1
|
Wu ZP, Dinh D, Maswadeh Y, Caracciolo DT, Zhang H, Li T, Vargas JA, Madiou M, Chen C, Kong Z, Li Z, Zhang H, Ruiz Martínez J, Lu SS, Wang L, Ren Y, Petkov V, Zhong CJ. Interfacial Reactivity-Triggered Oscillatory Lattice Strains of Nanoalloys. J Am Chem Soc 2024; 146:35264-35274. [PMID: 39656092 DOI: 10.1021/jacs.4c12550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Understanding the structure evolution of nanoalloys under reaction conditions is vital to the design of active and durable catalysts. Herein, we report an operando measurement of the dynamic lattice strains of dual-noble-metal alloyed with an earth-abundant metal as a model electrocatalyst in a working proton-exchange membrane fuel cell using synchrotron high-energy X-ray diffraction coupled with pair distribution function analysis. The results reveal an interfacial reaction-triggered oscillatory lattice strain in the alloy nanoparticles upon surface dealloying. Analysis of the lattice strains with an apparent oscillatory irregularity in terms of frequency and amplitude using time-frequency domain transformation and theoretical calculation reveals its origin from a metal atom vacancy diffusion pathway to facilitate realloying upon dealloying. This process, coupled with surface metal partial oxidation, constitutes a key factor for the nanoalloy's durability under the electrocatalytic oxygen reduction reaction condition, which serves as a new guiding principle for engineering durable or self-healable electrocatalysts for sustainable fuel cell energy conversion.
Collapse
Affiliation(s)
- Zhi-Peng Wu
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Dong Dinh
- Department of Systems Science and Industrial Engineering, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Yazan Maswadeh
- Department of Physics, Central Michigan University, Mt. Pleasant, Michigan 48859, United States
- Material Science Division, Eurofins EAG Laboratories, Sunnyvale, California 94086, United States
| | - Dominic T Caracciolo
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Hui Zhang
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Electron Microscopy Center, South China University of Technology, Guangzhou 510640, China
| | - Tianyi Li
- X-ray Science Division, Advanced Photon Sources, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Jorge A Vargas
- Department of Physics, Central Michigan University, Mt. Pleasant, Michigan 48859, United States
- Unidad Académica de Física, Universidad Autónoma de Zacatecas, Zacatecas 98098, Mexico
| | - Merry Madiou
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Cailing Chen
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Zhijie Kong
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Zeqi Li
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Huabin Zhang
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Javier Ruiz Martínez
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Susan S Lu
- Department of Systems Science and Industrial Engineering, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Lichang Wang
- Department of Chemistry and Biochemistry and the Materials Technology Center, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Yang Ren
- X-ray Science Division, Advanced Photon Sources, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Physics, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Valeri Petkov
- Department of Physics, Central Michigan University, Mt. Pleasant, Michigan 48859, United States
| | - Chuan-Jian Zhong
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| |
Collapse
|
2
|
Zulfiqar A, Honkanen M, Nonappa, Vippola M. In Situ TEM Imaging Reveals the Dynamic Interplay Between Attraction, Repulsion and Sequential Attraction-Repulsion in Gold Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406943. [PMID: 39377359 DOI: 10.1002/smll.202406943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/22/2024] [Indexed: 10/09/2024]
Abstract
Recent efforts on manipulating metal nanoparticles (NPs) using an electron beam have offered new insights into nanoparticle behavior, structural transition, and the emergence of new properties. Despite an increasing understanding of the dynamics of electron beam-induced coalescence of NPs, several phenomena are yet to be investigated. Here, we show that repulsion between two NPs is as favorable as coalescence under electron beam irradiation at room temperature. Using small-sized (D ≈ 5.9 nm) and large-sized (D ≈ 11.0 nm) gold (Au) NPs, and different electron dose rates, a unique sequential attraction-repulsion between NPs is disclosed. The real-time in situ transmission electron microscopy imaging suggest that at a low dose rate, two small-sized AuNPs with 1.0 nm particle-particle distance undergo repulsion to 18 nm with a diffusion rate of 0.4 nm min-1. For large-sized AuNPs, the repulsion rate is 0.08 nm min-1 at a low dose rate and is comparable to that of small-sized AuNPs at a high dose rate. Surprisingly, large-sized AuNPs at a high electron dose rate displayed attraction in the first 15 min, followed by rapid repulsion. This unique sequential attraction-repulsion behavior of NPs offers possibilities to manipulate interparticle distance and properties without inducing dimensional changes for advanced photonic and plasmonic nanodevices.
Collapse
Affiliation(s)
- Abid Zulfiqar
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, FI-33720, Finland
| | - Mari Honkanen
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, FI-33720, Finland
- Tampere Microscopy Center, Tampere University, Tampere, FI-33720, Finland
| | - Nonappa
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, FI-33720, Finland
| | - Minnamari Vippola
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, FI-33720, Finland
- Tampere Microscopy Center, Tampere University, Tampere, FI-33720, Finland
| |
Collapse
|
3
|
Lomholdt WB, Leth Larsen MH, Valencia CN, Schiøtz J, Hansen TW. Interpretability of high-resolution transmission electron microscopy images. Ultramicroscopy 2024; 263:113997. [PMID: 38820993 DOI: 10.1016/j.ultramic.2024.113997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/15/2024] [Accepted: 05/25/2024] [Indexed: 06/02/2024]
Abstract
High-resolution electron microscopy is a well-suited tool for characterizing the nanoscale structure of materials. However, the interaction of the sample and the high-energy electrons of the beam can often have a detrimental impact on the sample structure. This effect can only be alleviated by decreasing the number of electrons to which the sample is exposed but will come at the cost of a decreased signal-to-noise ratio in the resulting image. Images with low signal to noise ratios are often challenging to interpret as parts of the sample with a low interaction with the electron beam are reproduced with very low contrast. Here we suggest simple measures as alternatives to the conventional signal-to-noise ratio and investigate how these can be used to predict the interpretability of the electron microscopy images. We test the models on a sample consisting of gold nanoparticles supported on a cerium dioxide substrate. The models are evaluated based on series of images acquired at varying electron dose.
Collapse
Affiliation(s)
| | | | | | - Jakob Schiøtz
- DTU Physics, Technical University of Denmark (DTU), DK-2800 Kgs. Lyngby, Denmark
| | - Thomas Willum Hansen
- DTU Nanolab, Technical University of Denmark (DTU), DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
4
|
Sun Z, Wang J, Su L, Gu Z, Wu XP, Chen W, Ma W. Dynamic Evolution and Reversibility of a Single Au 25 Nanocluster for the Oxygen Reduction Reaction. J Am Chem Soc 2024; 146:20059-20068. [PMID: 38994646 DOI: 10.1021/jacs.4c03939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Ultrasmall metallic nanoclusters (NCs) protected by surface ligands represent the most promising catalytic materials; yet understanding the structure and catalytic activity of these NCs remains a challenge due to dynamic evolution of their active sites under reaction conditions. Herein, we employed a single-nanoparticle collision electrochemistry method for real-time monitoring of the dynamic electrocatalytic activity of a single fully ligand-protected Au25(PPh3)10(SC2H4Ph)5Cl22+ nanocluster (Au252+ NC) at a cavity carbon nanoelectrode toward the oxygen reduction reaction (ORR). Our experimental results and computational simulations indicated that the reversible depassivation and passivation of ligands on the surface of the Au252+ NC, combined with the dynamic conformation evolution of the Au259+ core, led to a characteristic current signal that involves "ON-OFF" switches and "ON" fluctuations during the ORR process of a single Au252+ NC. Our findings reinvent the new perception and comprehension of the structure-activity correlation of NCs at the atomic level.
Collapse
Affiliation(s)
- Zehui Sun
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Jia Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Lei Su
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Zhihao Gu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Xin-Ping Wu
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Wei Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
| | - Wei Ma
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| |
Collapse
|
5
|
Zahra M, Chota A, Abrahamse H, George BP. Efficacy of Green Synthesized Nanoparticles in Photodynamic Therapy: A Therapeutic Approach. Int J Mol Sci 2023; 24:10931. [PMID: 37446109 DOI: 10.3390/ijms241310931] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Cancer is a complex and diverse disease characterized by the uncontrolled growth of abnormal cells in the body. It poses a significant global public health challenge and remains a leading cause of death. The rise in cancer cases and deaths is a significant worry, emphasizing the immediate need for increased awareness, prevention, and treatment measures. Photodynamic therapy (PDT) has emerged as a potential treatment for various types of cancer, including skin, lung, bladder, and oesophageal cancer. A key advantage of PDT is its ability to selectively target cancer cells while sparing normal cells. This is achieved by preferentially accumulating photosensitizing agents (PS) in cancer cells and precisely directing light activation to the tumour site. Consequently, PDT reduces the risk of harming surrounding healthy cells, which is a common drawback of conventional therapies such as chemotherapy and radiation therapy. The use of medicinal plants for therapeutic purposes has a long history dating back thousands of years and continues to be an integral part of healthcare in many cultures worldwide. Plant extracts and phytochemicals have demonstrated the ability to enhance the effectiveness of PDT by increasing the production of reactive oxygen species (ROS) and promoting apoptosis (cell death) in cancer cells. This natural approach capitalizes on the eco-friendly nature of plant-based photoactive compounds, offering valuable insights for future research. Nanotechnology has also played a pivotal role in medical advancements, particularly in the development of targeted drug delivery systems. Therefore, this review explores the potential of utilizing photosensitizing phytochemicals derived from medicinal plants as a viable source for PDT in the treatment of cancer. The integration of green photodynamic therapy with plant-based compounds holds promise for novel treatment alternatives for various chronic illnesses. By harnessing the scientific potential of plant-based compounds for PDT, we can pave the way for innovative and sustainable treatment strategies.
