1
|
Battaglia L, Dianzani C, Muntoni E, Marini E, Bozza A, Bordano V, Ferraris C, Garelli S, Valsania MC, Terreno E, Capozza M, Costanzo D, Capucchio MT, Hassan T, Pizzimenti S, Pettineo E, Di Muro M, Scorziello F. Ultrasmall solid lipid nanoparticles as a potential innovative delivery system for a drug combination against glioma. Nanomedicine (Lond) 2025; 20:37-52. [PMID: 39611709 DOI: 10.1080/17435889.2024.2434452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024] Open
Abstract
INTRODUCTION High grade gliomas are characterized by a very poor prognosis due to fatal relapses after surgery. Current chemotherapy is only a palliative care, while potential drug candidates are limited by poor overcoming of the blood-brain barrier. AIMS A suitable chemotherapeutic approach should be engineered to overcome both the altered blood-brain barrier in the glioma site, as well as the intact one in the brain adjacent to tumor zone, and to target the multiple factors influencing glioma proliferation, differentiation, migration, and angiogenesis. MATERIALS & METHODS In this experimental research, ultrasmall solid lipid nanoparticles were prepared owing to the temperature phase inversion technology and loaded with a specific drug combination made of paclitaxel, regorafenib, and nanoceria. RESULTS Such solid lipid nanoparticles demonstrated capability to inhibit glioma cell proliferation and migration, as well as angiogenesis in vitro. Moreover, relevant in vivo evidence assessed the accumulation of solid lipid nanoparticles in the glioma site of the F98/Fischer rat model, without causing any off-target toxicity. CONCLUSIONS Thus, promising results for glioma treatment were obtained with a technology characterized by safety and economy, allowing the perspective of successful scalability.
Collapse
Affiliation(s)
- Luigi Battaglia
- Department of Drug Science and Technology, University of Turin, Turin, Italy
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Turin, Turin, Italy
| | - Chiara Dianzani
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Elisabetta Muntoni
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Elisabetta Marini
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Annalisa Bozza
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Valentina Bordano
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Chiara Ferraris
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Sara Garelli
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Maria Carmen Valsania
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Turin, Turin, Italy
- Department of Chemistry, University of Turin, Turin, Italy
| | - Enzo Terreno
- Molecular & Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Martina Capozza
- Molecular & Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Diana Costanzo
- Molecular & Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | | | - Talal Hassan
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Stefania Pizzimenti
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Elisa Pettineo
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | | | | |
Collapse
|
2
|
Xu G, Chen A, Feng F, Wu Y, Wang X. Multiscale Mass Transport Across Membranes: From Molecular Scale to Nanoscale to Micron Scale. ACS NANO 2024; 18:35347-35355. [PMID: 39699230 DOI: 10.1021/acsnano.4c11647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Multiscale mass transport across membranes occurs ubiquitously in biological systems but is difficult to achieve and long-sought-after in abiotic systems. The multiscale transmembrane transport in abiotic systems requires the integration of multiscale transport channels and energy ergodicity, making multiscale mass transport a significant challenge. Herein, emulsion droplets with cell-like confinement are used as the experimental model, and multiscale mass transport is achieved from molecular scale to nanoscale to micron scale, reproducing rudimentary forms of cell-like transport behaviors. By adjustment of the magnetic dipole interactions between adjacent superparamagnetic nanoparticles (MNPs), the assembled structure at the interface of emulsion droplets is successfully modified, which constructs transport channels of various scales at the interface. Simultaneously, the assembly process of MNPs induces self-emulsification, which increases entropy and further reduces Gibbs free energy, ultimately realizing multiscale mass transport that evolves in time visiting all possible microscopic states (energy ergodicity). This work represents the comprehensive identification and realization of a multiscale transmembrane transport in abiotic droplet systems, which offers opportunities for the development of high-order cell-like characteristics in emulsion droplet-based communities, synthetic cells, microrobots, and drug carriers.
Collapse
Affiliation(s)
- Guanhua Xu
- Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Ao Chen
- Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Feng Feng
- Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yuqing Wu
- Hangzhou Xuejun High School, Hangzhou 310012, P. R. China
| | - Xiuyu Wang
- Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
3
|
Gomez-Garcia MJ, Abdelkarim M, Cramb DT, Childs SJ, Rinker KD, Labouta HI. Blood vessel wall shear stress determines regions of liposome accumulation in angiogenic vasculature. Drug Deliv Transl Res 2024; 14:3608-3620. [PMID: 39042244 DOI: 10.1007/s13346-024-01671-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
Nanoparticles used for drug delivery often require intravenous administration exposing them to fluid forces within the vasculature, yet the impact of blood flow on nanoparticle delivery remains incompletely understood. Here, we utilized transgenic zebrafish embryos to investigate the relationship between the accumulation of fluorescently labeled PEGylated liposomes and various hemodynamic factors (such as flow velocity, wall shear stress (WSS), and flow pattern) across a wide range of angiogenic blood vessels. We reconstructed 3D models of vascular structures from confocal images and used computational fluid dynamics to calculate local WSS, velocities, and define flow patterns. The spatial distribution of fluorescently labeled liposomes was subsequently mapped within the same 3D space and correlated with local hemodynamic parameters. Through the integration of computational fluid dynamics and in vivo experimentation, we show that liposomes accumulated in vessel regions with WSS between 0.1-0.8 Pa, displaying an inverse linear correlation (R2 > 0.85) between time-averaged wall shear stress and liposome localization in vivo. Interestingly, flow pattern did not appear to impact liposome accumulation. Collectively, our findings suggest the potential of stealth liposomes for passive targeting of low-flow vasculature, including capillaries and intricate angiogenic vasculature resembling that of tumor vessel networks.
Collapse
Affiliation(s)
- M Juliana Gomez-Garcia
- Biomedical Engineering, Faculty of Engineering, University of Toronto, Toronto, ON, Canada
- Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - Mahmoud Abdelkarim
- Biomedical Engineering, Faculty of Engineering, University of Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, ON, Canada
| | - David T Cramb
- Department of Chemistry and Biology, Faculty of Science, Toronto Metropolitan University, Toronto, ON, Canada
| | - Sarah J Childs
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kristina D Rinker
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada.
| | - Hagar I Labouta
- Biomedical Engineering, Faculty of Engineering, University of Toronto, Toronto, ON, Canada.
- Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, ON, Canada.
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Wang C, Li Q, Song K, Wang W, Zhang N, Dai L, Di W. Nanoparticle co-delivery of carboplatin and PF543 restores platinum sensitivity in ovarian cancer models through inhibiting platinum-induced pro-survival pathway activation. NANOSCALE ADVANCES 2024; 6:4082-4093. [PMID: 39114142 PMCID: PMC11302180 DOI: 10.1039/d4na00227j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/29/2024] [Indexed: 08/10/2024]
Abstract
Resistance to platinum-based chemotherapy is the major cause of poor prognosis and cancer-associated mortality in ovarian cancer patients, so novel therapeutic strategies to restore platinum sensitivity are needed to improve patient outcomes. Sphingosine Kinase (SphK) 1 is involved in regulating multiple pro-survival pathways, key mediators in the sensitivity of tumor cells toward platinum. By encapsulating CBP and the SphK1 inhibitor PF543 in PLGA (poly lactic-co-glycolic acid) nanoparticles, a dual-drug delivery system (C/PNPs) was formed to simultaneously deliver CBP and PF543. The physicochemical characteristics, cell uptake rate and biodistribution behavior of C/PNPs were evaluated. Then the anti-tumor ability of C/PNPs in vitro and in vivo was further investigated. The C/PNPs could deliver CBP and PF543 simultaneously to a platinum-insensitive cell line (SKOV3) both in vitro and in vivo. Furthermore, benefiting from the enhanced permeability and retention (EPR) effect of PLGA NPs, C/PNPs exhibited an improved tumor region accumulation. As a result, a synergistic anti-tumor effect was found in the SKOV3 tumor-bearing mice, with tumor volume inhibiting rates of 84.64% and no side effects in major organs. The mechanistic studies confirmed that the inhibition of SphK1 by PF543 sensitized SKOV3 cells to CBP chemotherapy, partly by inhibiting the CBP-induced activation of pro-survival pathways, including ERK, AKT and STAT3 signaling. Our study reveals that C/PNPs can serve as an efficient dual-drug delivery system to restore platinum sensitivity in ovarian cancer models partly through inhibiting platinum-induced pro-survival pathway activation.
