1
|
Sun H, Gao Y, Fan Y, Du J, Jiang J, Gao C. Polymeric Bowl-Shaped Nanoparticles: Hollow Structures with a Large Opening on the Surface. Macromol Rapid Commun 2023; 44:e2300196. [PMID: 37246639 DOI: 10.1002/marc.202300196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/14/2023] [Indexed: 05/30/2023]
Abstract
Polymeric bowl-shaped nanoparticles (BNPs) are anisotropic hollow structures with large openings on the surface, which have shown advantages such as high specific area and efficient encapsulation, delivery and release of large-sized cargoes on demand compared to solid nanoparticles or closed hollow structures. Several strategies have been developed to prepare BNPs based on either template or template-free methods. For instance, despite the widely used self-assembly strategy, alternative methods including emulsion polymerization, swelling and freeze-drying of polymeric spheres, and template-assisted approaches have also been developed. It is attractive but still challenging to fabricate BNPs due to their unique structural features. However, there is still no comprehensive summary of BNPs up to now, which significantly hinders the further development of this field. In this review, the recent progress of BNPs will be highlighted from the perspectives of design strategies, preparation methods, formation mechanisms, and emerging applications. Moreover, the future perspectives of BNPs will also be proposed.
Collapse
Affiliation(s)
- Hui Sun
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Yaning Gao
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Yirong Fan
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China
| | - Jinhui Jiang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China
| | - Chenchen Gao
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| |
Collapse
|
2
|
Shioji K, Ozaki M, Kasai K, Iwashita H, Nagahora N, Okuma K. Development and photo-properties and intracellular behavior of visible-light-responsive molecule localizing to organelles of living cell. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02685-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
AbstractVisible-light-responsive azobenzene derivative in which a functional group having cell membrane permeability and a fluorophore were bonded was synthesized. This compound localized to the hydrophobic part in the lipid membrane of the liposome, and when the light corresponding to the transition absorption of azobenzene was irradiated, morphological change of the liposome was observed. When this compound was loaded into living cells, this molecule localized to the lysosome and when irradiated with light of the same wavelength caused cell death. These observed changes are thought to be due to photoisomerization of azobenzene derivatives.
Graphical abstract
Collapse
|
3
|
Brito ME, Mikhtaniuk SE, Neelov IM, Borisov OV, Holm C. Implicit-Solvent Coarse-Grained Simulations of Linear-Dendritic Block Copolymer Micelles. Int J Mol Sci 2023; 24:2763. [PMID: 36769091 PMCID: PMC9917066 DOI: 10.3390/ijms24032763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
The design of nanoassemblies can be conveniently achieved by tuning the strength of the hydrophobic interactions of block copolymers in selective solvents. These block copolymer micelles form supramolecular aggregates, which have attracted great attention in the area of drug delivery and imaging in biomedicine due to their easy-to-tune properties and straightforward large-scale production. In the present work, we have investigated the micellization process of linear-dendritic block copolymers in order to elucidate the effect of branching on the micellar properties. We focus on block copolymers formed by linear hydrophobic blocks attached to either dendritic neutral or charged hydrophilic blocks. We have implemented a simple protocol for determining the equilibrium micellar size, which permits the study of linear-dendritic block copolymers in a wide range of block morphologies in an efficient and parallelizable manner. We have explored the impact of different topological and charge properties of the hydrophilic blocks on the equilibrium micellar properties and compared them to predictions from self-consistent field theory and scaling theory. We have found that, at higher degrees of branching in the corona and for short polymer chains, excluded volume interactions strongly influence the micellar aggregation as well as their effective charge.
Collapse
Affiliation(s)
- Mariano E. Brito
- Institute for Computational Physics, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Sofia E. Mikhtaniuk
- School of Computer Technologies and Control, St. Petersburg National Research University of Information Technologies, Mechanics and Optics, 197101 St. Petersburg, Russia
| | - Igor M. Neelov
- School of Computer Technologies and Control, St. Petersburg National Research University of Information Technologies, Mechanics and Optics, 197101 St. Petersburg, Russia
| | - Oleg V. Borisov
- School of Computer Technologies and Control, St. Petersburg National Research University of Information Technologies, Mechanics and Optics, 197101 St. Petersburg, Russia
- Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, UMR 5254 CNRS UPPA, 64053 Pau, France
| | - Christian Holm
- Institute for Computational Physics, University of Stuttgart, D-70569 Stuttgart, Germany
| |
Collapse
|
4
|
Hybrid Molecules Consisting of Lysine Dendrons with Several Hydrophobic Tails: A SCF Study of Self-Assembling. Int J Mol Sci 2023; 24:ijms24032078. [PMID: 36768408 PMCID: PMC9916814 DOI: 10.3390/ijms24032078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
In this article, we used the numerical self-consistent field method of Scheutjens-Fleer to study the micellization of hybrid molecules consisting of one polylysine dendron with charged end groups and several linear hydrophobic tails attached to its root. The main attention was paid to spherical micelles and the determination of the range of parameters at which they can appear. A relationship has been established between the size and internal structure of the resulting spherical micelles and the length and number of hydrophobic tails, as well as the number of dendron generations. It is shown that the splitting of the same number of hydrophobic monomers from one long tail into several short tails leads to a decrease in the aggregation number and, accordingly, the number of terminal charges in micelles. At the same time, it was shown that the surface area per dendron does not depend on the number of hydrophobic monomers or tails in the hybrid molecule. The relationship between the structure of hybrid molecules and the electrostatic properties of the resulting micelles has also been studied. It is found that the charge distribution in the corona depends on the number of dendron generations G in the hybrid molecule. For a small number of generations (up to G=3), a standard double electric layer is observed. For a larger number of generations (G=4), the charges of dendrons in the corona are divided into two populations: in the first population, the charges are in the spherical layer near the boundary between the micelle core and shell, and in the second population, the charges are near the periphery of the spherical shell. As a result, a part of the counterions is localized in the wide region between them. These results are of potential interest for the use of spherical dendromicelles as nanocontainers for drug delivery.
Collapse
|
5
|
Zuo S, Feng W, Liu F, Xu X, Tao X, Wang L, Liu H, Lin S. Polymerization-induced self-assembly of side-chain liquid crystalline copolymers by dissipative particle dynamics simulation. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Liu F, Qu P, Weck M. Photoresponsive Azobenzene-Functionalized Shell Cross-Linked Micelles for Selective Asymmetric Transfer Hydrogenation. Org Lett 2022; 24:4099-4103. [PMID: 35476916 DOI: 10.1021/acs.orglett.2c00925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We describe the substrate-selective asymmetric transfer hydrogenation of aromatic ketones using rhodium complexes immobilized on a photoresponsive nanoreactor. The nanoreactor switches its morphology upon light irradiation in a wavelength-selective manner. Kinetic studies show that the gated behavior in the cross-linking layer is key to discriminating among substrates and reagents during catalysis. Under ultraviolet light irradiation, the nanoreactor displays substrate selectivity, converting smaller ketone substrates faster to the corresponding secondary alcohols.
