1
|
Bourquin RA, Sorenson AE, Schaeffer PM. Fluorescent HIV-1 integrases for a suite of new user-friendly stability, nucleic acid binding and strand transfer activity assays. Int J Biol Macromol 2025; 309:142859. [PMID: 40216138 DOI: 10.1016/j.ijbiomac.2025.142859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/26/2025] [Accepted: 04/03/2025] [Indexed: 04/15/2025]
Abstract
Human immunodeficiency virus (HIV) infects CD4+ T-cells, causing acquired immunodeficiency syndrome. Despite advances in antiretroviral therapy, drug resistance remains a critical issue. HIV integrase is a key therapeutic target. Resistance to integrase strand transfer inhibitors requires development of new drugs with distinct mechanisms. Integrases tethered with GFP (IN-GFP) and mCherry (IN-mCherry) were evaluated for the development of a comprehensive suite of user-friendly assays. A new fluorescent protein-based stability assay (FP-Basta) effectively assessed protein thermal stability, revealing aggregation midpoints of 45.0 °C for IN-GFP and 45.4 °C for IN-mCherry. FP-Basta showed that IN-mCherry was stabilized by a target DNA and viral LTR, confirming protein-DNA interactions. A new qPCR-based integrase activity assay demonstrated robust detection of strand transfer activity, with a ∼21,500-fold sensitivity over background. Manganese ions were essential, enhancing integrase activity 56-fold compared to magnesium ions, while Zn2+ impaired functionality. The integrase activity assay can distinguish 3'-processing and strand transfer activities and was validated for inhibitor screening. The combination of FP-Basta and qPCR-based integrase activity assay provides a comprehensive, cost-effective platform for evaluating IN function and inhibitor efficacy. These tools, leveraging GFP- and mCherry-tagged IN, offer potential for future high-throughput applications in HIV drug discovery and the development of therapies addressing resistance challenges.
Collapse
Affiliation(s)
- Rebecca A Bourquin
- Biomedical Sciences and Molecular Biology, College of Medicine and Dentistry, James Cook University, Douglas, QLD 4811, Australia
| | - Alanna E Sorenson
- Biomedical Sciences and Molecular Biology, College of Medicine and Dentistry, James Cook University, Douglas, QLD 4811, Australia
| | - Patrick M Schaeffer
- Biomedical Sciences and Molecular Biology, College of Medicine and Dentistry, James Cook University, Douglas, QLD 4811, Australia.
| |
Collapse
|
2
|
Domain A, Bao X, Rodriguez J, Bonne D. Enantioselective Synthesis of Benzodihydrofurans Bearing Axial and Central Stereogenic Elements. Chemistry 2024; 30:e202403374. [PMID: 39329420 DOI: 10.1002/chem.202403374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 09/28/2024]
Abstract
The enantioselective synthesis of chiral compounds containing multiple stereogenic elements via a single catalytic step is a challenging process. In the presence of α-chloronitrostyrenes and a chiral squaramide catalyst, C-C or C-N pro-axially chiral 2-naphthol substrates, featuring low barriers to enantiomerization, underwent a remote diastereo- and enantioselective domino Michael/O-alkylation. It provided the desired benzodihydrofurans bearing two stereogenic carbon atoms and a configurationally stable C-C or a C-N bond, thanks to a high increase of the barrier to rotation upon dihydrofurannulation.
Collapse
Affiliation(s)
- Antoine Domain
- Aix Marseille Univ, CNRS, Centrale Med, iSm2, Marseille, France
| | - Xiaoze Bao
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Jean Rodriguez
- Aix Marseille Univ, CNRS, Centrale Med, iSm2, Marseille, France
| | - Damien Bonne
- Aix Marseille Univ, CNRS, Centrale Med, iSm2, Marseille, France
| |
Collapse
|
3
|
Shalbi F, Ali AR. A mini-review on integrase inhibitors: The cornerstone of next-generation HIV treatment. Eur J Med Chem 2024; 279:116900. [PMID: 39332384 DOI: 10.1016/j.ejmech.2024.116900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Integrase inhibitors represent one of the most remarkable and effective advances in the treatment of HIV-1 infection. Their lack of human cellular equivalence has established integrase as a unique and ideal target for HIV-1 treatment. Over the last two decades, a variety of drugs and small molecule inhibitors have been developed to control or treat HIV infection. Many of these FDA-approved drugs are considered first-line options for AIDS patients. Unfortunately, resistance to these drugs has dictated the development of novel and more efficacious antiretroviral drugs. In this review article, we illustrate the key classes of antiretroviral integrase inhibitors available. We provide a comprehensive analysis of recent advancements in the development of integrase inhibitors, focusing on novel compounds and their distinct mechanisms of action. Our literature review highlights emerging allosteric integrase inhibitors that offer improved efficacy, resistance profiles, and pharmacokinetics. By integrating these recent advancements and clinical insights, this review aims to provide a thorough and updated understanding of integrase inhibitors, emphasizing their evolving role in HIV treatment.
Collapse
Affiliation(s)
- Fathi Shalbi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed R Ali
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
4
|
Wang H, Peng XQ, Yang Y, Geng ZX, Sun BL, Zhou L, Chen J. Construction of Axially Chiral 4-Aminoquinolines by Cycloaddition and Central-to-Axial Chirality Conversion. Org Lett 2024. [PMID: 39540238 DOI: 10.1021/acs.orglett.4c03827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A two-step strategy has been established for the enantioselective synthesis of 4-aminoquinolines possessing axial chirality. This approach involves a chiral phosphoric acid-catalyzed cycloaddition, followed by a DDQ oxidation step. The method offers efficient access to a variety of 1,1'-biaryl-2,2'-amino alcohol derivatives in excellent yields and enantioselectivities (up to 98% yield and 93% ee). Furthermore, the synthetic transformation of the products was also investigated.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Xian-Qing Peng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Yang Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Ze-Xiang Geng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Bo-Lin Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Ling Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Jie Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
5
|
Dinh T, Tber Z, Rey JS, Mengshetti S, Annamalai AS, Haney R, Briganti L, Amblard F, Fuchs JR, Cherepanov P, Kim K, Schinazi RF, Perilla JR, Kim B, Kvaratskhelia M. The structural and mechanistic bases for the viral resistance to allosteric HIV-1 integrase inhibitor pirmitegravir. mBio 2024; 15:e0046524. [PMID: 39404354 PMCID: PMC11559089 DOI: 10.1128/mbio.00465-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/16/2024] [Indexed: 10/23/2024] Open
Abstract
Allosteric HIV-1 integrase (IN) inhibitors (ALLINIs) are investigational antiretroviral agents that potently impair virion maturation by inducing hyper-multimerization of IN and inhibiting its interaction with viral genomic RNA. The pyrrolopyridine-based ALLINI pirmitegravir (PIR) has recently advanced into phase 2a clinical trials. Previous cell culture-based viral breakthrough assays identified the HIV-1(Y99H/A128T IN) variant that confers substantial resistance to this inhibitor. Here, we have elucidated the unexpected mechanism of viral resistance to PIR. Although both Tyr99 and Ala128 are positioned within the inhibitor binding V-shaped cavity at the IN catalytic core domain (CCD) dimer interface, the Y99H/A128T IN mutations did not substantially affect the direct binding of PIR to the CCD dimer or functional oligomerization of full-length IN. Instead, the drug-resistant mutations introduced a steric hindrance at the inhibitor-mediated interface between CCD and C-terminal domain (CTD) and compromised CTD binding to the CCDY99H/A128T + PIR complex. Consequently, full-length INY99H/A128T was substantially less susceptible to the PIR-induced hyper-multimerization than the WT protein, and HIV-1(Y99H/A128T IN) conferred >150-fold resistance to the inhibitor compared with the WT virus. By rationally modifying PIR, we have developed its analog EKC110, which readily induced hyper-multimerization of INY99H/A128T in vitro and was ~14-fold more potent against HIV-1(Y99H/A128T IN) than the parent inhibitor. These findings suggest a path for developing improved PIR chemotypes with a higher barrier to resistance for their potential clinical use.IMPORTANCEAntiretroviral therapies save the lives of millions of people living with HIV (PLWH). However, the evolution of multi-drug-resistant viral phenotypes is a major clinical problem, and there are limited or no treatment options for heavily treatment-experienced PLWH. Allosteric HIV-1 integrase inhibitors (ALLINIs) are a novel class of antiretroviral compounds that work by a unique mechanism of binding to the non-catalytic site on the viral protein and inducing aberrant integrase multimerization. Accordingly, ALLINIs potently inhibit both wild-type HIV-1 and all drug-resistant viral phenotypes that have so far emerged against currently used therapies. Pirmitegravir, a highly potent and safe investigational ALLINI, is currently advancing through clinical trials. Here, we have elucidated the structural and mechanistic bases behind the emergence of HIV-1 integrase mutations in infected cells that confer resistance to pirmitegravir. In turn, our findings allowed us to rationally develop an improved ALLINI with substantially enhanced potency against the pirmitegravir-resistant virus.
Collapse
Affiliation(s)
- Tung Dinh
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Zahira Tber
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Juan S. Rey
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Seema Mengshetti
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Arun S. Annamalai
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Reed Haney
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lorenzo Briganti
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Franck Amblard
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - James R. Fuchs
- College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Peter Cherepanov
- Chromatin Structure & Mobile DNA Laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - Raymond F. Schinazi
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Juan R. Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Baek Kim
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Mamuka Kvaratskhelia
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
6
|
Gaucherand A, Yen-Pon E, Domain A, Bourhis A, Rodriguez J, Bonne D. Enantioselective synthesis of molecules with multiple stereogenic elements. Chem Soc Rev 2024; 53:11165-11206. [PMID: 39344998 DOI: 10.1039/d3cs00238a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
This review explores the fascinating world of molecules featuring multiple stereogenic elements, unraveling the different strategies designed over the years for their enantioselective synthesis. Specifically, (dynamic) kinetic resolutions, desymmetrisations and simultaneous installation of stereogenic elements exploiting either metal- or organo-catalysis are the principal approaches to efficiently create and control the three-dimensional shapes of these attractive molecules. Although most molecules presented in this review possess a stereogenic carbon atom in combination with a stereogenic axis, other combinations with helices or planes of chirality have started to emerge, as well as molecules displaying more than two different stereogenic elements.
Collapse
Affiliation(s)
| | | | - Antoine Domain
- Aix Marseille Univ, CNRS, Centrale Med, Marseille, ISM2, France
| | - Alix Bourhis
- Aix Marseille Univ, CNRS, Centrale Med, Marseille, ISM2, France
| | - Jean Rodriguez
- Aix Marseille Univ, CNRS, Centrale Med, Marseille, ISM2, France
| | - Damien Bonne
- Aix Marseille Univ, CNRS, Centrale Med, Marseille, ISM2, France
| |
Collapse
|
7
|
Adachi K, Manabe T, Yamasaki T, Suma A, Orita T, Furuzono T, Adachi T, Ohata Y, Akiyama Y, Miyazaki S. Design and synthesis of novel and potent allosteric HIV-1 integrase inhibitors with a spirocyclic moiety. Bioorg Med Chem Lett 2024; 110:129864. [PMID: 38942126 DOI: 10.1016/j.bmcl.2024.129864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
We report herein the design and discovery of novel allosteric HIV-1 integrase inhibitors. Our design concept utilized the spirocyclic moiety to restrain the flexibility of the conformation of the lipophilic part of the inhibitor. Compound 5 showed antiviral activity by binding to the nuclear lens epithelium-derived growth factor (LEDGF/p75) binding site of HIV-1 integrase (IN). The introduction of a lipophilic amide substituent into the central benzene ring resulted in a significant increase in antiviral activity against HIV-1 WT X-ray crystallography of compound 15 in complex with the integrase revealed the presence of a hydrogen bond between the oxygen atom of the amide of compound 15 and the hydroxyl group of the T125 side chain. Chiral compound 17 showed high antiviral activity, good bioavailability, and low clearance in rats.