Collapse
Affiliation(s)
- Chen Wang
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| | - Qing Li
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| | - Keqi Song
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| | - Wenjing Wang
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| | - Ning Zhang
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| | - Lan Dai
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| | - Wen Di
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| |
Collapse
|
5
|
Wu J, Lu Q, Zhao J, Wu W, Wang Z, Yu G, Tian G, Gao Z, Wang Q. Enhancing the Inhibition of Breast Cancer Growth Through Synergistic Modulation of the Tumor Microenvironment Using Combined Nano-Delivery Systems. Int J Nanomedicine 2024; 19:5125-5138. [PMID: 38855730 PMCID: PMC11162247 DOI: 10.2147/ijn.s460874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/17/2024] [Indexed: 06/11/2024] Open
Abstract
Purpose Breast cancer is a prevalent malignancy among women worldwide, and malignancy is closely linked to the tumor microenvironment (TME). Here, we prepared mixed nano-sized formulations composed of pH-sensitive liposomes (Ber/Ru486@CLPs) and small-sized nano-micelles (Dox@CLGs). These liposomes and nano-micelles were modified by chondroitin sulfate (CS) to selectively target breast cancer cells. Methods Ber/Ru486@CLPs and Dox@CLGs were prepared by thin-film dispersion and ethanol injection, respectively. To mimic actual TME, the in vitro "condition medium of fibroblasts + MCF-7" cell model and in vivo "4T1/NIH-3T3" co-implantation mice model were established to evaluate the anti-tumor effect of drugs. Results The physicochemical properties showed that Dox@CLGs and Ber/Ru486@CLPs were 28 nm and 100 nm in particle size, respectively. In vitro experiments showed that the mixed formulations significantly improved drug uptake and inhibited cell proliferation and migration. The in vivo anti-tumor studies further confirmed the enhanced anti-tumor capabilities of Dox@CLGs + Ber/Ru486@CLPs, including smaller tumor volumes, weak collagen deposition, and low expression levels of α-SMA and CD31 proteins, leading to a superior anti-tumor effect. Conclusion In brief, this combination therapy based on Dox@CLGs and Ber/Ru486@CLPs could effectively inhibit tumor development, which provides a promising approach for the treatment of breast cancer.
Collapse
Affiliation(s)
- Jingliang Wu
- School of Medicine, Weifang University of Science and Technology, Weifang, 262700, People’s Republic of China
| | - Qiao Lu
- School of Medicine, Weifang University of Science and Technology, Weifang, 262700, People’s Republic of China
- School of Life Science and Technology, Shandong Second Medical University, Weifang, 261053, People’s Republic of China
| | - Jialin Zhao
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, People’s Republic of China
| | - Wendi Wu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, People’s Republic of China
| | - Zhihua Wang
- School of Medicine, Weifang University of Science and Technology, Weifang, 262700, People’s Republic of China
| | - Guohua Yu
- Department of Oncology, Weifang People’s Hospital, Weifang, 261000, People’s Republic of China
| | - Guixiang Tian
- School of Life Science and Technology, Shandong Second Medical University, Weifang, 261053, People’s Republic of China
| | - Zhiqin Gao
- School of Life Science and Technology, Shandong Second Medical University, Weifang, 261053, People’s Republic of China
| | - Qing Wang
- Department of Stomatology, Weifang People’s Hospital, Weifang, 261000, People’s Republic of China
| |
Collapse
|
6
|
Fang L, Li J, Cheng H, Liu H, Zhang C. Dual fluorescence images, transport pathway, and blood-brain barrier penetration of B-Met-W/O/W SE. Int J Pharm 2024; 652:123854. [PMID: 38280499 DOI: 10.1016/j.ijpharm.2024.123854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 01/07/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
Borneol is an aromatic traditional Chinese medicine that can improve the permeability of the blood-brain barrier (BBB), enter the brain, and promote the brain tissue distribution of many other drugs. In our previous study, borneol-metformin hydrochloride water/oil/water composite submicron emulsion (B-Met-W/O/W SE) was prepared using borneol and SE to promote BBB penetration, which significantly increased the brain distribution of Met. However, the dynamic images, transport pathway (uptake and efflux), promotion of BBB permeability, and mechanisms of B-Met-W/O/W SE before and after entering cells have not been clarified. In this study, rhodamine B and coumarin-6 were selected as water-soluble and oil-soluble fluorescent probes to prepare B-Met-W/O/W dual-fluorescent SE (B-Met-W/O/W DFSE) with concentric circle imaging. B-Met-W/O/W SE can be well taken up by brain microvascular endothelial cells (BMECs). The addition of three inhibitors (chlorpromazine hydrochloride, methyl-β-cyclodextrin, and amiloride hydrochloride) indicated that its main pathway may be clathrin-mediated and fossa protein-mediated endocytosis. Meanwhile, B-Met-W/O/W SE was obviously shown to inhibit the efflux of BMECs. Next, BMECs were cultured in the Transwell chamber to establish a BBB model, and Western blot was employed to detect the protein expressions of Occludin, Zona Occludens 1 (ZO-1), and p-glycoprotein (P-gp) after B-Met-W/O/W SE treatment. The results showed that B-Met-W/O/W SE significantly down-regulated the expression of Occludin, ZO-1, and P-gp, which increased the permeability of BBB, promoted drug entry into the brain through BBB, and inhibited BBB efflux. Furthermore, 11 differentially expressed genes (DEGs) and 7 related signaling pathways in BMECs treated with B-W/O/W SE were detected by transcriptome sequencing and verified by quantitative real-time polymerase chain reaction (qRT-PCR). These results provide a scientific experimental basis for the dynamic monitoring, transmembrane transport mode, and permeation-promoting mechanism of B-Met-W/O/W SE as a new brain-targeting drug delivery system.
Collapse
Affiliation(s)
- Liang Fang
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China; School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China; Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Junying Li
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China; School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China; Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Hongyan Cheng
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China; School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China; Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Huanhuan Liu
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China; School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China; Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Caiyun Zhang
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China; School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China; Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
7
|
Yang S, Chen Y, Gu J, Harris A, Su RC, Ho EA. pH-sensitive dual-preventive siRNA-based nanomicrobicide reactivates autophagy and inhibits HIV infection in vaginal CD4+ cells. J Control Release 2024; 366:849-863. [PMID: 38176469 DOI: 10.1016/j.jconrel.2023.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/13/2023] [Accepted: 12/24/2023] [Indexed: 01/06/2024]
Abstract
Women are more susceptible to HIV transmission through unprotected heterosexual intercourse due to biological and social vulnerabilities. Intravaginal delivery of siRNAs targeting viral genes, host genes, or in combination has shown promising outcomes against HSV, HPV and HIV. Therefore, in this study, we designed, developed and evaluated a pH-sensitive RNAi-based combination nanomicrobide for the prevention/reduction of vaginal transmission of HIV. The nanomicrobide was composed of siRNA-PEI encapsulated PLGA-PEG nanoparticles (siRNA NP) loaded in a HEC gel dosage form with siRNA targeting host gene CCR5 and the viral gene Nef as a dual preventive strategy. Knocking down CCR5, a co-receptor for HIV could prevent HIV from attaching to and entering host cells and knocking down Nef could reactivate autophagy that was inhibited by Nef to improve the elimination of intracellular virus that escaped the first line of defense. The siRNA NP showed a desirable particle size and zeta potential for intravaginal delivery and a pH-dependent release profile whereby low amounts of siRNA was released under acidic vaginal conditions (vaginal fluid simulant; VFS, pH 4.2) (6.0 ± 0.4% released over 15 days) but significantly higher amounts of siRNA was released under neutral pH conditions (phosphate buffered saline; PBS, pH 7.4) (22.9 ± 0.4% released over 15 days). The CCR5-Nef-specific siRNA NP efficiently knocked down CCR5 and Nef protein expression by 43% and 63%, respectively, reactivated Nef-blocked autophagy and inhibited the replication of HIV in vitro (71.8% reduction in p24 expression). After being formulated into a gel dosage form, siRNA NP could be readily released from the gel, penetrate the vaginal epithelial layer, get taken up into the target cells and knockdown Nef and CCR5 without causing cytotoxicity in a vaginal mucosal co-culture model. Functionalization of siRNA NP with anti-CD4 antibody and loaded into a 0.5% HEC gel improved vaginal distribution and uptake of siRNA in a mouse model with distribution of siRNA restricted to the reproductive tract without any unwanted systemic uptake. The 0.5% HEC gel loaded with siRNA NP-(m)CD4 significantly downregulated approximately 40% of CCR5 protein in the lower vagina and 36% of CCR5 protein in the upper vaginal and cervical region. In contrast, 0.5% HEC gel loaded with siRNA NP-IgG did not result in significant gene knockdown.