Collapse
Affiliation(s)
- Mehak Zahra
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein 2028, South Africa
| | - Alexander Chota
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein 2028, South Africa
| | - Blassan P George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein 2028, South Africa
| |
Collapse
|
6
|
Jiang N. Electron irradiation effects in transmission electron microscopy: Random displacements and collective migrations. Micron 2023; 171:103482. [PMID: 37167653 DOI: 10.1016/j.micron.2023.103482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
Electron beam damage in transmission electron microscopy (TEM) is complicated because the damage phenomena can be the result of random atomic displacements or collective migrations. The former is categorized as the primary beam effects and the latter is the secondary beam effects. The mechanisms for these two distinguishing atomic processes of damage are different. The primary beam effects can be caused by the mechanisms of knock-on and/or radiolysis, while the secondary effects must be driven by a field that is induced by electron irradiation. One such field has been identified to be the electric field produced by the accumulated charges due to the ejection of secondary and Auger electrons from the irradiated region. One convincing example is the electron irradiation-induced domain switch in ferroelectric materials, in which the collective cation displacements are driven by the induced electric field. A detailed interpretation is given in this review. The sintering of metal NPs under electron irradiation is a secondary beam effect and is most likely also caused by the induced electric fields. The interactions between the charged NP and substrate, and between charged NPs, result in NP motion. Interchanging atoms between NPs during the sintering may also be driven by the electric fields. Although many beam-damage phenomena in C nanotubes and layered materials, such as graphene, BN, and transition metal dichalcogenides, are caused by the primary beam effects and have been well studied experimentally and theoretically in the literature, some phenomena from the secondary beam effects have also been identified in this review. These phenomena are sensitive to electron current density, the shape and orientation of the specimen, and even the illumination mode (i.e., TEM or STEM). Unfortunately, the mechanisms responsible for these phenomena still need to be clarified.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Physics, Arizona State University, Tempe, AZ 85281-1504, USA.
| |
Collapse
|
7
|
Chen PZ, Skirzynska A, Yuan T, Voznyy O, Gu FX. Asymmetric Interfacet Adatom Migration as a Mode of Anisotropic Nanocrystal Growth. J Am Chem Soc 2022; 144:19417-19429. [PMID: 36226909 DOI: 10.1021/jacs.2c07423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Crystals are known to grow nonclassically or via four classical modes (the layer-by-layer, dislocation-driven, dendritic, and normal modes, which generally involve minimal interfacet surface diffusion). The field of nanoscience considers this framework to interpret how nanocrystals grow; yet, the growth of many anisotropic nanocrystals remains enigmatic, suggesting that the framework may be incomplete. Here, we study the solution-phase growth of pentatwinned Au nanorods without Br, Ag, or surfactants. Lower supersaturation conditions favored anisotropic growth, which appeared at variance with the known modes. Temporal electron microscopy revealed kinetically limited adatom funneling, as adatoms diffused asymmetrically along the vicinal facets (situated inbetween the {100} side-facets and {111} end-facets) of our nanorods. These vicinal facets were perpetuated throughout the synthesis and, especially at lower supersaturation, facilitated {100}-to-vicinal-to-{111} adatom diffusion. We derived a growth model from classical theory in view of our findings, which showed that our experimental growth kinetics were consistent with nanorods growing via two modes simultaneously: radial growth occurred via the layer-by-layer mode on {100} side-facets, whereas the asymmetric interfacet diffusion of adatoms to {111} end-facets mediated longitudinal growth. Thus, shape anisotropy was not driven by modulating the relative rates of monomer deposition on different facets, as conventionally thought, but rather by modulating the relative rates of monomer integration via interfacet diffusion. This work shows how controlling supersaturation, a thermodynamic parameter, can uncover distinct kinetic phenomena on nanocrystals, such as asymmetric interfacet surface diffusion and a fundamental growth mode for which monomer deposition and integration occur on different facets.
Collapse
Affiliation(s)
- Paul Z Chen
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ONM5S3E5, Canada
| | - Arianna Skirzynska
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ONM5S3E5, Canada
| | - Tiange Yuan
- Department of Physical & Environmental Sciences, Department of Chemistry, University of Toronto, Scarborough, ONM1C1A4, Canada
| | - Oleksandr Voznyy
- Department of Physical & Environmental Sciences, Department of Chemistry, University of Toronto, Scarborough, ONM1C1A4, Canada
| | - Frank X Gu
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ONM5S3E5, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, ONM5S3G9, Canada
| |
Collapse
|
8
|
Malmir K, Okell W, Trichet AAP, Smith JM. Characterization of nanoparticle size distributions using a microfluidic device with integrated optical microcavities. LAB ON A CHIP 2022; 22:3499-3507. [PMID: 35968777 DOI: 10.1039/d2lc00180b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We introduce a method for analyzing the physical properties of nanoparticles in fluids via the competition between viscous drag and optical forces in a microfluidic device with integrated optical microcavities. The optical microcavity acts as a combined optical trap and sensor, such that the time duration of individual particle detection events can be used as a measure of particle size via a parameter which represents the dielectric polarizability per unit radius. Characterization of polymer particles with diameters as small as 140 nm is reported, below that used in previous optical sorting approaches and in the size range of interest for nanomedicine. This technique could be applied in combination with other analytic techniques to provide a detailed physical characterization of particles in solution.
Collapse
Affiliation(s)
- Kiana Malmir
- Oxford University, Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK.
| | - William Okell
- Oxford University, Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK.
| | - Aurélien A P Trichet
- Oxford HighQ Ltd, Centre for Innovation and Enterprise, Begbroke Science Park, Oxford OX5 1PF, UK
| | - Jason M Smith
- Oxford University, Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK.
- Oxford HighQ Ltd, Centre for Innovation and Enterprise, Begbroke Science Park, Oxford OX5 1PF, UK
| |
Collapse
|
9
|
Doronin SV, Dokhlikova NV, Grishin MV. Descriptor of catalytic activity nanoparticles surface: Atomic and molecular hydrogen on gold. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Samsonov VM, Talyzin IV, Puytov VV, Vasilyev SA, Romanov AA, Alymov MI. When mechanisms of coalescence and sintering at the nanoscale fundamentally differ: Molecular dynamics study. J Chem Phys 2022; 156:214302. [DOI: 10.1063/5.0075748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Employing classical isothermal molecular dynamics, we simulated coalescence of mesoscopic Au nanodroplets, containing from several thousands to several hundred thousands of atoms, and sintering of mesoscopic solid Au nanoparticles. For our atomistic simulations, we used the embedded atom method. The employed open access program large-scale atomic/molecular massively parallel simulator makes it possible to realize parallel graphical processing unit calculations. We have made a conclusion that the regularities and mechanisms of the nanodroplet coalescence (temperature is higher than the nanoparticle melting temperature) and of the solid nanoparticle sintering differ from each other. We have also concluded that the nanodroplet coalescence may be interpreted as a hydrodynamic phenomenon at the nanoscale whereas sintering of solid nanoparticles is a much more complex phenomenon related to different mechanisms, including collective rearrangements of atoms, the surface diffusion, and other types of diffusion. At the same time, collective rearrangements of atoms relate not only to the solid nanoparticle sintering but also to the nanodroplet coalescence. In general, our molecular dynamics results on sintering of Au nanoparticles consisting of 10 000–30 000 atoms agree with the Ferrando–Minnai kinetic trapping concept that was earlier confirmed in molecular dynamics experiments on Au nanoclusters consisting of about 100 atoms.
