 134 Shinchon-dong , Seodaemun-gu, Seoul 120-749 , Korea
| | - Joo-Yoon Noh
- Department of Materials Science and Engineering , Yonsei University , 134 Shinchon-dong , Seodaemun-gu, Seoul 120-749 , Korea
| | - Jong-Min Park
- Department of Materials Science and Engineering , Yonsei University , 134 Shinchon-dong , Seodaemun-gu, Seoul 120-749 , Korea
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST) , Seoul 136-791 , Korea
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering , Yonsei University , 134 Shinchon-dong , Seodaemun-gu, Seoul 120-749 , Korea
| |
Collapse
|
13
|
Hlapisi N, Motaung TE, Linganiso LZ, Oluwafemi OS, Songca SP. Encapsulation of Gold Nanorods with Porphyrins for the Potential Treatment of Cancer and Bacterial Diseases: A Critical Review. Bioinorg Chem Appl 2019; 2019:7147128. [PMID: 31182957 PMCID: PMC6515112 DOI: 10.1155/2019/7147128] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 02/04/2019] [Indexed: 01/23/2023] Open
Abstract
Cancer and bacterial diseases have been the most incidental diseases to date. According to the World Health Report 2018, at least every family is affected by cancer around the world. In 2012, 14.1 million people were affected by cancer, and that figure is bound to increase to 21.6 million in 2030. Medicine therefore sorts out ways of treatment using conventional methods which have been proven to have many side effects. Researchers developed photothermal and photodynamic methods to treat both cancer and bacterial diseases. These methods pose fewer effects on the biological systems but still no perfect method has been synthesized. The review serves to explore porphyrin and gold nanorods to be used in the treatment of cancer and bacterial diseases: porphyrins as photosensitizers and gold nanorods as delivery agents. In addition, the review delves into ways of incorporating photothermal and photodynamic therapy aimed at producing a less toxic, more efficacious, and specific compound for the treatment.
Collapse
Affiliation(s)
- Nthabeleng Hlapisi
- Department of Chemistry, University of Zululand, X1001, KwaDlangezwa, KwaZulu-Natal, South Africa
| | - Tshwafo E. Motaung
- Department of Chemistry, University of Zululand, X1001, KwaDlangezwa, KwaZulu-Natal, South Africa
| | - Linda Z. Linganiso
- Department of Chemistry, University of Zululand, X1001, KwaDlangezwa, KwaZulu-Natal, South Africa
| | - Oluwatobi S. Oluwafemi
- Department of Applied Chemistry, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa
- Centre for Nanomaterials Science Research, University of Johannesburg, Johannesburg, South Africa
| | - Sandile P. Songca
- Department of Chemistry, University of Kwazulu Natal, Kwazulu Natal, South Africa
| |
Collapse
|
14
|
Chen YS, Ding J, He XM, Xu J, Feng YQ. Synthesis of tellurium nanosheet for use in matrix assisted laser desorption/ionization time-of-flight mass spectrometry of small molecules. Mikrochim Acta 2018; 185:368. [PMID: 29987637 DOI: 10.1007/s00604-018-2882-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/25/2018] [Indexed: 01/05/2023]
Abstract
Two-dimensional tellurium nanosheets were prepared by a hydrothermal method and characterized by scanning electron microscopy, powder X-ray diffractometry, and UV-vis spectroscopy. The nanosheets were explored as a novel matrix for desorption/ionization of small molecules including nucleobases, fatty acids and amino acids by matrix assisted laser desorption/ionization time-of-flight mass spectrometry. The results show that the tellurium nanosheets have good UV light absorption, cause low matrix ion interference in the low-molecule-mass region, and have high desorption/ionization efficiency in the negative ion mode. Hence, they are a viable matrix for negative ion desorption/ionization in MALDI-TOF MS of small molecules. In order to investigate the desorption/ionization mechanisms, benzylpyridinium salt and bisphenol A were adopted as probes. The results show that both of the electronic transitions mechanism and laser-induced thermal mechanism play important roles in desorption/ionization process. Graphical abstract Two-dimensional tellurium (Te) nanosheet was synthesized by a hydrothermal method and explored as a novel matrix for desorption/ionization of small molecules by matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS).