Collapse
Affiliation(s)
- Kaoru Adachi
- Chemical Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan.
| | - Tomoyuki Manabe
- Innovation to Implementation Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Takayuki Yamasaki
- Department of Research Planning, Preclinical, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Akira Suma
- Innovation to Implementation Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Takuya Orita
- Chemical Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Tomoko Furuzono
- Chemical Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Tsuyoshi Adachi
- Chemical Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Yoshitsugu Ohata
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Yoshiyuki Akiyama
- DMPK Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Susumu Miyazaki
- Chemical Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| |
Collapse
|
8
|
McGraw A, Hillmer G, Medehincu SM, Hikichi Y, Gagliardi S, Narayan K, Tibebe H, Marquez D, Mei Bose L, Keating A, Izumi C, Peese K, Joshi S, Krystal M, DeCicco-Skinner KL, Freed EO, Sardo L, Izumi T. Exploring HIV-1 Maturation: A New Frontier in Antiviral Development. Viruses 2024; 16:1423. [PMID: 39339899 PMCID: PMC11437483 DOI: 10.3390/v16091423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
HIV-1 virion maturation is an essential step in the viral replication cycle to produce infectious virus particles. Gag and Gag-Pol polyproteins are assembled at the plasma membrane of the virus-producer cells and bud from it to the extracellular compartment. The newly released progeny virions are initially immature and noninfectious. However, once the Gag polyprotein is cleaved by the viral protease in progeny virions, the mature capsid proteins assemble to form the fullerene core. This core, harboring two copies of viral genomic RNA, transforms the virion morphology into infectious virus particles. This morphological transformation is referred to as maturation. Virion maturation influences the distribution of the Env glycoprotein on the virion surface and induces conformational changes necessary for the subsequent interaction with the CD4 receptor. Several host factors, including proteins like cyclophilin A, metabolites such as IP6, and lipid rafts containing sphingomyelins, have been demonstrated to have an influence on virion maturation. This review article delves into the processes of virus maturation and Env glycoprotein recruitment, with an emphasis on the role of host cell factors and environmental conditions. Additionally, we discuss microscopic technologies for assessing virion maturation and the development of current antivirals specifically targeting this critical step in viral replication, offering long-acting therapeutic options.
Collapse
Affiliation(s)
- Aidan McGraw
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Grace Hillmer
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Stefania M. Medehincu
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Yuta Hikichi
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MS 21702, USA; (Y.H.); (E.O.F.)
| | - Sophia Gagliardi
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Kedhar Narayan
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Hasset Tibebe
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Dacia Marquez
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Lilia Mei Bose
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Adleigh Keating
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Coco Izumi
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Kevin Peese
- ViiV Healthcare, 36 E. Industrial Road, Branford, CT 06405, USA; (K.P.) (S.J.); (M.K.)
| | - Samit Joshi
- ViiV Healthcare, 36 E. Industrial Road, Branford, CT 06405, USA; (K.P.) (S.J.); (M.K.)
| | - Mark Krystal
- ViiV Healthcare, 36 E. Industrial Road, Branford, CT 06405, USA; (K.P.) (S.J.); (M.K.)
| | - Kathleen L. DeCicco-Skinner
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Eric O. Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MS 21702, USA; (Y.H.); (E.O.F.)
| | - Luca Sardo
- ViiV Healthcare, 36 E. Industrial Road, Branford, CT 06405, USA; (K.P.) (S.J.); (M.K.)
| | - Taisuke Izumi
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
- District of Columbia Center for AIDS Research, Washington, DC 20052, USA
| |
Collapse
|
9
|
LaPlante SR, Coric P, Bouaziz S, França TCC. NMR spectroscopy can help accelerate antiviral drug discovery programs. Microbes Infect 2024; 26:105297. [PMID: 38199267 DOI: 10.1016/j.micinf.2024.105297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/21/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Small molecule drugs have an important role to play in combating viral infections, and biophysics support has been central for contributing to the discovery and design of direct acting antivirals. Perhaps one of the most successful biophysical tools for this purpose is NMR spectroscopy when utilized strategically and pragmatically within team workflows and timelines. This report describes some clear examples of how NMR applications contributed to the design of antivirals when combined with medicinal chemistry, biochemistry, X-ray crystallography and computational chemistry. Overall, these multidisciplinary approaches allowed teams to reveal and expose compound physical properties from which design ideas were spawned and tested to achieve the desired successes. Examples are discussed for the discovery of antivirals that target HCV, HIV and SARS-CoV-2.
Collapse
Affiliation(s)
- Steven R LaPlante
- Pasteur Network, INRS-Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, Québec, H7V 1B7, Canada; NMX Research and Solutions, Inc., 500 Boulevard Cartier Ouest, Laval, Québec, H7V 5B7, Canada; Université Paris Cité, CNRS, CiTCoM, F-75006, Paris, France.
| | - Pascale Coric
- Université Paris Cité, CNRS, CiTCoM, F-75006, Paris, France
| | - Serge Bouaziz
- Université Paris Cité, CNRS, CiTCoM, F-75006, Paris, France
| | - Tanos C C França
- Pasteur Network, INRS-Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, Québec, H7V 1B7, Canada
| |
Collapse
|
10
|
Grandgenett DP, Engelman AN. Brief Histories of Retroviral Integration Research and Associated International Conferences. Viruses 2024; 16:604. [PMID: 38675945 PMCID: PMC11054761 DOI: 10.3390/v16040604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The field of retroviral integration research has a long history that started with the provirus hypothesis and subsequent discoveries of the retroviral reverse transcriptase and integrase enzymes. Because both enzymes are essential for retroviral replication, they became valued targets in the effort to discover effective compounds to inhibit HIV-1 replication. In 2007, the first integrase strand transfer inhibitor was licensed for clinical use, and subsequently approved second-generation integrase inhibitors are now commonly co-formulated with reverse transcriptase inhibitors to treat people living with HIV. International meetings specifically focused on integrase and retroviral integration research first convened in 1995, and this paper is part of the Viruses Special Issue on the 7th International Conference on Retroviral Integration, which was held in Boulder Colorado in the summer of 2023. Herein, we overview key historical developments in the field, especially as they pertain to the development of the strand transfer inhibitor drug class. Starting from the mid-1990s, research advancements are presented through the lens of the international conferences. Our overview highlights the impact that regularly scheduled, subject-specific international meetings can have on community-building and, as a result, on field-specific collaborations and scientific advancements.
Collapse
Affiliation(s)
- Duane P. Grandgenett
- Department of Molecular Microbiology and Immunology, School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
| | - Alan N. Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
11
|
Azzman N, Gill MSA, Hassan SS, Christ F, Debyser Z, Mohamed WAS, Ahemad N. Pharmacological advances in anti-retroviral therapy for human immunodeficiency virus-1 infection: A comprehensive review. Rev Med Virol 2024; 34:e2529. [PMID: 38520650 DOI: 10.1002/rmv.2529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/23/2024] [Accepted: 03/09/2024] [Indexed: 03/25/2024]
Abstract
The discovery of anti-retroviral (ARV) drugs over the past 36 years has introduced various classes, including nucleoside/nucleotide reverse transcriptase inhibitors, non-nucleoside reverse transcriptase inhibitors, protease inhibitor, fusion, and integrase strand transfer inhibitors inhibitors. The introduction of combined highly active anti-retroviral therapies in 1996 was later proven to combat further ARV drug resistance along with enhancing human immunodeficiency virus (HIV) suppression. As though the development of ARV therapies was continuously expanding, the variation of action caused by ARV drugs, along with its current updates, was not comprehensively discussed, particularly for HIV-1 infection. Thus, a range of HIV-1 ARV medications is covered in this review, including new developments in ARV therapy based on the drug's mechanism of action, the challenges related to HIV-1, and the need for combination therapy. Optimistically, this article will consolidate the overall updates of HIV-1 ARV treatments and conclude the significance of HIV-1-related pharmacotherapy research to combat the global threat of HIV infection.
Collapse
Affiliation(s)
- Nursyuhada Azzman
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
- Faculty of Pharmacy, Universiti Teknologi MARA, Cawangan Pulau Pinang Kampus Bertam, Permatang Pauh, Pulau Pinang, Malaysia
| | - Muhammad Shoaib Ali Gill
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Sharifah Syed Hassan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Frauke Christ
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Wan Ahmad Syazani Mohamed
- Nutrition Unit, Nutrition, Metabolism and Cardiovascular Research Centre (NMCRC), Level 3, Block C, Institute for Medical Research (IMR), National Institutes of Health (NIH) Complex, Ministry of Health Malaysia (MOH), Shah Alam, Selangor, Malaysia
| | - Nafees Ahemad
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
12
|
Sun J, Kessl JJ. Optimizing the Multimerization Properties of Quinoline-Based Allosteric HIV-1 Integrase Inhibitors. Viruses 2024; 16:200. [PMID: 38399977 PMCID: PMC10892445 DOI: 10.3390/v16020200] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Allosteric HIV-1 Integrase (IN) Inhibitors or ALLINIs bind at the dimer interface of the IN, away from the enzymatic catalytic site, and disable viral replication by inducing over-multimerization of IN. Interestingly, these inhibitors are capable of impacting both the early and late stages of viral replication. To better understand the important binding features of multi-substituted quinoline-based ALLINIs, we have surveyed published studies on IN multimerization and antiviral properties of various substituted quinolines at the 4, 6, 7, and 8 positions. Here we show how the efficacy of these inhibitors can be modulated by the nature of the substitutions at those positions. These features not only improve the overall antiviral potencies of these compounds but also significantly shift the selectivity toward the viral maturation stage. Thus, to fully maximize the potency of ALLINIs, the interactions between the inhibitor and multiple IN subunits need to be simultaneously optimized.
Collapse
Affiliation(s)
- Jian Sun
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Jacques J. Kessl
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| |
Collapse
|
13
|
Dinh T, Tber Z, Rey JS, Mengshetti S, Annamalai AS, Haney R, Briganti L, Amblard F, Fuchs JR, Cherepanov P, Kim K, Schinazi RF, Perilla JR, Kim B, Kvaratskhelia M. The structural and mechanistic bases for the viral resistance to allosteric HIV-1 integrase inhibitor pirmitegravir. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577387. [PMID: 38328097 PMCID: PMC10849636 DOI: 10.1101/2024.01.26.577387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Allosteric HIV-1 integrase (IN) inhibitors (ALLINIs) are investigational antiretroviral agents which potently impair virion maturation by inducing hyper-multimerization of IN and inhibiting its interaction with viral genomic RNA. The pyrrolopyridine-based ALLINI pirmitegravir (PIR) has recently advanced into Phase 2a clinical trials. Previous cell culture based viral breakthrough assays identified the HIV-1(Y99H/A128T IN) variant that confers substantial resistance to this inhibitor. Here, we have elucidated the unexpected mechanism of viral resistance to PIR. While both Tyr99 and Ala128 are positioned within the inhibitor binding V-shaped cavity at the IN catalytic core domain (CCD) dimer interface, the Y99H/A128T IN mutations did not substantially affect direct binding of PIR to the CCD dimer or functional oligomerization of full-length IN. Instead, the drug-resistant mutations introduced a steric hindrance at the inhibitor mediated interface between CCD and C-terminal domain (CTD) and compromised CTD binding to the CCDY99H/A128T + PIR complex. Consequently, full-length INY99H/A128T was substantially less susceptible to the PIR induced hyper-multimerization than the WT protein, and HIV-1(Y99H/A128T IN) conferred >150-fold resistance to the inhibitor compared to the WT virus. By rationally modifying PIR we have developed its analog EKC110, which readily induced hyper-multimerization of INY99H/A128T in vitro and was ~14-fold more potent against HIV-1(Y99H/A128T IN) than the parent inhibitor. These findings suggest a path for developing improved PIR chemotypes with a higher barrier to resistance for their potential clinical use.