Collapse
Affiliation(s)
- Sidi Yang
- Laboratory for Drug Delivery and Biomaterials, School of Pharmacy, Faculty of Science, University of Waterloo, Canada; College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Canada
| | - Yufei Chen
- Laboratory for Drug Delivery and Biomaterials, School of Pharmacy, Faculty of Science, University of Waterloo, Canada; College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Canada
| | - Jijin Gu
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Canada
| | - Angela Harris
- Department of Medical Microbiology & Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Canada; National HIV and Retrovirology Laboratory, JC Wilt Infectious Disease Research Centre, Public Health Agency of Canada, Canada
| | - Ruey-Chyi Su
- Department of Medical Microbiology & Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Canada; National HIV and Retrovirology Laboratory, JC Wilt Infectious Disease Research Centre, Public Health Agency of Canada, Canada
| | - Emmanuel A Ho
- Laboratory for Drug Delivery and Biomaterials, School of Pharmacy, Faculty of Science, University of Waterloo, Canada; Waterloo Institute for Nanotechnology, University of Waterloo, Canada.
| |
Collapse
|
8
|
Ejaz S, Ali SMA, Zarif B, Shahid R, Ihsan A, Noor T, Imran M. Surface engineering of chitosan nanosystems and the impact of functionalized groups on the permeability of model drug across intestinal tissue. Int J Biol Macromol 2023; 242:124777. [PMID: 37169055 DOI: 10.1016/j.ijbiomac.2023.124777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Surface attributes of nanocarriers are crucial to determine their fate in the gastrointestinal (GI) tract. Herein, we have functionalized chitosan with biochemical moieties including rhamnolipid (RL), curcumin (Cur) and mannose (M). FTIR spectra of functionalized chitosan nanocarriers (FCNCs) demonstrated successful conjugation of M, Cur and RL. The functional moieties influenced the entrapment of model drug i.e., coumarin-6 (C6) in FCNCs with payload-hosting and non-leaching behavior i.e., >91 ± 2.5 % with negligible cumulative release of <2 % for 5 h in KREB, which was further verified in the simulated gastric and intestinal fluids. Consequently, substantial difference in the size and zeta potential was observed for FCNCs with different biochemical moieties. Scanning electron microscopy and atomic force microscopy of FCNCs displayed well-dispersed and spherical morphology. In addition, in vitro cytotoxicity results of FCNCs confirmed their hemocompatibility. In the ex-vivo rat intestinal models, FCNCs displayed a time-dependent-phenomenon in cellular-uptake and adherence. However, apparent-permeability-coefficient and flux values were in the order of C6-RL-FCNCs > C6-M-FCNCs > C6-Cur-FCNCs = C6-CNCs > Free-C6. Furthermore, the transepithelial electrical resistance revealed the FCNCs mediated recovery of membrane-integrity with reversible tight junctions opening. Thus, FCNCs have the potential to overcome the poor solubility and/or permeability issues of active pharmaceutical ingredients and transform the impact of functionalized-nanomedicines in the biomedical industry.
Collapse
Affiliation(s)
- Sadaf Ejaz
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan
| | - Syed Muhammad Afroz Ali
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan
| | - Bina Zarif
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan
| | - Ramla Shahid
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan
| | - Ayesha Ihsan
- Nanobiotechnology Group, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Tayyaba Noor
- School of Chemical and Materials Engineering (SCME), National University of Science and Technology (NUST), Islamabad, Pakistan
| | - Muhammad Imran
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan.
| |
Collapse
|
9
|
Tanyapanyachon P, Dana P, Thumsongsiri N, Chonniyom W, Saengkrit N. Interrupting the blood-testis barrier with a flutamide-loaded nanostructured lipid carrier: A novel nonsurgical contraceptive approach for male animals. Theriogenology 2023; 206:96-105. [PMID: 37201300 DOI: 10.1016/j.theriogenology.2023.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/20/2023]
Abstract
Flutamide is an antagonist of testosterone, an essential hormone in male reproduction. However, the use of flutamide as a contraceptive agent for nonsurgical castration in veterinary practice remains challenging due to its poor bioavailability. Here, the flutamide-loaded nanostructure lipid carrier (FLT-NLC) was synthesized, and its biological effects were demonstrated by an in vitro blood-testis barrier model. The flutamide was incorporated into the nanostructure lipid carrier by a homogenization method resulting in a high encapsulation efficiency (99.7 ± 0.04%). The FLT-NLC was negatively charged (-27.90 ± 0.10 mV), with a nano size (182.13 ± 0.47 nm) and narrow dispersity index (0.17 ± 0.01). An in vitro release study demonstrated a slower release profile of FLT-NLC when compared with flutamide solution (FLT). The FLT-NLC at doses up to 50 μM showed no significant cytotoxic effects against mouse Sertoli cells (TM4) or mouse fibroblast cells (NIH/3T3) (p > 0.05). An in vitro blood-testis barrier with FLT-NLC demonstrated remarkable lower transepithelial electrical resistance when compared with those lacking FLT-NLC (p < 0.01). Moreover, FLT-NLC significantly decreased the mRNA expression of blood-testis barrier proteins, CLDN11 and OCLN. In conclusion, we successfully synthesized FLT-NLC and confirmed its potential antifertility effects on in vitro blood-testis barrier, thus indicating its possible application as nonsurgical contraception for male animals.
Collapse
Affiliation(s)
- Prattana Tanyapanyachon
- National Nanotechnology Center, National Science and Technology Development Agency, Pathumthani, 12120, Thailand
| | - Paweena Dana
- National Nanotechnology Center, National Science and Technology Development Agency, Pathumthani, 12120, Thailand
| | - Nutthanit Thumsongsiri
- National Nanotechnology Center, National Science and Technology Development Agency, Pathumthani, 12120, Thailand
| | - Walailuk Chonniyom
- National Nanotechnology Center, National Science and Technology Development Agency, Pathumthani, 12120, Thailand
| | - Nattika Saengkrit
- National Nanotechnology Center, National Science and Technology Development Agency, Pathumthani, 12120, Thailand.
| |
Collapse
|
10
|
Mahdieh A, Yeganeh H, Sande SA, Nyström B. Design of novel polyurethane-based ionene nanocarriers for cancer therapy: Synthesis, in-vitro, and in-vivo studies. Int J Pharm 2023; 635:122768. [PMID: 36841369 DOI: 10.1016/j.ijpharm.2023.122768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/01/2023] [Accepted: 02/19/2023] [Indexed: 02/26/2023]
Abstract
New strategies for constructing versatile nanocarriers are needed for cancer therapy to overcome the multiple challenges of targeted delivery. This work explores the advantages of polyurethane with main-chain quaternary ammonium salt moieties (ionene) as a novel carrier for targeted drug delivery. We have developed a novel cationic soybean oil-based polyurethane ionene nanocarrier (CPUI) that can act as an effective anticancer agent and efficiently deliver the anticancer drug 5-fluorouracil (5FU). We also report a potential anticancer drug delivery system targeting the folate receptor. In vitro experiments with blank CPUI carriers on the 4T1 (mouse breast cancer cell line) and the NIH-3T3 (mouse fibroblast cell line) revealed high cytotoxicity for the cancer cells but only low cytotoxicity for the normal fibroblast cells. The CPUI nanoparticles were readily loaded with 5FU (5FU-CPUI) in water using electrostatic interactions between the cationic quaternary ammonium groups of ionene and the anionic 5FU. The in vivo study in mice with tumors showed that the blank CPUI carriers significantly inhibited tumor growth, even more than the free drug (5FU). The inhibitory effect on tumor growth was slightly enhanced when the carriers were loaded with 5FU. The prepared nanoparticles had a high loading capacity of 41.8 %. Further enhancement of the inhibitory effect was observed when folic acid (FA) was added as a targeting moiety to the system via ion exchange with the bromine counterion of the quaternary ammonium moieties. The results suggest that the efficacy of FA-CPUI-5FU nanoparticles as vehicles for drug delivery can be enhanced via folate receptor (FR) mediated endocytosis in 4T1 cells and these novel nanocarriers may provide a potential platform for effective targeted drug delivery to tumor tissue and breast cancer therapy in the clinic.