Collapse
Affiliation(s)
- Ya-Shun Chen
- Department of Chemistry, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Wuhan University, Wuhan, 430072, People's Republic of China
| | - Jun Ding
- Department of Chemistry, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Wuhan University, Wuhan, 430072, People's Republic of China
| | - Xiao-Mei He
- Department of Chemistry, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Wuhan University, Wuhan, 430072, People's Republic of China
| | - Jing Xu
- Department of Chemistry, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Wuhan University, Wuhan, 430072, People's Republic of China
| | - Yu-Qi Feng
- Department of Chemistry, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
15
|
Li Y, Cao X, Zhan L, Xue J, Wang J, Xiong C, Nie Z. Hot electron transfer promotes ion production in plasmonic metal nanostructure assisted laser desorption ionization mass spectrometry. Chem Commun (Camb) 2018; 54:10905-10908. [DOI: 10.1039/c8cc05793a] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Experimental evidences are shown that hot electron transfer in LSPR plays a key role in ionizing molecules during laser desorption ionization process.
Collapse
Affiliation(s)
- Yafeng Li
- College of Chemical Engineering
- Jiujiang University
- Jiujiang
- China
- Beijing National Laboratory for Molecular Sciences
| | - Xiaohua Cao
- College of Chemical Engineering
- Jiujiang University
- Jiujiang
- China
| | - Lingpeng Zhan
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory for Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
| | - Jingjuan Xue
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory for Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
| | - Jiyun Wang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory for Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
| | - Caiqiao Xiong
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory for Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
| | - Zongxiu Nie
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory for Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
| |
Collapse
|
16
|
Muthu M, Gopal J, Chun S. Nanopost array laser desorption ionization mass spectrometry (NAPA-LDI MS): Gathering moss? Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.08.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
17
|
Wei X, Liu Z, Jin X, Huang L, Gurav DD, Sun X, Liu B, Ye J, Qian K. Plasmonic nanoshells enhanced laser desorption/ionization mass spectrometry for detection of serum metabolites. Anal Chim Acta 2017; 950:147-155. [DOI: 10.1016/j.aca.2016.11.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/30/2016] [Accepted: 11/04/2016] [Indexed: 12/01/2022]
|
18
|
Kang K, Jang H, Kim YK. The influence of polydopamine coating on gold nanorods for laser desorption/ionization time-of-flight mass spectrometric analysis. Analyst 2017; 142:2372-2377. [DOI: 10.1039/c7an00356k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The influence of polydopamine (PD) coating on gold nanorods (GNRs) for laser desorption/ionization mass spectrometry (LDI-MS) analysis was systematically investigated to reveal its role in the LDI-MS analysis process.
Collapse
Affiliation(s)
- Kyungtae Kang
- Department of Applied Chemistry
- Kyung Hee University
- Yongin
- South Korea
| | - Hongje Jang
- Department of Chemistry
- Kwangwoon University
- Seoul 139-701
- Korea
| | - Young-Kwan Kim
- Carbon Composite Materials Research Center
- Institute of Advanced Composite Materials
- Korea Institute of Science and Technology
- Wanju-gun
- Korea
| |
Collapse
|
19
|
Choi J, Kim SY. Synthesis and Characterization of Photosensitizer-conjugated Gold Nanorods for Photodynamic/Photothermal Therapy. APPLIED CHEMISTRY FOR ENGINEERING 2016. [DOI: 10.14478/ace.2016.1089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Sarkar D, Mahitha MK, Som A, Li A, Wleklinski M, Cooks RG, Pradeep T. Metallic Nanobrushes Made using Ambient Droplet Sprays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:2223-8. [PMID: 26790107 DOI: 10.1002/adma.201505127] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 11/23/2015] [Indexed: 05/04/2023]
Abstract
An ambient solution-state method for making uniform nanobrushes composed of oriented 1D silver nanowires (NWs) with aspect ratios of 10(2) -10(4) is reported. These structures are grown over cm(2) areas on conducting surfaces. Assemblies of NWs form uniform nanobrush structures, which can capture micrometer-sized objects, such as bacteria and particulate matter. Variation in composition produces unique structures with catalytic properties.