Collapse
Affiliation(s)
- Fangbei Liu
- Molecular Design Institute and Department of Chemistry, New York University, New York, New York 10003, United States
| | - Peiyuan Qu
- Molecular Design Institute and Department of Chemistry, New York University, New York, New York 10003, United States
| | - Marcus Weck
- Molecular Design Institute and Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
7
|
Sun H, Zhou X, Leng Y, Li X, Du J. Transformation of Amorphous Nanobowls to Crystalline Ellipsoids Induced by Trans-Cis Isomerization of Azobenzene. Macromol Rapid Commun 2022; 43:e2200131. [PMID: 35322512 DOI: 10.1002/marc.202200131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/03/2022] [Indexed: 11/08/2022]
Abstract
The stimuli-responsive transition of nanostructures from amorphous to crystalline state is of high interest in polymer science, but is still challenging. Herein, we demonstrate the transformation of amorphous nanobowls to crystalline ellipsoids triggered by UV induced trans-cis isomerization, using an azobenzene-containing amphiphilic homopolymer (PAzoAA) as building block. The amide bond and azobenzene pendants are introduced to the side chain of PAzoAA to afford hydrogen bonding and π-π interaction, which promotes the formation of nanobowls rather than spherical nanostructures. Upon exposed to UV irradiation, trans-cis isomerization of azobenzene pendants occurs, leading to the increase of hydrophilicity and destruction of π-π interaction, further resulting in the disassembly of the nanobowls. Then the PAzoAA re-assembles to form crystalline ellipsoids instead of amorphous nanostructures when recovered at 70°C without UV light. We further confirm that the high incubation temperature after UV irradiation is critical for the cis-trans transformation and the high mobility of the polymer chains to facilitate the regular rearrangement of azobenzene pendants. Overall, we propose a facile method to achieve the transformation of amorphous nanobowls to crystalline ellipsoids, which may bring new insight into preparation of crystalline nanoparticles using amorphous precursors. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hui Sun
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Xiaoyan Zhou
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Ying Leng
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Xiao Li
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China
| |
Collapse
|
8
|
Hernández Becerra E, Quinchia J, Castro C, Orozco J. Light-Triggered Polymersome-Based Anticancer Therapeutics Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:836. [PMID: 35269324 PMCID: PMC8912464 DOI: 10.3390/nano12050836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 01/25/2023]
Abstract
Polymersomes are biomimetic cell membrane-like model structures that are self-assembled stepwise from amphiphilic copolymers. These polymeric (nano)carriers have gained the scientific community's attention due to their biocompatibility, versatility, and higher stability than liposomes. Their tunable properties, such as composition, size, shape, and surface functional groups, extend encapsulation possibilities to either hydrophilic or hydrophobic cargoes (or both) and their site-specific delivery. Besides, polymersomes can disassemble in response to different stimuli, including light, for controlling the "on-demand" release of cargo that may also respond to light as photosensitizers and plasmonic nanostructures. Thus, polymersomes can be spatiotemporally stimulated by light of a wide wavelength range, whose exogenous response may activate light-stimulable moieties, enhance the drug efficacy, decrease side effects, and, thus, be broadly employed in photoinduced therapy. This review describes current light-responsive polymersomes evaluated for anticancer therapy. It includes light-activable moieties' features and polymersomes' composition and release behavior, focusing on recent advances and applications in cancer therapy, current trends, and photosensitive polymersomes' perspectives.
Collapse
Affiliation(s)
- Elisa Hernández Becerra
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, Medellín 050010, Colombia; (E.H.B.); (J.Q.)
| | - Jennifer Quinchia
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, Medellín 050010, Colombia; (E.H.B.); (J.Q.)
| | - Cristina Castro
- Engineering School, Pontificia Bolivariana University, Bloque 11, Cq. 1 No. 70-01, Medellín 050004, Colombia;
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, Medellín 050010, Colombia; (E.H.B.); (J.Q.)
| |
Collapse
|
9
|
Li W, Zhang H, Zhai Z, Huang X, Shang S, Song Z. Photo-controlled self-assembly behavior of novel amphiphilic polymers with a rosin-based azobenzene group. NEW J CHEM 2022. [DOI: 10.1039/d1nj04575j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel ‘bola’ rosin-based photo-responsive amphiphilic polymers PMPn show an extremely high photoresponsive efficiency and various assembly morphological changes.
Collapse
Affiliation(s)
- Wanbing Li
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Nanjing 210042, Jiangsu Province, P. R. China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Haibo Zhang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Nanjing 210042, Jiangsu Province, P. R. China
| | - Zhaolan Zhai
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Nanjing 210042, Jiangsu Province, P. R. China
| | - Xujuan Huang
- School of Chemical and Chemistry, Yancheng Institute of Technology, Yancheng 210042, Jiangsu Province, P. R. China
| | - Shibin Shang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Nanjing 210042, Jiangsu Province, P. R. China
| | - Zhanqian Song
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Nanjing 210042, Jiangsu Province, P. R. China
| |
Collapse
|
10
|
Zheng M, Yuan J. Polymeric nanostructures based on azobenzene and their biomedical applications: synthesis, self-assembly and stimuli-responsiveness. Org Biomol Chem 2021; 20:749-767. [PMID: 34908082 DOI: 10.1039/d1ob01823j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Amphiphilic polymers can self-assemble to form nanoparticles with different structures under suitable conditions. Polymer nanoparticles functionalized with aromatic azo groups are endowed with photo-responsive properties. In recent years, a variety of photoresponsive polymers and nanoparticles have been developed based on azobenzene, using different molecular design strategies and synthetic routes. This article reviews the progress of this rapidly developing research field, focusing on the structure, synthesis, assembly and response of photo-responsive polymer assemblies. According to the molecular structure, photo-responsive polymers can be divided into linear polymers containing azobenzene in a side chain, linear polymers containing azobenzene in the main chain, linear polymers containing azobenzene in an end group, branched polymers containing azobenzene and supramolecular polymers containing azobenzene. These systems have broad biomedical application prospects in the field of drug delivery and imaging applications.
Collapse
Affiliation(s)
- Mingxin Zheng
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Jinying Yuan
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
11
|
Paruchuri BC, Gopal V, Sarupria S, Larsen J. Toward enzyme-responsive polymersome drug delivery. Nanomedicine (Lond) 2021; 16:2679-2693. [PMID: 34870451 DOI: 10.2217/nnm-2021-0194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In drug delivery, enzyme-responsive drug carriers are becoming increasingly relevant because of the growing association of disease pathology with enzyme overexpression. Polymersomes are of interest to such applications because of their tunable properties. While polymersomes open up a wide range of chemical and physical properties to explore, they also present a challenge in developing generalized rules for the synthesis of novel systems. Motivated by this issue, in this perspective, we summarize the existing knowledge on enzyme-responsive polymersomes and outline the main design choices. Then, we propose heuristics to guide the design of novel systems. Finally, we discuss the potential of an integrated approach using computer simulations and experimental studies to streamline this design process and close the existing knowledge gaps.
Collapse
Affiliation(s)
| | - Varun Gopal
- Department of Chemical & Biomolecular Engineering, Clemson University, Clemson, SC 29631, USA.,Department of Chemical Engineering & Material Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sapna Sarupria
- Department of Chemical & Biomolecular Engineering, Clemson University, Clemson, SC 29631, USA.,Center for Optical Materials Science & Engineering Technologies (COMSET), Clemson University, Clemson, SC 29670, USA.,Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jessica Larsen
- Department of Chemical & Biomolecular Engineering, Clemson University, Clemson, SC 29631, USA.,Department of Bioengineering, Clemson University, Clemson, SC 29631, USA
| |
Collapse
|
12
|
Dissipative morphological characteristics of photo-responsive block copolymers driven by time-oscillatory irradiations: An in silico study. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Abad M, Martínez-Bueno A, Mendoza G, Arruebo M, Oriol L, Sebastián V, Piñol M. Supramolecular Functionalizable Linear-Dendritic Block Copolymers for the Preparation of Nanocarriers by Microfluidics. Polymers (Basel) 2021; 13:684. [PMID: 33668750 PMCID: PMC7956801 DOI: 10.3390/polym13050684] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 12/24/2022] Open
Abstract
Hybrid linear-dendritic block copolymers (LDBCs) having dendrons with a precise number of peripheral groups that are able to supramolecular bind functional moieties are challenging materials as versatile polymeric platforms for the preparation of functional polymeric nanocarriers. PEG2k-b-dxDAP LDBCs that are based on polyethylene glycol (PEG) as hydrophilic blocks and dendrons derived from bis-MPA having 2,6-diacylaminopyridine (DAP) units have been efficiently synthesized by the click coupling of preformed blocks, as was demonstrated by spectroscopic techniques and mass spectrometry. Self-assembly ability was first checked by nanoprecipitation. A reproducible and fast synthesis of aggregates was accomplished by microfluidics optimizing the total flow rate and phase ratio to achieve spherical micelles and/or vesicles depending on dendron generation and experimental parameters. The morphology and size of the self-assemblies were studied by TEM, Cryogenic Transmission Electron Microscopy (cryo-TEM), and Dynamic Light Scattering (DLS). The cytotoxicity of aggregates synthesized by microfluidics and the influence on apoptosis and cell cycle evaluation was studied on four cell lines. The self-assemblies are not cytotoxic at doses below 0.4 mg mL-1. Supramolecular functionalization using thymine derivatives was explored for reversibly cross-linking the hydrophobic blocks. The results open new possibilities for their use as drug nanocarriers with a dynamic cross-linking to improve nanocarrier stability but without hindering disassembly to release molecular cargoes.
