1
|
Wang L, Jiang J, Yin H, Wang X, Li Q, Li H, Wu J, Lu Q. Solute carrier family 15 member 4, an emerging therapeutic target for systemic lupus erythematosus. Int Rev Immunol 2025:1-15. [PMID: 40255205 DOI: 10.1080/08830185.2025.2491644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/28/2024] [Accepted: 03/31/2025] [Indexed: 04/22/2025]
Abstract
Systemic lupus erythematosus (SLE) is a prototypical autoimmune disease characterized by excessive production of type I interferons (IFNs) and autoantibodies with limited effective clinical treatments. Solute carrier family 15 member 4 (SLC15A4), a proton-coupled oligopeptide transporter, facilitates the transmembrane transport of L-histidine and some di- and tripeptides from the lysosome to the cytosol. A growing body of evidence has elucidated the critical role of SLC15A4 in pathogenesis and disease progression of SLE. Genome-wide association studies have identified SLC15A4 as a new susceptibility locus of SLE. Further mechanistical studies have demonstrated that SLC15A4 involves in the production of type I IFNs in plasmacytoid dendritic cells (pDCs) and its necessity in B cells for autoantibody production in lupus models. These studies strongly support the potential of SLC15A4 as a promising therapeutic target for SLE. This review aims to summarize recent advances in understanding the role of SLC15A4 in disease progression of SLE and the development of SLC15A4-targeted inhibitors as well as discuss its potential as a target for SLE treatment.
Collapse
Affiliation(s)
- Lai Wang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Jiao Jiang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Haoyuan Yin
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Xiaoke Wang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Qilin Li
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Hongyang Li
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Junhui Wu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Qianjin Lu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| |
Collapse
|
2
|
Sun Z, Du H, Zheng X, Zhang H, Hu H. Discovering the interactome, functions, and clinical relevance of enhancer RNAs in kidney renal clear cell carcinoma. BMC Med Genomics 2025; 18:3. [PMID: 39754187 PMCID: PMC11697625 DOI: 10.1186/s12920-024-02081-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 12/26/2024] [Indexed: 01/06/2025] Open
Abstract
Enhancer RNA (eRNA) has emerged as a key player in cancer biology, influencing various aspects of tumor development and progression. In this study, we investigated the role of eRNAs in kidney renal clear cell carcinoma (KIRC), the most common subtype of renal cell carcinoma. Leveraging high-throughput sequencing data and bioinformatics analysis, we identified differentially expressed eRNAs in KIRC and constructed eRNA-centric regulatory networks. Our findings revealed that up-regulated eRNAs in KIRC potentially regulate immune response and hypoxia pathways, while down-regulated eRNAs may impact ion transport, cell cycle, and metabolism. Furthermore, we developed a diagnostic prediction model based on eRNA expression profiles, demonstrating its effectiveness in KIRC diagnosis. Finally, we elucidated the regulatory mechanism of an eRNA (ENSR00000305834) on the expression of SLC15A2, a potential prognostic biomarker in KIRC, through bioinformatics analysis and in vitro validation experiments. In summary, Our study highlights the clinical significance of eRNAs in KIRC and underscores their potential as therapeutic targets.
Collapse
Affiliation(s)
- Zhaohui Sun
- Yuyao People's Hospital of Zhejiang Province, Ningbo, Zhejiang, China
| | - Haojie Du
- Yuyao People's Hospital of Zhejiang Province, Ningbo, Zhejiang, China
| | - Xudong Zheng
- Yuyao People's Hospital of Zhejiang Province, Ningbo, Zhejiang, China
| | - Hepeng Zhang
- Yuyao People's Hospital of Zhejiang Province, Ningbo, Zhejiang, China
| | - Huajie Hu
- Yuyao People's Hospital of Zhejiang Province, Ningbo, Zhejiang, China.
| |
Collapse
|
3
|
Mathew M, Nguyen NT, Bhutia YD, Sivaprakasam S, Ganapathy V. Metabolic Signature of Warburg Effect in Cancer: An Effective and Obligatory Interplay between Nutrient Transporters and Catabolic/Anabolic Pathways to Promote Tumor Growth. Cancers (Basel) 2024; 16:504. [PMID: 38339256 PMCID: PMC10854907 DOI: 10.3390/cancers16030504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Aerobic glycolysis in cancer cells, originally observed by Warburg 100 years ago, which involves the production of lactate as the end product of glucose breakdown even in the presence of adequate oxygen, is the foundation for the current interest in the cancer-cell-specific reprograming of metabolic pathways. The renewed interest in cancer cell metabolism has now gone well beyond the original Warburg effect related to glycolysis to other metabolic pathways that include amino acid metabolism, one-carbon metabolism, the pentose phosphate pathway, nucleotide synthesis, antioxidant machinery, etc. Since glucose and amino acids constitute the primary nutrients that fuel the altered metabolic pathways in cancer cells, the transporters that mediate the transfer of these nutrients and their metabolites not only across the plasma membrane but also across the mitochondrial and lysosomal membranes have become an integral component of the expansion of the Warburg effect. In this review, we focus on the interplay between these transporters and metabolic pathways that facilitates metabolic reprogramming, which has become a hallmark of cancer cells. The beneficial outcome of this recent understanding of the unique metabolic signature surrounding the Warburg effect is the identification of novel drug targets for the development of a new generation of therapeutics to treat cancer.
Collapse
Affiliation(s)
| | | | | | | | - Vadivel Ganapathy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (N.T.N.); (Y.D.B.); (S.S.)
| |
Collapse
|
4
|
Con P, Hamar J, Biran J, Kültz D, Cnaani A. Cell-based homologous expression system for in-vitro characterization of environmental effects on transmembrane peptide transport in fish. Curr Res Physiol 2024; 7:100118. [PMID: 38298473 PMCID: PMC10825657 DOI: 10.1016/j.crphys.2024.100118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024] Open
Abstract
All organisms encounter environmental changes that lead to physiological adjustments that could drive evolutionary adaptations. The ability to adjust performance in order to cope with environmental changes depends on the organism's physiological plasticity. These adjustments can be reflected in behavioral, physiological, and molecular changes, which interact and affect each other. Deciphering the role of molecular adjustments in physiological changes will help to understand how multiple levels of biological organization are synchronized during adaptations. Transmembrane transporters, which facilitate a cell's interaction with its surroundings, are prime targets for molecular studies of the environmental effects on an organism's physiology. Fish are subjected to environmental fluctuations and exhibit different coping mechanisms. To study the molecular adjustments of fish transporters to their external surrounding, suitable experimental systems must be established. The Mozambique tilapia (Oreochromis mossambicus) is an excellent model for environmental stress studies, due to its extreme salinity tolerance. We established a homologous cellular-based expression system and uptake assay that allowed us to study the effects of environmental conditions on transmembrane transport. We applied our expression system to investigate the effects of environmental conditions on the activity of PepT2, a transmembrane transporter critical in the absorption of dietary peptides and drugs. We created a stable, modified fish cell-line, in which we exogenously expressed the tilapia PepT2, and tested the effects of water temperature and salinity on the uptake of a fluorescent di-peptide, β-Ala-Lys-AMCA. While temperature affected only Vmax, medium salinity had a bi-directional effect, with significantly reduced Vmax in hyposaline conditions and significantly increased Km in hypersaline conditions. These assays demonstrate the importance of suitable experimental systems for fish ecophysiology studies. Furthermore, our in-vitro results show how the effect of hypersaline conditions on the transporter activity can explain expression shifts seen in the intestine of saltwater-acclimated fish, emphasizing the importance of complimentary studies in better understanding environmental physiology. This research highlights the advantages of using homologous expression systems to study environmental effects encountered by fish, in a relevant cellular context. The presented tools and methods can be adapted to study other transporters in-vitro.
Collapse
Affiliation(s)
- Pazit Con
- Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Jens Hamar
- Department of Animal Sciences, University of California Davis, Davis, CA, 95616, USA
| | - Jakob Biran
- Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Dietmar Kültz
- Department of Animal Sciences, University of California Davis, Davis, CA, 95616, USA
| | - Avner Cnaani
- Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
5
|
Dong M, Li P, Luo J, Chen B, Jiang H. Oligopeptide/Histidine Transporter PHT1 and PHT2 - Function, Regulation, and Pathophysiological Implications Specifically in Immunoregulation. Pharm Res 2023; 40:2585-2596. [PMID: 37610621 DOI: 10.1007/s11095-023-03589-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/15/2023] [Indexed: 08/24/2023]
Abstract
The oligopeptide/histidine transporters PHT1 and PHT2, two mammalian solute carrier family 15A proteins, mediate the transmembrane transport of histidine and some di/tripeptides via proton gradient. PHT1 and PHT2 are distributed in a variety of tissues but are preferentially expressed in immune cells and localize to the lysosome-related organelles. Studies have reported the relationships between PHT1/PHT2 and immune diseases. PHT1 and PHT2 participate in the regulation of lysosomal homeostasis and lysosome-associated signaling pathways through their transport and nontransport functions, playing important roles in inflammatory diseases. In this review, we summarize recent research on PHT1 and PHT2, aiming to provide reference for their further biological research and as targets for drug design.
Collapse
Affiliation(s)
- Minlei Dong
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ping Li
- Department of Clinical Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Luo
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Binxin Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Huidi Jiang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
6
|
Onbasli K, Demirci G, Isik F, Durmusoglu EG, Demir HV, Acar HY. Aqueous colloidal nanoplatelets for imaging and improved ALA-based photodynamic therapy of prostate cancer cells. Chem Commun (Camb) 2023; 59:10512-10515. [PMID: 37555511 DOI: 10.1039/d3cc02929h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Fluorescent, CdSe/CdS core/crown heterostructured nanoplatelets (NPLs) were transferred to the water via a simple, single-step ligand exchange using 2-mercaptopropionic acid in a simple extraction process. These stable, aqueous NPLs were loaded with a modal drug, 5-aminolevulinic acid (ALA). ALA-loaded NPLs emerged as a new class of theranostic nanoparticles for image-guided enhanced photodynamic therapy of both androgen-dependent and -independent human prostate cancer cells.
Collapse
Affiliation(s)
- Kubra Onbasli
- Department of Chemistry, Koc University, Rumelifeneri Yolu, Sariyer, Istanbul, 34450, Turkey.
| | - Gozde Demirci
- Department of Chemistry, Koc University, Rumelifeneri Yolu, Sariyer, Istanbul, 34450, Turkey.
| | - Furkan Isik
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey.
| | - Emek Goksu Durmusoglu
- LUMINOUS! Centre of Excellence for Semiconductor Lighting and Displays, The Photonics Institute, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Hilmi Volkan Demir
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey.