Collapse
Affiliation(s)
- Depanjan Sarkar
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai, 60036, India
| | - Maheswari Kavirajan Mahitha
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai, 60036, India
| | - Anirban Som
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai, 60036, India
| | - Anyin Li
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Michael Wleklinski
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Robert Graham Cooks
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai, 60036, India
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Thalappil Pradeep
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai, 60036, India
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
21
|
Abdelhamid HN, Wu HF. Gold nanoparticles assisted laser desorption/ionization mass spectrometry and applications: from simple molecules to intact cells. Anal Bioanal Chem 2016; 408:4485-502. [DOI: 10.1007/s00216-016-9374-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 11/29/2015] [Accepted: 01/28/2016] [Indexed: 01/05/2023]
|
22
|
Seok Kim Y, Ahmad Raston NH, Bock Gu M. Aptamer-based nanobiosensors. Biosens Bioelectron 2016; 76:2-19. [DOI: 10.1016/j.bios.2015.06.040] [Citation(s) in RCA: 263] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/10/2015] [Accepted: 06/17/2015] [Indexed: 01/24/2023]
|
23
|
Wang M, Han Q, Zhou Y, Li P, Tu W, Tang L, Zou Z. TiO2 nanosheet-anchoring Au nanoplates: high-energy facet and wide spectra surface plasmon-promoting photocatalytic efficiency and selectivity for CO2 reduction. RSC Adv 2016. [DOI: 10.1039/c6ra14821b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An Au–TiO2 nanocomposite consisting of (001) exposed TiO2 nanosheet-anchored Au nanoplates was successfully fabricated and applied for the photocatalytic reduction of CO2 into hydrocarbon fuels.
Collapse
Affiliation(s)
- Meng Wang
- Jiangsu Key Laboratory for Nano Technology
- Nanjing University
- Nanjing 210093
- P. R. China
- Key Laboratory of Modern Acoustics
| | - Qiutong Han
- Jiangsu Key Laboratory for Nano Technology
- Nanjing University
- Nanjing 210093
- P. R. China
- Key Laboratory of Modern Acoustics
| | - Yong Zhou
- Jiangsu Key Laboratory for Nano Technology
- Nanjing University
- Nanjing 210093
- P. R. China
- Key Laboratory of Modern Acoustics
| | - Ping Li
- Jiangsu Key Laboratory for Nano Technology
- Nanjing University
- Nanjing 210093
- P. R. China
- Key Laboratory of Modern Acoustics
| | - Wenguang Tu
- Jiangsu Key Laboratory for Nano Technology
- Nanjing University
- Nanjing 210093
- P. R. China
- Key Laboratory of Modern Acoustics
| | - Lanqin Tang
- Jiangsu Key Laboratory for Nano Technology
- Nanjing University
- Nanjing 210093
- P. R. China
- Key Laboratory of Modern Acoustics
| | - Zhigang Zou
- Jiangsu Key Laboratory for Nano Technology
- Nanjing University
- Nanjing 210093
- P. R. China
- Ecomaterials and Renewable Energy Research Center (ERERC)
| |
Collapse
|
24
|
García I, Henriksen-Lacey M, Sánchez-Iglesias A, Grzelczak M, Penadés S, Liz-Marzán LM. Residual CTAB Ligands as Mass Spectrometry Labels to Monitor Cellular Uptake of Au Nanorods. J Phys Chem Lett 2015; 6:2003-2008. [PMID: 26266492 DOI: 10.1021/acs.jpclett.5b00816] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Gold nanorods have numerous applications in biomedical research, including diagnostics, bioimaging, and photothermal therapy. Even though surfactant removal and surface conjugation with antifouling molecules such as polyethylene glycol (PEG) are required to minimize nonspecific protein binding and cell uptake, the reliable characterization of these processes remains challenging. We propose here the use of laser desorption/ionization mass spectrometry (LDI-MS) to study the ligand exchange efficiency of cetyltrimethylammonium bromide (CTAB)-coated nanorods with different PEG grafting densities and to characterize nanorod internalization in cells. Application of LDI-MS analysis shows that residual CTAB consistently remains adsorbed on PEG-capped Au nanorods. Interestingly, such residual CTAB can be exploited as a mass barcode to discern the presence of nanorods in complex fluids and in vitro cellular systems, even at very low concentrations.