Collapse
Affiliation(s)
- V. M. Samsonov
- Tver State University, 33, Zhelyabova Str., 170100 Tver, Russia
| | - I. V. Talyzin
- Tver State University, 33, Zhelyabova Str., 170100 Tver, Russia
| | - V. V. Puytov
- Tver State University, 33, Zhelyabova Str., 170100 Tver, Russia
| | - S. A. Vasilyev
- Tver State University, 33, Zhelyabova Str., 170100 Tver, Russia
| | - A. A. Romanov
- Tver State University, 33, Zhelyabova Str., 170100 Tver, Russia
| | - M. I. Alymov
- Merzhanov Institute of Structural Macrokinetics and Materials Science Russian Academy of Sciences, Academician Osipyan Str. 8, Chernogolovka, Moscow Region 142432, Russia
| |
Collapse
|
11
|
Puytov VV, Romanov AA, Talyzin IV, Samsonov VM. Features and mechanisms of coalescence of nanodroplets and sintering of metal nanoparticles: molecular dynamics simulation. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3466-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Villegas JE, Paredes B, Rasras M. Experimental studies of plasmonics-enhanced optical physically unclonable functions. OPTICS EXPRESS 2021; 29:32020-32030. [PMID: 34615281 DOI: 10.1364/oe.437636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
We present an experimental analysis of optical Physically Unclonable Functions enhanced using plasmonic metal nanoparticles in a Silicon on Insulator based integrated structure. We experimentally demonstrate the behavior of possible configurations of simple PUF structures defined only by the nanoparticle distribution. The devices show a promising response when tested with transverse magnetic polarized light. This response offers an easy-to-implement methodology to enhance the behavior of previously proposed optical PUFs. We additionally make a comprehensive analysis of the power, thermal, and polarization stability of the devices for possible side-channels attacks to the systems.
Collapse
|
13
|
Hydrogen spillover-driven synthesis of high-entropy alloy nanoparticles as a robust catalyst for CO 2 hydrogenation. Nat Commun 2021; 12:3884. [PMID: 34162865 PMCID: PMC8222268 DOI: 10.1038/s41467-021-24228-z] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/08/2021] [Indexed: 11/08/2022] Open
Abstract
High-entropy alloys (HEAs) have been intensively pursued as potentially advanced materials because of their exceptional properties. However, the facile fabrication of nanometer-sized HEAs over conventional catalyst supports remains challenging, and the design of rational synthetic protocols would permit the development of innovative catalysts with a wide range of potential compositions. Herein, we demonstrate that titanium dioxide (TiO2) is a promising platform for the low-temperature synthesis of supported CoNiCuRuPd HEA nanoparticles (NPs) at 400 °C. This process is driven by the pronounced hydrogen spillover effect on TiO2 in conjunction with coupled proton/electron transfer. The CoNiCuRuPd HEA NPs on TiO2 produced in this work were found to be both active and extremely durable during the CO2 hydrogenation reaction. Characterization by means of various in situ techniques and theoretical calculations elucidated that cocktail effect and sluggish diffusion originating from the synergistic effect obtained by this combination of elements. Facile fabrication of high-entropy alloys (HEAs) nanoparticles (NPs) on conventional catalyst supports remains challenging. Here the authors show TiO2 is a promising platform for the low-temperature synthesis of supported CoNiCuRuPd HEA NPs with excellent activity and durability in CO2 hydrogenation.
Collapse
|
14
|
Zhang B, Wang W, Liu C, Han L, Peng J, Oleinick A, Svir I, Amatore C, Tian Z, Zhan D. Surface Diffusion of Underpotential‐Deposited Lead Adatoms on Gold Nanoelectrodes. ChemElectroChem 2021. [DOI: 10.1002/celc.202100516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Baodan Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces Fujian Science & Technology Innovation Laboratory for Energy Materials of China Engineering Research Center of Electrochemical Technologies of Ministry of Education Department of Chemistry, College of Chemistry and Chemical Engineering Department of Mechanical and Electrical Engineering School of Aerospace Engineering Xiamen University Xiamen 361005 China
| | - Wei Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces Fujian Science & Technology Innovation Laboratory for Energy Materials of China Engineering Research Center of Electrochemical Technologies of Ministry of Education Department of Chemistry, College of Chemistry and Chemical Engineering Department of Mechanical and Electrical Engineering School of Aerospace Engineering Xiamen University Xiamen 361005 China
- College of Chemistry and Chemical Engineering Jinggangshan University Ji'an 343009 Jiangxi China
| | - Cheng Liu
- College of Chemistry and Chemical Engineering Jinggangshan University Ji'an 343009 Jiangxi China
| | - Lianhuan Han
- State Key Laboratory of Physical Chemistry of Solid Surfaces Fujian Science & Technology Innovation Laboratory for Energy Materials of China Engineering Research Center of Electrochemical Technologies of Ministry of Education Department of Chemistry, College of Chemistry and Chemical Engineering Department of Mechanical and Electrical Engineering School of Aerospace Engineering Xiamen University Xiamen 361005 China
| | - Juan Peng
- Department of Chemistry College of Chemistry and Chemical Engineering Ningxia University Yinchuan 750021 China
| | - Alexander Oleinick
- PASTEUR Département de Chimie École Normale Supérieure PSL University Sorbonne Université CNRS 24 rue Lhomond 75005 Paris France
| | - Irina Svir
- PASTEUR Département de Chimie École Normale Supérieure PSL University Sorbonne Université CNRS 24 rue Lhomond 75005 Paris France
| | - Christian Amatore
- State Key Laboratory of Physical Chemistry of Solid Surfaces Fujian Science & Technology Innovation Laboratory for Energy Materials of China Engineering Research Center of Electrochemical Technologies of Ministry of Education Department of Chemistry, College of Chemistry and Chemical Engineering Department of Mechanical and Electrical Engineering School of Aerospace Engineering Xiamen University Xiamen 361005 China
- PASTEUR Département de Chimie École Normale Supérieure PSL University Sorbonne Université CNRS 24 rue Lhomond 75005 Paris France
| | - Zhong‐Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces Fujian Science & Technology Innovation Laboratory for Energy Materials of China Engineering Research Center of Electrochemical Technologies of Ministry of Education Department of Chemistry, College of Chemistry and Chemical Engineering Department of Mechanical and Electrical Engineering School of Aerospace Engineering Xiamen University Xiamen 361005 China
| | - Dongping Zhan
- State Key Laboratory of Physical Chemistry of Solid Surfaces Fujian Science & Technology Innovation Laboratory for Energy Materials of China Engineering Research Center of Electrochemical Technologies of Ministry of Education Department of Chemistry, College of Chemistry and Chemical Engineering Department of Mechanical and Electrical Engineering School of Aerospace Engineering Xiamen University Xiamen 361005 China
- Department of Chemistry College of Chemistry and Chemical Engineering Ningxia University Yinchuan 750021 China
| |
Collapse
|
15
|
Magyarkuti A, Balogh Z, Mezei G, Halbritter A. Structural Memory Effects in Gold-4,4'-Bipyridine-Gold Single-Molecule Nanowires. J Phys Chem Lett 2021; 12:1759-1764. [PMID: 33570954 PMCID: PMC8023710 DOI: 10.1021/acs.jpclett.0c03765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We study the vulnerability of single-molecule nanowires against a temporary disconnection of the junction. To this end, we compare the room and low-temperature junction formation trajectories along the opening and closing of gold-4,4'-bipyridine-gold single-molecule nanowires. In the low-temperature measurements, the cross-correlations between the opening and subsequent closing conductance traces demonstrate a strong structural memory effect: around half of the molecular opening traces exhibit similar, statistically dependent molecular features as the junction is closed again. This means that the junction stays rigid and the molecule remains protruding from one electrode even after the rupture of the junction, and therefore, the same single-molecule junction can be reestablished if the electrodes are closed again. In the room-temperature measurements, however, weak opening-closing correlations are found, indicating a significant rearrangement of the junction after the rupture and the related loss of structural memory effects.