- LUMINOUS! Centre of Excellence for Semiconductor Lighting and Displays, The Photonics Institute, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Havva Yagci Acar
- Department of Chemistry, Koc University, Rumelifeneri Yolu, Sariyer, Istanbul, 34450, Turkey.
- Graduate School of Materials Science and Engineering, Koc University, Rumelifeneri Yolu, Sariyer, Istanbul 34450, Turkey
- KUYTAM, Koc University Surface Science and Technology Center, 34450 Istanbul, Turkey
| |
Collapse
|
7
|
Puris E, Fricker G, Gynther M. The Role of Solute Carrier Transporters in Efficient Anticancer Drug Delivery and Therapy. Pharmaceutics 2023; 15:pharmaceutics15020364. [PMID: 36839686 PMCID: PMC9966068 DOI: 10.3390/pharmaceutics15020364] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Transporter-mediated drug resistance is a major obstacle in anticancer drug delivery and a key reason for cancer drug therapy failure. Membrane solute carrier (SLC) transporters play a crucial role in the cellular uptake of drugs. The expression and function of the SLC transporters can be down-regulated in cancer cells, which limits the uptake of drugs into the tumor cells, resulting in the inefficiency of the drug therapy. In this review, we summarize the current understanding of low-SLC-transporter-expression-mediated drug resistance in different types of cancers. Recent advances in SLC-transporter-targeting strategies include the development of transporter-utilizing prodrugs and nanocarriers and the modulation of SLC transporter expression in cancer cells. These strategies will play an important role in the future development of anticancer drug therapies by enabling the efficient delivery of drugs into cancer cells.
Collapse
|
8
|
Khavinson V, Linkova N, Kozhevnikova E, Dyatlova A, Petukhov M. Transport of Biologically Active Ultrashort Peptides Using POT and LAT Carriers. Int J Mol Sci 2022; 23:ijms23147733. [PMID: 35887081 PMCID: PMC9323678 DOI: 10.3390/ijms23147733] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 01/27/2023] Open
Abstract
Ultrashort peptides (USPs), consisting of 2–7 amino-acid residues, are a group of signaling molecules that regulate gene expression and protein synthesis under normal conditions in various diseases and ageing. USPs serve as a basis for the development of drugs with a targeted mechanism of action. The purpose of this review is to systematize the available data on USP transport involving POT and LAT transporters in various organs and tissues under normal, pathological and ageing conditions. The carriers of the POT family (PEPT1, PEPT2, PHT1, PHT2) transport predominantly di- and tripeptides into the cell. Methods of molecular modeling and physicochemistry have demonstrated the ability of LAT1 to transfer not only amino acids but also some di- and tripeptides into the cell and out of it. LAT1 and 2 are involved in the regulation of the antioxidant, endocrine, immune and nervous systems’ functions. Analysis of the above data allows us to conclude that, depending on their structure, di- and tripeptides can be transported into the cells of various tissues by POT and LAT transporters. This mechanism is likely to underlie the tissue specificity of peptides, their geroprotective action and effectiveness in the case of neuroimmunoendocrine system disorders.
Collapse
Affiliation(s)
- Vladimir Khavinson
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint Petersburg, Russia; (N.L.); (E.K.); (A.D.)
- Group of Peptide Regulation of Aging, Pavlov Institute of Physiology of Russian Academy of Sciences, 199034 Saint Petersburg, Russia
- Correspondence: or ; Tel.: +7-(921)-9110800
| | - Natalia Linkova
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint Petersburg, Russia; (N.L.); (E.K.); (A.D.)
- The Laboratory “Problems of Aging”, Belgorod National Research University, 308015 Belgorod, Russia
| | - Ekaterina Kozhevnikova
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint Petersburg, Russia; (N.L.); (E.K.); (A.D.)
| | - Anastasiia Dyatlova
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint Petersburg, Russia; (N.L.); (E.K.); (A.D.)
| | - Mikhael Petukhov
- Petersburg Nuclear Physics Institute Named after B.P. Konstantinov, NRC “Kurchatov Institute”, 188300 Gatchina, Russia;
- Peter the Great St. Petersburg Group of Biophysics, Higher Engineering and Technical School, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia
| |
Collapse
|
9
|
Wang X, Chen Y, Wang Y, Wang B, Zhang J, Jian X. Expression, Regulation, and Role of an Oligopeptide Transporter: PEPT1 in Tumors. Curr Med Chem 2022; 29:1596-1605. [PMID: 35546503 DOI: 10.2174/0929867328666210707170214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/04/2021] [Accepted: 04/21/2021] [Indexed: 11/22/2022]
Abstract
:
PEPT1 is a vital member of the proton-dependent oligopeptide transporters
family (POTs). Many studies have confirmed that PEPT1 plays a critical role in the absorption
of dipeptides, tripeptides, and pseudopeptides in the intestinal tract. In recent
years, several studies have found that PEPT1 is highly expressed in malignant tumor tissues
and cells. The abnormal expression of PEPT1 in tumors may be closely related to the
progress of tumors, and hence, could be considered as a potential molecular biomarker for
the diagnosis, treatment, and prognosis in malignant tumors. Furthermore, PEPT1 can be
used to mediate the targeted delivery of anti-tumor drugs. Herein, the expression, regulation,
and role of PEPT1 in tumors in recent years have been reviewed.
Collapse
Affiliation(s)
- Xi Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute
of Digestive Disease, Tianjin 300052, China
- Tianjin Baodi Hospital/Baodi Clinical College of Tianjin
Medical University, Tianjin 300052, China
| | - Yiming Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute
of Digestive Disease, Tianjin 300052, China
| | - Yongjuan Wang
- Department of Gastroenterology and Hepatology, The Second
Affiliated Hospital of Hebei Medical University, Hebei, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute
of Digestive Disease, Tianjin 300052, China
| | - Jie Zhang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute
of Digestive Disease, Tianjin 300052, China
| | - Xu Jian
- Central Laboratory, Tianjin Medical University
General Hospital, Tianjin, 300052, China
| |
Collapse
|
10
|
Stimulation and homogenization of the protoporphyrin IX endogenous production by photobiomodulation to increase the potency of photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 225:112347. [PMID: 34736068 DOI: 10.1016/j.jphotobiol.2021.112347] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/20/2022]
Abstract
Protoporphyrin IX (PpIX) is produced in the mitochondria and used as fluorescent contrast agent or photosensitizer after exogenous 5-aminolevulinic acid (ALA) delivery in cancer photodynamic detection and therapy (PDT). Although routinely used in the clinics, the stimulated production of PpIX is often insufficient and/or heterogeneous within the lesions, thereby limiting the PDT performances. Since photobiomodulation, which is based on the illumination of the tissues with sub-thermal radiometric conditions in the red or near-infrared, is known to stimulate the cell metabolism, we have optimized these conditions in vitro. Some of them lead to the homogenization and strong stimulation of the PpIX endogenous production. Interestingly, combined sequentially, PBM enhanced significantly the potency of PpIX-based PDT in vitro and in vivo in tumors grown on the chicken embryo chorioallantoic membrane. These results are in excellent agreement with other assays based on measurements of the cell survival/death, the production of reactive oxygen species, including singlet oxygen, and the mitochondrial membrane potential.
Collapse
|
11
|
Schniers BK, Rajasekaran D, Korac K, Sniegowski T, Ganapathy V, Bhutia YD. PEPT1 is essential for the growth of pancreatic cancer cells: a viable drug target. Biochem J 2021; 478:3757-3774. [PMID: 34569600 PMCID: PMC8589330 DOI: 10.1042/bcj20210377] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022]
Abstract
PEPT1 is a proton-coupled peptide transporter that is up-regulated in PDAC cell lines and PDXs, with little expression in the normal pancreas. However, the relevance of this up-regulation to cancer progression and the mechanism of up-regulation have not been investigated. Herein, we show that PEPT1 is not just up-regulated in a large panel of PDAC cell lines and PDXs but is also functional and transport-competent. PEPT2, another proton-coupled peptide transporter, is also overexpressed in PDAC cell lines and PDXs, but is not functional due to its intracellular localization. Using glibenclamide as a pharmacological inhibitor of PEPT1, we demonstrate in cell lines in vitro and mouse xenografts in vivo that inhibition of PEPT1 reduces the proliferation of the cancer cells. These findings are supported by genetic knockdown of PEPT1 with shRNA, wherein the absence of the transporter significantly attenuates the growth of cancer cells, both in vitro and in vivo, suggesting that PEPT1 is critical for the survival of cancer cells. We also establish that the tumor-derived lactic acid (Warburg effect) in the tumor microenvironment supports the transport function of PEPT1 in the maintenance of amino acid nutrition in cancer cells by inducing MMPs and DPPIV to generate peptide substrates for PEPT1 and by generating a H+ gradient across the plasma membrane to energize PEPT1. Taken collectively, these studies demonstrate a functional link between PEPT1 and extracellular protein breakdown in the tumor microenvironment as a key determinant of pancreatic cancer growth, thus identifying PEPT1 as a potential therapeutic target for PDAC.
Collapse
Affiliation(s)
- Bradley K. Schniers
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, U.S.A
| | - Devaraja Rajasekaran
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, U.S.A
| | - Ksenija Korac
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, U.S.A
| | - Tyler Sniegowski
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, U.S.A
| | - Vadivel Ganapathy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, U.S.A
| | - Yangzom D. Bhutia
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, U.S.A
| |
Collapse
|
12
|
Fotopoulou E, Titilas I, Ronconi L. Metallodrugs as Anticancer Chemotherapeutics and Diagnostic Agents: A Critical Patent Review (2010-2020). Recent Pat Anticancer Drug Discov 2021; 17:42-54. [PMID: 34493191 DOI: 10.2174/1574892816666210907101146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/07/2021] [Accepted: 07/07/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND The development of metallodrugs with potential applications in cancer treatment and diagnosis has been a hot topic since the approval and subsequent marketing of the anticancer drug cisplatin in 1978. Since then, thousands of metal-based derivatives have been reported and evaluated for their chemotherapeutic or tumor imaging properties, but only a very limited number gained clinical status. Nonetheless, research in the field has been increasing exponentially over the years, especially in a view to exploiting novel drug designing approaches and strategies aimed at improving pharmacological outcomes and, at the same time, reducing side-effects. OBJECTIVE This review article reports on the patents filed during the last decade and strictly focusing on the development of metal-based anticancer and diagnostic agents. The goal is to identify the latest trends and designing strategies in the field, which would represent a valuable starting point to researchers interested in the development of metallodrugs. METHODS The most relevant patents filed in the 2010-2020 timeframe have been retrieved from various databases using dedicated search engines (such as SciFinder, Google Patents, PatentPak, Espacenet, Global Dossier, PatentScope), sorted by type of metallodrug and screened to include those reporting a substantial amount of biological data. RESULTS The majority of patents here reviewed are concerned with metallodrugs (mostly platinum-based) showing interesting pharmacological properties but no specific tumor-targeting features. Nonetheless, some promising trends in the development of novel drug delivery strategies and/or metallodrugs with potential applications in targeted chemotherapy are envisaged. CONCLUSION In this review, the latest trends in the development of metallodrugs from recent patents are summarized and critically discussed. Such trends would be of interest not only to the scientific community but also to lay audiences aiming to broaden their knowledge of the field and industrial stakeholders potentially interested in the exploitation and commercialization of this class of pharmaceuticals.