Collapse
Affiliation(s)
- Miriam Abad
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; (M.A.); (A.M.-B.); (G.M.); (M.A.); (L.O.)
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Alejandro Martínez-Bueno
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; (M.A.); (A.M.-B.); (G.M.); (M.A.); (L.O.)
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Gracia Mendoza
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; (M.A.); (A.M.-B.); (G.M.); (M.A.); (L.O.)
- Networking Research Centre on Bioengineering, Biomaterials and Nanobiomedicine (CIBER-BNN), 28029 Madrid, Spain
- Aragon Health Research Institute (ISS Aragón), 50009 Zaragoza, Spain
- Department of Chemical Engineering and Environmental Technologies, University of Zaragoza, 50018 Zaragoza, Spain
| | - Manuel Arruebo
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; (M.A.); (A.M.-B.); (G.M.); (M.A.); (L.O.)
- Networking Research Centre on Bioengineering, Biomaterials and Nanobiomedicine (CIBER-BNN), 28029 Madrid, Spain
- Aragon Health Research Institute (ISS Aragón), 50009 Zaragoza, Spain
- Department of Chemical Engineering and Environmental Technologies, University of Zaragoza, 50018 Zaragoza, Spain
| | - Luis Oriol
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; (M.A.); (A.M.-B.); (G.M.); (M.A.); (L.O.)
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Víctor Sebastián
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; (M.A.); (A.M.-B.); (G.M.); (M.A.); (L.O.)
- Networking Research Centre on Bioengineering, Biomaterials and Nanobiomedicine (CIBER-BNN), 28029 Madrid, Spain
- Aragon Health Research Institute (ISS Aragón), 50009 Zaragoza, Spain
- Department of Chemical Engineering and Environmental Technologies, University of Zaragoza, 50018 Zaragoza, Spain
| | - Milagros Piñol
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; (M.A.); (A.M.-B.); (G.M.); (M.A.); (L.O.)
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
14
|
Hao T, Tan H, Li S, Wang Y, Zhou Z, Yu C, Zhou Y, Yan D. Multilayer onion‐like vesicles self‐assembled from amphiphilic hyperbranched multiarm copolymers via simulation. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20190163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Tongfan Hao
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University Shanghai China
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical EngineeringJiangsu University Zhenjiang China
| | - Haina Tan
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University Shanghai China
| | - Shanlong Li
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University Shanghai China
| | - Yuling Wang
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University Shanghai China
| | - Zhiping Zhou
- Institute of Polymer Materials, School of Materials Science and EngineeringJiangsu University Zhenjiang China
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University Shanghai China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University Shanghai China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University Shanghai China
| |
Collapse
|
15
|
Ivanov IV, Meleshko TK, Kashina AV, Yakimansky AV. Amphiphilic multicomponent molecular brushes. RUSSIAN CHEMICAL REVIEWS 2019. [DOI: 10.1070/rcr4870] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Multicomponent molecular brushes containing amphiphilic polymer moieties are promising objects of research of macromolecular chemistry. The development of stimulus-responsive systems sensitive to changes in environmental parameters, based on the molecular brushes, opens up new possibilities for their applications in medicine, biochemistry and microelectronics. The review presents the current understanding of the structures of main types of amphiphilic multicomponent brushes, depending on the chemical nature and type of coupling of the backbone and side chains. The approaches to the controlled synthesis of multicomponent molecular brushes of different architecture are analyzed. Self-assembly processes of multicomponent molecular brushes in selective solvents are considered.
The bibliography includes 259 references.
Collapse
|
16
|
Preparation of a Series of Photoresponsive Polymersomes Bearing Photocleavable a 2-nitrobenzyl Group at the Hydrophobic/Hydrophilic Interfaces and Their Payload Releasing Behaviors. Polymers (Basel) 2019; 11:polym11081254. [PMID: 31362443 PMCID: PMC6724059 DOI: 10.3390/polym11081254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 11/17/2022] Open
Abstract
In this study, the structure-function relationships of a series of polymersomes composed of well-defined amphiphilic diblock copolymers were investigated. The building blocks were synthesized by clicking hydrophobic polymers, synthesized beforehand, and commercially available poly(ethylene glycol) with photocleavable 2-nitrobenzyl compounds bearing alkyne and maleimide functionalities. All of the tested polymersomes preserved their hollow structures even after sufficient photoirradiation. Nevertheless, the release rate of an entrapped anionic fluorophore was highly dependent on the molecular weight and the type of hydrophobic polymer, as well as on the presence or absence of the charged end groups. Moreover, the polymersomes with a 2-nitrosobenzyl photolysis residue within the hydrophobic shells exhibited photo-induced payload release after complete photolysis. It was concluded that the payload release was mediated by photo-induced permeability changes of the hydrophobic shells rather than the decomposition of their overall structures.
Collapse
|
17
|
Dong M, Wessels MG, Lee JY, Su L, Wang H, Letteri RA, Song Y, Lin YN, Chen Y, Li R, Pochan DJ, Jayaraman A, Wooley KL. Experiments and Simulations of Complex Sugar-Based Coil-Brush Block Polymer Nanoassemblies in Aqueous Solution. ACS NANO 2019; 13:5147-5162. [PMID: 30990651 DOI: 10.1021/acsnano.8b08811] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, we investigated the fundamental molecular parameters that guide the supramolecular assembly of glucose-based amphiphilic coil-brush block polymers in aqueous solution and elucidated architecture-morphology relationships through experimental and simulation tools. Well-defined coil-brush polymers were synthesized through ring-opening polymerizations (ROP) of glucose carbonates to afford norbornenyl-functionalized poly(glucose carbonate) (NB-PGC) macromonomers, followed by sequential ring-opening metathesis polymerizations (ROMP) of norbornene N-hydroxysuccinimidyl (NHS) esters and the NB-PGC macromonomers. Variation of the macromonomer length and grafting through ROMP conditions allowed for a series of coil-brush polymers to be synthesized with differences in the brush and coil dimensions, independently, where the side chain graft length and brush backbone were used to tune the brush, and the coil block length was used to vary the coil. Hydrolysis of the NHS moieties gave the amphiphilic coil-brush polymers, where the hydrophilic-hydrophobic ratios were dependent on the brush and coil relative dimensions. Experimental assembly in solution was studied and found to yield a variety of structurally dependent nanostructures. Simulations were conducted on the solution assembly of coil-brush polymers, where the polymers were represented by a coarse-grained model and the solvent was represented implicitly. There is qualitative agreement in the phase diagrams obtained from simulations and experiments, in terms of the morphologies of the assembled nanoscopic structures achieved as a function of coil-brush design parameters ( e.g., brush and coil lengths, composition). The simulations further showed the chain conformations adopted by the coil-brush polymers and the packing within these assembled nanoscopic structures. This work enables the predictive design of nanostructures from this glucose-based coil-brush polymer platform while providing a fundamental understanding of interactions within solution assembly of complex polymer building blocks.