Collapse
Affiliation(s)
- A. Magyarkuti
- Department
of Physics, Budapest University of Technology
and Economics, Budafoki ut 8, 1111 Budapest, Hungary
| | - Z. Balogh
- Department
of Physics, Budapest University of Technology
and Economics, Budafoki ut 8, 1111 Budapest, Hungary
- MTA-BME
Condensed Matter Research Group, Budafoki ut 8, 1111 Budapest, Hungary
- E-mail:
| | - G. Mezei
- Department
of Physics, Budapest University of Technology
and Economics, Budafoki ut 8, 1111 Budapest, Hungary
- MTA-BME
Condensed Matter Research Group, Budafoki ut 8, 1111 Budapest, Hungary
| | - A. Halbritter
- Department
of Physics, Budapest University of Technology
and Economics, Budafoki ut 8, 1111 Budapest, Hungary
- MTA-BME
Condensed Matter Research Group, Budafoki ut 8, 1111 Budapest, Hungary
| |
Collapse
|
16
|
Chen AN, Endres EJ, Ashberry HM, Bueno SLA, Chen Y, Skrabalak SE. Galvanic replacement of intermetallic nanocrystals as a route toward complex heterostructures. NANOSCALE 2021; 13:2618-2625. [PMID: 33491702 DOI: 10.1039/d0nr08255d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Galvanic replacement reactions are a reliable method for transforming monometallic nanotemplates into bimetallic products with complex nanoscale architectures. When replacing bimetallic nanotemplates, even more complex multimetallic products can be made, with final nanocrystal shapes and architectures depending on multiple processes, including Ostwald ripening and the Kirkendall effect. Galvanic replacement, therefore, is a promising tool in increasing the architectural complexity of multimetallic templates, especially if we can identify and control the relevant processes in a given system and apply them more broadly. Here, we study the transformation of intermetallic PdCu nanoparticles in the presence of HAuCl4 and H2PtCl6, both of which are capable of oxidizing both Pd and Cu. Replacement products consistently lost Cu more quickly than Pd, preserved the crystal structure of the original intermetallic template, and grew a new phase on the sacrificial template. In this way, atomic and nanometer-scale architectures are integrated within individual nanocrystals. Product morphologies included faceting of the original spherical particles as well as formation of core@shell and Janus-style particles. These variations are rationalized in terms of differing diffusion behaviors. Overall, galvanic replacement of multimetallic templates is shown to be a route toward increasingly exotic particle architectures with control exerted on both Angstrom and nanometer-scale features, while inviting further consideration of template and oxidant choices.
Collapse
Affiliation(s)
- Alexander N Chen
- Department of Chemistry, Indiana University - Bloomington, Bloomington, Indiana 47405, USA.
| | - Emma J Endres
- Department of Chemistry, Indiana University - Bloomington, Bloomington, Indiana 47405, USA.
| | - Hannah M Ashberry
- Department of Chemistry, Indiana University - Bloomington, Bloomington, Indiana 47405, USA.
| | - Sandra L A Bueno
- Department of Chemistry, Indiana University - Bloomington, Bloomington, Indiana 47405, USA.
| | - Yifan Chen
- Department of Chemistry, Indiana University - Bloomington, Bloomington, Indiana 47405, USA.
| | - Sara E Skrabalak
- Department of Chemistry, Indiana University - Bloomington, Bloomington, Indiana 47405, USA.
| |
Collapse
|
17
|
De Wael A, De Backer A, Van Aert S. Hidden Markov model for atom-counting from sequential ADF STEM images: Methodology, possibilities and limitations. Ultramicroscopy 2020; 219:113131. [PMID: 33091707 DOI: 10.1016/j.ultramic.2020.113131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 10/23/2022]
Abstract
We present a quantitative method which allows us to reliably measure dynamic changes in the atomic structure of monatomic crystalline nanomaterials from a time series of atomic resolution annular dark field scanning transmission electron microscopy images. The approach is based on the so-called hidden Markov model and estimates the number of atoms in each atomic column of the nanomaterial in each frame of the time series. We discuss the origin of the improved performance for time series atom-counting as compared to the current state-of-the-art atom-counting procedures, and show that the so-called transition probabilities that describe the probability for an atomic column to lose or gain one or more atoms from frame to frame are particularly important. Using these transition probabilities, we show that the method can also be used to estimate the probability and cross section related to structural changes. Furthermore, we explore the possibilities for applying the method to time series recorded under variable environmental conditions. The method is shown to be promising for a reliable quantitative analysis of dynamic processes such as surface diffusion, adatom dynamics, beam effects, or in situ experiments.
Collapse
Affiliation(s)
- Annelies De Wael
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Belgium
| | - Annick De Backer
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Belgium
| | - Sandra Van Aert
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Belgium.
| |
Collapse
|
18
|
Samsonov VM, Talyzin IV, Vasilyev SA, Alymov MI. On the Mechanisms of Coalescence of Nanodroplets and Sintering of Solid Particles. COLLOID JOURNAL 2020. [DOI: 10.1134/s1061933x20050154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
De Wael A, De Backer A, Jones L, Varambhia A, Nellist PD, Van Aert S. Measuring Dynamic Structural Changes of Nanoparticles at the Atomic Scale Using Scanning Transmission Electron Microscopy. PHYSICAL REVIEW LETTERS 2020; 124:106105. [PMID: 32216442 DOI: 10.1103/physrevlett.124.106105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
We propose a new method to measure atomic scale dynamics of nanoparticles from experimental high-resolution annular dark field scanning transmission electron microscopy images. By using the so-called hidden Markov model, which explicitly models the possibility of structural changes, the number of atoms in each atomic column can be quantified over time. This newly proposed method outperforms the current atom-counting procedure and enables the determination of the probabilities and cross sections for surface diffusion. This method is therefore of great importance for revealing and quantifying the atomic structure when it evolves over time via adatom dynamics, surface diffusion, beam effects, or during in situ experiments.
Collapse
Affiliation(s)
- Annelies De Wael
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Annick De Backer
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Lewys Jones
- Department of Materials, University of Oxford, Parks Road, OX1 3PH Oxford, United Kingdom
- Advanced Microscopy Laboratory, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Dublin 2, Ireland
- School of Physics, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Aakash Varambhia
- Department of Materials, University of Oxford, Parks Road, OX1 3PH Oxford, United Kingdom
| | - Peter D Nellist
- Department of Materials, University of Oxford, Parks Road, OX1 3PH Oxford, United Kingdom
| | - Sandra Van Aert
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| |
Collapse
|
20
|
He X, Tang J, Hu H, Shi J, Guan Z, Zhang S, Xu H. Electrically Driven Optical Antennas Based on Template Dielectrophoretic Trapping. ACS NANO 2019; 13:14041-14047. [PMID: 31738504 DOI: 10.1021/acsnano.9b06376] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An electrically driven optical antenna (EDOA) provides a nanoscale light-emitting scheme that is appealing for biosensors, plasmonic displays, and on-chip optoelectronic circuits. The EDOA (consisting of metal nanoparticles (NPs)) excited by inelastic tunneling electrons has attracted broad interest due to its terahertz modulation bandwidth and microelectronics-compatible dimensions. Currently, the efficient fabrication of EDOA is hampered by the ultrasmall size of NPs and the requirement of controllable preparation. Here, we overcome this limitation by accurately positioning thiol-covered gold NPs onto predesigned electrodes using dielectrophoresis trapping. The combination of a high-quality molecule tunnel barrier and the template trapping ensures that the EDOA can operate stably in ambient conditions. More importantly, the template trapping allows fabrication of EDOA with different numbers and arrangements of NPs by controlling the size and orientation of the template. This technology provides a way to fabricate controllable optoelectronic devices based on NPs and is promising for compact and smart photonic devices.
Collapse
Affiliation(s)
- Xiaobo He
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education , Wuhan University , Wuhan 430072 , China
| | - Jibo Tang
- The Institute for Advanced Studies , Wuhan University , Wuhan 430072 , China
| | - Huatian Hu
- The Institute for Advanced Studies , Wuhan University , Wuhan 430072 , China
| | - Junjun Shi
- The Institute for Advanced Studies , Wuhan University , Wuhan 430072 , China
| | - Zhiqiang Guan
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education , Wuhan University , Wuhan 430072 , China
| | - Shunping Zhang
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education , Wuhan University , Wuhan 430072 , China
| | - Hongxing Xu
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education , Wuhan University , Wuhan 430072 , China
- The Institute for Advanced Studies , Wuhan University , Wuhan 430072 , China
| |
Collapse
|
21
|
Modena MM, Rühle B, Burg TP, Wuttke S. Nanoparticle Characterization: What to Measure? ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901556. [PMID: 31148285 DOI: 10.1002/adma.201901556] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/19/2019] [Indexed: 05/20/2023]
Abstract
What to measure? is a key question in nanoscience, and it is not straightforward to address as different physicochemical properties define a nanoparticle sample. Most prominent among these properties are size, shape, surface charge, and porosity. Today researchers have an unprecedented variety of measurement techniques at their disposal to assign precise numerical values to those parameters. However, methods based on different physical principles probe different aspects, not only of the particles themselves, but also of their preparation history and their environment at the time of measurement. Understanding these connections can be of great value for interpreting characterization results and ultimately controlling the nanoparticle structure-function relationship. Here, the current techniques that enable the precise measurement of these fundamental nanoparticle properties are presented and their practical advantages and disadvantages are discussed. Some recommendations of how the physicochemical parameters of nanoparticles should be investigated and how to fully characterize these properties in different environments according to the intended nanoparticle use are proposed. The intention is to improve comparability of nanoparticle properties and performance to ensure the successful transfer of scientific knowledge to industrial real-world applications.