Collapse
Affiliation(s)
- Eirini Fotopoulou
- School of Chemistry, College of Science and Engineering, National University of Ireland Galway, University Road, Galway H91 TK33. Ireland
| | - Ioannis Titilas
- School of Chemistry, College of Science and Engineering, National University of Ireland Galway, University Road, Galway H91 TK33. Ireland
| | - Luca Ronconi
- School of Chemistry, College of Science and Engineering, National University of Ireland Galway, University Road, Galway H91 TK33. Ireland
| |
Collapse
|
13
|
Huang H, Wang J, Chen S, He H, Shang Y, Guo X, Lou G, Ji J, Guo M, Chen H, Yu S. SLC15A4 Serves as a Novel Prognostic Biomarker and Target for Lung Adenocarcinoma. Front Genet 2021; 12:666607. [PMID: 34168674 PMCID: PMC8217884 DOI: 10.3389/fgene.2021.666607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/13/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND SLC15A family members are known as electrogenic transporters that take up peptides into cells through the proton-motive force. Accumulating evidence indicates that aberrant expression of SLC15A family members may play crucial roles in tumorigenesis and tumor progression in various cancers, as they participate in tumor metabolism. However, the exact prognostic role of each member of the SLC15A family in human lung cancer has not yet been elucidated. MATERIALS AND METHODS We investigated the SLC15A family members in lung cancer through accumulated data from TCGA and other available online databases by integrated bioinformatics analysis to reveal the prognostic value, potential clinical application and underlying molecular mechanisms of SLC15A family members in lung cancer. RESULTS Although all family members exhibited an association with the clinical outcomes of patients with NSCLC, we found that none of them could be used for squamous cell carcinoma of the lung and that SLC15A2 and SLC15A4 could serve as biomarkers for lung adenocarcinoma. In addition, we further investigated SLC15A4-related genes and regulatory networks, revealing its core molecular pathways in lung adenocarcinoma. Moreover, the IHC staining pattern of SLC15A4 in lung adenocarcinoma may help clinicians predict clinical outcomes. CONCLUSION SLC15A4 could be used as a survival prediction biomarker for lung adenocarcinoma due to its potential role in cell division regulation. However, more studies including large patient cohorts are required to validate the clinical utility of SLC15A4 in lung adenocarcinoma.
Collapse
Affiliation(s)
- Hui Huang
- Department of Operating Room, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Junwei Wang
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shibin Chen
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - HongJiang He
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yu Shang
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Harbin, Harbin, China
| | - Xiaorong Guo
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ge Lou
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingjing Ji
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mian Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong Chen
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shan Yu
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
14
|
Labib PL, Yaghini E, Davidson BR, MacRobert AJ, Pereira SP. 5-Aminolevulinic acid for fluorescence-guided surgery in pancreatic cancer: Cellular transport and fluorescence quantification studies. Transl Oncol 2021; 14:100886. [PMID: 33059124 PMCID: PMC7566921 DOI: 10.1016/j.tranon.2020.100886] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/30/2022] Open
Abstract
5-Aminolevulinic acid (ALA) is a potential contrast agent for fluorescence-guided surgery in pancreatic ductal adenocarcinoma (PDAC). However, factors influencing ALA uptake in PDAC have not been adequately assessed. We investigated ALA-induced porphyrin fluorescence in PDAC cell lines CFPAC-1 and PANC-1 and pancreatic ductal cell line H6c7 following incubation with 0.25-1.0 mM ALA for 4-48 h. Fluorescence was assessed qualitatively by microscopy and quantitatively by plate reader and flow cytometry. Haem biosynthesis enzymes and transporters were measured by quantitative polymerase chain reaction (qPCR). CFPAC-1 cells exhibited intense fluorescence under microscopy at low concentrations whereas PANC-1 cells and pancreatic ductal cell line H6c7 showed much lower fluorescence. Quantitative fluorescence studies demonstrated fluorescence saturation in the two PDAC cell lines at 0.5 mM ALA, whereas H6c7 cells showed increasing fluorescence with increasing ALA. Based on the PDAC:H6c7 fluorescence ratio studies, lower ALA concentrations provide better contrast between PDAC and benign pancreatic cells. Studies with qPCR showed upregulation of ALA influx transporter PEPT1 in CFPAC-1, whereas PANC-1 upregulated the efflux transporter ABCG2. We conclude that PEPT1 and ABCG2 expression may be key contributory factors for variability in ALA-induced fluorescence in PDAC.
Collapse
Affiliation(s)
- P L Labib
- UCL Institute for Liver & Digestive Health, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom of Great Britain and Northern Ireland.
| | - E Yaghini
- UCL Division of Surgery & Interventional Science, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom of Great Britain and Northern Ireland.
| | - B R Davidson
- UCL Division of Surgery & Interventional Science, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom of Great Britain and Northern Ireland.
| | - A J MacRobert
- UCL Division of Surgery & Interventional Science, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom of Great Britain and Northern Ireland.
| | - S P Pereira
- UCL Institute for Liver & Digestive Health, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
15
|
Dobrydnev AV, Tkachuk TM, Atamaniuk VP, Popova MV. Quercetin-Amino Acid Conjugates are Promising Anti-Cancer Agents in Drug Discovery Projects. Mini Rev Med Chem 2020; 20:107-122. [PMID: 31595850 DOI: 10.2174/1389557519666191009152007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/14/2019] [Accepted: 09/18/2019] [Indexed: 02/06/2023]
Abstract
Quercetin is a plant flavonoid with great potential for the prevention and treatment of disease. Despite the curative application of quercetin is hampered by low bioavailability, its core serves as a scaffold for generating more potent compounds with amplified therapeutic window. This review aims to describe recent advances in the improvement of the pharmacokinetic profile of quercetin via the amino acid prodrug approach which offers wide structural diversity, physicochemical and biological properties improvement. According to the findings, conjugation of quercetin with amino acids results in increased solubility, stability, cellular permeability as well as biological activity. In particular quercetin- amino acid conjugates exhibited potent anticancer, MDR-reversal and antibiotic resistance reversal activities. The synthetic pathways and examples of quercetin-amino acid conjugates are considered. Practical considerations and challenges associated with the development of these prodrugs are also discussed. This mini-review covers the literature on quercetin-amino acid conjugates since 2001 when the first thematic work was published.
Collapse
Affiliation(s)
- Alexey V Dobrydnev
- SMC Ecopharm Ltd., Naberezhno-Korchuvatska Street 136-B, Kyiv 03045, Ukraine
| | - Tetiana M Tkachuk
- SMC Ecopharm Ltd., Naberezhno-Korchuvatska Street 136-B, Kyiv 03045, Ukraine
| | - Viktor P Atamaniuk
- SMC Ecopharm Ltd., Naberezhno-Korchuvatska Street 136-B, Kyiv 03045, Ukraine
| | - Maria V Popova
- Chemistry Department, National Taras Shevchenko University of Kyiv, Lva Tolstoho Street 12, Kyiv 01033, Ukraine
| |
Collapse
|
16
|
Lai HW, Nakayama T, Ogura SI. Key transporters leading to specific protoporphyrin IX accumulation in cancer cell following administration of aminolevulinic acid in photodynamic therapy/diagnosis. Int J Clin Oncol 2020; 26:26-33. [PMID: 32875514 DOI: 10.1007/s10147-020-01766-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/05/2020] [Indexed: 12/31/2022]
Abstract
The administration of aminolevulinic acid allow the formation and accumulation of protoporphyrin IX specifically in cancer cells, which then lead to photocytotoxicity following light irradiation. This compound, when accumulated at high levels, could also be used in cancer diagnosis as it would emit red fluorescence when being light irradiated. The concentration of protoporphyrin IX is pivotal in ensuring the effectiveness of the therapy. Studies have been carried out and showed the importance of various transporters in regulating the amount of these substrates by controlling the transport of various related metabolites in and out of the cell. There are many transporters involved and their expression levels are dependent on various factors, such as oxygen availability and iron ions. It is also important to note that these transporters may also have different expression levels depending on their organ. Understanding the mechanisms and the roles of these transporters are essential to ensure maximum accumulation of protoporphyrin IX, leading to higher efficiency in photodynamic therapy/diagnosis. In this review, we would like to discuss the roles of various transporters in protoporphyrin IX accumulation and how their involvement directly affect cancerous microenvironment.
Collapse
Affiliation(s)
- Hung Wei Lai
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 B47, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Taku Nakayama
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 B47, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan.,Center for Photodynamic Medicine, Kochi Medical School, Kohasu, Oko-cho, Nankoku-shi, Kochi, 783-8505, Japan
| | - Shun-Ichiro Ogura
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 B47, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan. .,Center for Photodynamic Medicine, Kochi Medical School, Kohasu, Oko-cho, Nankoku-shi, Kochi, 783-8505, Japan.
| |
Collapse
|
17
|
Uptake Transporters of the SLC21, SLC22A, and SLC15A Families in Anticancer Therapy-Modulators of Cellular Entry or Pharmacokinetics? Cancers (Basel) 2020; 12:cancers12082263. [PMID: 32806706 PMCID: PMC7464370 DOI: 10.3390/cancers12082263] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 12/21/2022] Open
Abstract
Solute carrier transporters comprise a large family of uptake transporters involved in the transmembrane transport of a wide array of endogenous substrates such as hormones, nutrients, and metabolites as well as of clinically important drugs. Several cancer therapeutics, ranging from chemotherapeutics such as topoisomerase inhibitors, DNA-intercalating drugs, and microtubule binders to targeted therapeutics such as tyrosine kinase inhibitors are substrates of solute carrier (SLC) transporters. Given that SLC transporters are expressed both in organs pivotal to drug absorption, distribution, metabolism, and elimination and in tumors, these transporters constitute determinants of cellular drug accumulation influencing intracellular drug concentration required for efficacy of the cancer treatment in tumor cells. In this review, we explore the current understanding of members of three SLC families, namely SLC21 (organic anion transporting polypeptides, OATPs), SLC22A (organic cation transporters, OCTs; organic cation/carnitine transporters, OCTNs; and organic anion transporters OATs), and SLC15A (peptide transporters, PEPTs) in the etiology of cancer, in transport of chemotherapeutic drugs, and their influence on efficacy or toxicity of pharmacotherapy. We further explore the idea to exploit the function of SLC transporters to enhance cancer cell accumulation of chemotherapeutics, which would be expected to reduce toxic side effects in healthy tissue and to improve efficacy.