Collapse
Affiliation(s)
- Mei Dong
- Departments of Chemistry, Chemical Engineering, Materials Science & Engineering, and the Laboratory for Synthetic-Biologic Interactions , Texas A&M University , College Station , Texas 77843 , United States
| | - Michiel G Wessels
- Department of Chemical & Biomolecular Engineering, Colburn Laboratory , University of Delaware , Newark , Delaware 19716 , United States
| | - Jee Young Lee
- Department of Materials Science and Engineering , University of Delaware , Newark , Delaware 19716 , United States
| | - Lu Su
- Departments of Chemistry, Chemical Engineering, Materials Science & Engineering, and the Laboratory for Synthetic-Biologic Interactions , Texas A&M University , College Station , Texas 77843 , United States
| | - Hai Wang
- Departments of Chemistry, Chemical Engineering, Materials Science & Engineering, and the Laboratory for Synthetic-Biologic Interactions , Texas A&M University , College Station , Texas 77843 , United States
| | - Rachel A Letteri
- Departments of Chemistry, Chemical Engineering, Materials Science & Engineering, and the Laboratory for Synthetic-Biologic Interactions , Texas A&M University , College Station , Texas 77843 , United States
| | - Yue Song
- Departments of Chemistry, Chemical Engineering, Materials Science & Engineering, and the Laboratory for Synthetic-Biologic Interactions , Texas A&M University , College Station , Texas 77843 , United States
| | - Yen-Nan Lin
- Departments of Chemistry, Chemical Engineering, Materials Science & Engineering, and the Laboratory for Synthetic-Biologic Interactions , Texas A&M University , College Station , Texas 77843 , United States
- College of Medicine , Texas A&M University , Bryan , Texas 77807 , United States
| | - Yingchao Chen
- Departments of Chemistry, Chemical Engineering, Materials Science & Engineering, and the Laboratory for Synthetic-Biologic Interactions , Texas A&M University , College Station , Texas 77843 , United States
| | - Richen Li
- Departments of Chemistry, Chemical Engineering, Materials Science & Engineering, and the Laboratory for Synthetic-Biologic Interactions , Texas A&M University , College Station , Texas 77843 , United States
| | - Darrin J Pochan
- Department of Materials Science and Engineering , University of Delaware , Newark , Delaware 19716 , United States
| | - Arthi Jayaraman
- Department of Chemical & Biomolecular Engineering, Colburn Laboratory , University of Delaware , Newark , Delaware 19716 , United States
- Department of Materials Science and Engineering , University of Delaware , Newark , Delaware 19716 , United States
| | - Karen L Wooley
- Departments of Chemistry, Chemical Engineering, Materials Science & Engineering, and the Laboratory for Synthetic-Biologic Interactions , Texas A&M University , College Station , Texas 77843 , United States
| |
Collapse
|
18
|
|
19
|
Xiang W, Zhu Z, Wang K, Zhou L. Mesoscopic simulation study on the structural transition of comb-shaped block copolymer lamellae on chemically patterned substrates: from vertical to lateral. Phys Chem Chem Phys 2019; 21:641-649. [PMID: 30540306 DOI: 10.1039/c8cp06317f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Directed self-assembly of polymers on chemically homogeneous and heterogeneous patterns is of considerable interest for nanolithography and nanofluidic devices. By employing dissipative particle dynamics (DPD) technology, we explore the nanoscale phase separation of comb-like block copolymers (CBCPs) confined at chemically homogeneous and heterogeneous substrates. Herein, the geometric and energetic influences of striped substrates on the microphases are firstly studied using various geometries of annular stripes for the heterogeneous substrates. Different parameters including the stripe geometry, substrate selectivity, and film thickness are studied systematically. T-Junction lamellae and acclivitous alignment are achieved on the heterogeneous substrates because of the synergy of geometrical effects of the striped pattern from heterogeneous substrates together with weak preference of the substrates toward one of the CBCP components. In this study, we provide a detailed understanding of microphase separation of CBCPs on the heterogeneous substrates, and the approach outlined in the present study offers a crucial tool for experimentalists to design CBCP thin films with complex device-oriented structures.
Collapse
Affiliation(s)
- Wenjun Xiang
- School of Chemistry and Chemical Engineering, Sichuan University of Arts and Science, Dazhou, Sichuan 635000, P. R. China.
| | | | | | | |
Collapse
|
20
|
Phase diagrams, mechanisms and unique characteristics of alternating-structured polymer self-assembly via simulations. Sci China Chem 2018. [DOI: 10.1007/s11426-018-9360-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Zhu Y, Yi C, Hu Q, Wei W, Liu X. Effect of chain microstructure on self-assembly and emulsification of amphiphilic poly(acrylic acid)-polystyrene copolymers. Phys Chem Chem Phys 2018; 18:26236-26244. [PMID: 27711526 DOI: 10.1039/c6cp04978h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In this study, a series of random copolymer poly(acrylic acid-co-styrene) (P(AA-co-St)) and block copolymer poly(acrylic acid)-b-polystyrene (PAA-b-PSt) with similar chemical composition but different chain microstructure were synthesized. The self-assembly behavior of random and block copolymers in selective solvent was investigated, and the structural evaluation of random and block copolymers micelles was carried out by transmission electron microscopy (TEM), dynamic light scattering (DLS) measurement, and X-ray photoelectron spectroscopy (XPS). Moreover, together with experimental characterization, the theoretical method dissipative particle dynamics (DPD) approach was applied to investigate the morphological structures of micelles composed from random and block copolymers. Results revealed that the structure of polymeric micelles is significantly affected by the distribution sequence of hydrophilic and hydrophobic monomers in copolymer chains. Furthermore, polymeric micelles based on P(AA-co-St) and PAA-b-PSt with about 50 mol% hydrophilic composition were chosen as the model to investigate the influence of micellar structure on emulsifying performance. For PAA-b-PSt micelles (B48), stable water-in-oil (w/o) emulsions could only obtained when the pH values were lower than 5. As a comparison, the P(AA-co-St) micelles (R49) had an excellent emulsification performance at 4-10 pH, and the pH-induced phase inversion derived from obtained emulsions observed at pH higher than 6. Preliminary results confirm that the micellar structure controlled by chain microstructure plays an important role in the interface behavior of polymer micelles. Compared with PAA-b-PSt micelles, P(AA-co-St) micelles have better interfacial performance and are more tailorable and controllable; thus they can be used as a model for further study of polymeric particulate emulsifiers. This paper provides new insight into the principles governing extremely high emulsifying efficiency of polymeric particulate emulsifiers and pH-responsive properties of the formed emulsions.
Collapse
Affiliation(s)
- Ye Zhu
- Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Chenglin Yi
- Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Qiong Hu
- Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Wei Wei
- Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Xiaoya Liu
- Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
22
|
Sumer Z, Striolo A. Manipulating molecular order in nematic liquid crystal capillary bridgesviasurfactant adsorption: guiding principles from dissipative particle dynamics simulations. Phys Chem Chem Phys 2018; 20:30514-30524. [DOI: 10.1039/c8cp04492a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Effect of surfactant tail length on the orientation of liquid crystals is investigated with dissipative particle dynamics (DPD) simulations.
Collapse
Affiliation(s)
- Zeynep Sumer
- Department of Chemical Engineering
- University College London
- London WC1E 7JE
- UK
| | - Alberto Striolo
- Department of Chemical Engineering
- University College London
- London WC1E 7JE
- UK
| |
Collapse
|
23
|
Zhang Q, Lin J, Wang L, Xu Z. Theoretical modeling and simulations of self-assembly of copolymers in solution. Prog Polym Sci 2017. [DOI: 10.1016/j.progpolymsci.2017.04.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
24
|
Wong CK, Mason AF, Stenzel MH, Thordarson P. Formation of non-spherical polymersomes driven by hydrophobic directional aromatic perylene interactions. Nat Commun 2017; 8:1240. [PMID: 29093442 PMCID: PMC5665895 DOI: 10.1038/s41467-017-01372-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 09/13/2017] [Indexed: 01/01/2023] Open
Abstract
Polymersomes, made up of amphiphilic block copolymers, are emerging as a powerful tool in drug delivery and synthetic biology due to their high stability, chemical versatility, and surface modifiability. The full potential of polymersomes, however, has been hindered by a lack of versatile methods for shape control. Here we show that a range of non-spherical polymersome morphologies with anisotropic membranes can be obtained by exploiting hydrophobic directional aromatic interactions between perylene polymer units within the membrane structure. By controlling the extent of solvation/desolvation of the aromatic side chains through changes in solvent quality, we demonstrate facile access to polymersomes that are either ellipsoidal or tubular-shaped. Our results indicate that perylene aromatic interactions have a great potential in the design of non-spherical polymersomes and other structurally complex self-assembled polymer structures.
