1
|
Zaltariov MF, Ciubotaru BI, Ghilan A, Peptanariu D, Ignat M, Iacob M, Vornicu N, Cazacu M. Mucoadhesive Mesoporous Silica Particles as Versatile Carriers for Doxorubicin Delivery in Cancer Therapy. Int J Mol Sci 2023; 24:14687. [PMID: 37834134 PMCID: PMC10572865 DOI: 10.3390/ijms241914687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Due to their structural, morphological, and behavioral characteristics (e.g., large volume and adjustable pore size, wide functionalization possibilities, excellent biocompatibility, stability, and controlled biodegradation, the ability to protect cargoes against premature release and unwanted degradation), mesoporous silica particles (MSPs) are emerging as a promising diagnostic and delivery platform with a key role in the development of next-generation theranostics, nanovaccines, and formulations. In this study, MSPs with customized characteristics in-lab prepared were fully characterized and used as carriers for doxorubicin (DOX). The drug loading capacity and the release profile were evaluated in media with different pH values, mimicking the body conditions. The release data were fitted to Higuchi, Korsmeyer-Peppas, and Peppas-Sahlin kinetic models to evaluate the release constant and the mechanism. The in vitro behavior of functionalized silica particles showed an enhanced cytotoxicity on human breast cancer (MCF-7) cells. Bio- and mucoadhesion on different substrates (synthetic cellulose membrane and porcine tissue mucosa)) and antimicrobial activity were successfully assessed, proving the ability of the OH- or the organically modified MSPs to act as antimicrobial and mucoadhesive platforms for drug delivery systems with synergistic effects.
Collapse
Affiliation(s)
- Mirela-Fernanda Zaltariov
- Department of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, 700487 Iasi, Romania; (B.-I.C.); (M.I.); (M.I.)
| | - Bianca-Iulia Ciubotaru
- Department of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, 700487 Iasi, Romania; (B.-I.C.); (M.I.); (M.I.)
| | - Alina Ghilan
- Department of Natural Polymers, Bioactive and Biocompatible Materials, “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, 700487 Iasi, Romania;
| | - Dragos Peptanariu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, 700487 Iasi, Romania;
| | - Maria Ignat
- Department of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, 700487 Iasi, Romania; (B.-I.C.); (M.I.); (M.I.)
- Department of Chemistry, “Alexandru Ioan Cuza” University of Iasi, 700506 Iasi, Romania
| | - Mihail Iacob
- Department of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, 700487 Iasi, Romania; (B.-I.C.); (M.I.); (M.I.)
| | - Nicoleta Vornicu
- Metropolitan Center of Research T.A.B.O.R, The Metropolitanate of Moldavia and Bukovina, 700497 Iasi, Romania;
| | - Maria Cazacu
- Department of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, 700487 Iasi, Romania; (B.-I.C.); (M.I.); (M.I.)
| |
Collapse
|
2
|
Yazdanian M, Rahmani A, Tahmasebi E, Tebyanian H, Yazdanian A, Mosaddad SA. Current and Advanced Nanomaterials in Dentistry as Regeneration Agents: An Update. Mini Rev Med Chem 2021; 21:899-918. [PMID: 33234102 DOI: 10.2174/1389557520666201124143449] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/18/2020] [Accepted: 10/19/2020] [Indexed: 11/22/2022]
Abstract
In modern dentistry, nanomaterials have strengthened their foothold among tissue engineering strategies for treating bone and dental defects due to a variety of reasons, including trauma and tumors. Besides their finest physiochemical features, the biomimetic characteristics of nanomaterials promote cell growth and stimulate tissue regeneration. The single units of these chemical substances are small-sized particles, usually between 1 to 100 nm, in an unbound state. This unbound state allows particles to constitute aggregates with one or more external dimensions and provide a high surface area. Nanomaterials have brought advances in regenerative dentistry from the laboratory to clinical practice. They are particularly used for creating novel biomimetic nanostructures for cell regeneration, targeted treatment, diagnostics, imaging, and the production of dental materials. In regenerative dentistry, nanostructured matrices and scaffolds help control cell differentiation better. Nanomaterials recapitulate the natural dental architecture and structure and form functional tissues better compared to the conventional autologous and allogenic tissues or alloplastic materials. The reason is that novel nanostructures provide an improved platform for supporting and regulating cell proliferation, differentiation, and migration. In restorative dentistry, nanomaterials are widely used in constructing nanocomposite resins, bonding agents, endodontic sealants, coating materials, and bioceramics. They are also used for making daily dental hygiene products such as mouth rinses. The present article classifies nanostructures and nanocarriers in addition to reviewing their design and applications for bone and dental regeneration.
Collapse
Affiliation(s)
- Mohsen Yazdanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Aghil Rahmani
- Dental Materials Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Elahe Tahmasebi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Tebyanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Yazdanian
- Department of veterinary, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Ali Mosaddad
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Hajiaghababaei L, Eslambolipour M, Badiei A, Ganjali MR, Ziarani GM. Controlled release of anticancer drug using o-phenylenediamine functionalized SBA-15 as a novel nanocarrier. CHEMICAL PAPERS 2021; 75:1841-1850. [DOI: 10.1007/s11696-020-01422-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/05/2020] [Indexed: 10/22/2022]
|
4
|
Guan Y, Yang Y, Wang X, Yuan H, Yang Y, Li N, Ni C. Multifunctional Fe3O4@SiO2-CDs magnetic fluorescent nanoparticles as effective carrier of gambogic acid for inhibiting VX2 tumor cells. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114783] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Doxorubicin delivery to breast cancer cells with transferrin-targeted carbon quantum dots: An in vitro and in silico study. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102342] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
6
|
Abstract
AbstractNanoporous solids, including microporous, mesoporous and hierarchically structured porous materials, are of scientific and technological interest because of their high surface-to-volume ratio and ability to impose shape- and size-selectivity on molecules diffusing through them. Enormous efforts have been put in the mechanistic understanding of diffusion–reaction relationships of nanoporous solids, with the ultimate goal of developing materials with improved catalytic performance. Single-molecule localization microscopy can be used to explore the pore space via the trajectories of individual molecules. This ensemble-free perspective directly reveals heterogeneities in diffusion and diffusion-related reactivity of individual molecules, which would have been obscured in bulk measurements. In this article, we review developments in the spatial and temporal characterization of nanoporous solids using single-molecule localization microscopy. We illustrate various aspects of this approach, and showcase how it can be used to follow molecular diffusion and reaction behaviors in nanoporous solids.
Collapse
|
7
|
Ning L, Liu P, Ye F, Yang M, Chen K. Diffusion of colloidal particles in model porous media. Phys Rev E 2021; 103:022608. [PMID: 33735994 DOI: 10.1103/physreve.103.022608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/22/2021] [Indexed: 01/26/2023]
Abstract
Using video microscopy and simulations, we study the long-time diffusion of colloidal tracers in a wide range of model porous media composed of frozen colloidal matrices with different structures. We found that the diffusion coefficient of a tracer can be quantitatively determined by the structures of porous media. In particular, a universal scaling relation exists between the dimensionless diffusion coefficient of the tracer and the structural entropy of the system. This universal scaling relation is an extension of the scaling law previously discovered for the diffusion of colloidal particles in fluctuating media.
Collapse
Affiliation(s)
- Luhui Ning
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Liu
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Mingcheng Yang
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Ke Chen
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
8
|
Vanza JD, Patel RB, Patel MR. Nanocarrier centered therapeutic approaches: Recent developments with insight towards the future in the management of lung cancer. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Zhong Y, Wang G. Three-Dimensional Single Particle Tracking and Its Applications in Confined Environments. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2020; 13:381-403. [PMID: 32097571 DOI: 10.1146/annurev-anchem-091819-100409] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Single particle tracking (SPT) has proven to be a powerful technique in studying molecular dynamics in complicated systems. We review its recent development, including three-dimensional (3D) SPT and its applications in probing nanostructures and molecule-surface interactions that are important to analytical chemical processes. Several frequently used 3D SPT techniques are introduced. Especially of interest are those based on point spread function engineering, which are simple in instrumentation and can be easily adapted and used in analytical labs. Corresponding data analysis methods are briefly discussed. We present several important case studies, with a focus on probing mass transport and molecule-surface interactions in confined environments. The presented studies demonstrate the great potential of 3D SPT for understanding fundamental phenomena in confined space, which will enable us to predict basic principles involved in chemical recognition, separation, and analysis, and to optimize mass transport and responses by structural design and optimization.