Collapse
|
18
|
Recapitulation of prostate tissue cell type-specific transcriptomes by an in vivo primary prostate tissue xenograft model. PLoS One 2020; 15:e0233899. [PMID: 32584883 PMCID: PMC7316257 DOI: 10.1371/journal.pone.0233899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 05/14/2020] [Indexed: 11/19/2022] Open
Abstract
Studies of the normal functions and diseases of the prostate request in vivo models that maintain the tissue architecture and the multiple-cell type compartments of human origin in order to recapitulate reliably the interactions of different cell types. Cell type-specific transcriptomes are critical to reveal the roles of each cell type in the functions and diseases of the prostate. A primary prostate tissue xenograft model was developed using fresh human prostate tissue specimens transplanted onto male mice that were castrated surgically and implanted with a device to maintain circulating testosterone levels comparable to adult human males. Endothelial cells and epithelial cells were isolated from 7 fresh human prostate tissue specimens and from primary tissue xenografts established from 9 fresh human prostate tissue specimens, using antibody-conjugated magnetic beads specific to human CD31 and human EpCAM, respectively. Transcriptomes of endothelial, epithelial and stromal cell fractions were obtained using RNA-Seq. Global and function-specific gene expression profiles were compared in inter-cell type and inter-tissue type manners. Gene expression profiles in the individual cell types isolated from xenografts were similar to those of cells isolated from fresh tissue, demonstrating the value of the primary tissue xenograft model for studies of the inter-relationships between prostatic cell types and the role of such inter-relationships in organ development, disease progression, and response to drug treatments.
Collapse
|
19
|
Wang C, Zhao FQ, Liu J, Liu H. Short communication: The essential role of N-glycosylation in the transport activity of bovine peptide transporter 2. J Dairy Sci 2020; 103:6679-6683. [PMID: 32331895 DOI: 10.3168/jds.2019-16858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 02/18/2020] [Indexed: 12/19/2022]
Abstract
Bovine peptide transporter 2 (bPepT2), which mediates the absorption of di- and tripeptides in the bovine mammary gland, was predicted to contain multiple putative N-glycosylation sites of asparagine residues. N-Linked glycosylation is proven to be essential for the folding, stability, localization, and substrate binding of nutrient transporters and could therefore potentially have an essential role in the function of bPepT2. This study investigated the effect of mutagenesis of N-glycosylation sites on the transport function of bPepT2 in Chinese hamster ovary (CHO) cells. The bPepT2 cDNA was cloned and sequenced. BioXM (http://202.195.246.60/BioXM/) and TMHMM (http://www.cbs.dtu.dk/services/TMHMM-2.0/) software were used to predict the AA composition and transmembrane domain of bPepT2, respectively. The AA sequence of bPepT2 was predicted to have 12 transmembrane domains, with a large extracellular loop between the ninth and tenth transmembrane domains. All 5 putative N-glycosylation sites in this loop were altered by site-directed mutagenesis, and the mutant construct was transfected into CHO cells for transport activity assay. Compared with the wild type, the bPepT2 mutant had significantly lower uptake activity of β-alanyl-l-lysyl-Nε-7-amino-4-methyl-coumarin-3-acetic acid (β-Ala-Lys-AMCA), a model dipeptide. Treatment with tunicamycin, an inhibitor of N-linked glycosylation, reduced the uptake of β-Ala-Lys-AMCA in CHO cells relative to the control group. Kinetic studies indicated that the Michaelis constant of bPepT2 was not affected by the mutation (98.03 ± 8.30 and 88.33 ± 4.23 µM for the wild type and the mutant, respectively), but the maximum transport activity was significantly reduced (40.29 ± 8.30 and 13.02 ± 2.95 pmol/min per milligram of protein for the wild type and the mutant, respectively). In summary, this study demonstrated that N-glycosylation is critical for the function of bPepT2.
Collapse
Affiliation(s)
- Caihong Wang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Feng-Qi Zhao
- College of Animal Science, Zhejiang University, Hangzhou 310058, China; Department of Animal and Veterinary Sciences, University of Vermont, Burlington 05405
| | - Jianxin Liu
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Hongyun Liu
- College of Animal Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
20
|
The Radiolabeling of a Gly-Sar Dipeptide Derivative with Flourine-18 and Its Use as a Potential Peptide Transporter PET Imaging Agent. Molecules 2020; 25:molecules25030643. [PMID: 32024310 PMCID: PMC7037988 DOI: 10.3390/molecules25030643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 11/23/2022] Open
Abstract
We have developed a novel fluorine-18 radiotracer, dipeptide 1, radiolabeled in two steps from mesylate 3. The initial radiolabeling is achieved in a short reaction time (10 min) and purified through solid-phase extraction (SPE) with modest radiochemical yields (rcy = 10 ± 2%, n = 5) in excellent radiochemical purity (rcp > 99%, n = 5). The de-protection of the tert-butyloxycarbonyl (Boc) and trityl group was achieved with mild heating under acidic conditions to provide 18F-tagged dipeptide 1. Preliminary analysis of 18F-dipeptide 1 was performed to confirm uptake by peptide transporters (PepTs) in human pancreatic carcinoma cell lines Panc1, BxPC3, and ASpc1, which are reported to express the peptide transporter 1 (PepT1). Furthermore, we confirmed in vivo uptake of 18F-dipeptide tracer 1 using microPET/CT in mice harboring subcutaneous flank Panc1, BxPC3, and Aspc1 tumors. In conclusion, we have established the radiolabeling of dipeptide 1 with fluoride-18, and demonstrated its potential as an imaging agent which may have clinical applications for the diagnosis of pancreatic carcinomas.
Collapse
|
21
|
|
22
|
Warthan MD, Washington SL, Franzese SE, Ramus RM, Kim KR, York TP, Stratikos E, Strauss JF, Lee ED. The role of endoplasmic reticulum aminopeptidase 2 in modulating immune detection of choriocarcinoma. Biol Reprod 2019; 98:309-322. [PMID: 29324974 PMCID: PMC5939618 DOI: 10.1093/biolre/ioy001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 01/05/2018] [Indexed: 12/21/2022] Open
Abstract
Gestational choriocarcinomas are derived from placental trophoblast cells, with HLA-C being the only class I polymorphic molecule expressed. However, choriocarcinomas have not been profiled for endoplasmic reticulum aminopeptidase 2 (ERAP2) expression. ERAP2 trims peptides presented by human leukocyte antigens (HLA) that have shown to modulate immune response. Over 50% of choriocarcinomas we screened lack ERAP2 expression, which suggests that the absence of ERAP2 expression allows immune evasion of choriocarcinoma cells. We demonstrate that the ability of choriocarcinoma cells to activate lymphocytes was lowest with cells lacking ERAP2 (JEG-3) or HLA-C (JAr). This observation suggests that activation is dependent on expression of both ERAP2 and HLA-C molecules. In addition, an ERAP2 variant in which lysine is changed to asparagine (K392N) results in increased trimming activity (165-fold) for hydrophobic peptides and biologically never been detected. We hypothesize that homozygosity for the N392 ERAP2 variant is prohibited because it modulates the immune recognition of placental trophoblasts. We demonstrate that NK-cell activation and killing were significantly dependent on forced expression of the N392 ERAP2 isoform in JEG-3 cells. Cytotoxicity was confirmed by 7AAD killing assays showing that N392 ERAP2-isoform expressing JEG-3 cells had the highest percentage of apoptotic cells independent of the expression level of CD11a on lymphocytes. This is the first report showing that N392 ERAP2 promotes an immune clearance pathway for choriocarcinoma cells, and provides an explanation for why embryonic homozygosity for the N392 ERAP2 variant is not detected in any population.
Collapse
Affiliation(s)
- Michelle D Warthan
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Sonya L Washington
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Samone E Franzese
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Ronald M Ramus
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Kyu-Rae Kim
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Timothy P York
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | - Jerome F Strauss
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Eun D Lee
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
23
|
Xu Q, Liu H, Zhao F, Wu Y, Huang X, Liu Z, Liu J. Mechanism of peptide absorption in the isolated forestomach epithelial cells of dairy cows. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:100-108. [PMID: 29797328 DOI: 10.1002/jsfa.9148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 03/19/2018] [Accepted: 05/20/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Peptide absorption from the forestomach plays a vital role in protein nutrition of dairy cows. This study was conducted to investigate the mechanism of dipeptide absorption in the forestomach of dairy cows using isolated omasal epithelial cells (OECs) and ruminal epithelial cells (RECs). RESULTS Compared with RECs, the OECs formed a less tight monolayer, but had greater ability to transport glycylsarcosine (Gly-Sar) (P < 0.05). The OEC monolayers were immunopositive for the antibodies of anti-junction proteins. Gly-Sar transport was significantly greater at 37 °C than that at 4 °C, with an optimal pH of 6.0-6.5, and was decreased significantly by diethylpyrocarbonate and dipeptide Met-Gly (P < 0.05). The apical-to-basolateral transport was significantly greater than basolateral-to-apical transport (P < 0.05). Knockdown of peptide transporter 1 (PepT1) resulted in less Gly-Sar uptake in OECs, whereas overexpression of PepT1 in OECs resulted in higher Gly-Sar uptake (P < 0.05). Additionally, the expression of PepT1 was upregulated by the treatment with various dipeptides (P < 0.05). CONCLUSION The OECs have a greater ability to transport Gly-Sar than RECs do. Both passive and active routes are involved in the process of Gly-Sar absorption in the isolated cultured forestomach epithelial cells from dairy cows. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qingbiao Xu
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongyun Liu
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Fengqi Zhao
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Department of Animal and Veterinary Sciences, Laboratory of Lactation and Metabolic Physiology, University of Vermont, Burlington, VT, USA
| | - Yueming Wu
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xinbei Huang
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zhixuan Liu
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jianxin Liu
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Wang C, Sun Y, Zhao FQ, Liu J, Liu H. Functional Characterization of Peptide Transporters in Bovine Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:213-219. [PMID: 30525553 DOI: 10.1021/acs.jafc.8b05637] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The objective of this study was to characterize the expression profile, transport kinetics, and regulation of peptide transporters in bovine mammary epithelial cells (BMECs). Quantitative reverse-transcription real-time PCR, Western blotting, and immunofluorescence staining were used to investigate the expression of peptide transporters in bovine mammary tissues. The effects of time, pH, concentration, and specific inhibitors on β-alanyl-l-lysyl- Nε-7-amino-4-methyl-coumarin-3-acetic acid (β-Ala-Lys-AMCA) uptake in BMECs were also studied. The results showed that the peptide transporters PepT2 and PhT1 are both expressed in bovine mammary glands. The optimal pH for the uptake of β-Ala-Lys-AMCA in BMECs was 6.5. The transport-kinetics study suggested that the uptake of β-Ala-Lys-AMCA in BMECs is saturable over the tested concentration, with a Km value of 82 ± 18 μM and a Vmax of 124 ± 11 pmol/min per milligram of protein. Other dipeptides, including Gly-Sar, Met-Gly, and Met-Met, competitively inhibited β-Ala-Lys-AMCA uptake in BMECs. However, histidine had no effect on β-Ala-Lys-AMCA uptake. Furthermore, knocking down PepT2 could significantly reduce β-Ala-Lys-AMCA uptake, but PhT1 interference had no effect on peptide uptake in BMECs. The inhibition of PI3K and Akt decreased the uptake of β-Ala-Lys-AMCA. The above results revealed functional characteristics of peptide transporters and demonstrated that PepT2 may play a major role in β-Ala-Lys-AMCA uptake in BMECs. Moreover, the PI3K-Akt signaling pathway may regulate the uptake of β-Ala-Lys-AMCA in BMECs.