Collapse
Affiliation(s)
- Mario M Modena
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058, Basel, BS, Switzerland
| | - Bastian Rühle
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter - Str 11, 12489, Berlin, Germany
| | - Thomas P Burg
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
- Department of Electrical Engineering and Information Technology, Technische Universität Darmstadt, Merckstrasse 25, 64283, Darmstadt, Germany
| | - Stefan Wuttke
- Department of Chemistry, Center for NanoScience (CeNS), University of Munich (LMU), 81377, Munich, Germany
- BCMaterials, Basque Center for Materials, UPV/EHU Science Park, 48940, Leioa, Spain
| |
Collapse
|
22
|
Cao CR, Huang KQ, Shi JA, Zheng DN, Wang WH, Gu L, Bai HY. Liquid-like behaviours of metallic glassy nanoparticles at room temperature. Nat Commun 2019; 10:1966. [PMID: 31036826 PMCID: PMC6488636 DOI: 10.1038/s41467-019-09895-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 04/05/2019] [Indexed: 11/09/2022] Open
Abstract
Direct atomic-scale observations and measurements on dynamics of amorphous metallic nanoparticles (a-NPs) are challenging owing to the insufficient consciousness to their striking characterizations and the difficulties in technological approaches. In this study, we observe coalescence process of the a-NPs at atomic scale. We measure the viscosity of the a-NPs through the particles coalescence by in situ method. We find that the a-NPs have fast dynamics, and the viscosity of the a-NPs exhibits a power law relationship with size of the a-NPs. The a-NPs with sizes smaller than 3 nm are in a supercooled liquid state and exhibit liquid-like behaviours with a decreased viscosity by four orders of magnitude lower than that of bulk glasses. These results reveal the intrinsic flow characteristics of glasses in low demension, and pave a way to understand the liquid-like behaviours of low dimension glass, and are also of key interest to develop size-controlled nanodevices. Nanoscale materials often exhibit size-dependent behaviour. Here, the authors use electron microscopy to quantitatively study the size-related dynamics of amorphous metallic nanoparticles, finding that particles below a critical size are in a supercooled liquid state at room temperature, with a viscosity much lower than that of bulk glasses.
Collapse
Affiliation(s)
- C R Cao
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - K Q Huang
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - J A Shi
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - D N Zheng
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - W H Wang
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - L Gu
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - H Y Bai
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China. .,Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China.
| |
Collapse
|
23
|
Chen G, Guo C, Cheng Y, Lu H, Cui J, Hu W, Jiang R, Jiang N. High Density Static Charges Governed Surface Activation for Long-Range Motion and Subsequent Growth of Au Nanocrystals. NANOMATERIALS 2019; 9:nano9030328. [PMID: 30823673 PMCID: PMC6473974 DOI: 10.3390/nano9030328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/15/2019] [Accepted: 02/17/2019] [Indexed: 12/01/2022]
Abstract
How a heavily charged metal nanocrystal, and further a dual-nanocrystals system behavior with continuous electron charging? This refers to the electric dynamics in charged particles as well as the crystal growth for real metal particles, but it is still opening in experimental observations and interpretations. To this end, we performed an in-situ electron-beam irradiation study using transmission electron microscopy (TEM) on the Au nanocrystals that freely stand on the nitride boron nanotube (BNNT). Au nanocrystalline particles with sizes of 2–4 nm were prepared by a well-controlled sputtering method to stand on the BNNT surface without chemical bonding interactions. Au nanoparticles presented the surface atomic disorder, diffusion phenomena with continuous electron-beam irradiation, and further, the long-range motion that contains mainly the three stages: charging, activation, and adjacence, which are followed by final crystal growth. Firstly, the growth process undergoes the lattice diffusion and subsequently the surface-dominated diffusion mechanism. These abnormal phenomena and observations, which are fundamentally distinct from classic cases and previous reports, are mainly due to the overcharging of Au nanoparticle that produces a surface activation state in terms of high-energy plasma. This work therefore brings about new observations for both a single and dual-nanocrystals system, as well as new insights in understanding the resulting dynamics behaviors.
Collapse
Affiliation(s)
- Guoxin Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Rd., Shijingshan District, Beijing 100049, China.
| | - Changjin Guo
- School of Materials Science and Engineering, Yunnan University, Kunming 650091, China.
| | - Yao Cheng
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Huanming Lu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Junfeng Cui
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Wanbiao Hu
- School of Materials Science and Engineering, Yunnan University, Kunming 650091, China.
| | - Rongrong Jiang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Nan Jiang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Rd., Shijingshan District, Beijing 100049, China.
| |
Collapse
|
24
|
Gao W, Hou Y, Hood ZD, Wang X, More K, Wu R, Xia Y, Pan X, Chi M. Direct in Situ Observation and Analysis of the Formation of Palladium Nanocrystals with High-Index Facets. NANO LETTERS 2018; 18:7004-7013. [PMID: 30288983 DOI: 10.1021/acs.nanolett.8b02953] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Synthesizing concave-structured nanoparticles (NP) with high-index surfaces offers a viable method to significantly enhance the catalytic activity of NPs. Current approaches for fabricating concave NPs, however, are limited. Exploring novel synthesis methods requires a thorough understanding of the competing mechanisms that contribute to the evolution of surface structures during NP growth. Here, by tracking the evolution of Pd nanocubes into concave NPs at atomic scale using in situ liquid cell transmission electron microscopy, our study reveals that concave-structured Pd NPs can be formed by the cointroduction of surface capping agents and halogen ions. These two chemicals jointly create a new surface energy landscape of Pd NPs, leading to the morphological transformation. In particular, Pd atoms dissociate from the {100} surfaces with the aid of Cl- ions and preferentially redeposit to the corners and edges of the nanocubes when the capping agent polyvinylpyrrolidone is introduced, resulting in the formation of concave Pd nanocubes with distinctive high-index facets. Our work not only demonstrates a potential route for synthesizing NPs with well-defined high-index facets but also reveals the detailed atomic-scale kinetics during their formation, providing insight for future predictive synthesis.
Collapse
Affiliation(s)
| | | | - Zachary D Hood
- School of Chemistry and Biochemistry , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Xue Wang
- The Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Atlanta , Georgia 30332 , United States
| | - Karren More
- The Center for Nanophase Materials Sciences , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | | | - Younan Xia
- School of Chemistry and Biochemistry , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
- The Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Atlanta , Georgia 30332 , United States
- School of Chemical and Biomolecular Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | | | - Miaofang Chi
- The Center for Nanophase Materials Sciences , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| |
Collapse
|
25
|
Knez D, Schnedlitz M, Lasserus M, Schiffmann A, Ernst WE, Hofer F. Modelling electron beam induced dynamics in metallic nanoclusters. Ultramicroscopy 2018; 192:69-79. [DOI: 10.1016/j.ultramic.2018.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/20/2018] [Accepted: 05/29/2018] [Indexed: 10/14/2022]
|
26
|
Vasileiadis T, Waldecker L, Foster D, Da Silva A, Zahn D, Bertoni R, Palmer RE, Ernstorfer R. Ultrafast Heat Flow in Heterostructures of Au Nanoclusters on Thin Films: Atomic Disorder Induced by Hot Electrons. ACS NANO 2018; 12:7710-7720. [PMID: 29995378 DOI: 10.1021/acsnano.8b01423] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We study the ultrafast structural dynamics, in response to electronic excitations, in heterostructures composed of size-selected Au nanoclusters on thin-film substrates with the use of femtosecond electron diffraction. Various forms of atomic motion, such as thermal vibrations, thermal expansion, and lattice disordering, manifest as distinct and quantifiable reciprocal-space observables. In photoexcited supported nanoclusters, thermal equilibration proceeds through intrinsic heat flow between their electrons and their lattice and extrinsic heat flow between the nanoclusters and their substrate. For an in-depth understanding of this process, we have extended the two-temperature model to the case of 0D/2D heterostructures and used it to describe energy flow among the various subsystems, to quantify interfacial coupling constants and to elucidate the role of the optical and thermal substrate properties. When lattice heating of Au nanoclusters is dominated by intrinsic heat flow, a reversible disordering of atomic positions occurs, which is absent when heat is injected as hot substrate phonons. The present analysis indicates that hot electrons can distort the lattice of nanoclusters, even if the lattice temperature is below the equilibrium threshold for surface premelting. Based on simple considerations, the effect is interpreted as activation of surface diffusion due to modifications of the potential energy surface at high electronic temperatures. We discuss the implications of such a process in structural changes during surface chemical reactions.