Collapse
Affiliation(s)
- Yaning Zhong
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, USA;
| | - Gufeng Wang
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, USA;
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, USA
| |
Collapse
|
10
|
Díez Fernández A, Charchar P, Cherstvy AG, Metzler R, Finnis MW. The diffusion of doxorubicin drug molecules in silica nanoslits is non-Gaussian, intermittent and anticorrelated. Phys Chem Chem Phys 2020; 22:27955-27965. [DOI: 10.1039/d0cp03849k] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The motion of the confined doxorubicin drug molecule exhibits an interesting combination of anomalous diffusion features.
Collapse
Affiliation(s)
- Amanda Díez Fernández
- Department of Physics and Department of Materials
- Imperial College London
- London SW7 2AZ
- UK
| | | | - Andrey G. Cherstvy
- Institute for Physics & Astronomy
- University of Potsdam
- 14476 Potsdam-Golm
- Germany
| | - Ralf Metzler
- Institute for Physics & Astronomy
- University of Potsdam
- 14476 Potsdam-Golm
- Germany
| | - Michael W. Finnis
- Department of Physics and Department of Materials
- Imperial College London
- London SW7 2AZ
- UK
| |
Collapse
|
11
|
Dalayi F, Hajiaghababaei L, Badiei A, Boorboor Azimi E, Ganjali MR, Mohammadi Ziarani G. Tris (2-aminoethyl) Amine Functionalized Nanoporous Silica SBA-15 as a Potential Drug Carrier for Citalopram. INTERNATIONAL JOURNAL OF BASIC SCIENCE IN MEDICINE 2019; 4:155-162. [DOI: 10.34172/ijbsm.2019.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction: Ordered nanoporous silica such as SBA-15 has a great potential for application in controlled drug release systems. Chemical modification of the silanol groups of SBA-15 allows better control over drug loading and release. Therefore, tris(2-aminoethyl) amine-functionalized mesoporous silica SBA-15 was evaluated as a potential carrier for the delivery of citalopram. Methods: Tris (2-aminoethyl) amine-functionalized SBA-15 was synthesized and characterized by various methods. Citalopram was loaded on the functionalized SBA-15 and drug release into simulated body fluid (SBF) solution and phosphate buffers was investigated. Results: The optimal condition for loading of the citalopram was obtained at pH = 9 after stirring for 5 minutes. The release profile of citalopram was monitored in phosphate buffers with three different pH values of 5, 7, and 8. A faster release rate at lower pH value was observed, suggesting a weaker interaction because of the protonation of the amino group of the functionalized SBA15. The average release rate of citalopram from each gram of functionalized SBA-15 was 12 µg h-1 in the SBF. Conclusion: The results showed that loading amount and release rate of citalopram depended on pH value and the release process showed a very slow release pattern. Therefore, tris (2-aminoethyl) amine-functionalized SBA-15 is a suitable carrier for controlled release of citalopram and has a great potential for disease therapy.
Collapse
Affiliation(s)
- Fatemeh Dalayi
- Department of Chemistry, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
| | - Leila Hajiaghababaei
- Department of Chemistry, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | | | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | | |
Collapse
|
12
|
Bergamasco L, Alberghini M, Fasano M. Nano-metering of Solvated Biomolecules Or Nanoparticles from Water Self-Diffusivity in Bio-inspired Nanopores. NANOSCALE RESEARCH LETTERS 2019; 14:336. [PMID: 31659492 PMCID: PMC6816642 DOI: 10.1186/s11671-019-3178-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
Taking inspiration from the structure of diatom algae frustules and motivated by the need for new detecting strategies for emerging nanopollutants in water, we analyze the potential of nanoporous silica tablets as metering devices for the concentration of biomolecules or nanoparticles in water. The concept relies on the different diffusion behavior that water molecules exhibit in bulk and nanoconfined conditions, e.g., in nanopores. In this latter situation, the self-diffusion coefficient of water reduces according to the geometry and surface properties of the pore and to the concentration of suspended biomolecules or nanoparticles in the pore, as extensively demonstrated in a previous study. Thus, for a given pore-liquid system, the self-diffusivity of water in nanopores filled with biomolecules or nanoparticles provides an indirect measure of their concentration. Using molecular dynamics and previous results from the literature, we demonstrate the correlation between the self-diffusion coefficient of water in silica nanopores and the concentration of proteins or nanoparticles contained therein. Finally, we estimate the time required for the nanoparticles to fill the nanopores, in order to assess the practical feasibility of the overall nano-metering protocol. Results show that the proposed approach may represent an alternative method for assessing the concentration of some classes of nanopollutants or biomolecules in water.
Collapse
Affiliation(s)
- Luca Bergamasco
- Department of Energy, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129 Italy
| | - Matteo Alberghini
- Department of Energy, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129 Italy
- Clean Water Center, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129 Italy
| | - Matteo Fasano
- Department of Energy, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129 Italy
| |
Collapse
|
13
|
Abstract
Delivery of the drug to a desired point of body and controlled release of the therapeutic agent are important features, provided by drug delivery systems (DDSs), for development of today's effective medicines. A variety of nanomaterials or nanomolecules such as lipids/liposomes, nucleic acids, peptides/proteins, composites, polymers, or carbon nanotubes can be used as DDSs. Single-molecule characterization of these small materials in terms of their size, shape, surface, encapsulation efficiency, as well as interaction with the drug-receiving cell has importance for their efficiency. The loading, distribution, or leakage of the drug as well as its interaction with DDS should also be characterized. Although diverse techniques are present for characterization of specific DDS material, methods such as electron microscopy and fluorescence microscopy are widely used. In this review, the current methodologies utilized for the single-molecule characterization of mostly preferred DDS materials were presented.
Collapse
Affiliation(s)
- Sezer Okay
- Department of Vaccine Technology, Vaccine Institute, Hacettepe University, Ankara, Turkey.,Department of Biology, Faculty of Science, Çankırı Karatekin University, Çankırı, Turkey
| |
Collapse
|
14
|
Moradzadeh Khiavi M, Anvari E, Hamishehkar H, Abdal K. Assessment of the Blood Parameters, Cardiac and Liver Enzymes in Oral Squamous Cell Carcinoma Following Treated with Injectable Doxorubicin-Loaded Nano-Particles. Asian Pac J Cancer Prev 2019; 20:1973-1977. [PMID: 31350953 PMCID: PMC6745216 DOI: 10.31557/apjcp.2019.20.7.1973] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Indexed: 12/12/2022] Open
Abstract
Purpose: Oral squamous cell carcinoma (OSCC) is the most common and most malignant disorder of the oral cavity. Standard cancer treatments have many complications for patients. Nausea, vomiting, and perturbation in blood cells are the most common side effects when using Doxorubicin (Dox) for the treatment of OSCC. Use of Doxorubicin-loaded nano-particles (n-Dox) give rise to increase its biological efficacy and the rapeutic effects. This study assessed the efficacy of the injectable form of the n-Doxon blood parameters and cardiac and liver enzymes compared to the commercial form of Dox in OSCC-induced by 4NQO in rats. Methods: 4-nitroquinoline-1-oxideas was used as a solution in drinking water for inducing OSCC during 14 weeks in male Sprague-Dawley rats. Four groups of animals were categorized randomly: first (OSCC+Dox), second (OSCC+n-Dox), third (OSCC) and, last, healthy animals. Results: Using n-Dox had no harmful effect on the number of white and red blood cells. Thrombocytopenia and leukopenia in animals treated with n-Dox was less than the other groups. Hemoglobin and hematocrit in all treated groups did not differ and were similar to the healthy control. Hepatic and cardiac enzymes did not show any significant difference in any of the groups. Conclusion: The results of this research showed that significant decreases in haematological changes occurred, including leukopenia and anemia, in an animal model of OSCC induced by 4-NQO following use of n-Dox with compare to Dox. Use of n-Dox is better than of Dox for treatment of OSCC.