Collapse
Affiliation(s)
- Tung Dinh
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Zahira Tber
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Juan S Rey
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Seema Mengshetti
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Arun S Annamalai
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Reed Haney
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lorenzo Briganti
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Franck Amblard
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - James R Fuchs
- College of Pharmacy, The Ohio State University, Columbus, Ohio, United States
| | - Peter Cherepanov
- Chromatin Structure & Mobile DNA Laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - Raymond F Schinazi
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Juan R Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Baek Kim
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Mamuka Kvaratskhelia
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
14
|
Yamanomoto K, Yamamoto K, Yoshida S, Sato S, Akiyama T. Enantioselective synthesis of 3-( N-indolyl)quinolines containing axial and central chiralities. Chem Commun (Camb) 2024; 60:582-585. [PMID: 38095093 DOI: 10.1039/d3cc05142k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Quinoline and indole are important core structures in biologically active compounds and materials. Atropisomeric biaryls consisting of quinoline and indole are a unique class of axially chiral molecules. We report herein enantioselective synthesis of 3-(N-indolyl)quinolines having both C-N axial chirality and carbon central chirality by a photoredox Minisci-type addition reaction catalyzed by a chiral lithium phosphate/Ir-photoredox complex. The catalytic system enabled access to a unique class of 3-(N-indolyl)quinolines with high chemo-, regio-, and stereoselectivities in good yields through the appropriate choice of an acid catalyst and a photocatalyst. This is the first example of the synthesis of 3-(N-indolyl)quinoline atropisomers in a highly enantioselective manner.
Collapse
Affiliation(s)
- Ken Yamanomoto
- Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan.
- Department of Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Kota Yamamoto
- Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan.
| | - Satoshi Yoshida
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Sota Sato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Division of Advanced Molecular Science, Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Takahiko Akiyama
- Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan.
| |
Collapse
|
15
|
Carmona JA, Rodríguez-Salamanca P, Fernández R, Lassaletta JM, Hornillos V. Dynamic Kinetic Resolution of 2-(Quinolin-8-yl)Benzaldehydes: Atroposelective Iridium-Catalyzed Transfer Hydrogenative Allylation. Angew Chem Int Ed Engl 2023; 62:e202306981. [PMID: 37389578 DOI: 10.1002/anie.202306981] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/01/2023]
Abstract
An atroposelective Ir-catalyzed dynamic kinetic resolution (DKR) of 2-(quinolin-8-yl)benzaldehydes/1-naphthaldehydes by transfer hydrogenative coupling of allyl acetate is disclosed. The allylation reaction takes place with simultaneous installation of central and axial chirality, reaching high diastereoselectivities and excellent enantiomeric excesses when ortho-cyclometalated iridium-DM-BINAP is used as the catalyst. The racemization of the substrates occurs through a designed transient Lewis acid-base interaction between the quinoline nitrogen atom and the aldehyde carbonyl group.
Collapse
Affiliation(s)
- José A Carmona
- Instituto Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Américo Vespucio 49, 41092, Sevilla, Spain
| | - Patricia Rodríguez-Salamanca
- Instituto Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Américo Vespucio 49, 41092, Sevilla, Spain
| | - Rosario Fernández
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Prof. García González 1, 41012, Sevilla, Spain
| | - José M Lassaletta
- Instituto Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Américo Vespucio 49, 41092, Sevilla, Spain
| | - Valentín Hornillos
- Instituto Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Américo Vespucio 49, 41092, Sevilla, Spain
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Prof. García González 1, 41012, Sevilla, Spain
| |
Collapse
|
16
|
Bonnard D, Le Rouzic E, Singer MR, Yu Z, Le Strat F, Batisse C, Batisse J, Amadori C, Chasset S, Pye VE, Emiliani S, Ledoussal B, Ruff M, Moreau F, Cherepanov P, Benarous R. Biological and Structural Analyses of New Potent Allosteric Inhibitors of HIV-1 Integrase. Antimicrob Agents Chemother 2023; 67:e0046223. [PMID: 37310224 PMCID: PMC10353390 DOI: 10.1128/aac.00462-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/08/2023] [Indexed: 06/14/2023] Open
Abstract
HIV-1 integrase-LEDGF allosteric inhibitors (INLAIs) share the binding site on the viral protein with the host factor LEDGF/p75. These small molecules act as molecular glues promoting hyper-multimerization of HIV-1 IN protein to severely perturb maturation of viral particles. Herein, we describe a new series of INLAIs based on a benzene scaffold that display antiviral activity in the single digit nanomolar range. Akin to other compounds of this class, the INLAIs predominantly inhibit the late stages of HIV-1 replication. A series of high-resolution crystal structures revealed how these small molecules engage the catalytic core and the C-terminal domains of HIV-1 IN. No antagonism was observed between our lead INLAI compound BDM-2 and a panel of 16 clinical antiretrovirals. Moreover, we show that compounds retained high antiviral activity against HIV-1 variants resistant to IN strand transfer inhibitors and other classes of antiretroviral drugs. The virologic profile of BDM-2 and the recently completed single ascending dose phase I trial (ClinicalTrials.gov identifier: NCT03634085) warrant further clinical investigation for use in combination with other antiretroviral drugs. Moreover, our results suggest routes for further improvement of this emerging drug class.
Collapse
Affiliation(s)
| | | | - Matthew R. Singer
- Chromatin Structure and Mobile DNA Laboratory, Francis Crick Institute, London, United Kingdom
| | - Zhe Yu
- Chromatin Structure and Mobile DNA Laboratory, Francis Crick Institute, London, United Kingdom
| | | | - Claire Batisse
- IGBMC, INSERM, CNRS, Université de Strasbourg, Illkirch, France
| | - Julien Batisse
- IGBMC, INSERM, CNRS, Université de Strasbourg, Illkirch, France
| | - Céline Amadori
- Biodim, Romainville, France
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | | | - Valerie E. Pye
- Chromatin Structure and Mobile DNA Laboratory, Francis Crick Institute, London, United Kingdom
| | | | | | - Marc Ruff
- IGBMC, INSERM, CNRS, Université de Strasbourg, Illkirch, France
| | | | - Peter Cherepanov
- Chromatin Structure and Mobile DNA Laboratory, Francis Crick Institute, London, United Kingdom
- Department of Infectious Disease, St. Mary's Campus, Imperial College London, London, United Kingdom
| | | |
Collapse
|
17
|
Hu S, Chen J, Cao JX, Zhang SS, Gu SX, Chen FE. Quinolines and isoquinolines as HIV-1 inhibitors: Chemical structures, action targets, and biological activities. Bioorg Chem 2023; 136:106549. [PMID: 37119785 DOI: 10.1016/j.bioorg.2023.106549] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/09/2023] [Accepted: 04/13/2023] [Indexed: 05/01/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1), a lentivirus that causes acquired immunodeficiency syndrome (AIDS), poses a serious threat to global public health. Since the advent of the first drug zidovudine, a number of anti-HIV agents acting on different targets have been approved to combat HIV/AIDS. Among the abundant heterocyclic families, quinoline and isoquinoline moieties are recognized as promising scaffolds for HIV inhibition. This review intends to highlight the advances in diverse chemical structures and abundant biological activity of quinolines and isoquinolines as anti-HIV agents acting on different targets, which aims to provide useful references and inspirations to design and develop novel HIV inhibitors for medicinal chemists.
Collapse
Affiliation(s)
- Sha Hu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jiong Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jin-Xu Cao
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China; Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Shuang-Shuang Zhang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China; Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Shuang-Xi Gu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China; Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Fen-Er Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China; Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China; Department of Chemistry, Fudan University, Shanghai 200433, China.
| |
Collapse
|
18
|
Eilers G, Gupta K, Allen A, Montermoso S, Murali H, Sharp R, Hwang Y, Bushman FD, Van Duyne G. Structure of a HIV-1 IN-Allosteric inhibitor complex at 2.93 Å resolution: Routes to inhibitor optimization. PLoS Pathog 2023; 19:e1011097. [PMID: 36867659 PMCID: PMC10016701 DOI: 10.1371/journal.ppat.1011097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 03/15/2023] [Accepted: 01/03/2023] [Indexed: 03/04/2023] Open
Abstract
HIV integrase (IN) inserts viral DNA into the host genome and is the target of the strand transfer inhibitors (STIs), a class of small molecules currently in clinical use. Another potent class of antivirals is the allosteric inhibitors of integrase, or ALLINIs. ALLINIs promote IN aggregation by stabilizing an interaction between the catalytic core domain (CCD) and carboxy-terminal domain (CTD) that undermines viral particle formation in late replication. Ongoing challenges with inhibitor potency, toxicity, and viral resistance motivate research to understand their mechanism. Here, we report a 2.93 Å X-ray crystal structure of the minimal ternary complex between CCD, CTD, and the ALLINI BI-224436. This structure reveals an asymmetric ternary complex with a prominent network of π-mediated interactions that suggest specific avenues for future ALLINI development and optimization.
Collapse
Affiliation(s)
- Grant Eilers
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kushol Gupta
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Audrey Allen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Saira Montermoso
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hemma Murali
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Robert Sharp
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Young Hwang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gregory Van Duyne
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
19
|
Goyal A, Kharkwal H, Piplani M, Singh Y, Murugesan S, Aggarwal A, Kumar P, Chander S. Spotlight on 4-substituted quinolines as potential anti-infective agents: Journey beyond chloroquine. Arch Pharm (Weinheim) 2023; 356:e2200361. [PMID: 36494101 DOI: 10.1002/ardp.202200361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022]
Abstract
Continued emerging resistance of pathogens against the clinically approved candidates and their associated limitations continuously demand newer agents having better potency with a more suited safety profile. Quinoline nuclei containing scaffolds of natural and synthetic origin have been documented for diverse types of pharmacological activities, and a number of drugs are clinically approved. In the present review, we unprecedentedly covered the biological potential of 4-substituted quinoline and elaborated a rationale for its special privilege to afford the significant number of approved clinical drugs, particularly against infectious pathogens. Compounds with 4-substituted quinoline are well documented for antimalarial activity, but in the last two decades, they have been extensively explored for activity against cancer, tuberculosis, and several other pathogens including viruses, bacteria, fungi, and other infectious pathogens. In the present study, the anti-infective spectrum of this scaffold is discussed against viruses, mycobacteria, malarial parasites, and fungal and bacterial strains, along with recent updates in this area, with special emphasis on the structure-activity relationship.
Collapse
Affiliation(s)
- Ankush Goyal
- School of Pharmacy, Maharaja Agrasen University, Solan, Himachal Pradesh, India
| | - Harsha Kharkwal
- Amity Institute of Phytochemistry & Phytomedicine, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Mona Piplani
- School of Pharmacy, Maharaja Agrasen University, Solan, Himachal Pradesh, India
| | - Yogendra Singh
- School of Pharmacy, Maharaja Agrasen University, Solan, Himachal Pradesh, India
| | | | - Amit Aggarwal
- School of Pharmacy, Maharaja Agrasen University, Solan, Himachal Pradesh, India
| | - Piyush Kumar
- Department of Chemistry, Indian Institute of Technology, Jammu, Jammu and Kashmir, India
| | - Subhash Chander
- Amity Institute of Phytochemistry & Phytomedicine, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| |
Collapse
|
20
|
Singer MR, Dinh T, Levintov L, Annamalai AS, Rey JS, Briganti L, Cook NJ, Pye VE, Taylor IA, Kim K, Engelman AN, Kim B, Perilla JR, Kvaratskhelia M, Cherepanov P. The Drug-Induced Interface That Drives HIV-1 Integrase Hypermultimerization and Loss of Function. mBio 2023; 14:e0356022. [PMID: 36744954 PMCID: PMC9973045 DOI: 10.1128/mbio.03560-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 02/07/2023] Open
Abstract
Allosteric HIV-1 integrase (IN) inhibitors (ALLINIs) are an emerging class of small molecules that disrupt viral maturation by inducing the aberrant multimerization of IN. Here, we present cocrystal structures of HIV-1 IN with two potent ALLINIs, namely, BI-D and the drug candidate Pirmitegravir. The structures reveal atomistic details of the ALLINI-induced interface between the HIV-1 IN catalytic core and carboxyl-terminal domains (CCD and CTD). Projecting from their principal binding pocket on the IN CCD dimer, the compounds act as molecular glue by engaging a triad of invariant HIV-1 IN CTD residues, namely, Tyr226, Trp235, and Lys266, to nucleate the CTD-CCD interaction. The drug-induced interface involves the CTD SH3-like fold and extends to the beginning of the IN carboxyl-terminal tail region. We show that mutations of HIV-1 IN CTD residues that participate in the interface with the CCD greatly reduce the IN-aggregation properties of Pirmitegravir. Our results explain the mechanism of the ALLINI-induced condensation of HIV-1 IN and provide a reliable template for the rational development of this series of antiretrovirals through the optimization of their key contacts with the viral target. IMPORTANCE Despite the remarkable success of combination antiretroviral therapy, HIV-1 remains among the major causes of human suffering and loss of life in poor and developing nations. To prevail in this drawn-out battle with the pandemic, it is essential to continue developing advanced antiviral agents to fight drug resistant HIV-1 variants. Allosteric integrase inhibitors (ALLINIs) are an emerging class of HIV-1 antagonists that are orthogonal to the current antiretroviral drugs. These small molecules act as highly specific molecular glue, which triggers the aggregation of HIV-1 integrase. In this work, we present high-resolution crystal structures that reveal the crucial interactions made by two potent ALLINIs, namely, BI-D and Pirmitegravir, with HIV-1 integrase. Our results explain the mechanism of drug action and will inform the development of this promising class of small molecules for future use in antiretroviral regimens.