Collapse
Affiliation(s)
| | - Lutz Waldecker
- Fritz-Haber-Institut , Faradayweg 4-6 , 14195 Berlin , Germany
| | - Dawn Foster
- Nanoscale Physics Research Laboratory, School of Physics and Astronomy , University of Birmingham , Edgbaston , Birmingham B15 2TT , United Kingdom
| | - Alessandra Da Silva
- Nanoscale Physics Research Laboratory, School of Physics and Astronomy , University of Birmingham , Edgbaston , Birmingham B15 2TT , United Kingdom
| | - Daniela Zahn
- Fritz-Haber-Institut , Faradayweg 4-6 , 14195 Berlin , Germany
| | - Roman Bertoni
- Fritz-Haber-Institut , Faradayweg 4-6 , 14195 Berlin , Germany
| | - Richard E Palmer
- College of Engineering , Swansea University , Bay Campus, Fabian Way, Swansea SA1 8EN , United Kingdom
| | | |
Collapse
|
27
|
Mourdikoudis S, Pallares RM, Thanh NTK. Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. NANOSCALE 2018; 10:12871-12934. [PMID: 29926865 DOI: 10.1039/c8nr02278j] [Citation(s) in RCA: 635] [Impact Index Per Article: 90.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nanostructures have attracted huge interest as a rapidly growing class of materials for many applications. Several techniques have been used to characterize the size, crystal structure, elemental composition and a variety of other physical properties of nanoparticles. In several cases, there are physical properties that can be evaluated by more than one technique. Different strengths and limitations of each technique complicate the choice of the most suitable method, while often a combinatorial characterization approach is needed. In addition, given that the significance of nanoparticles in basic research and applications is constantly increasing, it is necessary that researchers from separate fields overcome the challenges in the reproducible and reliable characterization of nanomaterials, after their synthesis and further process (e.g. annealing) stages. The principal objective of this review is to summarize the present knowledge on the use, advances, advantages and weaknesses of a large number of experimental techniques that are available for the characterization of nanoparticles. Different characterization techniques are classified according to the concept/group of the technique used, the information they can provide, or the materials that they are destined for. We describe the main characteristics of the techniques and their operation principles and we give various examples of their use, presenting them in a comparative mode, when possible, in relation to the property studied in each case.
Collapse
Affiliation(s)
- Stefanos Mourdikoudis
- Biophysics Group, Department of Physics and Astronomy, University College London, London, WC1E 6BT, UK.
| | | | | |
Collapse
|
28
|
Cheng L, Zhu X, Su J. Coalescence between Au nanoparticles as induced by nanocurvature effect and electron beam athermal activation effect. NANOSCALE 2018; 10:7978-7983. [PMID: 29505042 DOI: 10.1039/c7nr09710g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The coalescence of two single-crystalline Au nanoparticles on surface of amorphous SiOx nanowire, as induced by electron beam irradiation, was in situ studied at room temperature in a transmission electron microscope. It was observed that along with shrinkage of the SiOx nanowire during irradiation, adjacent Au nanoparticles moved around and migrated close to each other. Once the two nanoparticles contacted with each other, a fast, massive atom transportation took place along their contact surface, where a neck region was created. With a further irradiation, the two nanoparticles rotated, aligning their crystal orientations, and gradually coalesced into a larger single-crystalline nanoparticle. The above coalescence process demonstrated an intriguing surface nanowetting ability and nanograin boundary dislocation climb and slip of Au NPs at room temperature as driven by the non-uniformly distributed nanocurvature over the surface of the two contacting nanoparticles as well as the beam-induced instability and soft mode of atomic vibration, which have been underestimated or neglected in the existing theoretical descriptions or simulations.
Collapse
Affiliation(s)
- Liang Cheng
- China-Australia Joint Laboratory for Functional Nanomaterials & Physics Department, Xiamen University, Xiamen 361005, People's Republic of China.
| | | | | |
Collapse
|
29
|
Chatzidakis M, Prabhudev S, Saidi P, Chiang CN, Hoyt JJ, Botton GA. Bulk Immiscibility at the Edge of the Nanoscale. ACS NANO 2017; 11:10984-10991. [PMID: 29072899 DOI: 10.1021/acsnano.7b04888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In the quest to identify more effective catalyst nanoparticles for many industrially important applications, the Au-Pt system has gathered considerable attention. Despite considerable effort the interplay between phase equilibrium behavior and surface segregation in Au-Pt nanoparticles is still poorly understood. Here we investigate the phase equilibrium behavior of 20 nm Au-Pt nanoparticles using a combination of high-resolution scanning transmission electron microscopy and a hybrid Monte Carlo and molecular dynamics atomistic simulation technique. Our approach takes into account the effects of immiscibility, elastic strain, interfacial free energy, and surface segregation. This is used to explain two key phenomena taking place in these nanoparticles. The first is whether the binary system remains immiscible at the nanoscale, and if so what morphology would the secondary phase take. Our findings suggest that even at sizes of 20 nm, thermally equilibrated Au-Pt nanoparticles remain largely immiscible and behave thermodynamically as bulk-like systems. We explain why 20 nm Au-Pt nanoparticles phase separate into hemispheres as opposed to a thick-shelled core-shell structure. These insights are central to further optimization of Au-Pt nanoparticles toward enhanced catalytic activities. The phase-separated Janus particles observed in this study offer enhanced material functionality arising from the nonuniformity of their plasmonic, catalytic, and surface properties.
Collapse
Affiliation(s)
- Michael Chatzidakis
- Department of Materials Science and Engineering, McMaster University , Hamilton, ON L8S 4L8, Canada
| | - Sagar Prabhudev
- Department of Materials Science and Engineering, McMaster University , Hamilton, ON L8S 4L8, Canada
| | - Peyman Saidi
- Department of Mechanical and Materials Engineering, Queen's University , Kingston, ON K7L 3N6, Canada
| | - Cory N Chiang
- Department of Materials Science and Engineering, McMaster University , Hamilton, ON L8S 4L8, Canada
| | - Jeffrey J Hoyt
- Department of Materials Science and Engineering, McMaster University , Hamilton, ON L8S 4L8, Canada
| | - Gianluigi A Botton
- Department of Materials Science and Engineering, McMaster University , Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
30
|
Settem M, Rajak P, Islam M, Bhattacharyya S. Influence of supporting amorphous carbon film thickness on measured strain variation within a nanoparticle. NANOSCALE 2017; 9:17054-17062. [PMID: 29085922 DOI: 10.1039/c7nr04334a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Strain variation within a nanoparticle plays a crucial role in tuning its properties. High Resolution Transmission Electron Microscopy (HRTEM) images of a nanoparticle supported on amorphous carbon film are used to determine the strain variation. Experimental measurements in this present study on a single crystalline silver nanoparticle exhibited an unexpected high strain variation. Generally, the influence of carbon film is not accounted for during interpretation of measured strain variation. However, experimental observations raise the question whether the supporting carbon film alters the measured strain variation. In order to address this, strain variation within a simulated Ag nanoparticle supported on an amorphous carbon is measured with varying film thicknesses. The results show that supporting carbon film thickness introduces an artefact leading to more strain variation than what is present within an unsupported nanoparticle. Moreover, the variation increases with increasing supporting carbon film thickness. This effect is more pronounced in a thinner nanoparticle. Without considering this influence, the interpretation of strain within a nanoparticle may introduce severe errors which in turn will affect the tunability of desirable properties for different applications. Since strain measurement depends on the accuracy of the atomic position, the interpretation of any result using the atomic position from HRTEM images of a nanoparticle should consider the influence of supporting film.
Collapse
Affiliation(s)
- Manoj Settem
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai, India - 600036.
| | | | | | | |
Collapse
|
31
|
Mu H, Li C, Bai J. The composite catalysts of Cu/Cux
O nanoparticles supported on the carbon fibers were prepared for styrene oxidation reaction. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.3890] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hongchun Mu
- Chemical Engineering College; Inner Mongolia University of Technology; Hohhot 010051 the People's Republic of China
| | - Chunping Li
- Chemical Engineering College; Inner Mongolia University of Technology; Hohhot 010051 the People's Republic of China
| | - Jie Bai
- Chemical Engineering College; Inner Mongolia University of Technology; Hohhot 010051 the People's Republic of China
| |
Collapse
|
32
|
Antony AC, Akhade SA, Lu Z, Liang T, Janik MJ, Phillpot SR, Sinnott SB. Charge optimized many body (COMB) potentials for Pt and Au. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:225901. [PMID: 28452343 DOI: 10.1088/1361-648x/aa6d43] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Interatomic potentials for Pt and Au are developed within the third generation charge optimized many-body (COMB3) formalism. The potentials are capable of reproducing phase order, lattice constants, and elastic constants of Pt and Au systems as experimentally measured or calculated by density functional theory. We also fit defect formation energies, surface energies and stacking fault energies for Pt and Au metals. The resulting potentials are used to map a 2D contour of the gamma surface and simulate the tensile test of 16-grain polycrystalline Pt and Au structures at 300 K. The stress-strain behaviour is investigated and the primary slip systems {1 1 1}〈1 [Formula: see text] 0〉 are identified. In addition, we perform high temperature (1800 K for Au and 2300 K for Pt) molecular dynamics simulations of 30 nm Pt and Au truncated octahedron nanoparticles and examine morphological changes of each particle. We further calculate the activation energy barrier for surface diffusion during simulations of several nanoseconds and report energies of [Formula: see text] eV for Pt and [Formula: see text] eV for Au. This initial parameterization and application of the Pt and Au potentials demonstrates a starting point for the extension of these potentials to multicomponent systems within the COMB3 framework.