Collapse
Affiliation(s)
- Isabel García
- †CIC biomaGUNE, Paseo de Miramón 182, 20009 Donostia-San Sebastián, Spain
- ‡Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Paseo de Miramón 182, 20009 Donostia-San Sebastián, Spain
| | | | | | - Marek Grzelczak
- †CIC biomaGUNE, Paseo de Miramón 182, 20009 Donostia-San Sebastián, Spain
- §Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Soledad Penadés
- †CIC biomaGUNE, Paseo de Miramón 182, 20009 Donostia-San Sebastián, Spain
- ‡Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Paseo de Miramón 182, 20009 Donostia-San Sebastián, Spain
| | - Luis M Liz-Marzán
- †CIC biomaGUNE, Paseo de Miramón 182, 20009 Donostia-San Sebastián, Spain
- ‡Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Paseo de Miramón 182, 20009 Donostia-San Sebastián, Spain
- §Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
25
|
Jayabal S, Pandikumar A, Lim HN, Ramaraj R, Sun T, Huang NM. A gold nanorod-based localized surface plasmon resonance platform for the detection of environmentally toxic metal ions. Analyst 2015; 140:2540-55. [PMID: 25738185 DOI: 10.1039/c4an02330g] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gold nanorods (Au NRs) are elongated nanoparticles with unique optical properties which depend on their shape anisometry. The Au NR-based longitudinal localized surface plasmon resonance (longitudinal LSPR) band is very sensitive to the surrounding local environment and upon the addition of target analytes, the interaction between the analytes and the surface of the Au NRs leads to a change in the longitudinal LSPR band. This makes it possible to devise Au NR probes with application potential to the detection of toxic metal ions with an improved limit of detection, response time, and selectivity for the fabrication of sensing devices. The effective surface modification of Au NRs helps in improving their selectivity and sensitivity toward the detection of toxic metal ions. In this review, we discuss different methods for the preparation of surface modified Au NRs for the detection of toxic metal ions based on the LSPR band of the Au NRs and the types of interactions between the surface of Au NRs and metal ions. We summarize the work that has been done on Au NR-based longitudinal LSPR detection of environmentally toxic metal ions, sensing mechanisms, and the current progress in various modified Au NR-based longitudinal LSPR sensors for toxic metal ions. Finally, we discuss the applications of Au NR-based longitudinal LSPR sensors to real sample analysis and some of the future challenges facing longitudinal LSPR-based sensors for the detection of toxic metal ions toward commercial devices.
Collapse
Affiliation(s)
- Subramaniam Jayabal
- Low Dimensional Materials Research Centre, Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | | | | | | | | | | |
Collapse
|
26
|
Fujii M, Nakashima N, Niidome T, Niidome Y. Imaging Mass Spectrometry of Intravenously Injected Gold Nanorods in Mice. CHEM LETT 2014. [DOI: 10.1246/cl.130864] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Masanori Fujii
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University
| | - Naotoshi Nakashima
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University
- World Premier International (WPI) Research Center, International Institute for Carbon-Neutral Energy Research (I2CNER), Kyushu University
- JST-CREST
| | - Takuro Niidome
- Graduate School of Science and Technology, Kumamoto University
| | - Yasuro Niidome
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University
- World Premier International (WPI) Research Center, International Institute for Carbon-Neutral Energy Research (I2CNER), Kyushu University
| |
Collapse
|
27
|
Chiu WC, Huang CC. Combining Fibrinogen-Conjugated Gold Nanoparticles with a Cellulose Membrane for the Mass Spectrometry-Based Detection of Fibrinolytic-Related Proteins. Anal Chem 2013; 85:6922-9. [DOI: 10.1021/ac4013418] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
| | - Chih-Ching Huang
- School of Pharmacy,
College of
Pharmacy, Kaohsiung Medical University,
Kaohsiung 80708, Taiwan
| |
Collapse
|
28
|
Wang T, Halaney D, Ho D, Feldman MD, Milner TE. Two-photon luminescence properties of gold nanorods. BIOMEDICAL OPTICS EXPRESS 2013; 4:584-95. [PMID: 23577293 PMCID: PMC3617720 DOI: 10.1364/boe.4.000584] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/26/2013] [Accepted: 01/27/2013] [Indexed: 05/19/2023]