Collapse
Affiliation(s)
- Athar Mahdieh
- Department of Pharmacy, Section for Pharmaceutics and Social Pharmacy, University of Oslo, Oslo, Norway
| | - Hamid Yeganeh
- Iran Polymer and Petrochemical Institute, Tehran, Iran.
| | - Sverre Arne Sande
- Department of Pharmacy, Section for Pharmaceutics and Social Pharmacy, University of Oslo, Oslo, Norway
| | - Bo Nyström
- Department of Chemistry, University of Oslo, Oslo, Norway.
| |
Collapse
|
11
|
Ilvesroiha E, Lauren P, Uema N, Kikuchi K, Takashima Y, Laaksonen T, Lajunen T. Establishing a simple perfusion cell culture system for light-activated liposomes. Sci Rep 2023; 13:2050. [PMID: 36739469 PMCID: PMC9899206 DOI: 10.1038/s41598-023-29215-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/31/2023] [Indexed: 02/06/2023] Open
Abstract
The off-target effects of light-activated or targeted liposomes are difficult to distinguish in traditional well plate experiments. Additionally, the absence of fluid flow in traditional cell models can lead to overestimation of nanoparticle uptake. In this paper, we established a perfusion cell culture platform to study light-activated liposomes and determined the effect of flow on the liposomal cell uptake. The optimal cell culturing parameters for the A549 cells under flow conditions were determined by monitoring cell viability. To determine optimal liposome treatment times, particle uptake was measured with flow cytometry. The suitability of commercial QuasiVivo flow-chambers for near-infrared light activation was assessed with a calcein release study. The chamber material did not hinder the light activation and subsequent calcein release from the liposomes. Furthermore, our results show that the standard cell culturing techniques are not directly translatable to flow cultures. For non-coated liposomes, the uptake was hindered by flow. Interestingly, hyaluronic acid coating diminished the uptake differences between the flow and static conditions. The study demonstrates that flow affects the liposomal uptake by lung cancer cell line A549. The flow also complicates the cell attachment of A549 cells. Moreover, we show that the QuasiVivo platform is suitable for light-activation studies.
Collapse
Affiliation(s)
- Eija Ilvesroiha
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790, Helsinki, Finland.
| | - Patrick Lauren
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790, Helsinki, Finland
| | - Natsumi Uema
- Department of Formulation Sciences and Technology, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan
| | - Kanako Kikuchi
- Department of Formulation Sciences and Technology, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan
| | - Yuuki Takashima
- Department of Formulation Sciences and Technology, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan
| | - Timo Laaksonen
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790, Helsinki, Finland
- Faculty of Engineering and Natural Sciences, Tampere University, 33720, Tampere, Finland
| | - Tatu Lajunen
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790, Helsinki, Finland
- Department of Formulation Sciences and Technology, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan
- Faculty of Health Sciences, University of Eastern Finland, 70600, Kuopio, Finland
| |
Collapse
|
12
|
Sarvepalli S, Parvathaneni V, Chauhan G, Shukla SK, Gupta V. Inhaled Indomethacin-Loaded Liposomes as Potential Therapeutics against Non-Small Cell Lung Cancer (NSCLC). Pharm Res 2022; 39:2801-2815. [DOI: 10.1007/s11095-022-03392-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022]
|
13
|
Zingale E, Romeo A, Rizzo S, Cimino C, Bonaccorso A, Carbone C, Musumeci T, Pignatello R. Fluorescent Nanosystems for Drug Tracking and Theranostics: Recent Applications in the Ocular Field. Pharmaceutics 2022; 14:pharmaceutics14050955. [PMID: 35631540 PMCID: PMC9147643 DOI: 10.3390/pharmaceutics14050955] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 12/14/2022] Open
Abstract
The greatest challenge associated with topical drug delivery for the treatment of diseases affecting the posterior segment of the eye is to overcome the poor bioavailability of the carried molecules. Nanomedicine offers the possibility to overcome obstacles related to physiological mechanisms and ocular barriers by exploiting different ocular routes. Functionalization of nanosystems by fluorescent probes could be a useful strategy to understand the pathway taken by nanocarriers into the ocular globe and to improve the desired targeting accuracy. The application of fluorescence to decorate nanocarrier surfaces or the encapsulation of fluorophore molecules makes the nanosystems a light probe useful in the landscape of diagnostics and theranostics. In this review, a state of the art on ocular routes of administration is reported, with a focus on pathways undertaken after topical application. Numerous studies are reported in the first section, confirming that the use of fluorescent within nanoparticles is already spread for tracking and biodistribution studies. The first section presents fluorescent molecules used for tracking nanosystems’ cellular internalization and permeation of ocular tissues; discussions on the classification of nanosystems according to their nature (lipid-based, polymer-based, metallic-based and protein-based) follows. The following sections are dedicated to diagnostic and theranostic uses, respectively, which represent an innovation in the ocular field obtained by combining dual goals in a single administration system. For its great potential, this application of fluorescent nanoparticles would experience a great development in the near future. Finally, a brief overview is dedicated to the use of fluorescent markers in clinical trials and the market in the ocular field.
Collapse
Affiliation(s)
- Elide Zingale
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
| | - Alessia Romeo
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
| | - Salvatore Rizzo
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
| | - Cinzia Cimino
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
| | - Angela Bonaccorso
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
- NANO-i—Research Center for Ocular Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Claudia Carbone
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
- NANO-i—Research Center for Ocular Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Teresa Musumeci
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
- NANO-i—Research Center for Ocular Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Rosario Pignatello
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
- NANO-i—Research Center for Ocular Nanotechnology, University of Catania, 95124 Catania, Italy
- Correspondence:
| |
Collapse
|
14
|
Muntoni E, Marini E, Ferraris C, Garelli S, Capucchio MT, Colombino E, Panciani PP, Battaglia L. Intranasal lipid nanocarriers: Uptake studies with fluorescently labeled formulations. Colloids Surf B Biointerfaces 2022; 214:112470. [PMID: 35338962 DOI: 10.1016/j.colsurfb.2022.112470] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/08/2022] [Accepted: 03/17/2022] [Indexed: 01/28/2023]
Abstract
Drug delivery by the intranasal route allows both systemic absorption and non-invasive brain targeting, due to the unique connection provided by the olfactory and trigeminal nerves between the brain and the external environment. Lipid nanocarriers can improve intranasal drug delivery by enhancing bioadhesion to nasal mucosa, and by protecting the encapsulated drug from biological degradation and transport efflux proteins. In this study two different biocompatible lipid nanocarriers were compared: nanoemulsions and solid lipid nanoparticles. The nasal uptake was investigated by labeling the nanocarriers lipid matrix with two fluorescent probes, 6-coumarin and rhodamine B, both lipophilic, yet characterized by different water solubility, in order to mimic the behavior of hypothetic drug compounds. Ex vivo permeation, in vivo pharmacokinetics and biodistribution studies were performed. 6-coumarin, water insoluble and therefore integral with the lipid matrix, was taken up to a limited extent, within a long timeframe, but with a proportionally more pronounced brain accumulation. In nanoemulsions soluble rhodamine B showed a relevant systemic uptake, with good bioavailability, likely due to the prompt release of the probe at the nasal mucosa.
Collapse
Affiliation(s)
- Elisabetta Muntoni
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy.
| | - Elisabetta Marini
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy.
| | - Chiara Ferraris
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy.
| | - Sara Garelli
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy.
| | - Maria Teresa Capucchio
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, Turin, 10195 Grugliasco, Italy.
| | - Elena Colombino
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, Turin, 10195 Grugliasco, Italy.
| | - Pier Paolo Panciani
- Spedali Civili, Section of Neurosurgery, Piazzale Spedali Civili 1, 25123 Brescia, Italy.
| | - Luigi Battaglia
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy.
| |
Collapse
|
15
|
Preparation, Characterization, and Evaluation of Liposomes Containing Oridonin from Rabdosia rubescens. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030860. [PMID: 35164121 PMCID: PMC8839758 DOI: 10.3390/molecules27030860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 11/17/2022]
Abstract
Due to the remarkable anti-tumor activities of oridonin (Ori), research on Rabdosia rubescens has attracted more and more attention in the pharmaceutical field. The purpose of this study was to extract Ori from R. rubescens by ultrasound-assisted extraction (UAE) and prepare Ori liposomes as a novel delivery system to improve the bioavailability and biocompatibility. Response surface methodology (RSM), namely Box-Behnken design (BBD), was applied to optimize extraction conditions, formulation, and preparation process. The results demonstrated that the optimal extraction conditions were an ethanol concentration of 75.9%, an extraction time of 35.7 min, and a solid/liquid ratio of 1:32.6. Under these optimal conditions, the extraction yield of Ori was 4.23 mg/g, which was well matched with the predicted value (4.28 mg/g). The optimal preparation conditions of Ori liposomes by RSM, with an ultrasonic time of 41.1 min, a soybean phospholipids/drug ratio of 9.6 g/g, and a water bath temperature of 53.4 °C, had higher encapsulation efficiency (84.1%). The characterization studies indicated that Ori liposomes had well-dispersible spherical shapes and uniform sizes with a particle size of 137.7 nm, a polydispersity index (PDI) of 0.216, and zeta potential of −24.0 mV. In addition, Ori liposomes presented better activity than free Ori. Therefore, the results indicated that Ori liposomes could enhance the bioactivity of Ori, being proposed as a promising vehicle for drug delivery.