Collapse
Affiliation(s)
- Caihong Wang
- Institute of Dairy Science, College of Animal Science , Zhejiang University , Hangzhou 310058 , China
| | - Yalu Sun
- Institute of Dairy Science, College of Animal Science , Zhejiang University , Hangzhou 310058 , China
| | - Feng-Qi Zhao
- Institute of Dairy Science, College of Animal Science , Zhejiang University , Hangzhou 310058 , China
- Department of Animal and Veterinary Sciences , University of Vermont , Burlington , Vermont 05405 , United States
| | - Jianxin Liu
- Institute of Dairy Science, College of Animal Science , Zhejiang University , Hangzhou 310058 , China
| | - Hongyun Liu
- Institute of Dairy Science, College of Animal Science , Zhejiang University , Hangzhou 310058 , China
| |
Collapse
|
25
|
Gong Y, Wu X, Wang T, Zhao J, Liu X, Yao Z, Zhang Q, Jian X. Targeting PEPT1: a novel strategy to improve the antitumor efficacy of doxorubicin in human hepatocellular carcinoma therapy. Oncotarget 2018; 8:40454-40468. [PMID: 28465466 PMCID: PMC5522267 DOI: 10.18632/oncotarget.17117] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 04/02/2017] [Indexed: 01/10/2023] Open
Abstract
Proton coupled oligopeptide transporter 1 (PEPT1) is a member of the peptide transporter superfamily and plays important role in the absorption of oligopeptide and peptidomimetic drugs. Our previous research verified that PEPT1 expressed specifically in human Hepatocellular carcinoma (HCC) tissue and cell lines and showed potential transport activity to be a new candidate of the tumor therapeutic target. In this study, we aim to explore the feasibility of a novel tumor target therapeutic strategy: Targeting PEPT1 to improve the antitumor efficacy of Doxorubicin in human HCC therapy. First, Doxorubicin was conjugated with Glycylglycylglycine (Gly-Gly-Gly) − a tripeptide which was known as the substrate of PEPT1 and characterized by HPLC and MS successfully. Doxorubicin-tripeptide conjugate was then observed to clarify the target delivery by PEPT1 and the antitumor effect on human hepatocarcinoma in vivo and in vitro. Furthermore, the improvement of the toxic and side effect of Doxorubicin after conjugation was also evaluated by some biochemical tests. Our results reveal that targeting PEPT1 may contribute to the efficient delivery of Doxorubicin to hepatocarcinoma cells and the reduction of drug toxicity. PEPT1 has the prospect to be a novel target of HCC therapy.
Collapse
Affiliation(s)
- Yanxia Gong
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Department of Gastroenterology, Tianjin Nankai Hospital, Tianjin, 300100, China
| | - Xiang Wu
- Central Laboratory, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Tao Wang
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jia Zhao
- Clinical Laboratory, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xi Liu
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zhi Yao
- Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Tianjin, 300070, China
| | - Qingyu Zhang
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xu Jian
- Central Laboratory, Tianjin Medical University General Hospital, Tianjin, 300052, China
| |
Collapse
|
26
|
Viennois E, Pujada A, Zen J, Merlin D. Function, Regulation, and Pathophysiological Relevance of the POT Superfamily, Specifically PepT1 in Inflammatory Bowel Disease. Compr Physiol 2018; 8:731-760. [PMID: 29687900 DOI: 10.1002/cphy.c170032] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mammalian members of the proton-coupled oligopeptide transporter family are integral membrane proteins that mediate the cellular uptake of di/tripeptides and peptide-like drugs and couple substrate translocation to the movement of H+ , with the transmembrane electrochemical proton gradient providing the driving force. Peptide transporters are responsible for the (re)absorption of dietary and/or bacterial di- and tripeptides in the intestine and kidney and maintaining homeostasis of neuropeptides in the brain. These proteins additionally contribute to absorption of a number of pharmacologically important compounds. In this overview article, we have provided updated information on the structure, function, expression, localization, and activities of PepT1 (SLC15A1), PepT2 (SLC15A2), PhT1 (SLC15A4), and PhT2 (SLC15A3). Peptide transporters, in particular, PepT1 are discussed as drug-delivery systems in addition to their implications in health and disease. Particular emphasis has been placed on the involvement of PepT1 in the physiopathology of the gastrointestinal tract, specifically, its role in inflammatory bowel diseases. © 2018 American Physiological Society. Compr Physiol 8:731-760, 2018.
Collapse
Affiliation(s)
- Emilie Viennois
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Adani Pujada
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Jane Zen
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Didier Merlin
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA.,Veterans Affairs Medical Center, Decatur, Georgia, USA
| |
Collapse
|
27
|
Abstract
With the global population rising, the need for sustainable and resource-efficiently produced proteins with nutritional and health promoting qualities has become urgent. Proteins are important macronutrients and are involved in most, if not all, biological processes in the human body. This review discusses these absorption mechanisms in the small intestine. To study intestinal transport and predict bioavailability, cell lines are widely applied as screening models and often concern Caco-2, HT-29, HT-29/MTX and T84 cells. Here, we provide an overview of the presence and activities of peptide- and amino acid transporters in these cell models. Further, inter-laboratory differences are discussed as well as the culture micro-environment, both of which may influence cell culture phenotype and performance. Finally, the value of new developments in the field, including culturing cells in 3-dimensional systems under shear stress (i.e., gut-on-chips), is highlighted. In particular, their suitability in screening novel food proteins and prediction of the nutritional quality needed for inclusion in the human diet of the future is addressed.
Collapse
|
28
|
Liu H, Han Y, Li J, Qin M, Fu Q, Wang C, Liu Z. 18F-Alanine Derivative Serves as an ASCT2 Marker for Cancer Imaging. Mol Pharm 2018; 15:947-954. [DOI: 10.1021/acs.molpharmaceut.7b00884] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hui Liu
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yuxiang Han
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jiyuan Li
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ming Qin
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qunfeng Fu
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chunhong Wang
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhibo Liu
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
29
|
Wang CY, Liu S, Xie XN, Tan ZR. Regulation profile of the intestinal peptide transporter 1 (PepT1). DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:3511-3517. [PMID: 29263649 PMCID: PMC5726373 DOI: 10.2147/dddt.s151725] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The intestinal peptide transporter 1 (PepT1) was first identified in 1994. It plays a crucial role in the absorption of small peptides including not only >400 different dipeptides and 8,000 tripeptides digested from dietary proteins but also a repertoire of structurally related compounds and drugs. Owing to its critical role in the bioavailability of peptide-like drugs, such as the anti-cancer agents and anti-virus drug, PepT1 is increasingly becoming a striking prodrug-designing target. Therefore, the understanding of PepT1 gene regulation is of great importance both for dietary adaptation and for clinical drug treatment. After decades of research, it has been recognized that PepT1 could be regulated at the transcriptional and post-transcriptional levels by numerous factors. Therefore, the present review intends to summarize the progress made in the regulation of PepT1 and provide insights into the PepT1's potential in clinical aspects of nutritional and drug therapies.
Collapse
Affiliation(s)
- Chun-Yang Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Xiangya School of Medicine, Central South University.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, People's Republic of China
| | - Shu Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Xiangya School of Medicine, Central South University.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, People's Republic of China
| | - Xiao-Nv Xie
- Department of Clinical Pharmacology, Xiangya Hospital, Xiangya School of Medicine, Central South University.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, People's Republic of China
| | - Zhi-Rong Tan
- Department of Clinical Pharmacology, Xiangya Hospital, Xiangya School of Medicine, Central South University.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
30
|
Lin Q, Xu Q, Bai J, Wu W, Hong H, Wu J. Transport of soybean protein-derived antihypertensive peptide LSW across Caco-2 monolayers. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.10.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
31
|
Gong Y, Zhang J, Wu X, Wang T, Zhao J, Yao Z, Zhang Q, Liu X, Jian X. Specific expression of proton-coupled oligopeptide transporter 1 in primary hepatocarcinoma-a novel strategy for tumor-targeted therapy. Oncol Lett 2017; 14:4158-4166. [PMID: 28943923 PMCID: PMC5592876 DOI: 10.3892/ol.2017.6724] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 05/16/2017] [Indexed: 12/13/2022] Open
Abstract
Proton-coupled oligopeptide transporter 1 (PEPT1) is a membrane protein which expressed predominantly in intestine and recognized as the target of dietary nutrients (di/tripeptide) or peptidomimetic drug for delivery. The information on the existence of PEPT1 in carcinomas were limited. Our study aimed to investigate the expression profile and transport activity of PEPT1 both in human hepatocarcinoma tissues and cell lines. Western blotting and an immunofluorescence assay revealed the high level of PEPT1 protein expression in hepatocarcinoma Bel-7402, SMMC-7721, HepG2, HEP3B, SK-HEP-1 cell lines. Quantitative real time PCR showed the mRNA expression of PEPT1 in Bel-7402, SMMC-7721, HepG2, HEP3B, SK-HEP-1 cells. High level PEPT1 expression in hepatocarcinoma patient samples were observed by Immunohistology and showed a significant correlation between protein level and pathological grade. Functional activities were also studied using D-Ala-Lys-AMCA (a substrate of peptide transporter) in above five hepatocarcinoma cell lines. The uptake tests performed by fluorescent microscopy suggested that PEPT1 can transport both D-Ala-Lys-AMCA into the hepatocarcinoma cells and the uptake can be competitively inhibited by three PEPT1 substrates (Gly-sar, Gly-gln and Glyglygly). In conclusion, our findings provided the novel information on the expression and function of PEPT1 in human hepatocarcinoma and expanded the potential values for tumor specific drug delivery.