Collapse
Affiliation(s)
- Monir Moradzadeh Khiavi
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Enayat Anvari
- Department of Physiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Hamed Hamishehkar
- Department of Drug Applied Research Center,, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khadijeh Abdal
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Ilam University of Medical Sciences, Ilam, Iran.
| |
Collapse
|
15
|
Amjadi I, Mohajeri M, Borisov A, Hosseini MS. Antiproliferative Effects of Free and Encapsulated Hypericum Perforatum L. Extract and Its Potential Interaction with Doxorubicin for Esophageal Squamous Cell Carcinoma. J Pharmacopuncture 2019; 22:102-108. [PMID: 31338250 PMCID: PMC6645344 DOI: 10.3831/kpi.2019.22.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 02/13/2019] [Accepted: 05/20/2019] [Indexed: 01/01/2023] Open
Abstract
Objectives Esophageal squamous cell carcinoma (ESCC) is considered as a deadly medical condition that affects a growing number of people worldwide. Targeted therapy of ESCC has been suggested recently and required extensive research. With cyclin D1 as a therapeutic target, the present study aimed at evaluating the anticancer effects of doxorubicin (Dox) or Hypericum perforatum L. (HP) extract encapsulated in poly(lactic-co-glycolic acid) (PLGA) nanoparticles on the ESCC cell line KYSE30. Methods Nanoparticles were prepared using double emulsion method. Cytotoxicity assay was carried out to measure the anti-proliferation activity of Dox-loaded (Dox NPs) and HP-loaded nanoparticles (HP NPs) against both cancer and normal cell lines. The mRNA gene expression of cyclin D1 was evaluated to validate the cytotoxicity studies at molecular level. Results Free drugs and nanoparticles significantly inhibited KYSE30 cells by 55–73% and slightly affected normal cells up to 29%. The IC50 of Dox NPs and HP NPs was ~ 0.04–0.06 mg/mL and ~ 0.6–0.7 mg/mL, respectively. Significant decrease occurred in cyclin D1 expression by Dox NPs and HP NPs (P < 0.05). Exposure of KYSE-30 cells to combined treatments including both Dox and HP extract significantly increased the level of cyclin D1 expression as compared to those with individual treatments (P < 0.05). Conclusion Dox NPs and HP NPs can successfully and specifically target ESCC cells through downregulation of cyclin D1. The simultaneous use of Dox and HP extract should be avoided for the treatment of ESCC.
Collapse
Affiliation(s)
- Issa Amjadi
- Department of Biomedical Engineering, Wayne State University, Detroit, United States
| | - Mohammad Mohajeri
- Department of Medical Biotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Andrei Borisov
- Department of Biomedical Engineering, Wayne State University, Detroit, United States
| | - Motahare-Sadat Hosseini
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
16
|
Fan H, Xing X, Yang Y, Li B, Wang C, Qiu D. Triple function nanocomposites of porous silica-CoFe 2O 4-MWCNTs as a carrier for pH-sensitive anti-cancer drug controlled delivery. Dalton Trans 2018; 46:14831-14838. [PMID: 29043319 DOI: 10.1039/c7dt02424j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cobalt ferrite nanoparticles loaded on multiwalled carbon nanotube (MWCNT) magnetic hybrids have been demonstrated to be promising magnetic resonance imaging contrast agents and drug carriers. However, the hydrophobic, less biocompatible characteristics and low loading capacity for the drug hamper their wide biological applications. To solve the above problem, an alternative strategy is to coat the MWCNTs@CoFe2O4 nanoparticles with a mesoporous silica (mSiO2) shell. Herein, the reasonable fabrication process results in successful coating mSiO2 on the as-obtained MWCNTs@CoFe2O4 nanoparticles, forming well-defined core-shell-structured MWCNTs@CoFe2O4@mSiO2 nanocomposites. The as-synthesized mesoporous nanocarrier possesses a high surface area and large pore volume for the loading of the drug, and has a superparamagnetic feature for drug targeting. Moreover, the anticancer drug doxorubicin (DOX)-loaded MWCNTs@CoFe2O4@mSiO2 nanoplatforms show an excellent pH-responsive drug release character within 48 h. Therefore, a novel nanocarrier based on MWCNTs@CoFe2O4@mSiO2 was proposed, and its potential application for targeted cancer therapy was highlighted.
Collapse
Affiliation(s)
- Huitao Fan
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | | | | | | | | | | |
Collapse
|
17
|
Guo Z, Huang Z, Wang Y, Wang D, Han MY, Yang W. Phase Engineering of Hydrophobic Meso-Environments in Silica Particles for Technical Performance Enrichment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7428-7435. [PMID: 29870265 DOI: 10.1021/acs.langmuir.8b01040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hexadecyltrimethylammonium bromide (CTAB) was utilized to template the growth of mesoporous silica particles via ammonia-catalyzed hydrolysis and condensation of tetraethoxysilane (TEOS) in the reaction solutions with varied volume fractions of ethanol ( fR). The use of 9,10-bis(phenylethynyl) anthracene (BPEA) as a fluorescence probe unraveled a clear difference in interior structure between the CTAB micelles confined at different fR. At fR of 0.3, the confined CTAB micelles consisting of regularly and densely packed alkane chains, which created crystalline interiors, in which the doped BPEA molecules were effectively isolated in the monomeric form and well protected against aggressive attack from the surrounding environment. At fR of 0.4 or 0.5, the confined CTAB micelles consisting of less regularly but densely packed alkane chains created glassy interiors, which enabled reversible aggregation of the doped BPEA in response to the surrounding environmental change, for instance, the ethanol content in the particle dispersion. At fR of 0.6 or 0.7, the confined CTAB micelles consisting of loosely packed alkane chains created amorphous interiors, which offered sufficiently large free spaces to facilitate the material exchange with the surrounding environment, as evidenced by noticeable intake of the Pyronin Y molecules present in the particle dispersion. The revealed phase modulation of the interiors of surfactant micelles, confined in the pores of mesoporous particles, from crystalline to glassy and amorphous structures, which were scarcely reported in literature, will inspire rational design of mesoporous silica particles with desired technical performance according to the purposes of the practical application.
Collapse
Affiliation(s)
- Zilong Guo
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry , Jilin University , Changchun 130012 , China
| | - Zhenzhen Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry , Jilin University , Changchun 130012 , China
| | - Yanfang Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry , Jilin University , Changchun 130012 , China
| | - Dayang Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry , Jilin University , Changchun 130012 , China
| | - Ming-Yong Han
- Institute of Materials Research and Engineering , 2 Fusionopolis Way , Singapore 138634
| | - Wensheng Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry , Jilin University , Changchun 130012 , China
| |
Collapse
|
18
|
Guo J, Ling S, Li W, Chen Y, Li C, Omenetto FG, Kaplan DL. Coding cell micropatterns through peptide inkjet printing for arbitrary biomineralized architectures. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1800228. [PMID: 32440260 PMCID: PMC7241601 DOI: 10.1002/adfm.201800228] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Indexed: 05/20/2023]
Abstract
Well-designed micropatterns present in native tissues and organs involve changes in extracellular matrix compositions, cell types and mechanical properties to reflect complex biological functions. However, the design and fabrication of these micropatterns in vitro to meet task-specific biomedical applications remains a challenge. A de novo design strategy to code and synthesize functional micropatterns is presented to engineer cell alignment through the integration of aqueous-peptide inkjet printing and site-specific biomineralization. The inkjet printing provides direct writing of macroscopic biosilica selective peptide-R5 patterns with micrometer-scale resolution on the surface of a biopolymer (silk) hydrogel. This is combined with in situ biomineralization of the R5 peptide for site-specific growth of silica nanoparticles on the micropatterns, avoiding the use of harsh chemicals or complex processing. The functional micropatterned systems are used to align human mesenchymal stem cells and bovine serum albumin. This combination of peptide printing and site-specific biomineralization provides a new route for developing cost-effective micropatterns, with implications for broader materials designs. Coding cell micropatterns through peptide inkjet printing for arbitrary biomineralized architectures is demonstrated here. The functional micropatterned systems are used to align human mesenchymal stem cells and bovine serum albumin in vitro, avoiding the use of harsh chemicals or complex processing, while providing potential applications in developing cost-effective micropatterns to meet task-specific biomedical applications.