Collapse
|
16
|
Fluorescently Labeled PLGA Nanoparticles for Visualization In Vitro and In Vivo: The Importance of Dye Properties. Pharmaceutics 2021; 13:pharmaceutics13081145. [PMID: 34452106 PMCID: PMC8399891 DOI: 10.3390/pharmaceutics13081145] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 12/11/2022] Open
Abstract
Fluorescently labeled nanoparticles are widely used for evaluating their distribution in the biological environment. However, dye leakage can lead to misinterpretations of the nanoparticles' biodistribution. To better understand the interactions of dyes and nanoparticles and their biological environment, we explored PLGA nanoparticles labeled with four widely used dyes encapsulated (coumarin 6, rhodamine 123, DiI) or bound covalently to the polymer (Cy5.5.). The DiI label was stable in both aqueous and lipophilic environments, whereas the quick release of coumarin 6 was observed in model media containing albumin (42%) or liposomes (62%), which could be explained by the different affinity of these dyes to the polymer and lipophilic structures and which we also confirmed by computational modeling (log PDPPC/PLGA: DiI-2.3, Cou6-0.7). The importance of these factors was demonstrated by in vivo neuroimaging (ICON) of the rat retina using double-labeled Cy5.5/Cou6-nanoparticles: encapsulated Cou6 quickly leaked into the tissue, whereas the stably bound Cy.5.5 label remained associated with the vessels. This observation is a good example of the possible misinterpretation of imaging results because the coumarin 6 distribution creates the impression that nanoparticles effectively crossed the blood-retina barrier, whereas in fact no signal from the core material was found beyond the blood vessels.
Collapse
|
17
|
Mechanobiology of conjunctival epithelial cells exposed to wall shear stresses. Biomech Model Mechanobiol 2021; 20:1903-1917. [PMID: 34228228 DOI: 10.1007/s10237-021-01484-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/23/2021] [Indexed: 10/20/2022]
Abstract
The human conjunctival epithelial cells (HCEC) line the inner sides of the eyelids and the anterior part of the sclera. They include goblet cells that secret mucus into the tear film that protects the ocular surface. The conjunctival epithelium is subjected to mechano-physical stimuli due to eyelid movement during blinking, during wiping and rubbing the eyes, and when exposed to wind and air currents. We cultured primary HCEC under air-liquid interface (ALI) conditions in custom-designed wells that can be disassembled for installation of the in vitro model in a flow chamber. We exposed the HCEC after ALI culture of 8-10 days to steady and oscillatory airflows. The in vitro model of HCEC was exposed to steady wall shear stresses (sWSS) of 0.5 and 1.0 dyne/cm2 for lengths of 30 and 60 min and to oscillatory wall shear stresses (oWSS) of 0.5 and 0.77 dyne/cm2 amplitudes for a length of 10 min. Cytoskeletal alterations and MUC5AC mucin secretion in response to WSS were investigated using immunohistochemically fluorescent staining and enzyme-linked lectin assay (ELLA), respectively. The results revealed that both exposure times and sWSS values increased the polymerization of F-actin filaments while mucin secretion decreased. However, after a recovery of 24 h in the incubator we observed a decrease of F-actin fibers and mucin secretion only for exposure of 30 min. The length of exposure was more influential on cytoskeletal alterations than the level of sWSS. The very small effect of sWSS on mucin secretion is most likely related to the much smaller amount of goblet cell than in other mucus-secreting tissue. The results for both oWSS amplitudes revealed similar trends regarding F-actin and mucin secretion. Immediately post-exposure we observed an increase in polymerization of F-actin filaments while mucin secretion decreased. However, after 24-h recovery we observed that both F-actin and mucin secretion returned to the same values as for unexposed cultures. The results of this study suggest that WSS should be considered while exploring the physiological characteristics of HCEC.
Collapse
|
18
|
Van Meenen J, Ní Dhubhghaill S, Van den Bogerd B, Koppen C. An Overview of Advanced In Vitro Corneal Models: Implications for Pharmacological Testing. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:506-516. [PMID: 33878935 DOI: 10.1089/ten.teb.2021.0031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cornea is an important barrier to consider when developing ophthalmic formulations, but proper modeling of this multilayered tissue remains a challenge. This is due to the varying properties associated with each layer in addition to the dynamics of the tear film. Hence, the most representative models to date rely on animals. Animal models, however, differ from humans in several aspects and are subject to ethical limitations. Consequently, in vitro approaches are being developed to address these issues. This review focuses on the barrier properties of the cornea and evaluates the most advanced three-dimensional cultures of human corneal equivalents in literature. Their application potential is subsequently assessed and discussed in the context of preclinical testing along with our perspective toward the future. Impact statement Most ocular drugs are applied topically, with the transcorneal pathway as the main administration route. Animal corneas are currently the only advanced models available, contributing to the drug attrition rate. Anatomical and physiological interspecies differences might account for a poor translatability of preclinical results to clinical trials, urging researchers to devise better corneal equivalents. This review elaborates on the emerging generation of three-dimensional in vitro models, which comprises spheroids, organoids, and organs-on-chips, which can serve as a stepping stone for advancements in this field.
Collapse
Affiliation(s)
- Joris Van Meenen
- Antwerp Research Group for Ocular Science, Department of Translational Neurosciences, University of Antwerp, Wilrijk, Belgium
| | - Sorcha Ní Dhubhghaill
- Antwerp Research Group for Ocular Science, Department of Translational Neurosciences, University of Antwerp, Wilrijk, Belgium.,Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium
| | - Bert Van den Bogerd
- Antwerp Research Group for Ocular Science, Department of Translational Neurosciences, University of Antwerp, Wilrijk, Belgium
| | - Carina Koppen
- Antwerp Research Group for Ocular Science, Department of Translational Neurosciences, University of Antwerp, Wilrijk, Belgium.,Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
19
|
Xu H, Wen Y, Chen S, Zhu L, Feng R, Song Z. Paclitaxel skin delivery by micelles-embedded Carbopol 940 hydrogel for local therapy of melanoma. Int J Pharm 2020; 587:119626. [DOI: 10.1016/j.ijpharm.2020.119626] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/23/2020] [Accepted: 07/05/2020] [Indexed: 12/21/2022]
|
20
|
Jagwani S, Jalalpure S, Dhamecha D, Jadhav K, Bohara R. Pharmacokinetic and Pharmacodynamic Evaluation of Resveratrol Loaded Cationic Liposomes for Targeting Hepatocellular Carcinoma. ACS Biomater Sci Eng 2020; 6:4969-4984. [PMID: 33455290 DOI: 10.1021/acsbiomaterials.0c00429] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. The destructive nature of the disease makes it difficult for clinicians to manage the condition. Hence, there is an urgent need to find new alternatives for HCC, as the role of conventional cytotoxic drugs has reached a plateau to control HCC associated mortality. Antioxidant compounds of plant origin with potential anti-tumor effect have been recognized as alternate modes in cancer treatment and chemoprevention. Resveratrol (RS) is a model natural nonflavonoid drug known for its anti-cancer activity. However, its clinical application is limited due to its poor bioavailability. The current research work aims to formulate, optimize, and characterize RS loaded cationic liposomes (RLs) for specific delivery in HCC. The optimized liposomes formulation (RL5) was spherical with a vesicle size (VS) of 145.78 ± 9.9 nm, ζ potential (ZP) of 38.03 ± 9.12 mV, and encapsulation efficiency (EE) of 78.14 ± 8.04%. In vitro cytotoxicity studies in HepG2 cells demonstrated an improved anti-cancer activity of RL5 in comparison with free RS. These outcomes were supported by a cell uptake study in HepG2 cells, in which RL5 exhibited a higher uptake than free RS. Furthermore, confocal images of HepG2 cells after 3 and 5 h of incubation showed higher internalization of coumarin 6 (C6) loaded liposomes (CL) as compared to those of the free C6. Pharmacokinetic and pharmacodynamic (prophylactic and therapeutic treatment modalities) studies were performed in N-nitrosodiethylamine (NDEA-carcinogen) induced HCC in rats. Pharmacokinetic evaluation of RL5 demonstrated increased localization of RS in cancerous liver tissues by 3.2- and 2.2-fold increase in AUC and Cmax, respectively, when compared to those of the free RS group. A pharmacodynamic investigation revealed a significant reduction in hepatocyte nodules in RL5 treated animals when compared to those of free RS. Further, on treatment with RL5, HCC-bearing rats showed a significant decrease in the liver marker enzymes (alanine transaminase, alkaline phosphatase, aspartate transaminase, total bilirubin levels, γ-glutamyl transpeptidase, and α-fetoprotein), in comparison with that of the disease control group. Our findings were supported by histopathological analysis, and we were first to demonstrate that NDEA induced detrimental effect on rat livers was successfully reversed with the treatment of RL5 formulation. These results implied that delivery of RS loaded cationic liposomes substantially controlled the severity of HCC and that they can be considered as a promising nanocarrier in the management of HCC.