Collapse
Affiliation(s)
- Yanxia Gong
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China.,Department of Gastroenterology, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Jie Zhang
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Xiang Wu
- Central Laboratory, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Tao Wang
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jia Zhao
- Clinical Laboratory, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Zhi Yao
- Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Qingyu Zhang
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Xi Liu
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Xu Jian
- Central Laboratory, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
32
|
Huo X, Wang C, Yu Z, Peng Y, Wang S, Feng S, Zhang S, Tian X, Sun C, Liu K, Deng S, Ma X. Human transporters, PEPT1/2, facilitate melatonin transportation into mitochondria of cancer cells: An implication of the therapeutic potential. J Pineal Res 2017; 62:e12390. [PMID: 28099762 DOI: 10.1111/jpi.12390] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/12/2017] [Indexed: 12/21/2022]
Abstract
Melatonin is present in virtually all organisms from bacteria to mammals, and it exhibits a broad spectrum of biological functions, including synchronization of circadian rhythms and oncostatic activity. Several functions of melatonin are mediated by its membrane receptors, but others are receptor-independent. For the latter, melatonin is required to penetrate membrane and enters intracellular compartments. However, the mechanism by which melatonin enters cells remains debatable. In this study, it was identified that melatonin and its sulfation metabolites were the substrates of oligopeptide transporter (PEPT) 1/2 and organic anion transporter (OAT) 3, respectively. The docking analysis showed that the binding of melatonin to PEPT1/2 was attributed to their low binding energy and suitable binding conformation in which melatonin was embedded in the active site of PEPT1/2 and fitted well with the cavity in three-dimensional space. PEPT1/2 transporters play a pivotal role in melatonin uptake in cells. Melatonin's membrane transportation via PEPT1/2 renders its oncostatic effect in malignant cells. For the first time, PEPT1/2 were identified to localize in the mitochondrial membrane of human cancer cell lines of PC3 and U118. PEPT1/2 facilitated the transportation of melatonin into mitochondria. Melatonin accumulation in mitochondria induced apoptosis of PC3 and U118 cells. Thus, PEPT1/2 can potentially be used as a cancer cell-targeted melatonin delivery system to improve the therapeutic effects of melatonin in cancer treatment.
Collapse
Affiliation(s)
- Xiaokui Huo
- Key Laboratory of Pharmacokinetic and Drug Transport of Liaoning, College of Pharmacy, Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Chao Wang
- Key Laboratory of Pharmacokinetic and Drug Transport of Liaoning, College of Pharmacy, Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Zhenlong Yu
- Key Laboratory of Pharmacokinetic and Drug Transport of Liaoning, College of Pharmacy, Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Yulin Peng
- Key Laboratory of Pharmacokinetic and Drug Transport of Liaoning, College of Pharmacy, Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Shumei Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangdong, China
| | - Shengnan Feng
- Key Laboratory of Pharmacokinetic and Drug Transport of Liaoning, College of Pharmacy, Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Shouji Zhang
- Key Laboratory of Pharmacokinetic and Drug Transport of Liaoning, College of Pharmacy, Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Xiangge Tian
- Key Laboratory of Pharmacokinetic and Drug Transport of Liaoning, College of Pharmacy, Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Chengpeng Sun
- Key Laboratory of Pharmacokinetic and Drug Transport of Liaoning, College of Pharmacy, Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Kexin Liu
- Key Laboratory of Pharmacokinetic and Drug Transport of Liaoning, College of Pharmacy, Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Sa Deng
- Key Laboratory of Pharmacokinetic and Drug Transport of Liaoning, College of Pharmacy, Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Xiaochi Ma
- Key Laboratory of Pharmacokinetic and Drug Transport of Liaoning, College of Pharmacy, Academy of Integrative Medicine, Dalian Medical University, Dalian, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangdong, China
| |
Collapse
|
33
|
Nyquist MD, Prasad B, Mostaghel EA. Harnessing Solute Carrier Transporters for Precision Oncology. Molecules 2017; 22:E539. [PMID: 28350329 PMCID: PMC5570559 DOI: 10.3390/molecules22040539] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 12/11/2022] Open
Abstract
Solute Carrier (SLC) transporters are a large superfamily of transmembrane carriers involved in the regulated transport of metabolites, nutrients, ions and drugs across cellular membranes. A subset of these solute carriers play a significant role in the cellular uptake of many cancer therapeutics, ranging from chemotherapeutics such as antimetabolites, topoisomerase inhibitors, platinum-based drugs and taxanes to targeted therapies such as tyrosine kinase inhibitors. SLC transporters are co-expressed in groups and patterns across normal tissues, suggesting they may comprise a coordinated regulatory circuit serving to mediate normal tissue functions. In cancer however, there are dramatic changes in expression patterns of SLC transporters. This frequently serves to feed the increased metabolic demands of the tumor cell for amino acids, nucleotides and other metabolites, but also presents a therapeutic opportunity, as increased transporter expression may serve to increase intracellular concentrations of substrate drugs. In this review, we examine the regulation of drug transporters in cancer and how this impacts therapy response, and discuss novel approaches to targeting therapies to specific cancers via tumor-specific aberrations in transporter expression. We propose that among the oncogenic changes in SLC transporter expression there exist emergent vulnerabilities that can be exploited therapeutically, extending the application of precision medicine from tumor-specific drug targets to tumor-specific determinants of drug uptake.
Collapse
Affiliation(s)
- Michael D Nyquist
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Bhagwat Prasad
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, USA.
| | - Elahe A Mostaghel
- Division of Oncology, Department of Medicine, University of Washington, Seattle, WA 98195 USA.
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|
34
|
Lee ED. Endoplasmic Reticulum Aminopeptidase 2, a common immunological link to adverse pregnancy outcomes and cancer clearance? Placenta 2017; 56:40-43. [PMID: 28343731 DOI: 10.1016/j.placenta.2017.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/13/2017] [Accepted: 03/17/2017] [Indexed: 01/08/2023]
Abstract
Endoplasmic Reticulum Aminopeptidase 2 (ERAP2) trims HLA class I-binding peptides, determining the peptide repertoire presented for immune recognition. Variation in the ERAP2 amino acid sequence could affect the ability of some fetuses and tumors to achieve immune evasion. For example, homozygosity for an ERAP2 variant that has increased trimming efficiency for hydrophobic molecules has never been detected in mothers and fetuses. Thus, it is possible that this single nucleotide polymorphism (SNP) in the ERAP2 gene has been selected against in order to prevent alteration of the immune privileged uterine environment, and to allow tumors to escape immune recognition. Currently, there are no immunological treatments or prophylactic approaches to ensure a healthy pregnancy outcome, and the success of cancer immunotherapies is variable. Understanding the role of ERAP2 in immune evasion mechanisms in pregnancy and cancer may improve fetal survival and tumor clearance. This review summarizes current knowledge about ERAP2 and its N392 variant, and their relationship to pregnancy outcomes and cancer immune evasion/recognition.
Collapse
Affiliation(s)
- Eun D Lee
- Departments of Obstetrics and Gynecology and Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
35
|
Kellici TF, Chatziathanasiadou MV, Lee MS, Sayyad N, Geromichalou EG, Vrettos EI, Tsiailanis AD, Chi SW, Geromichalos GD, Mavromoustakos T, Tzakos AG. Rational design and structure–activity relationship studies of quercetin–amino acid hybrids targeting the anti-apoptotic protein Bcl-xL. Org Biomol Chem 2017; 15:7956-7976. [DOI: 10.1039/c7ob02045g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Anti-apoptotic proteins, like the Bcl-2 family proteins, present an important therapeutic cancer drug target.
Collapse
Affiliation(s)
- Tahsin F. Kellici
- Department of Chemistry
- University of Ioannina
- Ioannina 45110
- Greece
- Department of Chemistry
| | | | - Min-Sung Lee
- Disease Target Structure Research Center
- KRIBB
- Daejeon 34141
- Republic of Korea
| | - Nisar Sayyad
- Department of Chemistry
- University of Ioannina
- Ioannina 45110
- Greece
| | - Elena G. Geromichalou
- Laboratory of Pharmacology
- Medical School National and Kapodistrian University of Athens
- Athens 11527
- Greece
| | | | | | - Seung-Wook Chi
- Disease Target Structure Research Center
- KRIBB
- Daejeon 34141
- Republic of Korea
| | - George D. Geromichalos
- Laboratory of Inorganic Chemistry
- Faculty of Chemistry
- Aristotle University of Thessaloniki
- GR-54124 Thessaloniki
- Greece
| | | | | |
Collapse
|
36
|
An enzyme-responsive conjugate improves the delivery of a PI3K inhibitor to prostate cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:2373-2381. [DOI: 10.1016/j.nano.2016.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/20/2016] [Accepted: 07/19/2016] [Indexed: 01/07/2023]
|
37
|
USP18 Sensitivity of Peptide Transporters PEPT1 and PEPT2. PLoS One 2015; 10:e0129365. [PMID: 26046984 PMCID: PMC4457862 DOI: 10.1371/journal.pone.0129365] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 05/07/2015] [Indexed: 11/20/2022] Open
Abstract
USP18 (Ubiquitin-like specific protease 18) is an enzyme cleaving ubiquitin from target proteins. USP18 plays a pivotal role in antiviral and antibacterial immune responses. On the other hand, ubiquitination participates in the regulation of several ion channels and transporters. USP18 sensitivity of transporters has, however, never been reported. The present study thus explored, whether USP18 modifies the activity of the peptide transporters PEPT1 and PEPT2, and whether the peptide transporters are sensitive to the ubiquitin ligase Nedd4-2. To this end, cRNA encoding PEPT1 or PEPT2 was injected into Xenopus laevis oocytes without or with additional injection of cRNA encoding USP18. Electrogenic peptide (glycine-glycine) transport was determined by dual electrode voltage clamp. As a result, in Xenopus laevis oocytes injected with cRNA encoding PEPT1 or PEPT2, but not in oocytes injected with water or with USP18 alone, application of the dipeptide gly-gly (2 mM) was followed by the appearance of an inward current (Igly-gly). Coexpression of USP18 significantly increased Igly-gly in both PEPT1 and PEPT2 expressing oocytes. Kinetic analysis revealed that coexpression of USP18 increased maximal Igly-gly. Conversely, overexpression of the ubiquitin ligase Nedd4-2 decreased Igly-gly. Coexpression of USP30 similarly increased Igly-gly in PEPT1 expressing oocytes. In conclusion, USP18 sensitive cellular functions include activity of the peptide transporters PEPT1 and PEPT2.