Collapse
Affiliation(s)
- Chin Ken Wong
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW 2052, Australia.,Centre for Advanced Macromolecular Design (CAMD), University of New South Wales, Sydney, NSW 2052, Australia
| | - Alexander F Mason
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW 2052, Australia
| | - Martina H Stenzel
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia. .,Centre for Advanced Macromolecular Design (CAMD), University of New South Wales, Sydney, NSW 2052, Australia.
| | - Pall Thordarson
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia. .,The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
25
|
Tan H, Yu C, Lu Z, Zhou Y, Yan D. A dissipative particle dynamics simulation study on phase diagrams for the self-assembly of amphiphilic hyperbranched multiarm copolymers in various solvents. SOFT MATTER 2017; 13:6178-6188. [PMID: 28798969 DOI: 10.1039/c7sm01170a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Self-assembly of amphiphilic hyperbranched multiarm copolymers (HMCs) has shown great potential for preparing all kinds of delicate supramolecular structures in all scales and dimensions in solution. However, theoretical studies on the influencing factors for the self-assembly of HMCs have been greatly lagging behind. The phase diagram of HMCs in selective solvents is very necessary but has not been disclosed up to now. Here, the self-assembly of HMCs with different hydrophilic fractions in various solvents was studied systematically by using dissipative particle dynamics (DPD) simulations. Three morphological phase diagrams are constructed and a rich variety of morphologies, ranging from spherical micelles, worm-like micelles, membranes, vesicles, vesosomes, small micellar aggregates (SMAs), and aggregates of spherical and worm-like micelles to helical micelles, are obtained. In addition, both the self-assembly mechanisms and the dynamic processes for the formation of these self-assemblies have been systematically investigated. The simulation results are consistent with available experimental observations. Besides, several novel structures, like aggregates of spherical and worm-like micelles, vesosomes and helical micelles, are firstly discovered for HMC self-assembly. We believe the current work will extend the knowledge on the self-assembly of HMCs, especially on the control of supramolecular structures and on fabricating novel self-assemblies.
Collapse
Affiliation(s)
- Haina Tan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
| | | | | | | | | |
Collapse
|
26
|
You XR, Ju XJ, He F, Wang Y, Liu Z, Wang W, Xie R, Chu LY. Polymersomes with Rapid K +-Triggered Drug-Release Behaviors. ACS APPLIED MATERIALS & INTERFACES 2017; 9:19258-19268. [PMID: 28514157 DOI: 10.1021/acsami.7b05701] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A novel type of smart polymersomes with rapid K+-triggered drug-release properties is developed in this work. Block copolymers with biocompatible poly(ethylene glycol) (PEG) as the hydrophilic block and poly(N-isopropylacrylamide-co-benzo-18-crown-6-acrylamide) (PNB) copolymer as the K+-responsive block are successfully synthesized. Because of the presence of 18-crown-6 units, the PEG-b-PNB block copolymers exhibit excellent K+-dependent phase-transition behaviors, which show a hydrophilic-hydrophobic state in simulated extracellular fluid and present a hydrophilic-hydrophilic state in simulated intracellular fluid. Polymersomes with regular spherical shape and good monodispersity are prepared by the self-assembly of the PEG-b-PNB block copolymers. Both hydrophilic fluorescein isothiocyanate-dextran and hydrophobic doxorubicin are selected as model drugs and are successfully encapsulated into the PEG-b-PNB polymersomes. After being placed in a simulated intracellular fluid with high K+ concentration, the PEG-b-PNB polymersomes immediately disassemble accompanied by the rapid and complete release of drugs. Such K+-responsive polymersomes with the desired drug-release properties provide a novel strategy for advanced intracellular drug delivery and release, which can enhance the safety and efficacy of cancer therapy.
Collapse
Affiliation(s)
- Xiang-Ru You
- School of Chemical Engineering and ‡State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu, Sichuan 610065, P. R. China
| | - Xiao-Jie Ju
- School of Chemical Engineering and ‡State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu, Sichuan 610065, P. R. China
| | - Fan He
- School of Chemical Engineering and ‡State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu, Sichuan 610065, P. R. China
| | - Yuan Wang
- School of Chemical Engineering and ‡State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu, Sichuan 610065, P. R. China
| | - Zhuang Liu
- School of Chemical Engineering and ‡State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu, Sichuan 610065, P. R. China
| | - Wei Wang
- School of Chemical Engineering and ‡State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu, Sichuan 610065, P. R. China
| | - Rui Xie
- School of Chemical Engineering and ‡State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu, Sichuan 610065, P. R. China
| | - Liang-Yin Chu
- School of Chemical Engineering and ‡State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu, Sichuan 610065, P. R. China
| |
Collapse
|
27
|
Bai T, Du J, Chen J, Duan X, Zhuang Q, Chen H, Kong J. Reduction-responsive dithiomaleimide-based polymeric micelles for controlled anti-cancer drug delivery and bioimaging. Polym Chem 2017. [DOI: 10.1039/c7py01675a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The biocompatible amphiphilic block copolymers and the CPT model drug were self-assembled into micelles with bright fluorescence and taken up by tumor cells. Then, the disulfide bonds in the micelles were cleaved to release CPT at a high GSH concentration.
Collapse
Affiliation(s)
- Ting Bai
- MOE Key Laboratory of Space Applied Physics and Chemistry
- Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Junjie Du
- MOE Key Laboratory of Space Applied Physics and Chemistry
- Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Jianxin Chen
- MOE Key Laboratory of Space Applied Physics and Chemistry
- Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Xiao Duan
- MOE Key Laboratory of Space Applied Physics and Chemistry
- Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Qiang Zhuang
- MOE Key Laboratory of Space Applied Physics and Chemistry
- Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Heng Chen
- MOE Key Laboratory of Space Applied Physics and Chemistry
- Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Jie Kong
- MOE Key Laboratory of Space Applied Physics and Chemistry
- Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| |
Collapse
|
28
|
Concellón A, Blasco E, Martínez-Felipe A, Martínez JC, Šics I, Ezquerra TA, Nogales A, Piñol M, Oriol L. Light-Responsive Self-Assembled Materials by Supramolecular Post-Functionalization via Hydrogen Bonding of Amphiphilic Block Copolymers. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01112] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alberto Concellón
- Departamento
de Química Orgánica, Instituto de Ciencia de Materiales
de Aragón (ICMA)-Facultad de Ciencias, Universidad de Zaragoza-CSIC, 50009, Zaragoza, Spain
| | - Eva Blasco
- Preparative
Macromolecular Chemistry, Institut für Technische Chemie und
Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstrasse
18, 76128 Karlsruhe, Germany
| | - Alfonso Martínez-Felipe
- Chemical
and Materials Engineering Group, School of Engineering, University of Aberdeen. King’s College, Aberdeen AB24 3UE, U.K
| | | | - Igor Šics
- Cells-Alba, Carretera BP 1413, 08290 Cerdanyola del Vallès,
Barcelona, Spain
| | - Tiberio A. Ezquerra
- Instituto
de Estructura de la Materia, IEM-CSIC, C/Serrano 121, 28006 Madrid, Spain
| | - Aurora Nogales
- Instituto
de Estructura de la Materia, IEM-CSIC, C/Serrano 121, 28006 Madrid, Spain
| | - Milagros Piñol
- Departamento
de Química Orgánica, Instituto de Ciencia de Materiales
de Aragón (ICMA)-Facultad de Ciencias, Universidad de Zaragoza-CSIC, 50009, Zaragoza, Spain
| | - Luis Oriol
- Departamento
de Química Orgánica, Instituto de Ciencia de Materiales
de Aragón (ICMA)-Facultad de Ciencias, Universidad de Zaragoza-CSIC, 50009, Zaragoza, Spain
| |
Collapse
|
29
|
Yang YL, Tsao HK, Sheng YJ. Solid-supported polymer bilayers formed by coil-coil block copolymers. SOFT MATTER 2016; 12:6442-6450. [PMID: 27418114 DOI: 10.1039/c6sm00741d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The formation and physical properties of solid-supported polymer bilayers (SPBs) on an adhesive substrate have been explored by dissipative particle dynamics simulations. A SPB is developed by the adsorption of vesicles formed by diblock copolymers in a selective solvent. The adsorbed vesicle can remain intact or become ruptured into a SPB, depending on the interaction between solvophobic blocks and solvent and the interaction between solvophilic blocks and the substrate. The morphological phase diagram of adsorbed vesicles is acquired. The influence of polymer adhesion strength and solvophobicity on the geometrical and mechanical properties of a SPB is systematically studied as well. It is found that vesicular disruption is easily triggered for strong adhesion strength. Moreover, for strong adhesion strength and weak solvophobicity, the fluctuation of membrane height is impeded while the area of fluctuation is enhanced.