Collapse
Affiliation(s)
- Matthew R. Singer
- Chromatin Structure & Mobile DNA Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Tung Dinh
- Division of Infectious Diseases, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Lev Levintov
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Arun S. Annamalai
- Division of Infectious Diseases, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Juan S. Rey
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Lorenzo Briganti
- Division of Infectious Diseases, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Nicola J. Cook
- Chromatin Structure & Mobile DNA Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Valerie E. Pye
- Chromatin Structure & Mobile DNA Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Ian A. Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - Alan N. Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Baek Kim
- Center for Drug Discovery, Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Juan R. Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Mamuka Kvaratskhelia
- Division of Infectious Diseases, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Peter Cherepanov
- Chromatin Structure & Mobile DNA Laboratory, The Francis Crick Institute, London, United Kingdom
- Department of Infectious Disease, St-Mary's Campus, Imperial College London, London, United Kingdom
| |
Collapse
|
21
|
Patamia V, Floresta G, Zagni C, Pistarà V, Punzo F, Rescifina A. 1,2-Dibenzoylhydrazine as a Multi-Inhibitor Compound: A Morphological and Docking Study. Int J Mol Sci 2023; 24:1425. [PMID: 36674938 PMCID: PMC9864281 DOI: 10.3390/ijms24021425] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/24/2022] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
In the framework of the multitarget inhibitor study, we report an in silico analysis of 1,2-dibenzoylhydrazine (DBH) with respect to three essential receptors such as the ecdysone receptor (EcR), urease, and HIV-integrase. Starting from a crystallographic structural study of accidentally harvested crystals of this compound, we performed docking studies to evaluate the inhibitory capacity of DBH toward three selected targets. A crystal morphology prediction was then performed. The results of our molecular modeling calculations indicate that DBH is an excellent candidate as a ligand to inhibit the activity of EcR receptors and urease. Docking studies also revealed the activity of DBH on the HIV integrase receptor, providing an excellent starting point for developing novel inhibitors using this molecule as a starting lead compound.
Collapse
Affiliation(s)
| | | | | | | | | | - Antonio Rescifina
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
22
|
Bobko MA, Elward JM, Naidu BN, Nieves-Quinones YE, Reiher CA, Su Q, Sun L, Woodard J, Xie S, Yang W, Yin Y. Expeditious Synthesis of a Potent Allosteric HIV-1 Integrase Inhibitor GSK3839919A. Org Process Res Dev 2023. [DOI: 10.1021/acs.oprd.2c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Mark A. Bobko
- Drug Substance Development, GSK, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Jennifer M. Elward
- Molecular Design, GSK, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | | | - Yexenia E. Nieves-Quinones
- Drug Substance Development, GSK, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Christopher A. Reiher
- Drug Substance Development, GSK, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Qiaogong Su
- Drug Substance Development, GSK, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Liang Sun
- Chemistry Service Unit, WuXi AppTec Co., Ltd., 168 Nanhai Road, Tianjin 300457, People’s Republic of China
| | - John Woodard
- Drug Substance Development, GSK, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Shiping Xie
- Drug Substance Development, GSK, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Wuxing Yang
- Chemistry Service Unit, WuXi AppTec Co., Ltd., 168 Nanhai Road, Tianjin 300457, People’s Republic of China
| | - Yunxing Yin
- Chemistry Service Unit, WuXi AppTec Co., Ltd., 168 Nanhai Road, Tianjin 300457, People’s Republic of China
| |
Collapse
|
23
|
Taoda Y, Sugiyama S, Seki T. New designs for HIV-1 integrase inhibitors: a patent review (2018-present). Expert Opin Ther Pat 2023; 33:51-66. [PMID: 36750766 DOI: 10.1080/13543776.2023.2178300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
INTRODUCTION Combination antiretroviral therapy (cART) has dramatically reduced morbidity and mortality of HIV-1-infected patients. Integrase strand transfer inhibitors (INSTIs) play an important role as a key drug in cART. The second-generation INSTIs are very potent, but due to the emergence of highly resistant viruses and the demand for more conveniently usable drugs, the development of 'third-generation' INSTIs and mechanistically different inhibitors is actively being pursued. AREAS COVERED This article reviews the patents (from 2018 to the present) for two classes of HIV-1 integrase inhibitors of INSTIs and integrase-LEDGF/p75 allosteric inhibitors (INLAIs). EXPERT OPINION Since the approval of the second-generation INSTI dolutegravir, the design of new INSTIs has been mostly focused on its scaffold, carbamoylpyridone (CAP). This CAP scaffold is used not only for HIV-1 INSTIs but also for drug discoveries targeting other viral enzymes. With the approval of cabotegravir as a regimen of long-acting injection in combination with rilpivirine, there is a growing need for longer-acting agents. INLAIs have been intensely studied by many groups but have yet to reach the market. However, INLAIs have recently been reported to also function as a latency promoting agent (LPA), indicating further development possibilities.
Collapse
Affiliation(s)
- Yoshiyuki Taoda
- Laboratory for Medicinal Chemistry Research, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd, Toyonaka-shi, Japan
| | - Shuichi Sugiyama
- Laboratory for Medicinal Chemistry Research, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd, Toyonaka-shi, Japan
| | - Takahiro Seki
- Laboratory for Medicinal Chemistry Research, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd, Toyonaka-shi, Japan
| |
Collapse
|
24
|
Implications of Fragment-Based Drug Discovery in Tuberculosis and HIV. Pharmaceuticals (Basel) 2022; 15:ph15111415. [PMID: 36422545 PMCID: PMC9692459 DOI: 10.3390/ph15111415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022] Open
Abstract
Tuberculosis (TB) remains a global health problem and the emergence of HIV has further worsened it. Long chemotherapy and the emergence of drug-resistance strains of Mycobacterium tuberculosis as well as HIV has aggravated the problem. This demands urgent the need to develop new anti-tuberculosis and antiretrovirals to treat TB and HIV. The lack of diversity in drugs designed using traditional approaches is a major disadvantage and limits the treatment options. Therefore, new technologies and approaches are required to solve the current issues and enhance the production of drugs. Interestingly, fragment-based drug discovery (FBDD) has gained an advantage over high-throughput screenings as FBDD has enabled rapid and efficient progress to develop potent small molecule compounds that specifically bind to the target. Several potent inhibitor compounds of various targets have been developed using FBDD approach and some of them are under progression to clinical trials. In this review, we emphasize some of the important targets of mycobacteria and HIV. We also discussed about the target-based druggable molecules that are identified using the FBDD approach, use of these druggable molecules to identify novel binding sites on the target and assays used to evaluate inhibitory activities of these identified druggable molecules on the biological activity of the targets.
Collapse
|
25
|
Allosteric Integrase Inhibitor Influences on HIV-1 Integration and Roles of LEDGF/p75 and HDGFL2 Host Factors. Viruses 2022; 14:v14091883. [PMID: 36146690 PMCID: PMC9502684 DOI: 10.3390/v14091883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/11/2022] [Accepted: 08/24/2022] [Indexed: 02/01/2023] Open
Abstract
Allosteric integrase (IN) inhibitors (ALLINIs), which are promising preclinical compounds that engage the lens epithelium-derived growth factor (LEDGF)/p75 binding site on IN, can inhibit different aspects of human immunodeficiency virus 1 (HIV-1) replication. During the late phase of replication, ALLINIs induce aberrant IN hyper-multimerization, the consequences of which disrupt IN binding to genomic RNA and virus particle morphogenesis. During the early phase of infection, ALLINIs can suppress HIV-1 integration into host genes, which is also observed in LEDGF/p75-depelted cells. Despite this similarity, the roles of LEDGF/p75 and its paralog hepatoma-derived growth factor like 2 (HDGFL2) in ALLINI-mediated integration retargeting are untested. Herein, we mapped integration sites in cells knocked out for LEDGF/p75, HDGFL2, or both factors, which revealed that these two proteins in large part account for ALLINI-mediated integration retargeting during the early phase of infection. We also determined that ALLINI-treated viruses are defective during the subsequent round of infection for integration into genes associated with speckle-associated domains, which are naturally highly targeted for HIV-1 integration. Class II IN mutant viruses with alterations distal from the LEDGF/p75 binding site moreover shared this integration retargeting phenotype. Altogether, our findings help to inform the molecular bases and consequences of ALLINI action.
Collapse
|
26
|
Parcella K, Patel M, Tu Y, Eastman K, Peese K, Gillis E, Belema M, Dicker IB, McAuliffe B, Ding B, Falk P, Simmermacher J, Parker DD, Sivaprakasam P, Khan JA, Kish K, Lewis H, Hanumegowda U, Jenkins S, Kadow JF, Krystal M, Meanwell NA, Naidu BN. Scaffold modifications to the 4-(4,4-dimethylpiperidinyl) 2,6-dimethylpyridinyl class of HIV-1 allosteric integrase inhibitors. Bioorg Med Chem 2022; 67:116833. [PMID: 35605346 DOI: 10.1016/j.bmc.2022.116833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022]
Abstract
Allosteric integrase inhibitors (ALLINIs) of HIV-1 may hold promise as a novel mechanism for HIV therapeutics and cure. Scaffold modifications to the 4-(4,4-dimethylpiperidinyl) 2,6-dimethylpyridinyl class of ALLINIs provided a series of potent compounds with differentiated 5/6 fused ring systems. Notably, inhibitors containing the 1,2,4-triazolopyridine and imidazopyridine core exhibited single digit nM antiviral potency and low to moderate clearance after intravenous (IV) dosing in rat pharmacokinetic (PK) studies. The 1,2,4-triazolopyridines showed a higher oral exposure when compared to the imidazopyridines. Further modifications to the C5 substituent of the 1,2,4-triazolopyridines resulted in a new lead compound, which had improved rat IV/PO PK compared to the former lead compound GSK3739936, while maintaining antiviral potency. Structure-activity relationships (SAR) and rat pharmacokinetic profiles of this series are discussed.