Collapse
|
38
|
Ai Y, Kang F, Huang Z, Xue X, Lai Y, Peng S, Tian J, Zhang Y. Synthesis of CDDO-amino acid-nitric oxide donor trihybrids as potential antitumor agents against both drug-sensitive and drug-resistant colon cancer. J Med Chem 2015; 58:2452-64. [PMID: 25675144 DOI: 10.1021/jm5019302] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Seventeen CDDO-amino acid-NO donor trihybrids (4a-q) were designed and synthesized. Biological evaluation indicated that the most active compound 4c produced high levels of NO and inhibited the proliferation of drug-sensitive (HCT-8, IC50 = 0.294 μM) and drug-resistant (HCT-8/5-FU, IC50 = 0.232 μM) colon cancer cells, which were attenuated by an NO scavenger or typical substrate of PepT1. Furthermore, 4c triggered HCT-8 and HCT-8/5-FU cell apoptosis more strongly than CDDO-Me, inhibited the HIF-1α, Stat3, AKT, and ERK signaling, and induced the nitration of P-gp, MRP1, and BCRP proteins in HCT-8/5-FU cells. Finally, 4c had 4.36-5.53-fold less inhibitory activity against nontumor colon epithelial-like cells (CCD841, IC50 = 1.282 μM) in vitro and inhibited the growth of implanted human drug-resistant colon cancers in mice more potently than CDDO-Me. Together, 4c is a novel trihybrid with potent antitumor activity and may be a promising candidate for the treatment of drug-resistant colon cancer.
Collapse
Affiliation(s)
- Yong Ai
- State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing 210009, PR China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Warsi J, Elvira B, Bissinger R, Shumilina E, Hosseinzadeh Z, Lang F. Downregulation of peptide transporters PEPT1 and PEPT2 by oxidative stress responsive kinase OSR1. Kidney Blood Press Res 2014; 39:591-9. [PMID: 25531100 DOI: 10.1159/000368469] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS OSR1 (oxidative-stress-responsive kinase 1) participates in the regulation of renal tubular ion transport, cell volume and blood pressure. Whether OSR1 contributes to the regulation of organic solute transport remained; however, elusive. The present study thus explored the OSR1 sensitivity of the peptide transporters PEPT1 and PEPT2. METHODS cRNA encoding PEPT1 or PEPT2 were injected into Xenopus oocytes without or with additional injection of cRNA encoding wild-type OSR1, WNK1 insensitive inactive (T185A)OSR1, constitutively active (T185E)OSR1, and catalytically inactive (D164A)OSR1. Electrogenic peptide (glycine-glycine) transport was determined by dual electrode voltage clamp, the abundance of hemagglutinin-tagged PEPT2 (PEPT2-HA) by chemiluminescence. RESULTS In Xenopus oocytes injected with cRNA encoding PEPT1 or PEPT2, but not in oocytes injected with water, the dipeptide gly-gly (2 mM) generated an appreciable inward current (I(gly-gly)). Coexpression of OSR1 significantly decreased Igly-gly in both PEPT1 and PEPT2 expressing oocytes. The effect of OSR1 coexpression on Igly-gly in PEPT1 expressing oocytes was mimicked by coexpression of (T185E)OSR1, but not of (D164A)OSR1 or (T185A)OSR1. Kinetic analysis revealed that coexpression of OSR1 decreased maximal Igly-gly. OSR1 further decreased the PEPT2-HA protein abundance in the cell membrane. CONCLUSION OSR1 has the capacity to downregulate the peptide transporters PEPT1 and PEPT2 by decreasing the carrier protein abundance in the cell membrane.
Collapse
Affiliation(s)
- Jamshed Warsi
- Department of Physiology I, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Warsi J, Dong L, Elvira B, Salker MS, Shumilina E, Hosseinzadeh Z, Lang F. SPAK dependent regulation of peptide transporters PEPT1 and PEPT2. Kidney Blood Press Res 2014; 39:388-98. [PMID: 25376088 DOI: 10.1159/000368451] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS SPAK (STE20-related proline/alanine-rich kinase) is a powerful regulator of renal tubular ion transport and blood pressure. Moreover, SPAK contributes to the regulation of cell volume. Little is known, however, about a role of SPAK in the regulation or organic solutes. The present study thus addressed the influence of SPAK on the peptide transporters PEPT1 and PEPT2. METHODS To this end, cRNA encoding PEPT1 or PEPT2 were injected into Xenopus laevis oocytes without or with additional injection of cRNA encoding wild-type, SPAK, WNK1 insensitive inactive (T233A)SPAK, constitutively active (T233E)SPAK, and catalytically inactive (D212A)SPAK. Electrogenic peptide (glycine-glycine) transport was determined by dual electrode voltage clamp and PEPT2 protein abundance in the cell membrane by chemiluminescence. Intestinal electrogenic peptide transport was estimated from peptide induced current in Ussing chamber experiments of jejunal segments isolated from gene targeted mice expressing SPAK resistant to WNK-dependent activation (spak(tg/tg)) and respective wild-type mice (spak(+/+)). RESULTS In PEPT1 and in PEPT2 expressing oocytes, but not in oocytes injected with water, the dipeptide gly-gly (2 mM) generated an inward current, which was significantly decreased following coexpression of SPAK. The effect of SPAK on PEPT1 was mimicked by (T233E)SPAK, but not by (D212A)SPAK or (T233A)SPAK. SPAK decreased maximal peptide induced current of PEPT1. Moreover, SPAK decreased carrier protein abundance in the cell membrane of PEPT2 expressing oocytes. In intestinal segments gly-gly generated a current, which was significantly higher in spak(tg/tg) than in spak(+/+) mice. CONCLUSION SPAK is a powerful regulator of peptide transporters PEPT1 and PEPT2.
Collapse
Affiliation(s)
- Jamshed Warsi
- Department of Physiology I, University of Tübingen, Gmelinstr. 5, 70276 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
41
|
Tai W, Mo R, Di J, Subramanian V, Gu X, Buse JB, Gu Z. Bio-inspired synthetic nanovesicles for glucose-responsive release of insulin. Biomacromolecules 2014; 15:3495-502. [PMID: 25268758 PMCID: PMC4195518 DOI: 10.1021/bm500364a] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/28/2014] [Indexed: 12/16/2022]
Abstract
A new glucose-responsive formulation for self-regulated insulin delivery was constructed by packing insulin, glucose-specific enzymes into pH-sensitive polymersome-based nanovesicles assembled by a diblock copolymer. Glucose can passively transport across the bilayer membrane of the nanovesicle and be oxidized into gluconic acid by glucose oxidase, thereby causing a decrease in local pH. The acidic microenvironment causes the hydrolysis of the pH sensitive nanovesicle that in turn triggers the release of insulin in a glucose responsive fashion. In vitro studies validated that the release of insulin from nanovesicle was effectively correlated with the external glucose concentration. In vivo experiments, in which diabetic mice were subcutaneously administered with the nanovesicles, demonstrate that a single injection of the developed nanovesicle facilitated stabilization of the blood glucose levels in the normoglycemic state (<200 mg/dL) for up to 5 days.
Collapse
Affiliation(s)
- Wanyi Tai
- Joint
Department of Biomedical Engineering, University
of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- Center
for Nanotechnology in Drug Delivery and Molecular Pharmaceutics Division, Eshelman
School of Pharmacy, University of North
Carolina at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Ran Mo
- Joint
Department of Biomedical Engineering, University
of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- Center
for Nanotechnology in Drug Delivery and Molecular Pharmaceutics Division, Eshelman
School of Pharmacy, University of North
Carolina at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Jin Di
- Joint
Department of Biomedical Engineering, University
of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- Center
for Nanotechnology in Drug Delivery and Molecular Pharmaceutics Division, Eshelman
School of Pharmacy, University of North
Carolina at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Vinayak Subramanian
- Joint
Department of Biomedical Engineering, University
of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Xiao Gu
- Joint
Department of Biomedical Engineering, University
of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
| | - John B. Buse
- Department of Medicine, University
of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Zhen Gu
- Joint
Department of Biomedical Engineering, University
of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- Center
for Nanotechnology in Drug Delivery and Molecular Pharmaceutics Division, Eshelman
School of Pharmacy, University of North
Carolina at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| |
Collapse
|
42
|
Preclinical activity of multiple-target gold(III)-dithiocarbamato peptidomimetics in prostate cancer cells and xenografts. Future Med Chem 2014; 6:1249-63. [DOI: 10.4155/fmc.14.81] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background: Recently, novel gold(III)-dithiocarbamato peptidomimetics, designed to target peptide transporters upregulated in several tumor cells have shown promise as anticancer agents. Results: The biological behavior of the most promising derivatives AuD8 and AuD9 was studied in PC3 and DU145 prostate cancer cells. They exert higher cytotoxicity in vitro than the reference drug cisplatin and induce apoptosis, promoting mitochondrial membrane permeabilization and stimulating reactive oxygen species generation. Moreover, they inhibit both selenoenzyme thioredoxin reductase and proteasome activity. Additionally, AuD8 effectively reduces tumor growth in prostate tumor-bearing nude mice with minimal systemic toxicity. Conclusion: Altogether, our results provide insights into the anticancer activity of these gold(III)-dithiocarbamato peptidomimetics and support their potential as new agents for prostate cancer treatment.
Collapse
|
43
|
Yang K, Boswell M, Walter DJ, Downs KP, Gaston-Pravia K, Garcia T, Shen Y, Mitchell DL, Walter RB. UVB-induced gene expression in the skin of Xiphophorus maculatus Jp 163 B. Comp Biochem Physiol C Toxicol Pharmacol 2014; 163:86-94. [PMID: 24556253 PMCID: PMC4067948 DOI: 10.1016/j.cbpc.2014.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/15/2014] [Accepted: 01/29/2014] [Indexed: 01/04/2023]
Abstract
Xiphophorus fish and interspecies hybrids represent long-standing models to study the genetics underlying spontaneous and induced tumorigenesis. The recent release of the Xiphophorus maculatus genome sequence will allow global genetic regulation studies of genes involved in the inherited susceptibility to UVB-induced melanoma within select backcross hybrids. As a first step toward this goal, we report results of an RNA-Seq approach to identify genes and pathways showing modulated transcription within the skin of X. maculatus Jp 163 B upon UVB exposure. X. maculatus Jp 163 B were exposed to various doses of UVB followed by RNA-Seq analysis at each dose to investigate overall gene expression in each sample. A total of 357 genes with a minimum expression change of 4-fold (p-adj<0.05) were identified as responsive to UVB. The molecular genetic response of Xiphophorus skin to UVB exposure permitted assessment of; (1) the basal expression level of each transcript for each skin sample, (2) the changes in expression levels for each gene in the transcriptome upon exposure to increasing doses of UVB, and (3) clusters of genes that exhibit similar patterns of change in expression upon UVB exposure. These data provide a foundation for understanding the molecular genetic response of fish skin to UVB exposure.