Collapse
Affiliation(s)
- Satveer Jagwani
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Nehru Nagar, Belagavi 590010, Karnataka, India.,Dr. Prabhakar Kore Basic Science Research Center, KLE Academy of Higher Education and Research, Nehru Nagar, Belagavi 590010, Karnataka, India
| | - Sunil Jalalpure
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Nehru Nagar, Belagavi 590010, Karnataka, India.,Dr. Prabhakar Kore Basic Science Research Center, KLE Academy of Higher Education and Research, Nehru Nagar, Belagavi 590010, Karnataka, India
| | - Dinesh Dhamecha
- Dr. Prabhakar Kore Basic Science Research Center, KLE Academy of Higher Education and Research, Nehru Nagar, Belagavi 590010, Karnataka, India
| | - Kiran Jadhav
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Nehru Nagar, Belagavi 590010, Karnataka, India
| | - Raghvendra Bohara
- Centre for Interdisciplinary Research, D. Y. Patil Education Society (Institution Deemed to be University), Line Bazar, Kasaba Bawada, Kolhapur, 416006, Maharashtra, India.,CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Upper New Castle, Galway, H91 W2TY, Ireland
| |
Collapse
|
21
|
Dianzani C, Monge C, Miglio G, Serpe L, Martina K, Cangemi L, Ferraris C, Mioletti S, Osella S, Gigliotti CL, Boggio E, Clemente N, Dianzani U, Battaglia L. Nanoemulsions as Delivery Systems for Poly-Chemotherapy Aiming at Melanoma Treatment. Cancers (Basel) 2020; 12:cancers12051198. [PMID: 32397484 PMCID: PMC7281359 DOI: 10.3390/cancers12051198] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/03/2020] [Accepted: 05/07/2020] [Indexed: 11/17/2022] Open
Abstract
Aims: Advanced melanoma is characterized by poor outcome. Despite the number of treatments having been increased over the last decade, current pharmacological strategies are only partially effective. Therefore, the improvement of the current systemic therapy is worthy of investigation. Methods: a nanotechnology-based poly-chemotherapy was tested at preclinical level. Temozolomide, rapamycin, and bevacizumab were co-loaded as injectable nanoemulsions for total parenteral nutrition (Intralipid®), due to suitable devices, and preliminarily tested in vitro on human and mouse cell models and in vivo on the B16-F10 melanoma mouse model. Results: Drug combination was efficiently loaded in the liquid lipid matrix of Intralipid®, including bevacizumab monoclonal antibody, leading to a fast internalization in tumour cells. An increased cytotoxicity towards melanoma cells, as well as an improved inhibition of tumour relapse, migration, and angiogenesis were demonstrated in cell models for the Intralipid®-loaded drug combinations. In preliminary in vivo studies, the proposed approach was able to reduce tumour growth significantly, compared to controls. A relevant efficacy towards tumour angiogenesis and mitotic index was determined and immune response was involved. Conclusions: In these preliminary studies, Intralipid® proved to be a safe and versatile poly-chemotherapy delivery system for advanced melanoma treatment, by acting on multiple mechanisms.
Collapse
Affiliation(s)
- Chiara Dianzani
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy; (C.D.); (C.M.); (G.M.); (L.S.); (K.M.); (L.C.); (C.F.)
| | - Chiara Monge
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy; (C.D.); (C.M.); (G.M.); (L.S.); (K.M.); (L.C.); (C.F.)
| | - Gianluca Miglio
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy; (C.D.); (C.M.); (G.M.); (L.S.); (K.M.); (L.C.); (C.F.)
| | - Loredana Serpe
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy; (C.D.); (C.M.); (G.M.); (L.S.); (K.M.); (L.C.); (C.F.)
| | - Katia Martina
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy; (C.D.); (C.M.); (G.M.); (L.S.); (K.M.); (L.C.); (C.F.)
| | - Luigi Cangemi
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy; (C.D.); (C.M.); (G.M.); (L.S.); (K.M.); (L.C.); (C.F.)
| | - Chiara Ferraris
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy; (C.D.); (C.M.); (G.M.); (L.S.); (K.M.); (L.C.); (C.F.)
| | - Silvia Mioletti
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy;
| | - Sara Osella
- San Giovanni Bosco Hospital, Piazza del Donatore di Sangue 3, 10154 Turin, Italy;
| | - Casimiro Luca Gigliotti
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Eastern Piedmont (UPO), via Solaroli 17, 28100 Novara, Italy; (C.L.G.); (E.B.); (N.C.); (U.D.)
| | - Elena Boggio
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Eastern Piedmont (UPO), via Solaroli 17, 28100 Novara, Italy; (C.L.G.); (E.B.); (N.C.); (U.D.)
| | - Nausicaa Clemente
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Eastern Piedmont (UPO), via Solaroli 17, 28100 Novara, Italy; (C.L.G.); (E.B.); (N.C.); (U.D.)
| | - Umberto Dianzani
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Eastern Piedmont (UPO), via Solaroli 17, 28100 Novara, Italy; (C.L.G.); (E.B.); (N.C.); (U.D.)
| | - Luigi Battaglia
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy; (C.D.); (C.M.); (G.M.); (L.S.); (K.M.); (L.C.); (C.F.)
- Correspondence:
| |
Collapse
|
22
|
Liu D, Wan B, Qi J, Dong X, Zhao W, Wu W, Dai Y, Lu Y, Chen Z. Permeation into but not across the cornea: Bioimaging of intact nanoemulsions and nanosuspensions using aggregation-caused quenching probes. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.11.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
23
|
Fluorescent 7-Substituted Coumarin Dyes: Solvatochromism and NLO Studies. J Fluoresc 2018; 29:121-135. [PMID: 30374938 DOI: 10.1007/s10895-018-2316-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/14/2018] [Indexed: 10/28/2022]
Abstract
The effect of three substituents N,N-diethylamine, carbazole and diphenylamine at the 7 position of coumarin on linear and nonlinear optical properties are studied using absorption and emission solvatochromism, and DFT. By varying the substituent 53 nm red shift is achieved in emission. The polarity plots with regression close to unity revealed good charge transfer in the system. Solvent polarizability and dipolarity are mainly responsible for solvatochromic shift as proved by multilinear regression analysis. General Mulliken Hush analysis shows diphenylamine substituent leads to more charge separation in compound 6c. The hyperpolarizabilities are evaluated by quantum mechanical calculations. Structure of the compounds are optimized at B3LYP/6-31G(d) level and NLO computations are done using range separated hybrid functionals with large basis sets. Second order hyperpolarizability (γ) found 589.27 × 10-36, 841.29 × 10-36 and 1043.00 × 10-36 e.s.u for the compounds 6a, 6b and 6c respectively.
Collapse
|
24
|
Prina E, Mistry P, Sidney LE, Yang J, Wildman RD, Bertolin M, Breda C, Ferrari B, Barbaro V, Hopkinson A, Dua HS, Ferrari S, Rose FRAJ. 3D Microfabricated Scaffolds and Microfluidic Devices for Ocular Surface Replacement: a Review. Stem Cell Rev Rep 2018; 13:430-441. [PMID: 28573367 DOI: 10.1007/s12015-017-9740-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, there has been increased research interest in generating corneal substitutes, either for use in the clinic or as in vitro corneal models. The advancement of 3D microfabrication technologies has allowed the reconstruction of the native microarchitecture that controls epithelial cell adhesion, migration and differentiation. In addition, such technology has allowed the inclusion of a dynamic fluid flow that better mimics the physiology of the native cornea. We review the latest innovative products in development in this field, from 3D microfabricated hydrogels to microfluidic devices.