Collapse
Affiliation(s)
- Kyle Parcella
- ViiV Healthcare, 36 East Industrial Road, Branford, CT 06405, USA.
| | - Manoj Patel
- ViiV Healthcare, 36 East Industrial Road, Branford, CT 06405, USA
| | - Yong Tu
- Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, NJ 08543-4000, USA(1)
| | - Kyle Eastman
- Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, NJ 08543-4000, USA(1)
| | - Kevin Peese
- ViiV Healthcare, 36 East Industrial Road, Branford, CT 06405, USA
| | - Eric Gillis
- ViiV Healthcare, 36 East Industrial Road, Branford, CT 06405, USA
| | - Makonen Belema
- Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, NJ 08543-4000, USA(1)
| | - Ira B Dicker
- ViiV Healthcare, 36 East Industrial Road, Branford, CT 06405, USA
| | - Brian McAuliffe
- ViiV Healthcare, 36 East Industrial Road, Branford, CT 06405, USA
| | - Bo Ding
- ViiV Healthcare, 36 East Industrial Road, Branford, CT 06405, USA
| | - Paul Falk
- ViiV Healthcare, 36 East Industrial Road, Branford, CT 06405, USA
| | | | - Dawn D Parker
- ViiV Healthcare, 36 East Industrial Road, Branford, CT 06405, USA
| | - Prasanna Sivaprakasam
- Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, NJ 08543-4000, USA(1)
| | - Javed A Khan
- Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, NJ 08543-4000, USA(1)
| | - Kevin Kish
- Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, NJ 08543-4000, USA(1)
| | - Hal Lewis
- Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, NJ 08543-4000, USA(1)
| | | | - Susan Jenkins
- ViiV Healthcare, 36 East Industrial Road, Branford, CT 06405, USA
| | - John F Kadow
- ViiV Healthcare, 36 East Industrial Road, Branford, CT 06405, USA
| | - Mark Krystal
- ViiV Healthcare, 36 East Industrial Road, Branford, CT 06405, USA
| | - Nicholas A Meanwell
- Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, NJ 08543-4000, USA(1)
| | | |
Collapse
|
27
|
Multi-Substituted Quinolines as HIV-1 Integrase Allosteric Inhibitors. Viruses 2022; 14:v14071466. [PMID: 35891446 PMCID: PMC9324412 DOI: 10.3390/v14071466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 01/25/2023] Open
Abstract
Allosteric HIV-1 integrase (IN) inhibitors, or ALLINIs, are a new class of antiviral agents that bind at the dimer interface of the IN, away from the enzymatic catalytic site and block viral replication by triggering an aberrant multimerization of the viral enzyme. To further our understanding of the important binding features of multi-substituted quinoline-based ALLINIs, we have examined the IN multimerization and antiviral properties of substitution patterns at the 6 or 8 position. We found that the binding properties of these ALLINIs are negatively impacted by the presence of bulky substitutions at these positions. In addition, we have observed that the addition of bromine at either the 6 (6-bromo) or 8 (8-bromo) position conferred better antiviral properties. Finally, we found a significant loss of potency with the 6-bromo when tested with the ALLINI-resistant IN A128T mutant virus, while the 8-bromo analog retained full effectiveness.
Collapse
|
28
|
Taoda Y, Akiyama T, Tomita K, Fujiwara-Kitamura M, Tamura Y, Kawasuji T, Matsuoka E, Akihisa E, Seki T, Yoshinaga T. Discovery of tricyclic HIV-1 integrase-LEDGF/p75 allosteric inhibitors by intramolecular direct arylation reaction. Bioorg Med Chem Lett 2022; 64:128664. [PMID: 35272008 DOI: 10.1016/j.bmcl.2022.128664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 11/27/2022]
Abstract
We have been conducting exploratory research to develop human immunodeficiency virus type-1 (HIV-1) integrase-LEDGF/p75 allosteric inhibitors (INLAIs). Here, we report on a newly designed compound with a tricyclic scaffold that shows promise as an inhibitor. Various scaffolds were synthesized by intramolecular direct arylation reaction to fix the position of a lipophilic side chain required for antiviral activity. Among these, the compound having an N-mesyl dihydrophenanthridine ring showed the best antiviral activity. Compound 42i, prepared by side chain optimization of the C-4 and C-6 positions, exhibited high antiviral activity against wild-type (WT) and the T174I mutant (EC50 (WT) = 4.6 nM, EC50 (T174I) = 83 nM) with a good PK profile. Based on co-crystal structural analysis of compound 42i and WT HIV-1 IN CCD, we discuss the interaction important for high antiviral activity.
Collapse
Affiliation(s)
- Yoshiyuki Taoda
- Shionogi Pharmaceutical Research Center, Shionogi & Company, Limited, 1-1, Futabacho, 3-chome, Toyonaka 561-0825, Japan.
| | - Toshiyuki Akiyama
- Shionogi Pharmaceutical Research Center, Shionogi & Company, Limited, 1-1, Futabacho, 3-chome, Toyonaka 561-0825, Japan
| | - Kenji Tomita
- Shionogi Pharmaceutical Research Center, Shionogi & Company, Limited, 1-1, Futabacho, 3-chome, Toyonaka 561-0825, Japan
| | - Misato Fujiwara-Kitamura
- Shionogi Pharmaceutical Research Center, Shionogi & Company, Limited, 1-1, Futabacho, 3-chome, Toyonaka 561-0825, Japan
| | - Yoshinori Tamura
- Shionogi Pharmaceutical Research Center, Shionogi & Company, Limited, 1-1, Futabacho, 3-chome, Toyonaka 561-0825, Japan
| | - Takashi Kawasuji
- Shionogi Pharmaceutical Research Center, Shionogi & Company, Limited, 1-1, Futabacho, 3-chome, Toyonaka 561-0825, Japan
| | - Eriko Matsuoka
- Shionogi Pharmaceutical Research Center, Shionogi & Company, Limited, 1-1, Futabacho, 3-chome, Toyonaka 561-0825, Japan
| | - Erika Akihisa
- Shionogi Pharmaceutical Research Center, Shionogi & Company, Limited, 1-1, Futabacho, 3-chome, Toyonaka 561-0825, Japan
| | - Takahiro Seki
- Shionogi Pharmaceutical Research Center, Shionogi & Company, Limited, 1-1, Futabacho, 3-chome, Toyonaka 561-0825, Japan
| | - Tomokazu Yoshinaga
- Shionogi Pharmaceutical Research Center, Shionogi & Company, Limited, 1-1, Futabacho, 3-chome, Toyonaka 561-0825, Japan
| |
Collapse
|
29
|
Parcella K, Wang T, Eastman K, Zhang Z, Yin Z, Patel M, Tu Y, Zheng BZ, Walker MA, Saulnier MG, Frennesson D, Bowsher M, Gillis E, Peese K, Belema M, Cianci C, Dicker IB, McAuliffe B, Ding B, Falk P, Simmermacher J, Parker DD, Sivaprakasam P, Kish K, Lewis H, Hanumegowda U, Jenkins S, Kadow JF, Krystal M, Meanwell NA, Naidu BN. Discovery and Preclinical Profiling of GSK3839919, a Potent HIV-1 Allosteric Integrase Inhibitor. ACS Med Chem Lett 2022; 13:972-980. [DOI: 10.1021/acsmedchemlett.2c00115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/04/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Kyle Parcella
- ViiV Healthcare, 36 East Industrial Road, Branford, Connecticut 06405, United States
| | - Tao Wang
- Research and Early Development, Bristol Myers Squibb, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Kyle Eastman
- Research and Early Development, Bristol Myers Squibb, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Zhongxing Zhang
- Research and Early Development, Bristol Myers Squibb, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Zhiwei Yin
- Research and Early Development, Bristol Myers Squibb, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Manoj Patel
- ViiV Healthcare, 36 East Industrial Road, Branford, Connecticut 06405, United States
| | - Yong Tu
- Research and Early Development, Bristol Myers Squibb, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Barbara Zhizhen Zheng
- Research and Early Development, Bristol Myers Squibb, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Michael A. Walker
- Research and Early Development, Bristol Myers Squibb, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Mark G. Saulnier
- Research and Early Development, Bristol Myers Squibb, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - David Frennesson
- Research and Early Development, Bristol Myers Squibb, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Michael Bowsher
- ViiV Healthcare, 36 East Industrial Road, Branford, Connecticut 06405, United States
| | - Eric Gillis
- ViiV Healthcare, 36 East Industrial Road, Branford, Connecticut 06405, United States
| | - Kevin Peese
- ViiV Healthcare, 36 East Industrial Road, Branford, Connecticut 06405, United States
| | - Makonen Belema
- Research and Early Development, Bristol Myers Squibb, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Christopher Cianci
- Research and Early Development, Bristol Myers Squibb, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Ira B. Dicker
- ViiV Healthcare, 36 East Industrial Road, Branford, Connecticut 06405, United States
| | - Brian McAuliffe
- ViiV Healthcare, 36 East Industrial Road, Branford, Connecticut 06405, United States
| | - Bo Ding
- ViiV Healthcare, 36 East Industrial Road, Branford, Connecticut 06405, United States
| | - Paul Falk
- ViiV Healthcare, 36 East Industrial Road, Branford, Connecticut 06405, United States
| | - Jean Simmermacher
- ViiV Healthcare, 36 East Industrial Road, Branford, Connecticut 06405, United States
| | - Dawn D. Parker
- ViiV Healthcare, 36 East Industrial Road, Branford, Connecticut 06405, United States
| | - Prasanna Sivaprakasam
- Research and Early Development, Bristol Myers Squibb, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Kevin Kish
- Research and Early Development, Bristol Myers Squibb, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Hal Lewis
- Research and Early Development, Bristol Myers Squibb, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Umesh Hanumegowda
- ViiV Healthcare, 36 East Industrial Road, Branford, Connecticut 06405, United States
| | - Susan Jenkins
- ViiV Healthcare, 36 East Industrial Road, Branford, Connecticut 06405, United States
| | - John F. Kadow
- ViiV Healthcare, 36 East Industrial Road, Branford, Connecticut 06405, United States
| | - Mark Krystal
- ViiV Healthcare, 36 East Industrial Road, Branford, Connecticut 06405, United States
| | - Nicholas A. Meanwell
- Research and Early Development, Bristol Myers Squibb, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - B. Narasimhulu Naidu
- ViiV Healthcare, 36 East Industrial Road, Branford, Connecticut 06405, United States
| |
Collapse
|
30
|
Engelman AN, Kvaratskhelia M. Multimodal Functionalities of HIV-1 Integrase. Viruses 2022; 14:926. [PMID: 35632668 PMCID: PMC9144474 DOI: 10.3390/v14050926] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 01/11/2023] Open
Abstract
Integrase is the retroviral protein responsible for integrating reverse transcripts into cellular genomes. Co-packaged with viral RNA and reverse transcriptase into capsid-encased viral cores, human immunodeficiency virus 1 (HIV-1) integrase has long been implicated in reverse transcription and virion maturation. However, the underlying mechanisms of integrase in these non-catalytic-related viral replication steps have remained elusive. Recent results have shown that integrase binds genomic RNA in virions, and that mutational or pharmacological disruption of integrase-RNA binding yields eccentric virion particles with ribonucleoprotein complexes situated outside of the capsid shell. Such viruses are defective for reverse transcription due to preferential loss of integrase and viral RNA from infected target cells. Parallel research has revealed defective integrase-RNA binding and eccentric particle formation as common features of class II integrase mutant viruses, a phenotypic grouping of viruses that display defects at steps beyond integration. In light of these new findings, we propose three new subclasses of class II mutant viruses (a, b, and c), all of which are defective for integrase-RNA binding and particle morphogenesis, but differ based on distinct underlying mechanisms exhibited by the associated integrase mutant proteins. We also assess how these findings inform the role of integrase in HIV-1 particle maturation.
Collapse
Affiliation(s)
- Alan N. Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Mamuka Kvaratskhelia
- Division of Infectious Diseases, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
31
|
Zhang X, Li S, Yu W, Xie Y, Tung CH, Xu Z. Asymmetric Azide-Alkyne Cycloaddition with Ir(I)/Squaramide Cooperative Catalysis: Atroposelective Synthesis of Axially Chiral Aryltriazoles. J Am Chem Soc 2022; 144:6200-6207. [PMID: 35377624 DOI: 10.1021/jacs.2c02563] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An Ir(I)/squaramide cooperative catalytic strategy for atroposelective synthesis of axially chiral aryltriazoles has been developed for the first time. Diverse structurally novel aryltriazole skeletons that cannot be accessed by traditional click reactions were synthesized in good yields with excellent enantioselectivity. Both enantiomers were easily obtained from a pair of diastereoisomeric natural quinidine- and quinine-derived squaramides. A significant Ir(I)/squaramide coordination activation, but no self-quenching phenomenon was observed in this metal/organo cooperative catalytic system.