Collapse
Affiliation(s)
- Kuan Yang
- Molecular Biosciences Research Group, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, United States.
| | - Mikki Boswell
- Molecular Biosciences Research Group, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, United States.
| | - Dylan J Walter
- Molecular Biosciences Research Group, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, United States.
| | - Kevin P Downs
- Molecular Biosciences Research Group, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, United States.
| | - Kimberly Gaston-Pravia
- Molecular Biosciences Research Group, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, United States.
| | - Tzintzuni Garcia
- Molecular Biosciences Research Group, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, United States.
| | - Yingjia Shen
- Molecular Biosciences Research Group, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, United States.
| | - David L Mitchell
- Department of Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX, United States.
| | - Ronald B Walter
- Molecular Biosciences Research Group, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, United States.
| |
Collapse
|
44
|
Folding graft copolymer with pendant drug segments for co-delivery of anticancer drugs. Biomaterials 2014; 35:7194-203. [PMID: 24875756 DOI: 10.1016/j.biomaterials.2014.05.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/01/2014] [Indexed: 12/21/2022]
Abstract
A graft copolymer with pendant drug segments can fold into nanostructures in a protein folding-like manner. The graft copolymer is constructed by directly polymerizing γ-camptothecin-glutamate N-carboxyanhydride (Glu(CPT)-NCA) on multiple sites of poly(ethylene glycol) (PEG)-based main chain via the ring open polymerization (ROP). The "purely" conjugated anticancer agent camptothecin (CPT) is hydrophobic and serves as the principal driving force during the folding process. When exposed to water, the obtained copolymer, together with doxorubicin (Dox), another anticancer agent, can fold into monodispersed nanocarriers (with a diameter of around 50 nm) for dual-drug delivery. Equipped with a PEG shell, the nanocarriers displayed good stability and can be internalized by a variety of cancer cell lines via the lipid raft and clathrin-mediated endocytotic pathway without premature leakage, which showed a high synergetic activity of CPT and Dox toward various cancer cells. In vivo study validated that the nanocarriers exhibited strong accumulation in tumor sites and showed a prominent anticancer activity against the lung cancer xenograft mice model compared with free drugs.
Collapse
|
45
|
Osborne S, Chen W, Addepalli R, Colgrave M, Singh T, Tran C, Day L. In vitrotransport and satiety of a beta-lactoglobulin dipeptide and beta-casomorphin-7 and its metabolites. Food Funct 2014; 5:2706-18. [DOI: 10.1039/c4fo00164h] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In vitrotransport of β-CM7 occurs through rapid hydrolysis into three peptide metabolites that transport at variable rates.
Collapse
Affiliation(s)
- Simone Osborne
- CSIRO Animal, Food and Health Sciences
- St Lucia, Australia
| | - Wei Chen
- CSIRO Animal, Food and Health Sciences
- St Lucia, Australia
| | - Rama Addepalli
- CSIRO Animal, Food and Health Sciences
- St Lucia, Australia
| | | | - Tanoj Singh
- CSIRO Animal, Food and Health Sciences
- Werribee, Australia
| | - Cuong Tran
- CSIRO Animal, Food and Health Sciences
- Adelaide, Australia
| | - Li Day
- CSIRO Animal, Food and Health Sciences
- Werribee, Australia
| |
Collapse
|
46
|
Shukla RS, Tai W, Mahato R, Jin W, Cheng K. Development of streptavidin-based nanocomplex for siRNA delivery. Mol Pharm 2013; 10:4534-45. [PMID: 24160908 DOI: 10.1021/mp400355q] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In our previous study, we have identified a PCBP2 siRNA that exhibits antifibrotic activity in rat hepatic stellate cells (HSCs) by inhibition of αCP2, a protein responsible for stabilization of the collagen α1 (I) mRNA in alcoholic liver fibrosis. This study aims to develop a streptavidin-based nanocomplex that can efficiently deliver the PCBP2 siRNA to HSCs. Biotin-siRNA and biotin-cholesterol were mixed with streptavidin to form the streptavidin-biotin complex, which was further condensed electrostatically with positively charged protamine to form the final multicomponent siRNA nanocomplex in the size range of 150-250 nm. The siRNA nanocomplex does not induce cytotoxicity in rat HSCs as compared to commercially available transfection agents. The cellular uptake efficiency of the siRNA nanocomplex is higher in rat HSCs than other cell lines, such as Caco-2 and PC-3, indicating that receptor-mediated endocytosis mainly contributes to the cellular uptake of the siRNA nanocomplex. The siRNA nanocomplex exhibits more than 85% silencing effect on the PCBP2 mRNA in HSCs. Stability study indicates that the nanocomplex can efficiently protect siRNA from degradation in the serum. The streptavidin-based multicomponent siRNA nanocomplex provides a promising strategy to deliver the PCBP2 siRNA to HSCs. Moreover, the nanocomplex can be used as a platform for other diseases by changing the siRNA sequence and targeting ligand.
Collapse
Affiliation(s)
- Ravi S Shukla
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City , Kansas City, Missouri 64108, United States
| | | | | | | | | |
Collapse
|
47
|
Brandsch M. Drug transport via the intestinal peptide transporter PepT1. Curr Opin Pharmacol 2013; 13:881-7. [PMID: 24007794 DOI: 10.1016/j.coph.2013.08.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/01/2013] [Accepted: 08/02/2013] [Indexed: 01/12/2023]
Abstract
The focus of this review is on the pharmaceutical relevance of the intestinal peptide transporter PepT1. The review is limited to the progress made in the field over the past two years. Much of this progress is being driven by the prevailing view that PepT1 can be used for drug delivery purposes. Studies have indeed shown that several drugs, prodrugs and drug candidates gain entry into the systemic circulation via PepT1. Very recent examples are prodrugs of zanamivir, oseltamivir and didanosine.
Collapse
Affiliation(s)
- Matthias Brandsch
- Biozentrum of the Martin-Luther-University Halle-Wittenberg, D-06120 Halle, Germany.
| |
Collapse
|
48
|
Warsi J, Hosseinzadeh Z, Dong L, Pakladok T, Umbach AT, Bhavsar SK, Shumilina E, Lang F. Effect of Janus Kinase 3 on the Peptide Transporters PEPT1 and PEPT2. J Membr Biol 2013; 246:885-92. [DOI: 10.1007/s00232-013-9582-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/22/2013] [Indexed: 11/29/2022]
|
49
|
Cao F, Gao Y, Wang M, Fang L, Ping Q. Propylene glycol-linked amino acid/dipeptide diester prodrugs of oleanolic acid for PepT1-mediated transport: synthesis, intestinal permeability, and pharmacokinetics. Mol Pharm 2013; 10:1378-87. [PMID: 23339520 DOI: 10.1021/mp300647m] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In our previous studies, ethylene glycol-linked amino acid diester prodrugs of oleanolic acid (OA), a Biopharmaceutics Classification System (BCS) class IV drug, designed to target peptide transporter 1 (PepT1) have been synthesized and evaluated. Unlike ethylene glycol, propylene glycol is of very low toxicity in vivo. In this study, propylene glycol was used as a linker to further compare the effect of the type of linker on the stability, permeability, affinity, and bioavailability of the prodrugs of OA. Seven diester prodrugs with amino acid/dipeptide promoieties containing L-Val ester (7a), L-Phe ester (7b), L-Ile ester (7c), D-Val-L-Val ester (9a), L-Val-L-Val ester (9b), L-Ala-L-Val ester (9c), and L-Ala-L-Ile ester (9d) were designed and successfully synthesized. In situ rat single-pass intestinal perfusion (SPIP) model was performed to screen the effective permeability (P(eff)) of the prodrugs. P(eff) of 7a, 7b, 7c, 9a, 9b, 9c, and 9d (6.7-fold, 2.4-fold, 1.24-fold, 1.22-fold, 4.15-fold, 2.2-fold, and 1.4-fold, respectively) in 2-(N-morpholino)ethanesulfonic acid buffer (MES) with pH 6.0 showed significant increase compared to that of OA (p < 0.01). In hydroxyethyl piperazine ethanesulfonic acid buffer (HEPES) of pH 7.4, except for 7c, 9a, and 9d, P(eff) of the other prodrugs containing 7a (5.2-fold), 7b (2.0-fold), 9b (3.1-fold), and 9c (1.7-fold) exhibited significantly higher values than that of OA (p < 0.01). In inhibition studies with glycyl-sarcosine (Gly-Sar, a typical substrate of PepT1), P(eff) of 7a (5.2-fold), 7b (2.0-fold), 9b (3.1-fold), and 9c (2.3-fold) had significantly reduced values (p < 0.01). Compared to the apparent permeability coefficient (P(app)) of OA with Caco-2 cell monolayer, significant enhancement of the P(app) of 7a (5.27-fold), 9b (3.31-fold), 9a (2.26-fold), 7b (2.10-fold), 7c (2.03-fold), 9c (1.87-fold), and 9d (1.39-fold) was also observed (p < 0.01). Inhibition studies with Gly-Sar (1 mM) showed that P(app) of 7a, 9b, and 9c significantly reduced by 1.3-fold, 1.6-fold, and 1.4-fold (p < 0.01), respectively. These results may be attributed to PepT1-mediated transport and their differential affinity toward PepT1. According to the permeability and affinity, 7a and 9b were selected in the pharmacokinetic studies in rats. Compared with group OA, C(max) for group 7a and 9b was enhanced to 3.04-fold (p < 0.01) and 2.62-fold (p < 0.01), respectively. AUC(0→24) was improved to 3.55-fold (p < 0.01) and 3.39-fold (p < 0.01), respectively. Compared to the ethylene glycol-linked amino acid diester prodrugs of OA in our previous work, results from this study revealed that part of the propylene glycol-linked amino acid/dipeptide diester prodrugs showed better stability, permeability, affinity, and bioavailability. In conclusion, propylene glycol-linked amino acid/dipeptide diester prodrugs of OA may be suitable for PepT1-targeted prodrugs of OA to improve the oral bioavailability of OA.
Collapse
Affiliation(s)
- Feng Cao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | | | | | | | | |
Collapse
|