Collapse
Affiliation(s)
- A C Antony
- Department of Materials Science and Engineering, The University of Florida, Gainesville, Florida, United States of America. Department of Materials Science and Engineering, The Pennsylvania State University, State College, Pennsylvania, United States of America
| | | | | | | | | | | | | |
Collapse
|
33
|
On the influence of the electron dose rate on the HRTEM image contrast. Ultramicroscopy 2017; 176:37-45. [DOI: 10.1016/j.ultramic.2016.11.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/16/2016] [Accepted: 11/18/2016] [Indexed: 10/20/2022]
|
34
|
Surrey A, Nielsch K, Rellinghaus B. Comments on "Evidence of the hydrogen release mechanism in bulk MgH 2". Sci Rep 2017; 7:44216. [PMID: 28387219 PMCID: PMC5384078 DOI: 10.1038/srep44216] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 02/06/2017] [Indexed: 11/22/2022] Open
Abstract
The effect of an electron beam induced dehydrogenation of MgH2 in the transmission electron microscope (TEM) is largely underestimated by Nogita et al., and led the authors to a misinterpretation of their TEM observations. Firstly, the selected area diffraction (SAD) pattern is falsely interpreted. A re-evaluation of the SAD pattern reveals that no MgH2 is present in the sample, but that it rather consists of Mg and MgO only. Secondly, the transformation of the sample upon in-situ heating in the TEM cannot be ascribed to dehydrogenation, but is rather to be explained by the (nanoscale) Kirkendall effect, which leads to the formation of hollow MgO shells without any metallic Mg in their cores. Hence, the conclusions drawn from the TEM investigation are invalid, as the authors apparently have never studied MgH2.
Collapse
Affiliation(s)
- Alexander Surrey
- IFW Dresden, Institute for Metallic Materials, Dresden, D-01171, Germany.,Technische Universität Dresden, Institut für Festkörperphysik, Dresden, D-01062, Germany
| | - Kornelius Nielsch
- IFW Dresden, Institute for Metallic Materials, Dresden, D-01171, Germany
| | - Bernd Rellinghaus
- IFW Dresden, Institute for Metallic Materials, Dresden, D-01171, Germany
| |
Collapse
|
35
|
Tan SF, Bosman M, Nijhuis CA. Molecular Coatings for Stabilizing Silver and Gold Nanocubes under Electron Beam Irradiation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:1189-1196. [PMID: 28068103 DOI: 10.1021/acs.langmuir.6b03721] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We study the degradation process of closely spaced silver and gold nanocubes under high-energy electron beam irradiation using transmission electron microscopy (TEM). The high aspect ratio gaps between silver and gold nanocubes degraded in many cases as a result of protrusion and filament formation during electron beam irradiation. We demonstrate that the molecular coating of the nanoparticles can act as a protective barrier to minimize electron-beam-induced damage on passivated gold and silver nanoparticles.
Collapse
Affiliation(s)
- Shu Fen Tan
- Department of Chemistry, National University of Singapore , 3 Science Drive 3, Singapore 117543, Singapore
| | - Michel Bosman
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Singapore 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore , 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Christian A Nijhuis
- Department of Chemistry, National University of Singapore , 3 Science Drive 3, Singapore 117543, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore , 6 Science Drive 2, Singapore 117546, Singapore
| |
Collapse
|
36
|
Dutta A, Paul A, Chattopadhyay A. The effect of temperature on the aggregation kinetics of partially bare gold nanoparticles. RSC Adv 2016. [DOI: 10.1039/c6ra17561a] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Temperature dependent aggregation reaction of partially bare gold nanoparticles showed a first order kinetics and prevalence of reaction limited colloidal aggregation with an activation energy equal to 36.2 ± 3.0 kJ mol−1.
Collapse
Affiliation(s)
- Anushree Dutta
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati
- India – 781039
| | - Anumita Paul
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati
- India – 781039
| | - Arun Chattopadhyay
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati
- India – 781039
- Centre for Nanotechnology
| |
Collapse
|
37
|
Wright LB, Palafox-Hernandez JP, Rodger PM, Corni S, Walsh TR. Facet selectivity in gold binding peptides: exploiting interfacial water structure. Chem Sci 2015; 6:5204-5214. [PMID: 29449926 PMCID: PMC5669244 DOI: 10.1039/c5sc00399g] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/20/2015] [Indexed: 11/21/2022] Open
Abstract
Peptide sequences that can discriminate between gold facets under aqueous conditions offer a promising route to control the growth and organisation of biomimetically-synthesised gold nanoparticles. Knowledge of the interplay between sequence, conformations and interfacial properties is essential for predictable manipulation of these biointerfaces, but the structural connections between a given peptide sequence and its binding affinity remain unclear, impeding practical advances in the field. These structural insights, at atomic-scale resolution, are not easily accessed with experimental approaches, but can be delivered via molecular simulation. A current unmet challenge lies in forging links between predicted adsorption free energies derived from enhanced sampling simulations with the conformational ensemble of the peptide and the water structure at the surface. To meet this challenge, here we use an in situ combination of Replica Exchange with Solute Tempering with Metadynamics simulations to predict the adsorption free energy of a gold-binding peptide sequence, AuBP1, at the aqueous Au(111), Au(100)(1 × 1) and Au(100)(5 × 1) interfaces. We find adsorption to the Au(111) surface is stronger than to Au(100), irrespective of the reconstruction status of the latter. Our predicted free energies agree with experiment, and correlate with trends in interfacial water structuring. For gold, surface hydration is predicted as a chief determining factor in peptide-surface recognition. Our findings can be used to suggest how shaped seed-nanocrystals of Au, in partnership with AuBP1, could be used to control AuNP nanoparticle morphology.
Collapse
Affiliation(s)
- Louise B Wright
- Dept. of Chemistry , University of Warwick , Coventry , CV4 7AL , UK
| | | | - P Mark Rodger
- Dept. of Chemistry , University of Warwick , Coventry , CV4 7AL , UK
- Centre for Scientific Computing , University of Warwick , Coventry , CV4 7AL , UK .
| | - Stefano Corni
- Centro S3 CNR Istituto Nanoscienze , Modena , Italy .
| | - Tiffany R Walsh
- Institute for Frontier Materials , Deakin University , Geelong , 3216 , VIC , Australia .
| |
Collapse
|
38
|
Stevens A, Kovarik L, Abellan P, Yuan X, Carin L, Browning ND. Applying compressive sensing to TEM video: a substantial frame rate increase on any camera. ACTA ACUST UNITED AC 2015. [DOI: 10.1186/s40679-015-0009-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractOne of the main limitations of imaging at high spatial and temporal resolution during in-situ transmission electron microscopy (TEM) experiments is the frame rate of the camera being used to image the dynamic process. While the recent development of direct detectors has provided the hardware to achieve frame rates approaching 0.1 ms, the cameras are expensive and must replace existing detectors. In this paper, we examine the use of coded aperture compressive sensing (CS) methods to increase the frame rate of any camera with simple, low-cost hardware modifications. The coded aperture approach allows multiple sub-frames to be coded and integrated into a single camera frame during the acquisition process, and then extracted upon readout using statistical CS inversion. Here we describe the background of CS and statistical methods in depth and simulate the frame rates and efficiencies for in-situ TEM experiments. Depending on the resolution and signal/noise of the image, it should be possible to increase the speed of any camera by more than an order of magnitude using this approach.Mathematics Subject Classification: (2010) 94A08 · 78A15
Collapse
|
39
|
Zhang C, Li C, Bai J, Li H. A Cu Nanoparticle Embedded in Electrospundoped Carbon Nanofibers as Efficient Catalysts for Ullmann O-Arylation of Aryl Halides with Various Phenols. Catal Letters 2015. [DOI: 10.1007/s10562-015-1566-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Synthesis, characterization, and antibacterial activity of Cu NPs embedded electrospun composite nanofibers. Colloid Polym Sci 2015. [DOI: 10.1007/s00396-015-3640-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
41
|
Zhang W, Zheng WT. Transmission electron microscopy finds plenty of room on the surface. Phys Chem Chem Phys 2015; 17:14461-9. [DOI: 10.1039/c5cp01705j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The merit of transmission electron microscopy is unraveled for the key progress, emerging opportunities and fascinating perspectives in surface exploration.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Materials Science, and Key Laboratory of Mobile Materials MOE, and State Key Laboratory of Superhard Materials
- Jilin University
- Changchun 130012
- China
| | - Wei Tao Zheng
- Department of Materials Science, and Key Laboratory of Mobile Materials MOE, and State Key Laboratory of Superhard Materials
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
42
|
Taylor AB, Siddiquee AM, Chon JWM. Below melting point photothermal reshaping of single gold nanorods driven by surface diffusion. ACS NANO 2014; 8:12071-9. [PMID: 25405517 DOI: 10.1021/nn5055283] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plasmonic gold nanorod instability and reshaping behavior below melting points are important for many future applications but are yet to be fully understood, with existing nanoparticle melting theories unable to explain the observations. Here, we have systematically studied the photothermal reshaping behavior of gold nanorods irradiated with femtosecond laser pulses to report that the instability is driven by curvature-induced surface diffusion rather than a threshold melting process, and that the stability dramatically decreases with increasing aspect ratio. We successfully utilized the surface diffusion model to explain the observations and found that the activation energy for surface diffusion was dependent on the aspect ratio of the rods, from 0.6 eV for aspect ratio of 5 to 1.5 eV for aspect ratio less than 3. This result indicates that the surface atoms are much easier to diffuse around in larger aspect ratio rods than in shorter rods and can induce reshaping at any given temperature. Current plasmonics and nanorod applications with the sharp geometric features used for greater field enhancement will therefore need to consider surface diffusion driven shape change even at low temperatures.