Collapse
Affiliation(s)
- Xue Zhang
- Key Lab for Colloid and Interface Chemistry of Education Ministry, Department of Chemistry, Shandong University, No. 27 South Shanda Road, Jinan 250100, China
| | - Shunian Li
- Key Lab for Colloid and Interface Chemistry of Education Ministry, Department of Chemistry, Shandong University, No. 27 South Shanda Road, Jinan 250100, China
| | - Wenjing Yu
- Key Lab for Colloid and Interface Chemistry of Education Ministry, Department of Chemistry, Shandong University, No. 27 South Shanda Road, Jinan 250100, China
| | - Yufang Xie
- Key Lab for Colloid and Interface Chemistry of Education Ministry, Department of Chemistry, Shandong University, No. 27 South Shanda Road, Jinan 250100, China
| | - Chen-Ho Tung
- Key Lab for Colloid and Interface Chemistry of Education Ministry, Department of Chemistry, Shandong University, No. 27 South Shanda Road, Jinan 250100, China
| | - Zhenghu Xu
- Key Lab for Colloid and Interface Chemistry of Education Ministry, Department of Chemistry, Shandong University, No. 27 South Shanda Road, Jinan 250100, China.,State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.,Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| |
Collapse
|
32
|
Naidu BN, Patel M, McAuliffe B, Ding B, Cianci C, Simmermacher J, Jenkins S, Parker DD, Sivaprakasam P, Khan JA, Kish K, Lewis H, Hanumegowda U, Krystal M, Meanwell NA, Kadow JF. Design, Synthesis, and Preclinical Profiling of GSK3739936 (BMS-986180), an Allosteric Inhibitor of HIV-1 Integrase with Broad-Spectrum Activity toward 124/125 Polymorphs. J Med Chem 2022; 65:4949-4971. [PMID: 35235334 DOI: 10.1021/acs.jmedchem.1c02169] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Allosteric HIV-1 integrase inhibitors (ALLINIs) have garnered special interest because of their novel mechanism of action: they inhibit HIV-1 replication by promoting aberrant integrase multimerization, leading to the production of replication-deficient viral particles. The binding site of ALLINIs is in a well-defined pocket formed at the interface of two integrase monomers that is characterized by conserved residues along with two polymorphic amino acids at residues 124 and 125. The design, synthesis, and optimization of pyridine-based allosteric integrase inhibitors are reported here. Optimization was conducted with a specific emphasis on the inhibition of the 124/125 polymorphs such that the designed compounds showed excellent potency in vitro against majority of the 124/125 variants. In vivo profiling of promising preclinical lead 29 showed that it exhibited a good pharmacokinetic (PK) profile in preclinical species, which resulted in a low predicted human efficacious dose. However, findings in rat toxicology studies precluded further development of 29.
Collapse
Affiliation(s)
- B Narasimhulu Naidu
- ViiV Healthcare, 36 East Industrial Road, Branford, Connecticut 06405, United States
| | - Manoj Patel
- ViiV Healthcare, 36 East Industrial Road, Branford, Connecticut 06405, United States
| | - Brian McAuliffe
- ViiV Healthcare, 36 East Industrial Road, Branford, Connecticut 06405, United States
| | - Bo Ding
- ViiV Healthcare, 36 East Industrial Road, Branford, Connecticut 06405, United States
| | - Christopher Cianci
- Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey 08543, United States
| | - Jean Simmermacher
- ViiV Healthcare, 36 East Industrial Road, Branford, Connecticut 06405, United States
| | - Susan Jenkins
- ViiV Healthcare, 36 East Industrial Road, Branford, Connecticut 06405, United States
| | - Dawn D Parker
- ViiV Healthcare, 36 East Industrial Road, Branford, Connecticut 06405, United States
| | - Prasanna Sivaprakasam
- Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey 08543, United States
| | - Javed A Khan
- Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey 08543, United States
| | - Kevin Kish
- Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey 08543, United States
| | - Hal Lewis
- Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey 08543, United States
| | - Umesh Hanumegowda
- ViiV Healthcare, 36 East Industrial Road, Branford, Connecticut 06405, United States
| | - Mark Krystal
- ViiV Healthcare, 36 East Industrial Road, Branford, Connecticut 06405, United States
| | - Nicholas A Meanwell
- Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey 08543, United States
| | - John F Kadow
- ViiV Healthcare, 36 East Industrial Road, Branford, Connecticut 06405, United States
| |
Collapse
|
33
|
Adu-Ampratwum D, Pan Y, Koneru PC, Antwi J, Hoyte AC, Kessl J, Griffin PR, Kvaratskhelia M, Fuchs JR, Larue RC. Identification and Optimization of a Novel HIV-1 Integrase Inhibitor. ACS OMEGA 2022; 7:4482-4491. [PMID: 35155940 PMCID: PMC8829933 DOI: 10.1021/acsomega.1c06378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/13/2022] [Indexed: 05/17/2023]
Abstract
Human immunodeficiency virus-1 (HIV-1) is the causative agent of acquired immunodeficiency syndrome (AIDS). HIV-1, like all retroviruses, stably integrates its vDNA copy into host chromatin, a process allowing for permanent infection. This essential step for HIV-1 replication is catalyzed by viral integrase (IN) and aided by cellular protein LEDGF/p75. In addition, IN is also crucial for proper virion maturation as it interacts with the viral RNA genome to ensure encapsulation of ribonucleoprotein complexes within the protective capsid core. These key functions make IN an attractive target for the development of inhibitors with various mechanisms of action. We conducted a high-throughput screen (HTS) of ∼370,000 compounds using a homogeneous time-resolved fluorescence-based assay capable of capturing diverse inhibitors targeting multifunctional IN. Our approach revealed chemical scaffolds containing diketo acid moieties similar to IN strand transfer inhibitors (INSTIs) as well as novel compounds distinct from all current IN inhibitors including INSTIs and allosteric integrase inhibitors (ALLINIs). Specifically, our HTS resulted in the discovery of compound 12, with a novel IN inhibitor scaffold amenable for chemical modification. Its more potent derivative 14e similarly inhibited catalytic activities of WT and mutant INs containing archetypical INSTI- and ALLINI-derived resistant substitutions. Further SAR-based optimization resulted in compound 22 with an antiviral EC50 of ∼58 μM and a selectivity index of >8500. Thus, our studies identified a novel small-molecule scaffold for inhibiting HIV-1 IN, which provides a promising platform for future development of potent antiviral agents to complement current HIV-1 therapies.
Collapse
Affiliation(s)
- Daniel Adu-Ampratwum
- Division
of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yuhan Pan
- Division
of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Pratibha C. Koneru
- Division
of Infectious Diseases, School of Medicine, University of Colorado, Aurora, Colorado 80045, United States
| | - Janet Antwi
- Division
of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ashley C. Hoyte
- Division
of Infectious Diseases, School of Medicine, University of Colorado, Aurora, Colorado 80045, United States
| | - Jacques Kessl
- Department
of Chemistry & Biochemistry, The University
of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Patrick R. Griffin
- Department
of Molecular Medicine, The Scripps Research
Institute, Jupiter, Florida 33458, United
States
| | - Mamuka Kvaratskhelia
- Division
of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Division
of Infectious Diseases, School of Medicine, University of Colorado, Aurora, Colorado 80045, United States
| | - James R. Fuchs
- Division
of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ross C. Larue
- Division
of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Department
of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
34
|
Gallicchio E. Free Energy-Based Computational Methods for the Study of Protein-Peptide Binding Equilibria. Methods Mol Biol 2022; 2405:303-334. [PMID: 35298820 DOI: 10.1007/978-1-0716-1855-4_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This chapter discusses the theory and application of physics-based free energy methods to estimate protein-peptide binding free energies. It presents a statistical mechanics formulation of molecular binding, which is then specialized in three methodologies: (1) alchemical absolute binding free energy estimation with implicit solvation, (2) alchemical relative binding free energy estimation with explicit solvation, and (3) potential of mean force binding free energy estimation. Case studies of protein-peptide binding application taken from the recent literature are discussed for each method.
Collapse
Affiliation(s)
- Emilio Gallicchio
- Department of Chemistry, Ph.D. Program in Biochemistry and Ph.D. Program in Chemistry at The Graduate Center of the City University of New York, Brooklyn College of the City University of New York, New York, NY, USA.
| |
Collapse
|
35
|
Abstract
A hallmark of retroviral replication is establishment of the proviral state, wherein a DNA copy of the viral RNA genome is stably incorporated into a host cell chromosome. Integrase is the viral enzyme responsible for the catalytic steps involved in this process, and integrase strand transfer inhibitors are widely used to treat people living with HIV. Over the past decade, a series of X-ray crystallography and cryogenic electron microscopy studies have revealed the structural basis of retroviral DNA integration. A variable number of integrase molecules congregate on viral DNA ends to assemble a conserved intasome core machine that facilitates integration. The structures additionally informed on the modes of integrase inhibitor action and the means by which HIV acquires drug resistance. Recent years have witnessed the development of allosteric integrase inhibitors, a highly promising class of small molecules that antagonize viral morphogenesis. In this Review, we explore recent insights into the organization and mechanism of the retroviral integration machinery and highlight open questions as well as new directions in the field.
Collapse
|
36
|
Passos DO, Li M, Craigie R, Lyumkis D. Retroviral integrase: Structure, mechanism, and inhibition. Enzymes 2021; 50:249-300. [PMID: 34861940 DOI: 10.1016/bs.enz.2021.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The retroviral protein Integrase (IN) catalyzes concerted integration of viral DNA into host chromatin to establish a permanent infection in the target cell. We learned a great deal about the mechanism of catalytic integration through structure/function studies over the previous four decades of IN research. As one of three essential retroviral enzymes, IN has also been targeted by antiretroviral drugs to treat HIV-infected individuals. Inhibitors blocking the catalytic integration reaction are now state-of-the-art drugs within the antiretroviral therapy toolkit. HIV-1 IN also performs intriguing non-catalytic functions that are relevant to the late stages of the viral replication cycle, yet this aspect remains poorly understood. There are also novel allosteric inhibitors targeting non-enzymatic functions of IN that induce a block in the late stages of the viral replication cycle. In this chapter, we will discuss the function, structure, and inhibition of retroviral IN proteins, highlighting remaining challenges and outstanding questions.
Collapse
Affiliation(s)
| | - Min Li
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States
| | - Robert Craigie
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States
| | - Dmitry Lyumkis
- The Salk Institute for Biological Studies, La Jolla, CA, United States; The Scripps Research Institute, La Jolla, CA, United States.
| |
Collapse
|
37
|
Liu S, Koneru PC, Li W, Pathirage C, Engelman AN, Kvaratskhelia M, Musier-Forsyth K. HIV-1 integrase binding to genomic RNA 5'-UTR induces local structural changes in vitro and in virio. Retrovirology 2021; 18:37. [PMID: 34809662 PMCID: PMC8609798 DOI: 10.1186/s12977-021-00582-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/03/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND During HIV-1 maturation, Gag and Gag-Pol polyproteins are proteolytically cleaved and the capsid protein polymerizes to form the honeycomb capsid lattice. HIV-1 integrase (IN) binds the viral genomic RNA (gRNA) and impairment of IN-gRNA binding leads to mis-localization of the nucleocapsid protein (NC)-condensed viral ribonucleoprotein complex outside the capsid core. IN and NC were previously demonstrated to bind to the gRNA in an orthogonal manner in virio; however, the effect of IN binding alone or simultaneous binding of both proteins on gRNA structure is not yet well understood. RESULTS Using crosslinking-coupled selective 2'-hydroxyl acylation analyzed by primer extension (XL-SHAPE), we characterized the interaction of IN and NC with the HIV-1 gRNA 5'-untranslated region (5'-UTR). NC preferentially bound to the packaging signal (Psi) and a UG-rich region in U5, irrespective of the presence of IN. IN alone also bound to Psi but pre-incubation with NC largely abolished this interaction. In contrast, IN specifically bound to and affected the nucleotide (nt) dynamics of the apical loop of the transactivation response element (TAR) and the polyA hairpin even in the presence of NC. SHAPE probing of the 5'-UTR RNA in virions produced from allosteric IN inhibitor (ALLINI)-treated cells revealed that while the global secondary structure of the 5'-UTR remained unaltered, the inhibitor treatment induced local reactivity differences, including changes in the apical loop of TAR that are consistent with the in vitro results. CONCLUSIONS Overall, the binding interactions of NC and IN with the 5'-UTR are largely orthogonal in vitro. This study, together with previous probing experiments, suggests that IN and NC binding in vitro and in virio lead to only local structural changes in the regions of the 5'-UTR probed here. Accordingly, disruption of IN-gRNA binding by ALLINI treatment results in local rather than global secondary structure changes of the 5'-UTR in eccentric virus particles.