Collapse
Affiliation(s)
- Jin Guo
- Department of Biomedical Engineering, Tufts University, MA 02155, USA
| | - Shengjie Ling
- Department of Biomedical Engineering, Tufts University, MA 02155, USA
| | - Wenyi Li
- Department of Biomedical Engineering, Tufts University, MA 02155, USA
| | - Ying Chen
- Department of Biomedical Engineering, Tufts University, MA 02155, USA
| | - Chunmei Li
- Department of Biomedical Engineering, Tufts University, MA 02155, USA
| | | | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, MA 02155, USA
| |
Collapse
|
19
|
Din FU, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S, Zeb A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine 2017; 12:7291-7309. [PMID: 29042776 PMCID: PMC5634382 DOI: 10.2147/ijn.s146315] [Citation(s) in RCA: 784] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nanotechnology has recently gained increased attention for its capability to effectively diagnose and treat various tumors. Nanocarriers have been used to circumvent the problems associated with conventional antitumor drug delivery systems, including their nonspecificity, severe side effects, burst release and damaging the normal cells. Nanocarriers improve the bioavailability and therapeutic efficiency of antitumor drugs, while providing preferential accumulation at the target site. A number of nanocarriers have been developed; however, only a few of them are clinically approved for the delivery of antitumor drugs for their intended actions at the targeted sites. The present review is divided into three main parts: first part presents introduction of various nanocarriers and their relevance in the delivery of anticancer drugs, second part encompasses targeting mechanisms and surface functionalization on nanocarriers and third part covers the description of selected tumors, including breast, lungs, colorectal and pancreatic tumors, and applications of relative nanocarriers in these tumors. This review increases the understanding of tumor treatment with the promising use of nanotechnology.
Collapse
Affiliation(s)
- Fakhar ud Din
- Department of Pharmacy, Quaid-i-Azam University, Islamabad
| | - Waqar Aman
- Department of Pharmacy, Kohat University of Science and Technology, Kohat
| | - Izhar Ullah
- Department of Health and Medical Sciences, University of Poonch, Rawalakot, Azad Kashmir
| | | | | | - Shumaila Shafique
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Dow University of Health Sciences, Karachi
| | - Alam Zeb
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| |
Collapse
|
20
|
Sayed E, Haj-Ahmad R, Ruparelia K, Arshad MS, Chang MW, Ahmad Z. Porous Inorganic Drug Delivery Systems-a Review. AAPS PharmSciTech 2017; 18:1507-1525. [PMID: 28247293 DOI: 10.1208/s12249-017-0740-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/08/2017] [Indexed: 11/30/2022] Open
Abstract
Innovative methods and materials have been developed to overcome limitations associated with current drug delivery systems. Significant developments have led to the use of a variety of materials (as excipients) such as inorganic and metallic structures, marking a transition from conventional polymers. Inorganic materials, especially those possessing significant porosity, are emerging as good candidates for the delivery of a range of drugs (antibiotics, anticancer and anti-inflammatories), providing several advantages in formulation and engineering (encapsulation of drug in amorphous form, controlled delivery and improved targeting). This review focuses on key selected developments in porous drug delivery systems. The review provides a short broad overview of porous polymeric materials for drug delivery before focusing on porous inorganic materials (e.g. Santa Barbara Amorphous (SBA) and Mobil Composition of Matter (MCM)) and their utilisation in drug dosage form development. Methods for their preparation and drug loading thereafter are detailed. Several examples of porous inorganic materials, drugs used and outcomes are discussed providing the reader with an understanding of advances in the field and realistic opportunities.
Collapse
|
21
|
Hartono SB, Hadisoewignyo L, Yang Y, Meka AK, Yu C. Amine functionalized cubic mesoporous silica nanoparticles as an oral delivery system for curcumin bioavailability enhancement. NANOTECHNOLOGY 2016; 27:505605. [PMID: 27875331 DOI: 10.1088/0957-4484/27/50/505605] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In the present work, a simple method was used to develop composite curcumin-amine functionalized mesoporous silica nanoparticles (MSN). The nanoparticles were used to improve the bioavailability of curcumin in mice through oral administration. We investigated the effect of particle size on the release profile, solubility and oral bioavailability of curcumin in mice, including amine functionalized mesoporous silica micron-sized-particles (MSM) and MSN (100-200 nm). Curcumin loaded within amine functionalized MSN (MSN-A-Cur) had a better release profile and a higher solubility compared to amine MSM (MSM-A-Cur). The bioavailability of MSN-A-Cur and MSM-A-Cur was considerably higher than that of 'free curcumin'. These results indicate promising features of amine functionalized MSN as a carrier to deliver low solubility drugs with improved bioavailability via the oral route.
Collapse
Affiliation(s)
- Sandy Budi Hartono
- Department of Chemical Engineering, Widya Mandala Catholic University, Surabaya, Indonesia
| | | | | | | | | |
Collapse
|
22
|
Hakeem A, Zahid F, Duan R, Asif M, Zhang T, Zhang Z, Cheng Y, Lou X, Xia F. Cellulose conjugated FITC-labelled mesoporous silica nanoparticles: intracellular accumulation and stimuli responsive doxorubicin release. NANOSCALE 2016; 8:5089-5097. [PMID: 26868866 DOI: 10.1039/c5nr08753h] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Herein, we design novel cellulose conjugated mesoporous silica nanoparticle (CLS-MSP) based nanotherapeutics for stimuli responsive intracellular doxorubicin (DOX) delivery. DOX molecules are entrapped in pores of the fabricated mesoporous silica nanoparticles (MSPs) while cellulose is used as an encapsulating material through esterification on the outlet of the pores of the MSPs to avoid premature DOX release under physiological conditions. In in vitro studies, stimuli responsive DOX release is successfully achieved from DOX loaded cellulose conjugated mesoporous silica nanoparticles (DOX/CLS-MSPs) by pH and cellulase triggers. Intracellular accumulation of DOX/CLS-MSPs in human liver cancer cells (HepG2 cells) is investigated through confocal microscope magnification. Cell viability of HepG2 cells is determined as the percentage of the cells incubated with DOX/CLS-MSPs compared with that of non-incubated cells through an MTT assay.
Collapse
Affiliation(s)
- Abdul Hakeem
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China. and Lasbela University of Agriculture, Water and Marine Sciences Uthal, Pakistan
| | - Fouzia Zahid
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Ruixue Duan
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Muhammad Asif
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Tianchi Zhang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Zhenyu Zhang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Yong Cheng
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xiaoding Lou
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Fan Xia
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China. and Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China. and Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
23
|
Bilalis P, Tziveleka LA, Varlas S, Iatrou H. pH-Sensitive nanogates based on poly(l-histidine) for controlled drug release from mesoporous silica nanoparticles. Polym Chem 2016. [DOI: 10.1039/c5py01841b] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Mesoporous silica nanoparticles (MSNs) bearing poly(l-histidine)-grafted nanogates were prepared by surface-initiated ROP. The obtained polypeptide-functionalized MSNs were used as smart pH-responsive nanocarriers for controlled drug release applications.
Collapse
Affiliation(s)
| | - Leto-A. Tziveleka
- University of Athens
- Department of Pharmacognosy and Chemistry of Natural Products
- Faculty of Pharmacy
- Athens
- Greece
| | | | - Hermis Iatrou
- University of Athens
- Department of Chemistry
- Athens
- Greece
| |
Collapse
|
24
|
Li X, Wu M, Pan L, Shi J. Tumor vascular-targeted co-delivery of anti-angiogenesis and chemotherapeutic agents by mesoporous silica nanoparticle-based drug delivery system for synergetic therapy of tumor. Int J Nanomedicine 2015; 11:93-105. [PMID: 26766908 PMCID: PMC4699516 DOI: 10.2147/ijn.s81156] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
To overcome the drawback of drug non-selectivity in traditional chemotherapy, the construction of multifunctional targeting drug delivery systems is one of the most effective and prevailing approaches. The intratumoral anti-angiogenesis and the tumor cell-killing are two basic approaches in fighting tumors. Herein we report a novel tumor vascular-targeting multidrug delivery system using mesoporous silica nanoparticles as carrier to co-load an antiangiogenic agent (combretastatin A4) and a chemotherapeutic drug (doxorubicin) and conjugate with targeting molecules (iRGD peptide) for combined anti-angiogenesis and chemotherapy. Such a dual-loaded drug delivery system is capable of delivering the two agents at tumor vasculature and then within tumors through a differentiated drug release strategy, which consequently results in greatly improved antitumor efficacy at a very low doxorubicin dose of 1.5 mg/kg. The fast release of the antiangiogenic agent at tumor vasculatures led to the disruption of vascular structure and had a synergetic effect with the chemotherapeutic drug slowly released in the following delivery of chemotherapeutic drug into tumors.