Collapse
Affiliation(s)
- Adam B Taylor
- Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology , P.O. Box 218, Hawthorn 3122, Victoria, Australia
| | | | | |
Collapse
|
43
|
Jones L, MacArthur KE, Fauske VT, van Helvoort ATJ, Nellist PD. Rapid estimation of catalyst nanoparticle morphology and atomic-coordination by high-resolution Z-contrast electron microscopy. NANO LETTERS 2014; 14:6336-41. [PMID: 25340541 DOI: 10.1021/nl502762m] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Heterogeneous nanoparticle catalyst development relies on an understanding of their structure-property relationships, ideally at atomic resolution and in three-dimensions. Current transmission electron microscopy techniques such as discrete tomography can provide this but require multiple images of each nanoparticle and are incompatible with samples that change under electron irradiation or with surveying large numbers of particles to gain significant statistics. Here, we make use of recent advances in quantitative dark-field scanning transmission electron microscopy to count the number atoms in each atomic column of a single image from a platinum nanoparticle. These atom-counts, along with the prior knowledge of the face-centered cubic geometry, are used to create atomistic models. An energy minimization is then used to relax the nanoparticle's 3D structure. This rapid approach enables high-throughput statistical studies or the analysis of dynamic processes such as facet-restructuring or particle damage.
Collapse
Affiliation(s)
- Lewys Jones
- Department of Materials, University of Oxford , OX13PH Oxford, United Kingdom
| | | | | | | | | |
Collapse
|
44
|
Henry CR. Metal nanocrystals: Deforming like liquid droplets. NATURE MATERIALS 2014; 13:999-1000. [PMID: 25342527 DOI: 10.1038/nmat4124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Affiliation(s)
- Claude R Henry
- Centre Interdisciplinaire de Nanoscience de Marseille, Aix-Marseille Université / CNRS, UMR 7325, F-13288 Marseille cedex 09, France
| |
Collapse
|
45
|
Weiner RG, DeSantis CJ, Cardoso MBT, Skrabalak SE. Diffusion and seed shape: intertwined parameters in the synthesis of branched metal nanostructures. ACS NANO 2014; 8:8625-8635. [PMID: 25133784 DOI: 10.1021/nn5034345] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Branched nanocrystals display interesting optical and catalytic properties on account of their high surface areas and tips with small radii of curvatures. However, many synthetic routes toward branched nanocrystals result in inhomogeneous samples on account of asymmetric branching. Seed-mediated coreduction is a recently developed route to symmetrically branched nanocrystals where the symmetry of the seeds is transferred to the final stellated morphologies. Here, general guidelines to stellated nanocrystals are outlined by surveying coreduction of Au and Pd precursors in the presence of a variety of shape-controlled Au seeds to achieve Au/Pd nanostructures. Single-crystalline, twinned, and anisotropic seeds were analyzed to expand the classes of stellated nanostructures synthetically accessible. Significantly, single-crystalline Au seeds adopt {100}-terminated intermediates prior to branching, regardless of initial seed shape. We compared these results with those obtained with shape-controlled Pd seeds, and seed composition was identified as an important synthetic parameter, with Pd seeds being more resistant to shape changes during overgrowth. This difference is attributed to the greater diffusion rate of Au atoms on Au seeds compared to Au atoms on Pd seeds. These results provide guidelines for the seeded synthesis of symmetrically branched nanocrystals and architecturally defined bimetallic nanostructures in general.
Collapse
Affiliation(s)
- Rebecca G Weiner
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States
| | | | | | | |
Collapse
|
46
|
Atomic surface diffusion on Pt nanoparticles quantified by high-resolution transmission electron microscopy. Micron 2014; 63:52-6. [DOI: 10.1016/j.micron.2013.12.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 12/20/2013] [Accepted: 12/21/2013] [Indexed: 11/18/2022]
|
47
|
Velasco V, Pohl D, Surrey A, Bonatto-Minella A, Hernando A, Crespo P, Rellinghaus B. On the stability of AuFe alloy nanoparticles. NANOTECHNOLOGY 2014; 25:215703. [PMID: 24784895 DOI: 10.1088/0957-4484/25/21/215703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
AuFe nanoparticles with mean diameters d p = 13.2 nm have been prepared by inert-gas condensation. Conventional and high-resolution transmission electron microscopy and energy-dispersive x-ray spectroscopy investigations show that the particles are mostly icosahedra. Scanning transmission electron microscopy-energy-dispersive x-ray spectroscopy and scanning transmission electron microscopy-electron energy-loss spectroscopy show that the as-grown particles exhibit a core-shell structure. The shell is mainly composed of an amorphous FeO layer. Although Fe and Au are immiscible in the bulk, the particle cores are found to be homogeneously mixed at the atomic level with a local composition of around Au84Fe16 (at.%). AuFe nanoparticles exhibit a complex magnetic structure in which the core behaves as a spin glass with a freezing temperature of 35 K, whereas the amorphous FeO shell behaves as a ferro-ferrimagnetic system. On annealing above 300 °C, the AuFe icosahedra phases separate into their elemental constituents. Hence the as-grown AuFe icosahedra are metastable, thereby implying that the bulk phase diagram also applies for nanoscopic materials.
Collapse
Affiliation(s)
- V Velasco
- IFW Dresden, PO Box 270116, D-00171 Dresden, Germany. Instituto de Magnetismo Aplicado, UCM-ADIF-CSIC, PO Box 155, E-28230 Las Rozas, Spain. Departamento de Física de Materiales, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
48
|
Pohl D, Wiesenhütter U, Mohn E, Schultz L, Rellinghaus B. Near-surface strain in icosahedra of binary metallic alloys: segregational versus intrinsic effects. NANO LETTERS 2014; 14:1776-1784. [PMID: 24588256 DOI: 10.1021/nl404268f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A systematic structural analysis of FePt, CuAu, and Au icosahedral nanoparticles is presented. The uncovered particles are prepared by inert gas condensation and thermally equilibrated through in-flight optical annealing. Aberration-corrected high-resolution transmission electron microscopy reveals that the crystal lattice is significantly expanded near the particle surface. These experimental findings are corroborated by molecular statics simulations that show that this near-surface strain originates from both intrinsic strain due to the icosahedral structure and a partial segregation of the larger of the two alloy constituents to the particle surface.
Collapse
Affiliation(s)
- Darius Pohl
- Institute for Metallic Materials, Leibniz Institute for Solid State and Materials Research (IFW) Dresden , P.O. Box 270116, D-01171 Dresden, Germany
| | | | | | | | | |
Collapse
|
49
|
Casillas G, Ponce A, Velázquez-Salazar JJ, José-Yacamán M. Direct observation of liquid-like behavior of a single Au grain boundary. NANOSCALE 2013; 5:6333-7. [PMID: 23760664 PMCID: PMC4307786 DOI: 10.1039/c3nr01501g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Behavior of matter at the nanoscale differs from that of the bulk due to confinement and surface effects. Here, we report a direct observation of liquid-like behavior of a single grain boundary formed by cold-welding Au nanoparticles, 40 nm in size, by mechanical manipulation in situ TEM. The grain boundary rotates almost freely due to the free surfaces and can rotate about 90 degrees. The grain boundary sustains more stress than the bulk, confirming a strong bonding between the nanoparticles. Moreover, this technique allows the measurement of the surface diffusion coefficient from experimental observations, which we compute for the Au nanoparticles. This methodology can be used for any metal, oxide, semiconductor or combination of them.
Collapse
Affiliation(s)
- Gilberto Casillas
- Department of Physics and Astronomy, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, USA
| | | | | | | |
Collapse
|