Collapse
Affiliation(s)
- Elisabetta Prina
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Pritesh Mistry
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Laura E Sidney
- Academic Ophthalmology, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
| | - Jing Yang
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Ricky D Wildman
- Faculty of Engineering, University of Nottingham, Nottingham, UK
| | - Marina Bertolin
- Fondazione Banca degli Occhi del Veneto, c/o Padiglione G. Rama - Via Paccagnella 11, 30174 Zelarino, Venice, Italy
| | - Claudia Breda
- Fondazione Banca degli Occhi del Veneto, c/o Padiglione G. Rama - Via Paccagnella 11, 30174 Zelarino, Venice, Italy
| | - Barbara Ferrari
- Fondazione Banca degli Occhi del Veneto, c/o Padiglione G. Rama - Via Paccagnella 11, 30174 Zelarino, Venice, Italy
| | - Vanessa Barbaro
- Fondazione Banca degli Occhi del Veneto, c/o Padiglione G. Rama - Via Paccagnella 11, 30174 Zelarino, Venice, Italy
| | - Andrew Hopkinson
- Academic Ophthalmology, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
| | - Harminder S Dua
- Academic Ophthalmology, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
| | - Stefano Ferrari
- Fondazione Banca degli Occhi del Veneto, c/o Padiglione G. Rama - Via Paccagnella 11, 30174 Zelarino, Venice, Italy.
| | - Felicity R A J Rose
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
25
|
Nilewski LG, Singh M, Baskin DS, Tour JM, Sharpe MA. Transfer of Dyes and Drugs into Cells Using EGFR-Targeted Nanosyringes. ACS Chem Neurosci 2018; 9:107-117. [PMID: 28753296 DOI: 10.1021/acschemneuro.7b00138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Selective targeting of drug loaded nanovectors to specific epitopes highly expressed on the surface of cancer cells is a goal for nanotechnologists. We have modified our previously described PEGylated-hydrophilic carbon clusters (PEG-HCCs) so that the epidermal growth factor receptor (EGFR) binding peptide, GE11, is attached using click chemistry at the end of each PEG. The resulting nanosyringe, PepEGFR-PEG-HCC, can be loaded with a wide range of hydrophobic drugs and dyes. We show that, both in vitro and in vivo, this payload can be delivered to cancer cells expressing EGFR. We can observe the activation of EGFR and track the normal physiological internalization and recycling/signaling pathways of this tyrosine kinase following binding of PepEGFR-PEG-HCC. We also demonstrate the competitive binding of the nanosyringe to EGFR with its normal activator, EGF, as well as observing the colocalization of the nanosyringe with clathrin, the coated pit integral protein. The internalization of the drug/dye loaded nanosyringe can be inhibited by using anti-EGFR antibodies, the drug erlotinib, or Pitstop-1, the clathrin coated pit formation specific inhibitor. To further demonstrate the specificity of the drug loaded nanovectors, we demonstrated that, in both flank and intracranial xenograft mouse models, dye delivery is highly specific to tumors and no other tissues. Finally, using nanosyringes loaded with esterase sensitive fluorescein diacetate, we demonstrated that the drug payloads can be in vivo delivered to the cytosol of cancer cells within the mouse brain.
Collapse
Affiliation(s)
| | - Melissa Singh
- Fannin Innovation Studio, 3900
Essex Lane, Suite 575, Houston, Texas 77027, United States
| | - David S. Baskin
- Kenneth
R. Peak Brain and Pituitary Tumor Center, Department of Neurosurgery, Houston Methodist Hospital, Houston, Texas 77030, United States
| | | | - Martyn A. Sharpe
- Kenneth
R. Peak Brain and Pituitary Tumor Center, Department of Neurosurgery, Houston Methodist Hospital, Houston, Texas 77030, United States
| |
Collapse
|
26
|
Improved in vitro models for preclinical drug and formulation screening focusing on 2D and 3D skin and cornea constructs. Eur J Pharm Biopharm 2017; 126:57-66. [PMID: 29191717 DOI: 10.1016/j.ejpb.2017.11.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/03/2017] [Accepted: 11/26/2017] [Indexed: 01/15/2023]
Abstract
The present overview deals with current approaches for the improvement of in vitro models for preclinical drug and formulation screening which were elaborated in a joint project at the Center of Pharmaceutical Engineering of the TU Braunschweig. Within this project a special focus was laid on the enhancement of skin and cornea models. For this reason, first, a computation-based approach for in silico modeling of dermal cell proliferation and differentiation was developed. The simulation should for example enhance the understanding of the performed 2D in vitro tests on the antiproliferative effect of hyperforin. A second approach aimed at establishing in vivo-like dynamic conditions in in vitro drug absorption studies in contrast to the commonly used static conditions. The reported Dynamic Micro Tissue Engineering System (DynaMiTES) combines the advantages of in vitro cell culture models and microfluidic systems for the emulation of dynamic drug absorption at different physiological barriers and, later, for the investigation of dynamic culture conditions. Finally, cryopreserved shipping was investigated for a human hemicornea construct. As the implementation of a tissue-engineering laboratory is time-consuming and cost-intensive, commercial availability of advanced 3D human tissue is preferred from a variety of companies. However, for shipping purposes cryopreservation is a challenge to maintain the same quality and performance of the tissue in the laboratory of both, the provider and the customer.
Collapse
|
27
|
Molladavoodi S, Robichaud M, Wulff D, Gorbet M. Corneal epithelial cells exposed to shear stress show altered cytoskeleton and migratory behaviour. PLoS One 2017; 12:e0178981. [PMID: 28662184 PMCID: PMC5491001 DOI: 10.1371/journal.pone.0178981] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 05/22/2017] [Indexed: 12/22/2022] Open
Abstract
Cells that form the corneal epithelium, the outermost layer of the cornea, are exposed to shear stress through blinking during waking hours. In this in vitro study, the effect of fluid shear stress on human corneal epithelial cells (HCECs) was investigated. Following exposure to shear stresses of 4 and 8 dyn/cm2, HCECs showed cytoskeletal rearrangement with more prominent, organized and elongated filamentous actin. Cytoskeletal changes were time-dependent, and were most significant after 24 hours of shear stress. Higher rates of migration and proliferation, as evaluated by a scratch assay, were also observed following 24 hours of low shear stress exposure (4 dyn/cm2). This result contrasted the poor migration observed in samples scratched before shear exposure, indicating that shear-induced cytoskeletal changes played a key role in improved wound healing and must therefore precede any damage to the cell layer. HCEC cytoskeletal changes were accompanied by an upregulation in integrin β1 and downregulation of ICAM-1. These results demonstrate that HCECs respond favourably to flow-induced shear stress, impacting their proliferation and migration properties as well as phenotype.
Collapse
Affiliation(s)
- Sara Molladavoodi
- Department of System Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Matthew Robichaud
- Department of System Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - David Wulff
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Maud Gorbet
- Department of System Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
- * E-mail:
| |
Collapse
|
28
|
Juretić M, Jurišić Dukovski B, Krtalić I, Reichl S, Cetina-Čižmek B, Filipović-Grčić J, Lovrić J, Pepić I. HCE-T cell-based permeability model: A well-maintained or a highly variable barrier phenotype? Eur J Pharm Sci 2017; 104:23-30. [DOI: 10.1016/j.ejps.2017.03.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/17/2017] [Accepted: 03/12/2017] [Indexed: 10/20/2022]
|
29
|
Fu YN, Li Y, Li G, Yang L, Yuan Q, Tao L, Wang X. Adaptive Chitosan Hollow Microspheres as Efficient Drug Carrier. Biomacromolecules 2017; 18:2195-2204. [DOI: 10.1021/acs.biomac.7b00592] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ya-nan Fu
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Yongsan Li
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Guofeng Li
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Lei Yang
- Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 100021, People’s Republic of China
| | - Qipeng Yuan
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Xing Wang
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| |
Collapse
|
30
|
Beiβner N, Mattern K, Dietzel A, Reichl S. DynaMiTES - A dynamic cell culture platform for in vitro drug testing PART 2 - Ocular DynaMiTES for drug absorption studies of the anterior eye. Eur J Pharm Biopharm 2017; 126:166-176. [PMID: 28377274 DOI: 10.1016/j.ejpb.2017.03.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/27/2017] [Accepted: 03/29/2017] [Indexed: 12/26/2022]
Abstract
In the present study, a formerly designed Dynamic Micro Tissue Engineering System (DynaMiTES) was applied with our prevalidated human hemicornea (HC) construct to obtain a test platform for improved absorption studies of the anterior eye (Ocular DynaMiTES). First, the cultivation procedure of the classic HC was slightly adapted to the novel DynaMiTES design. The obtained inverted HC was then compared to classic HC regarding cell morphology using light and scanning electron microscopy, cell viability using MTT dye reaction and epithelial barrier properties observing transepithelial electrical resistance and apparent permeation coefficient of sodium fluorescein. These tested cell criteria were similar. In addition, the effects of four different flow rates on the same cell characteristics were investigated using the DynaMiTES. Because no harmful potential of flow was found, dynamic absorption studies of sodium fluorescein with and without 0.005%, 0.01% and 0.02% benzalkonium chloride were performed compared to the common static test procedure. In this proof-of-concept study, the dynamic test conditions showed different results than the static test conditions with a better prediction of in vivo data. Thus, we propose that our DynaMiTES platform provides great opportunities for the improvement of common in vitro drug testing procedures.