Collapse
Affiliation(s)
- Xiaoyu Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Meiying Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Limin Pan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People's Republic of China
| |
Collapse
|
25
|
Shahabi S, Döscher S, Bollhorst T, Treccani L, Maas M, Dringen R, Rezwan K. Enhancing Cellular Uptake and Doxorubicin Delivery of Mesoporous Silica Nanoparticles via Surface Functionalization: Effects of Serum. ACS APPLIED MATERIALS & INTERFACES 2015; 7:26880-91. [PMID: 26562468 DOI: 10.1021/acsami.5b09483] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In this study, we demonstrate how functional groups on the surface of mesoporous silica nanoparticles (MSNPs) can influence the encapsulation and release of the anticancer drug doxorubicin, as well as cancer cell response in the absence or presence of serum proteins. To this end, we synthesized four differently functionalized MSNPs with amine, sulfonate, polyethylene glycol, or polyethylene imine functional surface groups, as well as one type of antibody-conjugated MSNP for specific cellular targeting, and we characterized these MSNPs regarding their physicochemical properties, colloidal stability in physiological media, and uptake and release of doxorubicin in vitro. Then, the MSNPs were investigated for their cytotoxic potential on cancer cells. Cationic MSNPs could not be loaded with doxorubicin and did therefore not show any cytotoxic and antiproliferative potential on osteosarcoma cells, although they were efficiently taken up into the cells in the presence or absence of serum. In contrast, substantial amounts of doxorubicin were loaded into negatively charged and unfunctionalized MSNPs. Especially, sulfonate-functionalized doxorubicin-loaded MSNPs were efficiently taken up into the cells in the presence of serum and showed an accelerated toxic and antiproliferative potential compared to unfunctionalized MSNPs, antibody-conjugated MSNPs, and even free doxorubicin. These findings stress the high importance of the surface charge as well as of the protein corona for designing and applying nanoparticles for targeted drug delivery.
Collapse
Affiliation(s)
- Shakiba Shahabi
- Advanced Ceramics, University of Bremen , Am Biologischen Garten 2, 28359 Bremen, Germany
| | - Svea Döscher
- Advanced Ceramics, University of Bremen , Am Biologischen Garten 2, 28359 Bremen, Germany
| | - Tobias Bollhorst
- Advanced Ceramics, University of Bremen , Am Biologischen Garten 2, 28359 Bremen, Germany
| | - Laura Treccani
- Advanced Ceramics, University of Bremen , Am Biologischen Garten 2, 28359 Bremen, Germany
| | - Michael Maas
- Advanced Ceramics, University of Bremen , Am Biologischen Garten 2, 28359 Bremen, Germany
- MAPEX Center for Materials and Processes, University of Bremen , 28359 Bremen, Germany
| | - Ralf Dringen
- Centre for Biomolecular Interactions Bremen and Centre for Environmental Research and Sustainable Technology, Faculty 2 (Biology/Chemistry), University of Bremen , Leobener Strasse, NW2, 28359 Bremen, Germany
| | - Kurosch Rezwan
- Advanced Ceramics, University of Bremen , Am Biologischen Garten 2, 28359 Bremen, Germany
- MAPEX Center for Materials and Processes, University of Bremen , 28359 Bremen, Germany
| |
Collapse
|
26
|
Zhang J, Wu D, Li MF, Feng J. Multifunctional Mesoporous Silica Nanoparticles Based on Charge-Reversal Plug-Gate Nanovalves and Acid-Decomposable ZnO Quantum Dots for Intracellular Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2015; 7:26666-73. [PMID: 26553405 DOI: 10.1021/acsami.5b08460] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A novel type of pH-responsive multifunctional mesoporous silica nanoparticle (MSN) was developed for cancerous cells drug delivery and synergistic therapy of tumor. MSNs were covered with a kind of cell-penetrating peptide, deca-lysine sequence (K10), to enhance their escape from the endosomes. After K10's primary amines were reacted with citraconic anhydride to form acid-labile β-carboxylic amides, zinc oxide (ZnO) quantum dots (QDs) were introduced to cap MSNs via electrostatic interaction. The obtained ZnO@MSN drug-delivery system (DDS) achieves "zero-premature" drug release under a physiological environment. However, once the DDS is transferred to the cancerous cells' acidic endosome, ZnO QDs would rapidly dissolve and the acid-labile amides on the side chain of K10 would hydrolyze to regenerate primary amines, resulting in the uncapping of MSNs and exposure of the cell-penetrating peptide K10. The regenerated K10 could help the DDS escape from the endosome and efficiently release the loaded drugs inside the cells. At the meantime, because of the cytotoxicity of ZnO QDs at their destination, the ZnO@MSN DDS may achieve a synergistic antitumor effect to improve the therapeutic index.
Collapse
Affiliation(s)
- Jing Zhang
- College of Materials Science & Engineering, Zhejiang University of Technology , Hangzhou 310014, China
| | - Dan Wu
- College of Materials Science & Engineering, Zhejiang University of Technology , Hangzhou 310014, China
| | - Meng-Fei Li
- College of Materials Science & Engineering, Zhejiang University of Technology , Hangzhou 310014, China
| | - Jie Feng
- College of Materials Science & Engineering, Zhejiang University of Technology , Hangzhou 310014, China
| |
Collapse
|
27
|
Jahangiri S, Akbarzadeh A. Preparation and in vitro evaluation of Methotrexate-loaded magnetic nanoparticles modified with biocompatible copolymers. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1733-40. [PMID: 26479846 DOI: 10.3109/21691401.2015.1090443] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Superparamagnetic iron oxide nanoparticles (SPION) are attractive materials that have been widely used in medicine for drug delivery, diagnostic imaging and therapeutic applications. In our study, SPION and the anticancer drug, Methotrexate, were encapsulated into polycaprolactone-polyethylene glycol (PCL-PEG) nanoparticles for local treatment. The magnetic properties conferred by SPION could help to maintain the nanoparticles in the joint with an external magnet. The drug encapsulation efficiency achieved for Fe3O4 magnetic nanoparticles modified with PCL-PEG copolymer was 92.36%. There is potential for use of these nanoparticles for biomedical application.
Collapse
Affiliation(s)
- Sahar Jahangiri
- a Department of Science , Ahar Branch, Islamic Azad University , Ahar , Iran
| | - Abolfazl Akbarzadeh
- b Department of Medical Nanotechnology , Faculty of Advanced Medical Science, Tabriz University of Medical Sciences , Tabriz , Iran , and.,c Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
28
|
Griffiths PC, Cattoz B, Ibrahim MS, Anuonye JC. Probing the interaction of nanoparticles with mucin for drug delivery applications using dynamic light scattering. Eur J Pharm Biopharm 2015; 97:218-22. [PMID: 25986588 DOI: 10.1016/j.ejpb.2015.05.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 04/27/2015] [Accepted: 05/10/2015] [Indexed: 11/27/2022]
Abstract
Drug delivery via the eye, nose, gastrointestinal tract and lung is of great interest as they represent patient-compliant and facile methods to administer drugs. However, for a drug to reach the systemic circulation it must penetrate the "mucus barrier". An understanding of the characteristics of the mucus barrier is therefore important in the design of mucus penetrating drug delivery vehicles e.g. nanoparticles. Here, a range of nanoparticles - silica, aluminium coated silica, poly (lactic-co-glycolic acid) (PLGA) and PEGylated PLGA - each with known but different physicochemical characteristics were examined in the presence of mucin to identify those characteristics that engender nanoparticle/mucin interactions and thus, to define "design rules" for mucus penetrating (nano)particles (MPP), at least in terms of the surface characteristics of charge and hydrophilicity. Dynamic light scattering (DLS) and rheology have been used to assess the interaction between such nanoparticles and mucin. It was found that negatively charged and hydrophilic nanoparticles do not exhibit an interaction with mucin whereas positively charged and hydrophobic nanoparticles show a strong interaction. Surface grafted poly (ethylene glycol) (PEG) chains significantly reduced this interaction. This study clearly demonstrates that the established colloid science techniques of DLS and rheology are very powerful screening tools to probe nanoparticle/mucin interactions.