Collapse
Affiliation(s)
- Yan-Ling Yang
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan 106, Republic of China.
| | | | | |
Collapse
|
30
|
Fan X, Zhao Y, Xu W, Li L. Linear-dendritic block copolymer for drug and gene delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:943-59. [PMID: 26952501 DOI: 10.1016/j.msec.2016.01.044] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/31/2015] [Accepted: 01/19/2016] [Indexed: 11/19/2022]
Abstract
Dendrimers as a new class of polymeric materials have a highly ordered branched structure, exact molecular weight, multivalency and available internal cavities, which make them extensively used in biology and drug-delivery. Concurrent with the development of dendrimers, much more attention is drawn to a novel block copolymer which combines linear chains with dendritic macromolecules, the linear-dendritic block copolymer (LDBC). Because of the different solubility of the contrasting regions, the amphiphilic LDBCs could self-assemble to form aggregates with special core-shell structures which exhibit excellent properties different from traditional micelles, such as lower critical micelle concentration, prolonged circulation in the bloodstream, better biocompatibility, and lower toxicity. The present review briefly describes the type of LDBC, the self-assembly behavior in solution, and the application in delivery system including the application as drug carriers and gene vectors. The interactions between block copolymers and drugs are also summarized to better understand the release mechanism of drugs from the linear-dendritic block copolymers.
Collapse
Affiliation(s)
- Xiaohui Fan
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan, Shandong Province 250012, China
| | - Yanli Zhao
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan, Shandong Province 250012, China
| | - Wei Xu
- Department of Pharmacy, Shandong Provincial Qian Foshan Hospital, Jinan, Shandong Province, China
| | - Lingbing Li
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan, Shandong Province 250012, China.
| |
Collapse
|
31
|
Tang G, Hu M, Ma Y, You D, Bi Y. Synthesis and solution properties of novel thermo- and pH-responsive poly(N-vinylcaprolactam)-based linear–dendritic block copolymers. RSC Adv 2016. [DOI: 10.1039/c6ra04327e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
This study describes the synthesis and solution properties of the novel linear–dendritic block copolymers (LDBCs) based on thermoresponsive poly(N-vinylcaprolactam) (PNVCL) chains and pH-responsive poly(benzyl ether) dendrons.
Collapse
Affiliation(s)
- Gang Tang
- College of Chemistry and Chemical Engineering
- Yunnan Normal University
- Kunming 650500
- China
| | - Minqi Hu
- College of Chemistry and Chemical Engineering
- Yunnan Normal University
- Kunming 650500
- China
| | - Yongcui Ma
- College of Chemistry and Chemical Engineering
- Yunnan Normal University
- Kunming 650500
- China
| | - Dan You
- College of Chemistry and Chemical Engineering
- Yunnan Normal University
- Kunming 650500
- China
| | - Yunmei Bi
- College of Chemistry and Chemical Engineering
- Yunnan Normal University
- Kunming 650500
- China
| |
Collapse
|
32
|
Abstract
This review focuses on stimuli-responsive polymersomes for cancer therapy, which can be disintegrated by recognizing the specific environments of cancer (e.g., low pH, bioreductive environment, over-expressed enzymes,etc.).
Collapse
Affiliation(s)
- Thavasyappan Thambi
- School of Chemical Engineering
- Sungkyunkwan University
- Suwon 440-746
- Republic of Korea
| | - Jae Hyung Park
- School of Chemical Engineering
- Sungkyunkwan University
- Suwon 440-746
- Republic of Korea
| | - Doo Sung Lee
- School of Chemical Engineering
- Sungkyunkwan University
- Suwon 440-746
- Republic of Korea
| |
Collapse
|
33
|
Pan S, Mu B, Wu B, Shi Z, Chen D. Side-Chain Liquid Crystalline Polymers: Controlled Synthesis and Hierarchical Structure Characterization. LIQUID CRYSTALLINE POLYMERS 2016:131-172. [DOI: 10.1007/978-3-319-22894-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
34
|
Tan H, Wang W, Yu C, Zhou Y, Lu Z, Yan D. Dissipative particle dynamics simulation study on self-assembly of amphiphilic hyperbranched multiarm copolymers with different degrees of branching. SOFT MATTER 2015; 11:8460-8470. [PMID: 26364696 DOI: 10.1039/c5sm01495f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Hyperbranched multiarm copolymers (HMCs) have shown great potential to be excellent precursors in self-assembly to form various supramolecular structures in all scales and dimensions in solution. However, theoretical studies on the self-assembly of HMCs, especially the self-assembly dynamics and mechanisms, have been greatly lagging behind the experimental progress. Herein, we investigate the effect of degree of branching (DB) on the self-assembly structures of HMCs by dissipative particle dynamics (DPD) simulation. Our simulation results demonstrate that the self-assembly morphologies of HMCs can be changed from spherical micelles, wormlike micelles, to vesicles with the increase of DBs, which are qualitatively consistent with the experimental observations. In addition, both the self-assembly mechanisms and the dynamic processes for the formation of these three aggregates have been systematically disclosed through the simulations. These self-assembly details are difficult to be shown by experiments and are very useful to fully understand the self-assembly behaviors of HMCs.
Collapse
Affiliation(s)
- Haina Tan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
| | - Wei Wang
- Institute of Theoretical Chemistry, State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130021, P. R. China.
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
| | - Zhongyuan Lu
- Institute of Theoretical Chemistry, State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130021, P. R. China.
| | - Deyue Yan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
| |
Collapse
|
35
|
Wang L, Liu G, Wang X, Hu J, Zhang G, Liu S. Acid-Disintegratable Polymersomes of pH-Responsive Amphiphilic Diblock Copolymers for Intracellular Drug Delivery. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b01709] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lei Wang
- CAS Key Laboratory of Soft
Matter Chemistry, Hefei National Laboratory for Physical Sciences
at the Microscale, iChem (Collaborative Innovation Center of Chemistry
for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guhuan Liu
- CAS Key Laboratory of Soft
Matter Chemistry, Hefei National Laboratory for Physical Sciences
at the Microscale, iChem (Collaborative Innovation Center of Chemistry
for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaorui Wang
- CAS Key Laboratory of Soft
Matter Chemistry, Hefei National Laboratory for Physical Sciences
at the Microscale, iChem (Collaborative Innovation Center of Chemistry
for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinming Hu
- CAS Key Laboratory of Soft
Matter Chemistry, Hefei National Laboratory for Physical Sciences
at the Microscale, iChem (Collaborative Innovation Center of Chemistry
for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guoying Zhang
- CAS Key Laboratory of Soft
Matter Chemistry, Hefei National Laboratory for Physical Sciences
at the Microscale, iChem (Collaborative Innovation Center of Chemistry
for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shiyong Liu
- CAS Key Laboratory of Soft
Matter Chemistry, Hefei National Laboratory for Physical Sciences
at the Microscale, iChem (Collaborative Innovation Center of Chemistry
for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
36
|
Gu WX, Li QL, Lu H, Fang L, Chen Q, Yang YW, Gao H. Construction of stable polymeric vesicles based on azobenzene and beta-cyclodextrin grafted poly(glycerol methacrylate)s for potential applications in colon-specific drug delivery. Chem Commun (Camb) 2015; 51:4715-8. [DOI: 10.1039/c5cc00628g] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Stable polymeric vesicles constructed from cyclodextrin- and azobenzene-grafted poly(glycerol methacrylate)s exhibited potential applications in colon-specific drug delivery.