Collapse
Affiliation(s)
- Shuohui Liu
- grid.261331.40000 0001 2285 7943Department of Chemistry and Biochemistry, Centers for RNA Biology and Retroviral Research, The Ohio State University, Columbus, OH USA
| | - Pratibha C. Koneru
- grid.430503.10000 0001 0703 675XDivision of Infectious Diseases, School of Medicine, University of Colorado, Aurora, CO USA
| | - Wen Li
- grid.65499.370000 0001 2106 9910Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Medicine, Harvard Medical School, Boston, MA USA
| | - Chathuri Pathirage
- grid.261331.40000 0001 2285 7943Department of Chemistry and Biochemistry, Centers for RNA Biology and Retroviral Research, The Ohio State University, Columbus, OH USA
| | - Alan N. Engelman
- grid.65499.370000 0001 2106 9910Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Medicine, Harvard Medical School, Boston, MA USA
| | - Mamuka Kvaratskhelia
- grid.430503.10000 0001 0703 675XDivision of Infectious Diseases, School of Medicine, University of Colorado, Aurora, CO USA
| | - Karin Musier-Forsyth
- grid.261331.40000 0001 2285 7943Department of Chemistry and Biochemistry, Centers for RNA Biology and Retroviral Research, The Ohio State University, Columbus, OH USA
| |
Collapse
|
38
|
Wang Y, Xiang S, Tan B. Application in Drugs and Materials. AXIALLY CHIRAL COMPOUNDS 2021:297-315. [DOI: 10.1002/9783527825172.ch11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
39
|
Studies towards the Design and Synthesis of Novel 1,5-Diaryl-1 H-imidazole-4-carboxylic Acids and 1,5-Diaryl-1 H-imidazole-4-carbohydrazides as Host LEDGF/p75 and HIV-1 Integrase Interaction Inhibitors. Molecules 2021; 26:molecules26206203. [PMID: 34684786 PMCID: PMC8540437 DOI: 10.3390/molecules26206203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 11/23/2022] Open
Abstract
Two targeted sets of novel 1,5-diaryl-1H-imidazole-4-carboxylic acids 10 and carbohydrazides 11 were designed and synthesized from their corresponding ester intermediates 17, which were prepared via cycloaddition of ethyl isocyanoacetate 16 and diarylimidoyl chlorides 15. Evaluation of these new target scaffolds in the AlphaScreenTM HIV-1 IN-LEDGF/p75 inhibition assay identified seventeen compounds exceeding the pre-defined 50% inhibitory threshold at 100 µM concentration. Further evaluation of these compounds in the HIV-1 IN strand transfer assay at 100 μM showed that none of the compounds (with the exception of 10a, 10l, and 11k, with marginal inhibitory percentages) were actively bound to the active site, indicating that they are selectively binding to the LEDGF/p75-binding pocket. In a cell-based HIV-1 antiviral assay, compounds 11a, 11b, 11g, and 11h exhibited moderate antiviral percentage inhibition of 33–45% with cytotoxicity (CC50) values of >200 µM, 158.4 µM, >200 µM, and 50.4 µM, respectively. The antiviral inhibitory activity displayed by 11h was attributed to its toxicity. Upon further validation of their ability to induce multimerization in a Western blot gel assay, compounds 11a, 11b, and 11h appeared to increase higher-order forms of IN.
Collapse
|
40
|
Maehigashi T, Ahn S, Kim UI, Lindenberger J, Oo A, Koneru PC, Mahboubi B, Engelman AN, Kvaratskhelia M, Kim K, Kim B. A highly potent and safe pyrrolopyridine-based allosteric HIV-1 integrase inhibitor targeting host LEDGF/p75-integrase interaction site. PLoS Pathog 2021; 17:e1009671. [PMID: 34293041 PMCID: PMC8297771 DOI: 10.1371/journal.ppat.1009671] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/27/2021] [Indexed: 12/03/2022] Open
Abstract
Allosteric integrase inhibitors (ALLINIs) are a class of experimental anti-HIV agents that target the noncatalytic sites of the viral integrase (IN) and interfere with the IN-viral RNA interaction during viral maturation. Here, we report a highly potent and safe pyrrolopyridine-based ALLINI, STP0404, displaying picomolar IC50 in human PBMCs with a >24,000 therapeutic index against HIV-1. X-ray structural and biochemical analyses revealed that STP0404 binds to the host LEDGF/p75 protein binding pocket of the IN dimer, which induces aberrant IN oligomerization and blocks the IN-RNA interaction. Consequently, STP0404 inhibits proper localization of HIV-1 RNA genomes in viral particles during viral maturation. Y99H and A128T mutations at the LEDGF/p75 binding pocket render resistance to STP0404. Extensive in vivo pharmacological and toxicity investigations demonstrate that STP0404 harbors outstanding therapeutic and safety properties. Overall, STP0404 is a potent and first-in-class ALLINI that targets LEDGF/p75 binding site and has advanced to a human trial.
Collapse
Affiliation(s)
- Tatsuya Maehigashi
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | | | - Uk-Il Kim
- ST Pharm Co., Ltd., Seoul, South Korea
| | - Jared Lindenberger
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Adrian Oo
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Pratibha C. Koneru
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Bijan Mahboubi
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Alan N. Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mamuka Kvaratskhelia
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | | | - Baek Kim
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, United States of America
- Center for Drug Discovery, Children’s Healthcare of Atlanta, Atlanta, Georgia, United States of America
| |
Collapse
|
41
|
Roberts RA, Campbell RA, Sikakana P, Sadler C, Osier M, Xu Y, Feng JY, Mitchell M, Sakowicz R, Chester A, Paoli E, Wang J, Burns-Naas LA. Species-Specific Urothelial Toxicity with an anti-HIV Non-Catalytic Site Integrase Inhibitor (NCINI) is Related to Unusual pH-Dependent Physicochemical Changes. Toxicol Sci 2021; 183:105-116. [PMID: 34117767 DOI: 10.1093/toxsci/kfab073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
GS-9695 and GS-9822 are next generation Non-Catalytic Site Integrase Inhibitors (NCINIs) with significantly improved potency against HIV compared with previous drugs such as BI-224436. Development stopped due to vacuolation of the bladder urothelium seen in cynomolgus monkey but not in rat; this lesion was absent in equivalent preclinical studies with BI-224436 (tested in dog and rat). Lesions were unlikely to be attributable to target since NCINIs specifically target viral integrase protein and no mammalian homologue is known. Secondary pharmacology studies, mitochondrial toxicity studies, immunophenotyping and analysis of proteins implicated in cell-cell interactions and/or bladder integrity (e-cadherin, pan-cytokeratin, uroplakins) failed to offer any plausible explanation for the species-specificity of the lesion. Since it was characterized by inflammation and disruption of urothelial morphology, we investigated physicochemical changes in the bladder of cynomolgus monkey (urinary pH 5.5-7.4) that might not occur in the bladder of rats (urinary pH 7.3-8.5). In measurements of surface activity, GS-9822 showed an unusual transition from a monolayer to a bilayer at the air/water interface with decreasing pH, attributed to the strong association between drug molecules in adjacent bilayer leaflets and expected to be highly disruptive to the urothelium. Structural analysis of GS-9822 and GS-9695 showed zwitterionic characteristics over the range of pH expected in cynomolgus monkey but not rat urine. This exotic surface behaviour is unlikely with BI-224436 since it would transition from neutral to cationic (never zwitterionic) with decreasing pH. These data provide useful insights to guide discovery and development of NCINIs, related compounds and zwitterions.
Collapse
Affiliation(s)
| | - Richard A Campbell
- Division of Pharmacy and Optometry, Manchester, M13 9PT, United Kingdom For RAC: University of Manchester
| | | | | | - Mark Osier
- Nonclinical Safety & Pathobiology, Gilead Sciences, Inc, Foster City, USA
| | - Yili Xu
- Biology, Gilead Sciences, Inc, Foster City, CA, USA
| | - Joy Y Feng
- Biology, Gilead Sciences, Inc, Foster City, CA, USA
| | | | | | - Anne Chester
- Nonclinical Safety & Pathobiology, Gilead Sciences, Inc, Foster City, USA
| | - Eric Paoli
- Formulations and Process Development, Gilead Sciences, Inc, Foster City, CA, USA
| | - Jianhong Wang
- Drug Metabolism & Pharmacokinetics, Gilead Sciences, Inc, Foster City, CA, USA
| | | |
Collapse
|
42
|
Kumar D, Sharma P, Shabu, Kaur R, Lobe MMM, Gupta GK, Ntie-Kang F. In search of therapeutic candidates for HIV/AIDS: rational approaches, design strategies, structure-activity relationship and mechanistic insights. RSC Adv 2021; 11:17936-17964. [PMID: 35480193 PMCID: PMC9033207 DOI: 10.1039/d0ra10655k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/19/2021] [Indexed: 12/23/2022] Open
Abstract
The HIV/AIDS pandemic is a serious threat to the health and development of mankind, which has affected about 37.9 million people worldwide. The increasing negative health, economic and social impacts of this disease have led to the search for new therapeutic candidates for the mitigation of AIDS/HIV. However, to date, there is still no treatment that can cure this disease. Furthermore, the clinically available drugs have numerous severe side effects. Hence, the synthesis of novel agents from natural leads is one of the rational approaches to obtain new drugs in modern medicinal chemistry. This review article is an effort to summarize recent developments with regards to the discovery of novel analogs with promising biological potential against HIV/AIDS. Herein, we also aim to discuss prospective directions on the progress of more credible and specific analogues. Besides presenting design strategies, the present communication also highlights the structure-activity relationship together with the structural features of the most promising molecules, their IC50 values, mechanistic insights and some interesting key findings revealed during their biological evaluation. The interactions with the amino acid residues of the enzymes responsible for HIV-1 inhibition are also discussed. This collection will be of great interest for researchers working in this area.
Collapse
Affiliation(s)
- Dinesh Kumar
- Sri Sai College of Pharmacy Manawala Amritsar-143001 Punjab India +91-9988902489
| | - Pooja Sharma
- Sri Sai College of Pharmacy Manawala Amritsar-143001 Punjab India +91-9988902489
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala India
| | - Shabu
- Indian Institute of Integrative Medicine (CSIR-IIIM) Canal Road Jammu 180001 India
| | - Ramandeep Kaur
- Sri Sai College of Pharmacy Manawala Amritsar-143001 Punjab India +91-9988902489
| | - Maloba M M Lobe
- Department of Chemistry, Faculty of Science, University of Buea P. O. Box 63 Buea Cameroon +237 685625811
| | - Girish K Gupta
- Department of Pharmaceutical Chemistry, Sri Sai College of Pharmacy Badhani Pathankot-145001 Punjab India
| | - Fidele Ntie-Kang
- Department of Chemistry, Faculty of Science, University of Buea P. O. Box 63 Buea Cameroon +237 685625811
- Institute for Pharmacy, Martin-Luther-Universität Halle-Wittenberg Kurt-Mothes-Str. 3 06120 Halle (Saale) Germany +49 3455525043
- Institute of Botany, Technical University of Dresden Zellescher Weg 20b 01062 Dresden Germany
| |
Collapse
|
43
|
GS-9822, a preclinical LEDGIN candidate, displays a block-and-lock phenotype in cell culture. Antimicrob Agents Chemother 2021; 65:AAC.02328-20. [PMID: 33619061 PMCID: PMC8092873 DOI: 10.1128/aac.02328-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The ability of HIV to integrate into the host genome and establish latent reservoirs is the main hurdle preventing an HIV cure. LEDGINs are small-molecule integrase inhibitors that target the binding pocket of LEDGF/p75, a cellular cofactor that substantially contributes to HIV integration site selection. They are potent antivirals that inhibit HIV integration and maturation. In addition, they retarget residual integrants away from transcription units and towards a more repressive chromatin environment. As a result, treatment with the LEDGIN CX14442 yielded residual provirus that proved more latent and more refractory to reactivation, supporting the use of LEDGINs as research tools to study HIV latency and a functional cure strategy. In this study we compared GS-9822, a potent, pre-clinical lead compound, with CX14442 with respect to antiviral potency, integration site selection, latency and reactivation. GS-9822 was more potent than CX14442 in most assays. For the first time, the combined effects on viral replication, integrase-LEDGF/p75 interaction, integration sites, epigenetic landscape, immediate latency and latency reversal was demonstrated at nanomolar concentrations achievable in the clinic. GS-9822 profiles as a preclinical candidate for future functional cure research.