Collapse
Affiliation(s)
- Peter Charles Griffiths
- Department of Pharmaceutical, Chemical and Environmental Sciences, Faculty of Engineering and Science, University of Greenwich, Medway Campus, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK.
| | - Beatrice Cattoz
- Department of Pharmaceutical, Chemical and Environmental Sciences, Faculty of Engineering and Science, University of Greenwich, Medway Campus, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK
| | - Mervat Shafik Ibrahim
- Department of Pharmaceutical, Chemical and Environmental Sciences, Faculty of Engineering and Science, University of Greenwich, Medway Campus, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK
| | - Josephine Chibuzor Anuonye
- Department of Pharmaceutical, Chemical and Environmental Sciences, Faculty of Engineering and Science, University of Greenwich, Medway Campus, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK
| |
Collapse
|
29
|
Feng X, Chen A, Zhang Y, Wang J, Shao L, Wei L. Application of dental nanomaterials: potential toxicity to the central nervous system. Int J Nanomedicine 2015; 10:3547-65. [PMID: 25999717 PMCID: PMC4437601 DOI: 10.2147/ijn.s79892] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nanomaterials are defined as materials with one or more external dimensions with a size of 1-100 nm. Such materials possess typical nanostructure-dependent properties (eg, chemical, biological, optical, mechanical, and magnetic), which may differ greatly from the properties of their bulk counterparts. In recent years, nanomaterials have been widely used in the production of dental materials, particularly in light polymerization composite resins and bonding systems, coating materials for dental implants, bioceramics, endodontic sealers, and mouthwashes. However, the dental applications of nanomaterials yield not only a significant improvement in clinical treatments but also growing concerns regarding their biosecurity. The brain is well protected by the blood-brain barrier (BBB), which separates the blood from the cerebral parenchyma. However, in recent years, many studies have found that nanoparticles (NPs), including nanocarriers, can transport through the BBB and locate in the central nervous system (CNS). Because the CNS may be a potential target organ of the nanomaterials, it is essential to determine the neurotoxic effects of NPs. In this review, possible dental nanomaterials and their pathways into the CNS are discussed, as well as related neurotoxicity effects underlying the in vitro and in vivo studies. Finally, we analyze the limitations of the current testing methods on the toxicological effects of nanomaterials. This review contributes to a better understanding of the nano-related risks to the CNS as well as the further development of safety assessment systems.
Collapse
Affiliation(s)
- Xiaoli Feng
- Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Aijie Chen
- Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yanli Zhang
- Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jianfeng Wang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Longquan Shao
- Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Limin Wei
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
30
|
Zhang T, Ding Z, Lin H, Cui L, Yang C, Li X, Niu H, An N, Tong R, Qu F. pH‐Sensitive Gold Nanorods with a Mesoporous Silica Shell for Drug Release and Photothermal Therapy. Eur J Inorg Chem 2015; 2015:2277-2284. [DOI: 10.1002/ejic.201403247] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Indexed: 01/06/2025]
Abstract
AbstractA pH‐sensitive nanocarrier has been developed for the controlled intracellular release of drugs. The nanocarrier, which is approximately 75 nm in size, is composed of a gold nanorod (GNR) core and mesoporous silica shell (GNR@mSiO2) and shows good stability and biocompatibility, and excellent photothermal effects. Doxorubicin hydrochloride (DOX), a typical anticancer drug, was adopted as the model drug, and was connected to the mesoporous silica through Schiff base bonding. The drug‐loading nanocarriers (GNR@mSiO2‐DOX) exhibit enhanced drug release under acidic conditions owing to the sensitive Schiff base linker, whereas at high pH values low levels of premature release can be detected. The sensitive release mechanism was further investigated by monitoring the zeta potential before and after drug release. HeLa cells were used as typical cancer cells, and detailed cell experiments were carried out to confirm the good biocompatibility, rapid uptake, and acid‐enhanced drug delivery of GNR@mSiO2‐DOX. Moreover, the synergistic effect of chemotherapy and hyperthermia (photothermal effect from GNRs) of the nanocarrier can be expected to lead to improved therapy effects on cancer treatment.
Collapse
|
31
|
Xia B, Wang B, Zhang W, Shi J. High loading of doxorubicin into styrene-terminated porous silicon nanoparticles via π-stacking for cancer treatments in vitro. RSC Adv 2015. [DOI: 10.1039/c5ra04843e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Styrene-terminated PSiNPs were fabricated for high loading of doxorubicin via π-stacking, which exhibited an excellent capability for killing cancer cells.
Collapse
Affiliation(s)
- Bing Xia
- Key Laboratory of Forest Genetics & Biotechnology (Ministry of Education of China)
- Nanjing Forestry University
- Nanjing 210037
- P. R. China
- Advanced Analysis & Testing Center
| | - Bin Wang
- Advanced Analysis & Testing Center
- College of Science
- Nanjing Forestry University
- Nanjing 210037
- P. R. China
| | - Wenyi Zhang
- Key Laboratory of Forest Genetics & Biotechnology (Ministry of Education of China)
- Nanjing Forestry University
- Nanjing 210037
- P. R. China
| | - Jisen Shi
- Key Laboratory of Forest Genetics & Biotechnology (Ministry of Education of China)
- Nanjing Forestry University
- Nanjing 210037
- P. R. China
| |
Collapse
|
32
|
Rashidi L, Vasheghani-Farahani E, Rostami K, Ganji F, Fallahpour M. Mesoporous silica nanoparticles with different pore sizes for delivery of pH-sensitive gallic acid. ASIA-PAC J CHEM ENG 2014. [DOI: 10.1002/apj.1832] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ladan Rashidi
- Biotechnology Division, Faculty of Chemical Engineering; Tarbiat Modares University; PO Box 14115-143 Tehran Iran
- Faculty of Food Industry and Agriculture; Standard Research Institute; PO Box 31745-139 Karaj Iran
| | - Ebrahim Vasheghani-Farahani
- Biotechnology Division, Faculty of Chemical Engineering; Tarbiat Modares University; PO Box 14115-143 Tehran Iran
| | - Khosrow Rostami
- Biotechnology Center; Iranian Research Organization for Science and Technology (IROST); PO Box 33535111 Tehran Iran
| | - Fariba Ganji
- Biotechnology Division, Faculty of Chemical Engineering; Tarbiat Modares University; PO Box 14115-143 Tehran Iran
| | - Masoud Fallahpour
- Biotechnology Center; Iranian Research Organization for Science and Technology (IROST); PO Box 33535111 Tehran Iran
| |
Collapse
|
33
|
Nicole L, Laberty-Robert C, Rozes L, Sanchez C. Hybrid materials science: a promised land for the integrative design of multifunctional materials. NANOSCALE 2014; 6:6267-6292. [PMID: 24866174 DOI: 10.1039/c4nr01788a] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
For more than 5000 years, organic-inorganic composite materials created by men via skill and serendipity have been part of human culture and customs. The concept of "hybrid organic-inorganic" nanocomposites exploded in the second half of the 20th century with the expansion of the so-called "chimie douce" which led to many collaborations between a large set of chemists, physicists and biologists. Consequently, the scientific melting pot of these very different scientific communities created a new pluridisciplinary school of thought. Today, the tremendous effort of basic research performed in the last twenty years allows tailor-made multifunctional hybrid materials with perfect control over composition, structure and shape. Some of these hybrid materials have already entered the industrial market. Many tailor-made multiscale hybrids are increasingly impacting numerous fields of applications: optics, catalysis, energy, environment, nanomedicine, etc. In the present feature article, we emphasize several fundamental and applied aspects of the hybrid materials field: bioreplication, mesostructured thin films, Lego-like chemistry designed hybrid nanocomposites, and advanced hybrid materials for energy. Finally, a few commercial applications of hybrid materials will be presented.