Abstract
Gold nanorods can be internalized by macrophages (an important early cellular marker in atherosclerosis and cancer) and used as an imaging contrast agent for macrophage targeting. Objective of this study is to compare two-photon luminescence (TPL) properties of four aspect ratios of gold nanorods with surface plasmon resonance at 700, 756, 844 and 1060 nm respectively. TPL from single nanorods and Rhodamine 6G particles was measured using a laser-scanning TPL microscope. Nanorod TPL emission spectrum was recorded by a spectrometer. Quadratic dependence of luminescence intensity on excitation power (confirming a TPL process) was observed below a threshold (e.g., <1.6 mW), followed by photobleaching at higher power levels. Dependence of nanorod TPL intensity on excitation wavelength indicated that the two-photon action cross section (TPACS) is plasmon-enhanced. Largest TPACS of a single nanorod (12271 GM) was substantially larger than a single Rhodamine 6G particle (25 GM) at 760 nm excitation. Characteristics of nanorod TPL emission spectrum can be explained by plasmon-enhanced interband transition of gold. Comparison results of TPL brightness, TPACS and emission spectrum of nanorods can guide selection of optimal contrast agent for selected imaging applications.
Collapse
Affiliation(s)
- Tianyi Wang
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station C0800, Austin, Texas 78712, USA
| | - David Halaney
- Division of Cardiology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas 78229, USA
- South Texas Veterans Health Care System, San Antonio, Texas 78229, USA
| | - Derek Ho
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station C0800, Austin, Texas 78712, USA
| | - Marc D. Feldman
- Division of Cardiology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas 78229, USA
- South Texas Veterans Health Care System, San Antonio, Texas 78229, USA
| | - Thomas E. Milner
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station C0800, Austin, Texas 78712, USA
| |
Collapse
|
29
|
Venkatesan R, Pichaimani A, Hari K, Balasubramanian PK, Kulandaivel J, Premkumar K. Doxorubicin conjugated gold nanorods: a sustained drug delivery carrier for improved anticancer therapy. J Mater Chem B 2013; 1:1010-1018. [DOI: 10.1039/c2tb00078d] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
30
|
Liu YC, Chang HT, Chiang CK, Huang CC. Pulsed-laser desorption/ionization of clusters from biofunctional gold nanoparticles: implications for protein detections. ACS APPLIED MATERIALS & INTERFACES 2012; 4:5241-5248. [PMID: 22998761 DOI: 10.1021/am3011934] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this paper, we describe a pulsed-laser desorption/ionization mass spectrometry (LDI-MS) approach for the detection of proteins with femtomolar sensitivity through the analysis of gold (Au) clusters desorbed from aptamer-modified gold nanoparticles (Apt-AuNPs) on a nitrocellulose membrane (NCM). After the target protein (thrombin) was selectively captured by the surface-bound 29-mer thrombin-binding aptamer (TBA(29)), the thrombin/TBA(29)-AuNP complexes were concentrated and deposited onto the NCM to form a highly efficient background-free surface-assisted LDI substrate. Under pulsed laser irradiation (355 nm), the binding of thrombin decreased the desorption and/or ionization efficiencies of the Au atoms from the AuNP surfaces. The resulting decreases in the intensities of the signals for Au clusters in the mass spectra provided a highly amplified target-labeling indicator for the targeted protein. Under optimized conditions, this probe was highly sensitive (limit of detection: ca. 50 fM) and selective (by at least 1000-fold over other proteins) toward thrombin; it also improved reproducibility (<5%) of ion production by presenting a more-homogeneous substrate surface, thereby enabling LDI-based measurements for the accurate and precise quantification of thrombin in human serum. This novel LDI-MS approach allows high-speed analyses of low-abundance thrombin with ultrahigh sensitivity; decorating the AuNP surfaces with other aptamers also allowed amplification of other biological signals.