Collapse
Affiliation(s)
- Nicole Beiβner
- Institut für Pharmazeutische Technologie, Technische Universität Braunschweig, Mendelssohnstraβe 1, 38106 Braunschweig, Germany; Center of Pharmaceutical Engineering - PVZ, Technische Universität Braunschweig, Franz-Liszt-Straβe 35 A, 38106 Braunschweig, Germany
| | - Kai Mattern
- Institut für Mikrotechnik, Technische Universität Braunschweig, Alte Salzdahlumer Straβe 203, 38124 Braunschweig, Germany; Center of Pharmaceutical Engineering - PVZ, Technische Universität Braunschweig, Franz-Liszt-Straβe 35 A, 38106 Braunschweig, Germany
| | - Andreas Dietzel
- Institut für Mikrotechnik, Technische Universität Braunschweig, Alte Salzdahlumer Straβe 203, 38124 Braunschweig, Germany; Center of Pharmaceutical Engineering - PVZ, Technische Universität Braunschweig, Franz-Liszt-Straβe 35 A, 38106 Braunschweig, Germany
| | - Stephan Reichl
- Institut für Pharmazeutische Technologie, Technische Universität Braunschweig, Mendelssohnstraβe 1, 38106 Braunschweig, Germany; Center of Pharmaceutical Engineering - PVZ, Technische Universität Braunschweig, Franz-Liszt-Straβe 35 A, 38106 Braunschweig, Germany.
| |
Collapse
|
31
|
Ogunjimi AT, Melo SM, Vargas-Rechia CG, Emery FS, Lopez RF. Hydrophilic polymeric nanoparticles prepared from Delonix galactomannan with low cytotoxicity for ocular drug delivery. Carbohydr Polym 2017; 157:1065-1075. [DOI: 10.1016/j.carbpol.2016.10.076] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 11/29/2022]
|
32
|
Li J, Cheng X, Chen Y, He W, Ni L, Xiong P, Wei M. Vitamin E TPGS modified liposomes enhance cellular uptake and targeted delivery of luteolin: An in vivo/in vitro evaluation. Int J Pharm 2016; 512:262-272. [DOI: 10.1016/j.ijpharm.2016.08.037] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 08/01/2016] [Accepted: 08/17/2016] [Indexed: 01/12/2023]
|
33
|
Agarwal P, Rupenthal ID. In vitro and ex vivo corneal penetration and absorption models. Drug Deliv Transl Res 2016; 6:634-647. [DOI: 10.1007/s13346-015-0275-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Banerjee R, Mondal S, Purkayastha P. Revival, enhancement and tuning of fluorescence from Coumarin 6: combination of host–guest chemistry, viscosity and collisional quenching. RSC Adv 2016. [DOI: 10.1039/c6ra20884c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The self-quenched fluorescence of Coumarin 6 can be revived by host–guest chemistry and further increased by about 40% on increasing the solvent viscosity and hence restricting the motion of the molecules.
Collapse
Affiliation(s)
- Rajashree Banerjee
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Kolkata
- Mohanpur 741246
- India
| | - Somen Mondal
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Kolkata
- Mohanpur 741246
- India
| | - Pradipta Purkayastha
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Kolkata
- Mohanpur 741246
- India
| |
Collapse
|
35
|
Attama AA, Kenechukwu FC, Onuigbo EB, Nnamani PO, Obitte N, Finke JH, Pretor S, Müller-Goymann CC. Solid lipid nanoparticles encapsulating a fluorescent marker (coumarin 6) and antimalarials – artemether and lumefantrine: evaluation of cellular uptake and antimalarial activity. EUROPEAN JOURNAL OF NANOMEDICINE 2016. [DOI: 10.1515/ejnm-2016-0009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractArtemisinins, the mainstay in the treatment of malaria today, are used in combination with other antimalarials to forestall resistance, as artemisinin-combination therapies. In line with the World Health Organization’s recommendation in that respect, solid lipid nanoparticles (SLN) were formulated to encapsulate two antimalarial drugs — artemether and lumefantrine. The nanoparticles were evaluated for size and solid state properties. Caco-2 cells were used to investigate the ability of the SLN to deliver its payload at the absorptive interface of the gastrointestinal tract. Mice heart endothelial cells (MHEC) were also used as marker cells to assess cellular uptake of coumarin 6 from the SLN with imaging by confocal laser scanning microscopy (CSLM). In vivo antimalarial activity was done using a standard suppressive protocol. The results of this study revealed different crystal properties for artemether and lumefantrine, which affected their solubility in the lipid matrix and thus, loading in the lipid nanoparticles. The particles of the SLN were within the range of 150 nm–500 nm with varied polydispersity indices. Wide angle X-ray diffraction analysis indicated the presence of particles of solid nature. Cellular uptake studies indicated uptake of coumarin 6 from the coumarin 6-labeled SLN. In vivo antimalarial studies indicated high clearance of parasitemia with minimal effect on hematological parameters tested.
Collapse
|
36
|
Ophthalmic applications of lipid-based drug nanocarriers: an update of research and patenting activity. Ther Deliv 2015; 6:1297-318. [PMID: 26608630 DOI: 10.4155/tde.15.73] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Ophthalmic diseases collect great attention by researchers and pharmaceutical technologists, since they can dramatically worsen the quality of life. Because of the limited duration of action on the eye surface, and anatomical/physiological barriers to drug penetration from it into the inner eye structures, conventional ocular formulations are generally unable to perform at their best. Nanotechnology approaches can represent a solution to improve the therapeutic efficiency, compliance and safety of ocular drugs. In this respect, lipid-based nanocarriers are among the most interesting systems. Their composition and production methods make them highly biocompatible and safe formulations. This review illustrates the developments achieved in ocular drug delivery using lipid-based nanocarriers, with a critical revision of recent scientific articles and filed patents.
Collapse
|
37
|
Iemsam-Arng J, Ketchart O, Rattana-Amron T, Wutikhun T, Tapaneeyakorn S. Modified NLC-loaded coumarin for pharmaceutical applications: the improvement of physical stability and controlled release profile. Pharm Dev Technol 2015; 21:1015-1022. [PMID: 26401882 DOI: 10.3109/10837450.2015.1089897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Coumarin-6 is a lipophilic dye and is often used as a model in delivery system. OBJECTIVE The aim of this study was to improve the nonstructured lipid carrier (NLC) system loading with lipophilic molecule, coumarin-6, and to investigate its characteristics in terms of physical stability and controlled release profile. MATERIALS AND METHODS Initially, the selection of the coating polymer was observed. Then, the preparation of the conventional NLC-loaded coumarin-6 was compared to the modified NLC-loaded coumarin-6 via the probe sonication. The physical properties and stability were determined by Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC) and X-ray diffraction (XRD) techniques. The release profile was established using fluorescent spectroscopic method. RESULTS AND DISCUSSION The size and zeta potential measurement showed significant decrease in the size range of the modified NLC-loaded coumarin and the lower intensity of the surface charge compared to the NLC-loaded coumarin. The change of crystallinity observed from DSC and XRD techniques indicated the molecular dispersion of coumarin-6 in the lipid matrix of NLC. The FT-IR spectra were also proven that coumarin-6 was entrapped in the NLC molecule. The result showed comparable controlled release profile to the conventional preparation with no difference on the cytotoxicity level. CONCLUSIONS The modified NLC delivery system, therefore, exhibited the acceptable potential as a nanocarrier.
Collapse
Affiliation(s)
- Jayanant Iemsam-Arng
- a NANOTEC, National Science and Technology Development Agency (NSTDA) , 111 Thailand Science Park, Thanon Phahonyothin, Tambon Khlong Nueng, Amphoe Khlong Luang , Pathum Thani , Thailand
| | - Onuma Ketchart
- a NANOTEC, National Science and Technology Development Agency (NSTDA) , 111 Thailand Science Park, Thanon Phahonyothin, Tambon Khlong Nueng, Amphoe Khlong Luang , Pathum Thani , Thailand
| | - Tirapote Rattana-Amron
- a NANOTEC, National Science and Technology Development Agency (NSTDA) , 111 Thailand Science Park, Thanon Phahonyothin, Tambon Khlong Nueng, Amphoe Khlong Luang , Pathum Thani , Thailand
| | - Tuksadon Wutikhun
- a NANOTEC, National Science and Technology Development Agency (NSTDA) , 111 Thailand Science Park, Thanon Phahonyothin, Tambon Khlong Nueng, Amphoe Khlong Luang , Pathum Thani , Thailand
| | - Satita Tapaneeyakorn
- a NANOTEC, National Science and Technology Development Agency (NSTDA) , 111 Thailand Science Park, Thanon Phahonyothin, Tambon Khlong Nueng, Amphoe Khlong Luang , Pathum Thani , Thailand
| |
Collapse
|