Collapse
Affiliation(s)
- Wen-Xing Gu
- School of Chemistry and Chemical Engineering
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- Tianjin University of Technology
- Tianjin 300384
- P. R. China
| | - Qing-Lan Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC)
- Jilin University
- Changchun 130012
| | - Hongguang Lu
- School of Chemistry and Chemical Engineering
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- Tianjin University of Technology
- Tianjin 300384
- P. R. China
| | - Lei Fang
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | - Qixian Chen
- Department of Materials Engineering
- Graduate School of Engineering
- University of Tokyo
- Bunkyo-ku
- Japan
| | - Ying-Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC)
- Jilin University
- Changchun 130012
| | - Hui Gao
- School of Chemistry and Chemical Engineering
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- Tianjin University of Technology
- Tianjin 300384
- P. R. China
| |
Collapse
|
37
|
Song X, Shi P, Duan M, Fang S, Ma Y. Investigation of demulsification efficiency in water-in-crude oil emulsions using dissipative particle dynamics. RSC Adv 2015. [DOI: 10.1039/c5ra06570d] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Demulsification efficiency with alternating hydrophobic blocks of the polyether is investigated by dissipative particle dynamics.
Collapse
Affiliation(s)
- Xianyu Song
- College of Chemistry and Chemical Engineering
- Southwest University of Petroleum
- Chengdu
- P. R. China
| | - Peng Shi
- College of Chemistry and Chemical Engineering
- Southwest University of Petroleum
- Chengdu
- P. R. China
| | - Ming Duan
- College of Chemistry and Chemical Engineering
- Southwest University of Petroleum
- Chengdu
- P. R. China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province
| | - Shenwen Fang
- College of Chemistry and Chemical Engineering
- Southwest University of Petroleum
- Chengdu
- P. R. China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province
| | - Yongzhang Ma
- College of Chemistry and Chemical Engineering
- Southwest University of Petroleum
- Chengdu
- P. R. China
| |
Collapse
|
38
|
Chang HY, Sheng YJ, Tsao HK. Structural and mechanical characteristics of polymersomes. SOFT MATTER 2014; 10:6373-6381. [PMID: 25062328 DOI: 10.1039/c4sm01092b] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Polymersomes self-assembled from amphiphilic macromolecules have attracted growing attention because of their multifunctionality and stability. By controlling the structural characteristics of polymersomes, including vesicle shape, size, and membrane thickness, their mechanical and transport properties as well as their fusion behavior can be manipulated. Numerous experimental techniques have been developed to explore polymersome characteristics; however, experimental microscopic observations and knowledge of vesicles are limited. Mesoscale simulations can complement experimental studies of the vesicular features at the microscopic level and thus provide a feasible method to better understand the relationship between the fundamental structures and physicochemical properties of polymersomes. Moreover, the predictive ability of the simulation approaches may greatly assist developments and future applications of polymersomes.
Collapse
Affiliation(s)
- Hung-Yu Chang
- National Taiwan University, Chemical Engineering, Taipei 106, Taiwan
| | | | | |
Collapse
|
39
|
Chang HY, Tu SH, Sheng YJ, Tsao HK. Colloidosomes formed by nonpolar/polar/nonpolar nanoball amphiphiles. J Chem Phys 2014; 141:054906. [DOI: 10.1063/1.4891516] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Hung-Yu Chang
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Sheng-Hung Tu
- Department of Chemical and Materials Engineering, National Central University, Jhongli 320, Taiwan
| | - Yu-Jane Sheng
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Heng-Kwong Tsao
- Department of Chemical and Materials Engineering and Department of Physics, National Central University, Jhongli 320, Taiwan
| |
Collapse
|
40
|
Whitton G, Gillies ER. Functional aqueous assemblies of linear-dendron hybrids. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/pola.27316] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Greg Whitton
- Department of Chemistry; The University of Western Ontario; 1151 Richmond Street London Ontario Canada N6A 5B7
| | - Elizabeth R. Gillies
- Department of Chemistry; The University of Western Ontario; 1151 Richmond Street London Ontario Canada N6A 5B7
- Department of Chemical and Biochemical Engineering; The University of Western Ontario; 1151 Richmond Street London Ontario Canada N6A 5B9
| |
Collapse
|
41
|
Kalva N, Aswal VK, Ambade AV. Effect of the Branching Pattern of Hydrophobic Dendrons on the Core Structure of Linear-Dendritic Copolymer Micelles. MACROMOL CHEM PHYS 2014. [DOI: 10.1002/macp.201400150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Nagendra Kalva
- Polymer Science and Engineering Division; CSIR-National Chemical Laboratory; Dr. Homi Bhabha Road Pune 411008 India
| | - Vinod K. Aswal
- Solid State Physics Division; Bhabha Atomic Research Centre; Mumbai 400085 India
| | - Ashootosh V. Ambade
- Polymer Science and Engineering Division; CSIR-National Chemical Laboratory; Dr. Homi Bhabha Road Pune 411008 India
| |
Collapse
|
42
|
Yi Q, Sukhorukov GB. UV light stimulated encapsulation and release by polyelectrolyte microcapsules. Adv Colloid Interface Sci 2014; 207:280-9. [PMID: 24370006 DOI: 10.1016/j.cis.2013.11.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 11/05/2013] [Accepted: 11/14/2013] [Indexed: 12/18/2022]
Abstract
Layer-by-layer assembled polyelectrolyte capsules with well-controlled architectures and great versatility have been the subject of great interest, due to their unique advantages and tremendous potentials of being excellent candidates in multidisciplinary fields. UV light responsive microcapsules, as one class of the stimuli responsive capsules, possess the abilities to active their functionalities by responding to the UV stimulus remotely without requirement of direct contact or interaction. Therefore, any advances in this field will be of great value for the establishment of approaches to fabricate UV responsive polyelectrolyte capsules for desired uses. This review presents current development of UV responsive capsules, with emphasis on the underlying design strategies and their potential applications as delivery vesicles. In particular, UV-stimulated capsule functionalities, such as cargo encapsulation, release and combined multifunctionalities by the multilayers, have been addressed.
Collapse
|
43
|
Blasco E, Piñol M, Oriol L. Responsive linear-dendritic block copolymers. Macromol Rapid Commun 2014; 35:1090-115. [PMID: 24706548 DOI: 10.1002/marc.201400007] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/05/2014] [Indexed: 11/08/2022]
Abstract
The combination of dendritic and linear polymeric structures in the same macromolecule opens up new possibilities for the design of block copolymers and for applications of functional polymers that have self-assembly properties. There are three main strategies for the synthesis of linear-dendritic block copolymers (LDBCs) and, in particular, the emergence of click chemistry has made the coupling of preformed blocks one of the most efficient ways of obtaining libraries of LDBCs. In these materials, the periphery of the dendron can be precisely functionalised to obtain functional LDBCs with self-assembly properties of interest in different technological areas. The incorporation of stimuli-responsive moieties gives rise to smart materials that are generally processed as self-assemblies of amphiphilic LDBCs with a morphology that can be controlled by an external stimulus. Particular emphasis is placed on light-responsive LDBCs. Furthermore, a brief review of the biomedical or materials science applications of LDBCs is presented.