Collapse
Affiliation(s)
- Yin-Chun Liu
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | | | | | | |
Collapse
|
31
|
Walker BN, Stolee JA, Vertes A. Nanophotonic Ionization for Ultratrace and Single-Cell Analysis by Mass Spectrometry. Anal Chem 2012; 84:7756-62. [DOI: 10.1021/ac301238k] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Bennett N. Walker
- W. M. Keck Institute for Proteomics Technology and
Applications, Department of Chemistry, The George Washington University, Washington, District of Columbia 20052,
United States
| | - Jessica A. Stolee
- W. M. Keck Institute for Proteomics Technology and
Applications, Department of Chemistry, The George Washington University, Washington, District of Columbia 20052,
United States
| | - Akos Vertes
- W. M. Keck Institute for Proteomics Technology and
Applications, Department of Chemistry, The George Washington University, Washington, District of Columbia 20052,
United States
| |
Collapse
|
32
|
Yasun E, Gulbakan B, Ocsoy I, Yuan Q, Shukoor MI, Li C, Tan W. Enrichment and detection of rare proteins with aptamer-conjugated gold nanorods. Anal Chem 2012; 84:6008-6015. [PMID: 22725611 PMCID: PMC3407574 DOI: 10.1021/ac300806s] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Rare protein enrichment and sensitive detection hold great potential in biomedical studies and clinical practice. This work describes the use of aptamer-conjugated gold nanorods for the efficient enrichment of rare proteins from buffer solutions and human plasma. Gold nanorod (AuNR) surfaces were modified with a long PEG chain and a 15-mer thrombin aptamer for protein enrichment and detection. Studies of the effect of surface modification on enrichment efficiency of thrombin showed that a change of only one EG(6) linker unit, i.e., from 2EG(6) to 3EG(6), could increase thrombin protein capture efficiency by up to 47%. Furthermore, a 1 ppm sample of thrombin in buffer could be enriched with around 90% efficiency using a low concentration (0.19 nM) of gold nanorod probe modified with 3EG(6) spacer, and with the same probe, effective capture was achieved down to 10 ppb (1 ng) thrombin in plasma samples. In addition to α-thrombin enrichment, prothrombin was also efficiently captured from plasma samples via gold nanorods conjugated with 15-mer thrombin aptamer. Our work demonstrates efficient enrichment of rare proteins using aptamer-modified nanomaterials, which can be used in biomarker discovery studies.
Collapse
Affiliation(s)
- Emir Yasun
- Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center and Center for Research at the Interface of Bio/nano, UF Genetics Institute and McKnight Brain Institute, University of Florida, USA
| | - Basri Gulbakan
- Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center and Center for Research at the Interface of Bio/nano, UF Genetics Institute and McKnight Brain Institute, University of Florida, USA
| | - Ismail Ocsoy
- Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center and Center for Research at the Interface of Bio/nano, UF Genetics Institute and McKnight Brain Institute, University of Florida, USA
| | - Quan Yuan
- Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center and Center for Research at the Interface of Bio/nano, UF Genetics Institute and McKnight Brain Institute, University of Florida, USA
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China, Gainesville, FL 32611-7200
| | - Mohammed Ibrahim Shukoor
- Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center and Center for Research at the Interface of Bio/nano, UF Genetics Institute and McKnight Brain Institute, University of Florida, USA
| | - Chunmei Li
- Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center and Center for Research at the Interface of Bio/nano, UF Genetics Institute and McKnight Brain Institute, University of Florida, USA
| | - Weihong Tan
- Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center and Center for Research at the Interface of Bio/nano, UF Genetics Institute and McKnight Brain Institute, University of Florida, USA
| |
Collapse
|
33
|
Sahu D, Chu HC, Yang PJ, Lin HC. Surface Modification of Gold Nanorods by Grafting Fluorene-Based Conjugated Copolymers Containing Thiol-Pendants. MACROMOL CHEM PHYS 2012. [DOI: 10.1002/macp.201100550] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
34
|