Collapse
|
44
|
Optimized binding of substituted quinoline ALLINIs within the HIV-1 integrase oligomer. J Biol Chem 2021; 296:100363. [PMID: 33539919 PMCID: PMC7949159 DOI: 10.1016/j.jbc.2021.100363] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 12/13/2022] Open
Abstract
During the integration step, human immunodeficiency virus type 1 integrase (IN) interacts with viral DNA and the cellular cofactor LEDGF/p75 to effectively integrate the reverse transcript into the host chromatin. Allosteric human immunodeficiency virus type 1 integrase inhibitors (ALLINIs) are a new class of antiviral agents that bind at the dimer interface of the IN catalytic core domain and occupy the binding site of LEDGF/p75. While originally designed to block IN-LEDGF/p75 interactions during viral integration, several of these compounds have been shown to also severely impact viral maturation through an IN multimerization mechanism. In this study, we tested the hypothesis that these dual properties of ALLINIs could be decoupled toward late stage viral replication effects by generating additional contact points between the bound ALLINI and a third subunit of IN. By sequential derivatization at position 7 of a quinoline-based ALLINI scaffold, we show that IN multimerization properties are enhanced by optimizing hydrophobic interactions between the compound and the C-terminal domain of the third IN subunit. These features not only improve the overall antiviral potencies of these compounds but also significantly shift the ALLINIs selectivity toward the viral maturation stage. Thus, we demonstrate that to fully maximize the potency of ALLINIs, the interactions between the inhibitor and all three IN subunits need to be simultaneously optimized.
Collapse
|
45
|
Sugiyama S, Akiyama T, Taoda Y, Iwaki T, Matsuoka E, Akihisa E, Seki T, Yoshinaga T, Kawasuji T. Discovery of novel HIV-1 integrase-LEDGF/p75 allosteric inhibitors based on a pyridine scaffold forming an intramolecular hydrogen bond. Bioorg Med Chem Lett 2021; 33:127742. [PMID: 33316407 DOI: 10.1016/j.bmcl.2020.127742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/30/2020] [Accepted: 12/05/2020] [Indexed: 01/09/2023]
Abstract
We have discovered HIV-1 novel integrase-LEDGF/p75 allosteric inhibitors (INLAIs) based on a pyridine scaffold forming an intramolecular hydrogen bond. Scaffolds containing a pyridine moiety have been studied extensively and we have already reported that substituents extending from the C1 position contributed to the antiviral potency. In this study, we designed a new pyridine scaffold 2 with a substituent at the C1 position. Interestingly, during attempts at optimization, we found that the direction of the C1 substituents with an intramolecular hydrogen bond contributed to the antiviral potency. Compound 34f exhibited better antiviral potency against WT and the T174I mutant (EC50 (WT) = 6.6 nM, EC50 (T174I) = 270 nM) than BI 224436 (EC50 (WT) = 22 nM, EC50 (T174I) > 5000 nM).
Collapse
Affiliation(s)
- Shuichi Sugiyama
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1, Futabacho, Toyonaka, Osaka 561-0825, Japan.
| | - Toshiyuki Akiyama
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1, Futabacho, Toyonaka, Osaka 561-0825, Japan
| | - Yoshiyuki Taoda
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1, Futabacho, Toyonaka, Osaka 561-0825, Japan
| | - Tsutomu Iwaki
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1, Futabacho, Toyonaka, Osaka 561-0825, Japan
| | - Eriko Matsuoka
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1, Futabacho, Toyonaka, Osaka 561-0825, Japan
| | - Erika Akihisa
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1, Futabacho, Toyonaka, Osaka 561-0825, Japan
| | - Takahiro Seki
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1, Futabacho, Toyonaka, Osaka 561-0825, Japan
| | - Tomokazu Yoshinaga
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1, Futabacho, Toyonaka, Osaka 561-0825, Japan
| | - Takashi Kawasuji
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1, Futabacho, Toyonaka, Osaka 561-0825, Japan
| |
Collapse
|
46
|
Park KH, Kim M, Bae SE, Lee HJ, Kim KC, Choi BS, Kim YB. Study on suitable analysis method for HIV-1 non-catalytic integrase inhibitor. Virol J 2021; 18:17. [PMID: 33436020 PMCID: PMC7805210 DOI: 10.1186/s12985-020-01476-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/21/2020] [Indexed: 11/27/2022] Open
Abstract
Background Integrase (IN) is an essential protein for HIV replication that catalyzes insertion of the reverse-transcribed viral genome into the host chromosome during the early steps of viral infection. Highly active anti-retroviral therapy is a HIV/AIDS treatment method that combines three or more antiviral drugs often formulated from compounds that inhibit the activities of viral reverse transcriptase and protease enzymes. Early IN inhibitors (INIs) mainly serve as integrase strand transfer inhibitors (INSTI) that disrupt strand transfer by binding the catalytic core domain of IN. However, mutations of IN can confer resistance to INSTI. Therefore, non-catalytic integrase inhibitors (NCINI) have been developed as next-generation INIs.
Methods In this study, we evaluated and compared the activity of INSTI and NCINI according to the analysis method. Antiviral activity was compared using p24 ELISA with MT2 cell and TZM-bl luciferase system with TZM-bl cell. Each drug was serially diluted and treated to MT2 and TZM-b1 cells, infected with HIV-1 AD8 strain and incubated for 5 and 2 days, respectively. Additionally, to analyze properties of INSTI and NCINI, transfer inhibition assay and 3′-processing inhibition assay were performed. Results During screening of INIs using the p24 ELISA and TZM-bl luciferase systems, we found an inconsistent result with INSTI and NCINI drugs. Following infection of MT2 and TZM-bl cells with T-tropic HIV-1 strain, both INSTI and NCINI treatments induced significant p24 reduction in MT2 cells. However, NCINI showed no antiviral activity in the TZM-bl luciferase system, indicating that this widely used and convenient antiretroviral assay is not suitable for screening of NCINI compounds that target the second round of HIV-1 replication. Conclusion Accordingly, we recommend application of other assay procedures, such as p24 ELISA or reverse transcription activity, in lieu of the TZM-bl luciferase system for preliminary NCINI drug screening. Utilization of appropriate analytical methods based on underlying mechanisms is necessary for accurate assessment of drug efficacy.
Collapse
Affiliation(s)
- Ki Hoon Park
- Department of Bio-Industrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul, Korea
| | - Minjee Kim
- Department of Biomedical Science and Engineering, College of Animal Bioscience and Technology, Konkuk University, Seoul, Korea
| | - Seoung Eun Bae
- Department of Biomedical Science and Engineering, College of Animal Bioscience and Technology, Konkuk University, Seoul, Korea
| | - Hee Jung Lee
- Department of Biomedical Science and Engineering, College of Animal Bioscience and Technology, Konkuk University, Seoul, Korea
| | - Kyung-Chang Kim
- Division of AIDS, Center for Immunology and Pathology, Korea National Institute of Health, Osong, Chungcheongbuk, Korea
| | - Byeong Sun Choi
- Division of AIDS, Center for Immunology and Pathology, Korea National Institute of Health, Osong, Chungcheongbuk, Korea
| | - Young Bong Kim
- Department of Bio-Industrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul, Korea. .,Department of Biomedical Science and Engineering, College of Animal Bioscience and Technology, Konkuk University, Seoul, Korea.
| |
Collapse
|
47
|
Shao YD, Han DD, Dong MM, Yang XR, Cheng DJ. A one-pot stepwise approach to axially chiral quinoline-3-carbaldehydes enabled by iminium–allenamine cascade catalysis. Org Chem Front 2021. [DOI: 10.1039/d0qo01339k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An organocatalytic atroposelective annulation between 2-(tosylamino)aryl ketones and 2-alkynals for the construction of enantioenriched axially chiral 4-arylquinoline-3-carbaldehydes is achieved.
Collapse
Affiliation(s)
- You-Dong Shao
- School of Chemistry and Chemical Engineering
- Heze University
- China
| | - Dan-Dan Han
- School of Chemistry and Chemical Engineering
- Heze University
- China
| | - Meng-Meng Dong
- School of Chemistry and Chemical Engineering
- Heze University
- China
| | - Xin-Ru Yang
- School of Chemistry and Chemical Engineering
- Heze University
- China
| | - Dao-Juan Cheng
- School of Pharmacy
- Anhui University of Chinese Medicine
- China
- School of Chemistry and Chemical Engineering
- Heze University
| |
Collapse
|
48
|
Vanangamudi M, Nair PC, Engels SEM, Palaniappan S, Namasivayam V. Structural Insights to Human Immunodeficiency Virus (HIV-1) Targets and Their Inhibition. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1322:63-95. [PMID: 34258737 DOI: 10.1007/978-981-16-0267-2_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human immunodeficiency virus (HIV) is a deadly virus that attacks the body's immune system, subsequently leading to AIDS (acquired immunodeficiency syndrome) and ultimately death. Currently, there is no vaccine or effective cure for this infection; however, antiretrovirals that act at various phases of the virus life cycle have been useful to control the viral load in patients. One of the major problems with antiretroviral therapies involves drug resistance. The three-dimensional structure from crystallography studies are instrumental in understanding the structural basis of drug binding to various targets. This chapter provides key insights into different targets and drugs used in the treatment from a structural perspective. Specifically, an insight into the binding characteristics of drugs at the active and allosteric sites of different targets and the importance of targeting allosteric sites for design of new-generation antiretrovirals to overcome complex and resistant forms of the virus has been reviewed.
Collapse
Affiliation(s)
- Murugesan Vanangamudi
- Department of Pharmaceutical Chemistry, Amity Institute of Pharmacy, Amity University Gwalior, Gwalior, Madhya Pradesh, India
| | - Pramod C Nair
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | | | | | | |
Collapse
|
49
|
Zhang DW, Yan HL, Xu XS, Xu L, Yin ZH, Chang S, Luo H. The selenium-containing drug ebselen potently disrupts LEDGF/p75-HIV-1 integrase interaction by targeting LEDGF/p75. J Enzyme Inhib Med Chem 2020; 35:906-912. [PMID: 32228103 PMCID: PMC7170385 DOI: 10.1080/14756366.2020.1743282] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lens-epithelium-derived growth-factor (LEDGF/p75)-binding site on HIV-1 integrase (IN), is an attractive target for antiviral chemotherapy. Small-molecule compounds binding to this site are referred as LEDGF-IN inhibitors (LEDGINs). In this study, compound libraries were screened to identify new inhibitors of LEDGF/p75-IN interaction. Ebselen (2-phenyl-1,2-benzisoselenazol-3-one), a reported anti-HIV-1 agent, was identified as a moderate micromolar inhibitor of LEDGF/p75-IN interaction. Ebselen inhibited the interaction by binding to LEDGF/p75 and the ability of ebselen to inhibit the interaction could be reversed by dithiothreitol (DTT). BLI experiment showed that ebselen probably formed selenium-sulphur bonds with reduced thiols in LEDGF/p75. To the best of our knowledge, we showed for the first time that small-molecule compound, ebselen inhibited LEDGF/p75-IN interaction by directly binding to LEDGF/p75. The compound discovered here could be used as probe compounds to design and develop new disrupter of LEDGF/p75-IN interaction.
Collapse
Affiliation(s)
- Da-Wei Zhang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Hao-Li Yan
- Center for Food and Drug Evaluation & Inspection of Henan, Zhengzhou, China
| | - Xiao-Shuang Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Zhi-Hui Yin
- First Hospital of Shanxi Medical University, Taiyuan, China
| | - Shan Chang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Heng Luo
- College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
50
|
Shao Y, Cheng D. Chiral Phosphoric Acid: A Powerful Organocatalyst for the Asymmetric Synthesis of Heterocycles with Chiral Atropisomerism. ChemCatChem 2020. [DOI: 10.1002/cctc.202001750] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- You‐Dong Shao
- School of Chemistry and Chemical Engineering Heze University Heze 274015 P. R. China
| | - Dao‐Juan Cheng
- School of Pharmacy Anhui University of Chinese Medicine Hefei 230012 P. R. China
| |
Collapse
|