Collapse
Affiliation(s)
- Lionel Nicole
- Sorbonne Universités UPMC Univ Paris 06, UMR 7574, Chimie de la Matière Condensée de Paris, F-75005, Paris, France.
| | | | | | | |
Collapse
|
34
|
Li X, He Q, Shi J. Global gene expression analysis of cellular death mechanisms induced by mesoporous silica nanoparticle-based drug delivery system. ACS NANO 2014; 8:1309-1320. [PMID: 24392791 DOI: 10.1021/nn4046985] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Mesoporous silica nanoparticles (MSNs), as one of the most promising inorganic drug carriers, have attracted ever increasing attention due to their unique structural, physicochemical, and biochemical features. Drug delivery systems (DDSs) based on MSNs could easily escape from endosomes after endocytosis and protect the loaded drugs from bioerosion by stable MSN carriers, efficiently deliver drugs intracellularly in a sustained release way, and consequently kill cancer cells at enhanced efficacy. However, the underlying pathways and mechanisms of cancer cell death induced by MSN-mediated drug delivery have not been well explored. In this study, we introduce gene expression analyses to evaluate the pathways and mechanisms of cancer cell death induced by a MSN-based drug delivery system. Unique changes in gene expressions and gene ontology terms, which were caused only by the MSN-based DDS (DOX-loaded MSNs, DOX@MSNs) but not by free drug doxorubicin (DOX) and/or the carrier MSNs, were discovered and proposed to be responsible for the varied cell death mechanisms, including the greatly enhanced necrosis due to amplified oxidative stress and the apoptosis related with DNA/RNA synthesis and cell cycle inhibitions. By virtue of a certain kind of synergetic biological effect between the drug and the carrier, the DOX@MSNs DDS was found capable of increasing the intracellular levels of reactive oxygen species and triggering the mitochondria-related autophagic lysosome pathway, consequently activating a specific pathway of necrosis, which is different from those by the free drug and the carrier.
Collapse
Affiliation(s)
- Xiaoyu Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , 1295 Ding-Xi Road, Shanghai 200050, China
| | | | | |
Collapse
|
35
|
Ehlert N, Lüßenhop T, Krueger I, Feldhoff A, Badar M, Mueller PP, Stieve M, Lenarz T, Behrens P. Nanoporous silica coatings on implant surfaces: characterization, stability, biocompatibility and drug release properties. ACTA ACUST UNITED AC 2013. [DOI: 10.1515/bnm-2012-1001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AbstractNanoporous silica coatings for drug release purposes were prepared on medical implants. As substrate, we chose Bioverit® II, which is a commercial available glass-mica ceramic implant material. The coating was prepared by a dip-coating technique in which long-chain organic molecules act as placeholders for the pores. Characterization of the coatings by scanning transmission electron microscopy and X-ray diffraction showed a disordered nanoporous system with a layer thickness of 30–150 nm. The nanoporous structure was stable for about 12 h in a typical cell culture medium and rearranged to a packing of silica nanoparticles. The coating allowed cell attachment and showed excellent biocompatibility in cell culture tests independently of the particular cell type examined. In vivo, implant-tissue interactions were examined in the middle ear in a novel mouse model. Whole genome expression profiling showed no persisting inflammatory response in the presence of the implants. Release profiles of the antibiotic ciprofloxacin demonstrated that the coating is suitable for a local drug delivery. The drug loading capacity could be drastically increased after sulfonic acid modification of the Bioverit® II surface.
Collapse
Affiliation(s)
| | | | - Ilka Krueger
- 1Leibniz University of Hannover, Institute of Inorganic Chemistry, 30167 Hannover, Germany
| | | | - Muhammad Badar
- 4Helmholtz-Centre for Infection Research, 38124 Braunschweig, Germany
| | - Peter P. Mueller
- 4Helmholtz-Centre for Infection Research, 38124 Braunschweig, Germany
| | | | - Thomas Lenarz
- 5Clinic for Laryngology, Rhinology and Otology, Hannover Medical School, 30625 Hannover, Germany
| | | |
Collapse
|
36
|
Waters LJ, Hussain T, Parkes G, Hanrahan JP, Tobin JM. Inclusion of fenofibrate in a series of mesoporous silicas using microwave irradiation. Eur J Pharm Biopharm 2013; 85:936-41. [PMID: 23954510 DOI: 10.1016/j.ejpb.2013.08.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 07/24/2013] [Accepted: 08/05/2013] [Indexed: 11/16/2022]
Abstract
A selection of porous silicas were combined with a model drug using a recently developed, controlled microwave heating process to determine if the application of microwave irradiation could enhance subsequent drug release. Five mesoporous silica types were investigated (core shell, core shell rehydrox, SBA-15, silica gel, SYLOID®) and, for comparison, one non-porous silica (stober). These were formulated using a tailored microwave heating method at drug/excipient ratios of 1:1, 1:3 and 1:5. In addition, all experiments were performed both in the presence and absence of water, used as a fluidising media to aid interaction between drug and support, and compared with results obtained using more traditional heating methods. All formulations were then characterised using differential scanning calorimetry (DSC), powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transformation infrared spectroscopy (FT-IR). Pharmaceutical performance was investigated using in vitro drug release studies. A significant enhancement in the release profile of fenofibrate was observed for formulations prepared using microwave heating in the absence of water for five of the six silica based formulations. Of all the formulations analysed, the greatest extent of drug release within the experimental 30 min was the 1:5 core shell rehydrox achieving a total of 86.6 ± 2.8%. The non-porous (stober) particles did not exhibit an increased release of the drug under any experimental conditions studied. This anomaly is thought to be a result of the comparatively small surface area of the silica particles, thus preventing the adsorption of drug molecules.
Collapse
Affiliation(s)
- Laura J Waters
- Division of Pharmacy and Pharmaceutical Science, School of Applied Sciences, University of Huddersfield, Huddersfield, UK.
| | | | | | | | | |
Collapse
|
37
|
Amjadi I, Rabiee M, Hosseini M, Sefidkon F, Mozafari M. Nanoencapsulation of Hypericum perforatum and doxorubicin anticancer agents in PLGA nanoparticles through double emulsion technique. MICRO & NANO LETTERS 2013; 8:243-247. [DOI: 10.1049/mnl.2012.0920] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
Abstract
A comparative study is performed on Hypericum perforatum (H. perforatum) and doxorubicin (Dox) anticancer agents. Double emulsion and sonication techniques were used to enhance drug loading efficiency in poly(lactic‐co‐glycolic acid) (PLGA) nanoparticles (NPs). To distinguish the efficiency of the double emulsion method, drug entrapment efficiency was measured. In vitro release studies were carried out to evaluate drug release profiles. Entrapment efficiency was estimated to be 48 and 21% for Dox‐loaded and H. perforatum ‐loaded NPs, respectively. Surprisingly, the encapsulation process disrupted the formation of Dox crystals (Dox in NPs converted from the crystalline to the amorphous phase), whereas disordered crystalline was observed for H. perforatum. In vitro release studies suggested that the total released drug was about 71% of the whole entrapped drug after 20 days. MTT assay confirmed that Dox was more toxic than H. perforatum. This study revealed that H. perforatum is a good choice for further experiments in drug delivery systems because of low cardiotoxicity according to the herbaceous nature of this anticancer agent.
Collapse
Affiliation(s)
- I. Amjadi
- Biomaterial Group Faculty of Biomedical Engineering (Center of Excellence) Amirkabir University of Technology P.O. Box 15875‐4413 Tehran Iran
| | - M. Rabiee
- Biomaterial Group Faculty of Biomedical Engineering (Center of Excellence) Amirkabir University of Technology P.O. Box 15875‐4413 Tehran Iran
| | - M.S. Hosseini
- Biomaterial Group Faculty of Biomedical Engineering (Center of Excellence) Amirkabir University of Technology P.O. Box 15875‐4413 Tehran Iran
| | - F. Sefidkon
- Research Institute of Forests and Rangelands P.O. Box 13185‐116 Tehran Iran
| | - M. Mozafari
- Biomaterial Group Faculty of Biomedical Engineering (Center of Excellence) Amirkabir University of Technology P.O. Box 15875‐4413 Tehran Iran
| |
Collapse
|
38
|
Fine D, Grattoni A, Goodall R, Bansal SS, Chiappini C, Hosali S, van de Ven AL, Srinivasan S, Liu X, Godin B, Brousseau L, Yazdi IK, Fernandez-Moure J, Tasciotti E, Wu HJ, Hu Y, Klemm S, Ferrari M. Silicon micro- and nanofabrication for medicine. Adv Healthc Mater 2013; 2:632-66. [PMID: 23584841 PMCID: PMC3777663 DOI: 10.1002/adhm.201200214] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/31/2012] [Indexed: 12/13/2022]
Abstract
This manuscript constitutes a review of several innovative biomedical technologies fabricated using the precision and accuracy of silicon micro- and nanofabrication. The technologies to be reviewed are subcutaneous nanochannel drug delivery implants for the continuous tunable zero-order release of therapeutics, multi-stage logic embedded vectors for the targeted systemic distribution of both therapeutic and imaging contrast agents, silicon and porous silicon nanowires for investigating cellular interactions and processes as well as for molecular and drug delivery applications, porous silicon (pSi) as inclusions into biocomposites for tissue engineering, especially as it applies to bone repair and regrowth, and porous silica chips for proteomic profiling. In the case of the biocomposites, the specifically designed pSi inclusions not only add to the structural robustness, but can also promote tissue and bone regrowth, fight infection, and reduce pain by releasing stimulating factors and other therapeutic agents stored within their porous network. The common material thread throughout all of these constructs, silicon and its associated dielectrics (silicon dioxide, silicon nitride, etc.), can be precisely and accurately machined using the same scalable micro- and nanofabrication protocols that are ubiquitous within the semiconductor industry. These techniques lend themselves to the high throughput production of exquisitely defined and monodispersed nanoscale features that should eliminate architectural randomness as a source of experimental variation thereby potentially leading to more rapid clinical translation.