Stolee JA, Walker BN, Zorba V, Russo RE, Vertes A. Laser–nanostructure interactions for ion production. Phys Chem Chem Phys 2012; 14:8453-71. [DOI: 10.1039/c2cp00038e] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
35
|
Nakamura Y, Tsuru Y, Fujii M, Taga Y, Kiya A, Nakashima N, Niidome Y. Sensing of oligopeptides using localized surface plasmon resonances combined with Surface-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. NANOSCALE 2011; 3:3793-8. [PMID: 21829809 DOI: 10.1039/c1nr10519a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Gold nanorods were fixed on an ITO plate and used for the spectroscopic sensing and Surface-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (SALDI-MS) of oligopeptides (angiotensin I). The longitudinal surface plasmon bands of the gold nanorods responded to the 10(-10) M angiotensin solution that was cast on the ITO plate. The SALDI-MS measurements had an ultra-high sensitivity to the angiotensin on the ITO plate. A very small surface density (5 × 10(-19) mol cm(-2)) of angiotensin could be detected at m/z = 1297 with a good signal/noise ratio (S/N = 11). The ITO plate, which was modified with gold nanorods, was found to be effective in collecting angiotensin molecules adjacent to the gold nanorods, and the SALDI processes that were induced by the photoabsorption of the gold nanorods efficiently contributed to the desorption and ionization of the angiotensin.
Collapse
Affiliation(s)
- Yuki Nakamura
- Department of Applied Chemistry, Faculty of Engineering, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Gold nanomaterials as a new tool for bioanalytical applications of laser desorption ionization mass spectrometry. Anal Bioanal Chem 2011; 402:601-23. [DOI: 10.1007/s00216-011-5120-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 05/13/2011] [Accepted: 05/17/2011] [Indexed: 10/18/2022]
|
37
|
Castellana ET, Gamez RC, Russell DH. Label-Free Biosensing with Lipid-Functionalized Gold Nanorods. J Am Chem Soc 2011; 133:4182-5. [DOI: 10.1021/ja109936h] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Edward T. Castellana
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Roberto C. Gamez
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David H. Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
38
|
Chen T, Shukoor MI, Chen Y, Yuan Q, Zhu Z, Zhao Z, Gulbakan B, Tan W. Aptamer-conjugated nanomaterials for bioanalysis and biotechnology applications. NANOSCALE 2011; 3:546-556. [PMID: 21109879 DOI: 10.1039/c0nr00646g] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In recent years, nanomaterials have captured the attention of scientists from a wide spectrum of domains. With their unique properties, nanomaterials offer great promise for numerous applications, ranging from catalysis to energy harvesting and information technology. Functionalized with the desired biomolecules, nanomaterials can also be utilized for many biomedical applications. This paper summarizes recent achievements in the use of aptamer-conjugated nanomaterials for bioanalysis and biotechnology applications. First, we discuss the features and properties of aptamers and then illustrate the use of aptamer-conjugated nanomaterials as sensing platforms and delivery vehicles, emphasizing how such integration can result in enhanced sensitivity and selectivity.
Collapse
Affiliation(s)
- Tao Chen
- Department of Chemistry, Shands Cancer Center, University of Florida Genetics Institute, Gainesville, FL 32611-7200, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Chiang CK, Chen WT, Chang HT. Nanoparticle-based mass spectrometry for the analysis of biomolecules. Chem Soc Rev 2011; 40:1269-81. [DOI: 10.1039/c0cs00050g] [Citation(s) in RCA: 265] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
ARAKAWA R, KAWASAKI H. Functionalized Nanoparticles and Nanostructured Surfaces for Surface-Assisted Laser Desorption/Ionization Mass Spectrometry. ANAL SCI 2010; 26:1229-40. [DOI: 10.2116/analsci.26.1229] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Ryuichi ARAKAWA
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University
| | - Hideya KAWASAKI
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University
| |
Collapse
|
41
|
Tiano AL, Koenigsmann C, Santulli AC, Wong SS. Solution-based synthetic strategies for one-dimensional metal-containing nanostructures. Chem Commun (Camb) 2010; 46:8093-130. [DOI: 10.1039/c0cc01735c] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|