Collapse
Affiliation(s)
- Eva Blasco
- Dpt. Química Orgánica, Facultad de Ciencias - Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | | | | |
Collapse
|
44
|
Chen M, Sun M, Wang L, Liu X. Formation of Vesicles from Amphiphilic Random Copolymers in Solution: A Dissipative Particle Dynamics Simulation Study. J DISPER SCI TECHNOL 2014. [DOI: 10.1080/01932691.2013.796482] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
45
|
Lin YL, Chang HY, Sheng YJ, Tsao HK. The fusion mechanism of small polymersomes formed by rod-coil diblock copolymers. SOFT MATTER 2014; 10:1500-1511. [PMID: 24652278 DOI: 10.1039/c3sm52387j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The fusion mechanism of polymersomes self-assembled by rod-coil copolymers is intrinsically different from that of liposomes due to the effect of chain topology on conformational entropy and molecular packing. The influences of membrane tension, coil-block length, rod-block length, mutual compatibility between the solvent and the rod-coil block, and π-π interaction strength on the fusion pathway are explored by dissipative particle dynamics. The fusion process of spontaneously formed polymersomes generally consists of four stages. In the kissing stage, hopping of rod-blocks forms a connection between two vesicles of a one-legged rod-coil copolymer. In the adhesion stage, a stalk is developed by a few link-up rods and then a stretched diaphragm with rods lying parallel to the stretching direction is formed in the hemi-fusion stage. Eventually, a pore is developed and expanded in the fusion stage. If the membrane tension (τ) is adjusted by deflation/inflation of the polymersomes, the hemi-fusion diaphragm disappears. As τ is reduced, multiple stalks take shape and lead to the formation of inverted micelles, which is the rate-determining step and raises the fusion time substantially. As τ is elevated, a neck is developed after the stalk formation. The fusion process is significantly accelerated. τ of spontaneously formed vesicles varies with the coil-block length, rod-block length, solvent quality, and π-π interaction strength. There exists a critical value of τ below which the fusion process cannot be completed and a hemi-fused polymersome is formed. In addition to τ, the anisotropic steric interactions within the rod layers also resist hopping of longer rod-blocks. The coil layers develop a barrier impeding fusion between vesicles with longer coil-blocks. Consequently, lowering the solvent quality for the coil-block or rod-block facilities the fusion process due to the formation of a thinner coil layer.
Collapse
Affiliation(s)
- Yung-Lung Lin
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan 106, Republic of China.
| | | | | | | |
Collapse
|
46
|
Yi Q, Sukhorukov GB. UV-induced disruption of microcapsules with azobenzene groups. SOFT MATTER 2014; 10:1384-1391. [PMID: 24651273 DOI: 10.1039/c3sm51648b] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
UV responsive microcapsules containing azobenzene were fabricated by sequential deposition of oppositely charged poly[1-[4-(3-carboxy-4-hydroxyphenylazo)benzenesulfonamido]-1,2-ethanediyl, sodium salt] (PAZO) and poly(diallyldimethyl ammonium) chloride (PDADMAC). As found in this work, combination of PDADMAC and PAZO led to aggregation of PAZO segments in the progress of polymer deposition, which facilitated the large extent of J aggregates when the capsules were exposed to UV light. J aggregate assemblies destroyed the integrity of capsule shell formations, demonstrating capsule swelling and further breakage. This UV induced capsule breakage offered a new way to modulate the release of encapsulated cargos.
Collapse
Affiliation(s)
- Qiangying Yi
- School of Engineering and Materials Science, Queen Mary, University of London, London, UK.
| | | |
Collapse
|
47
|
Yi Q, Sukhorukov GB. Externally triggered dual function of complex microcapsules. ACS NANO 2013; 7:8693-8705. [PMID: 24083649 DOI: 10.1021/nn4029772] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
By introducing UV-sensitive chemical groups causing different potential response as building blocks, fabricated LbL capsules can be endowed with dual UV-responsive properties in specific layers. One block is responsible for fast capsule sealing and the other for longer term capsule swelling and rupture. Therefore, the multifunction of these capsules could be activated selectively when exposed to external UV light with suitable wavelengths. In this work, dual-functional complex microcapsules (PDADMAC/PAZO)4-(DAR/Nafion)2 containing both diazonium and aozbenzene groups were proposed as clear examples to realize a time-dependent UV response for successive encapsulation and release. Upon exposure to UV light, the DAR/Nafion layers underwent a rapid in situ cross-linking and hence to seal the capsule shells through diazonium-related photolysis. Then further gradual shell swelling was followed by realignment of azobenzene molecules in PDADMAC/PAZO layers. Fluorescent polymers were consequently studied as cargo substances. Results indicated that continuous UV light triggered rapid cargo encapsulation over minutes time scale and gradual release with continuous irradiation over hours.
Collapse
Affiliation(s)
- Qiangying Yi
- School of Engineering and Materials Science, Queen Mary, University of London , Mile End Road, London, E1 4NS United Kingdom
| | | |
Collapse
|
48
|
Kadir MA, Park JH, Lee J, Lee C, Lee SH, Lee SG, Paik HJ. Multivalent (Nitrilotriacetic Acid)-End-Functionalized Polystyrenes by ATRP and Their Self-Assembly. MACROMOL CHEM PHYS 2013. [DOI: 10.1002/macp.201300301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mohammad Abdul Kadir
- Department of Polymer Science & Engineering; Pusan National University; Busandaehak-ro 63 beon-gil Geumjeong-gu Busan 609-735 Republic of Korea
| | - Jin-Hong Park
- Department of Polymer Science & Engineering; Pusan National University; Busandaehak-ro 63 beon-gil Geumjeong-gu Busan 609-735 Republic of Korea
| | - Jiyeon Lee
- Department of Polymer Science & Engineering; Pusan National University; Busandaehak-ro 63 beon-gil Geumjeong-gu Busan 609-735 Republic of Korea
| | - Chaeyeon Lee
- Department of Polymer Science & Engineering; Pusan National University; Busandaehak-ro 63 beon-gil Geumjeong-gu Busan 609-735 Republic of Korea
| | - Sang Hee Lee
- Department of Chemistry; Kunsan National University; 1170 Daehangno Gunsan 573-701 Republic of Korea
| | - Sun-Gu Lee
- Department of Chemical Engineering; Pusan National University; Busandaehak-ro 63 beon-gil Geumjeong-gu Busan 609-735 Republic of Korea
| | - Hyun-jong Paik
- Department of Polymer Science & Engineering; Pusan National University; Busandaehak-ro 63 beon-gil Geumjeong-gu Busan 609-735 Republic of Korea
| |
Collapse
|
49
|
Blasco E, Serrano JL, Piñol M, Oriol L. Light Responsive Vesicles Based on Linear–Dendritic Block Copolymers Using Azobenzene–Aliphatic Codendrons. Macromolecules 2013. [DOI: 10.1021/ma4009725] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Eva Blasco
- Departamento
de Química
Orgánica, Facultad de Ciencias - Instituto de Ciencia de Materiales
de Aragón (ICMA), Universidad de Zaragoza-CSIC, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - José Luis Serrano
- Departamento de Química
Orgánica, Facultad de Ciencias, Instituto de Nanociencia de
Aragón (INA), Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Milagros Piñol
- Departamento
de Química
Orgánica, Facultad de Ciencias - Instituto de Ciencia de Materiales
de Aragón (ICMA), Universidad de Zaragoza-CSIC, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Luis Oriol
- Departamento
de Química
Orgánica, Facultad de Ciencias - Instituto de Ciencia de Materiales
de Aragón (ICMA), Universidad de Zaragoza-CSIC, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
50
|
Chang HY, Lin YL, Sheng YJ, Tsao HK. Structural Characteristics and Fusion Pathways of Onion-Like Multilayered Polymersome Formed by Amphiphilic Comb-Like Graft Copolymers. Macromolecules 2013. [DOI: 10.1021/ma400667n] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Hung-Yu Chang
- Department
of Chemical Engineering, National Taiwan University, Taipei, Taiwan 106, R.O.C
| | - Yung-Lung Lin
- Department
of Chemical Engineering, National Taiwan University, Taipei, Taiwan 106, R.O.C
| | - Yu-Jane Sheng
- Department
of Chemical Engineering, National Taiwan University, Taipei, Taiwan 106, R.O.C
| | - Heng-Kwong Tsao
- Department of Chemical and Materials Engineering, Department
of Physics, National Central University, Jhongli, Taiwan 320, R.O.C
| |
Collapse
|