Collapse
Affiliation(s)
- Daniel Fine
- Department of Nanomedicine, The Methodist Hospital Research Institute, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Gommes CJ. Three-dimensional reconstruction of liquid phases in disordered mesopores usingin situsmall-angle scattering. J Appl Crystallogr 2013. [DOI: 10.1107/s0021889813003816] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Small-angle scattering of X-rays (SAXS) or neutrons is one of the few experimental methods currently available for thein situanalysis of phenomena in mesoporous materials at the mesoscopic scale. In the case of disordered mesoporous materials, however, the main difficulty of the method lies in the data analysis. A stochastic model is presented, which enables one to reconstruct the three-dimensional nanostructure of liquids confined in disordered mesopores starting from small-angle scattering data. This so-called plurigaussian model is a multi-phase generalization of clipped Gaussian random field models. Its potential is illustrated through the synchrotron SAXS analysis of a gel permeated with a critical nitrobenzene/hexane solution that is progressively cooled below its consolute temperature. The reconstruction brings to light a wetting transition whereby the nanostructure of the pore-filling liquids passes from wetting layers that uniformly cover the solid phase of the gel to plugs that locally occlude the pores. Using the plurigaussian model, the dewetting phenomenon is analyzed quantitatively at the nanometre scale in terms of changing specific interface areas, contact angle and specific length of the triple line.
Collapse
|
40
|
Bhosale SV, Bhosale SV. Yoctowells as a simple model system for the encapsulation and controlled release of bioactive molecules. Sci Rep 2013; 3:1982. [PMID: 23760359 PMCID: PMC3683640 DOI: 10.1038/srep01982] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 05/23/2013] [Indexed: 11/10/2022] Open
Abstract
The development of nanosized drug delivery systems to transport drugs to target cells, are promising tools to improve the drug therapeutic index. Transport systems should have a simple design to control the release of loaded drug to the target areas, thereby increasing concentration and prolonging retention. Herein, we demonstrate the use of yoctoliter wells (1 yL = 10(-24) L) as simple model systems for the encapsulation and release of biologically active molecules, by manipulating pH. The drug molecule employed here is doxorubicin, which diffuses into the bottom of yoctowells from a bulk solution at pH 7. Capping of the yoctowells is achieved by addition of an anionic-porphyrin by electrostatic interaction. Furthermore, controlled release of the Doxorubcin and capping agent from the yoctowells is achieved by pH control. The effectiveness of the sustain release of the bioactive molecule from yoctowells, provides potential for development of a new generation of drug-delivery system for practical application.
Collapse
Affiliation(s)
- Sheshanath V. Bhosale
- School of Applied Sciences, RMIT University, GPO Box 2476, Melbourne, VIC-3001, Australia
| | - Sidhanath V. Bhosale
- Polymers and Functional Material Division, Indian Institute of Chemical Technology, Hyderabad-500607, Andhra Pradesh, India
| |
Collapse
|
41
|
Wang Y, Yang P, Ma P, Qu F, Gai S, Niu N, He F, Lin J. Hollow structured SrMoO4:Yb3+, Ln3+ (Ln = Tm, Ho, Tm/Ho) microspheres: tunable up-conversion emissions and application as drug carriers. J Mater Chem B 2013; 1:2056-2065. [DOI: 10.1039/c3tb00377a] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Murugan B, Narashimhan Ramana L, Gandhi S, Sethuraman S, Krishnan UM. Engineered chemoswitchable mesoporous silica for tumor-specific cytotoxicity. J Mater Chem B 2013; 1:3494-3505. [DOI: 10.1039/c3tb20415d] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Mahkam M, Pakravan A. Synthesis and Characterization of pH-Sensitive Positive-charge Silica Nanoparticles for Oral Anionic Drug Delivery. J CHIN CHEM SOC-TAIP 2012. [DOI: 10.1002/jccs.201200296] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Li C, Zhang Y, Su T, Feng L, Long Y, Chen Z. Silica-coated flexible liposomes as a nanohybrid delivery system for enhanced oral bioavailability of curcumin. Int J Nanomedicine 2012; 7:5995-6002. [PMID: 23233804 PMCID: PMC3519006 DOI: 10.2147/ijn.s38043] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We investigated flexible liposomes as a potential oral drug delivery system. However, enhanced membrane fluidity and structural deformability may necessitate liposomal surface modification when facing the harsh environment of the gastrointestinal tract. In the present study, silica-coated flexible liposomes loaded with curcumin (CUR-SLs) having poor water solubility as a model drug were prepared by a thin-film method with homogenization, followed by the formation of a silica shell by the sol-gel process. We systematically investigated the physical properties, drug release behavior, pharmacodynamics, and bioavailability of CUR-SLs. CUR-SLs had a mean diameter of 157 nm and a polydispersity index of 0.14, while the apparent entrapment efficiency was 90.62%. Compared with curcumin-loaded flexible liposomes (CUR-FLs) without silica-coatings, CUR-SLs had significantly higher stability against artificial gastric fluid and showed more sustained drug release in artificial intestinal fluid as determined by in vitro release assays. The bioavailability of CUR-SLs and CUR-FLs was 7.76- and 2.35-fold higher, respectively, than that of curcumin suspensions. Silica coating markedly improved the stability of flexible liposomes, and CUR-SLs exhibited a 3.31-fold increase in bioavailability compared with CUR-FLs, indicating that silica-coated flexible liposomes may be employed as a potential carrier to deliver drugs with poor water solubility via the oral route with improved bioavailability.
Collapse
Affiliation(s)
- Chong Li
- Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Chongqing, China.
| | | | | | | | | | | |
Collapse
|
45
|
Amjadi I, Rabiee M, Hosseini MS, Mozafari M. Synthesis and characterization of doxorubicin-loaded poly(lactide-co-glycolide) nanoparticles as a sustained-release anticancer drug delivery system. Appl Biochem Biotechnol 2012; 168:1434-1447. [PMID: 22976852 DOI: 10.1007/s12010-012-9868-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 08/27/2012] [Indexed: 02/05/2023]
Abstract
The objective of the present study was to prepare a polymeric drug delivery system with no burst effect. To attain this goal, doxorubicin (Dox) as an effective anticancer drug was loaded into poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) to improve the drug performance and also maximize the release period. After the synthesis process, the freshly made PLGA NPs with two different lactide-to-glycolide ratios (75:25 and 50:50) were evaluated physically and chemically. To determine the encapsulation efficiency, a centrifugation method was applied. Also, the drug loading effect on particle size, polydispersity index, and zeta potential was examined. The results indicated that the NPs had nearly the same diameters around 360 nm, and the entrapment efficiencies for 75:25 PLGA and 50:50 PLGA were reported around 39 and 48 %, respectively. A slight increase in all parameters was observed due to the increase of the drug loading content. The primary release was 7.91 % (w/w) and 14.70 % (w/w) for 75:25 and 50:50 drug-loaded NPs, respectively; no burst effect was observed. After 20 days, the drug release was around 70.98 and 62.22 % of the total entrapped drug for 75:25 and 50:50 drug-loaded NPs, respectively. Finally, it was found that Dox was an appropriate anticancer agent with good capability to be encapsulated in polymeric NPs and could be released from the carriers with no burst effect and favor rate.
Collapse
Affiliation(s)
- I Amjadi
- Biomaterial Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, P. O. Box 15875-4413, Tehran, Iran.
| | | | | | | |
Collapse
|
46
|
Roggers RA, Lin VSY, Trewyn BG. Chemically reducible lipid bilayer coated mesoporous silica nanoparticles demonstrating controlled release and HeLa and normal mouse liver cell biocompatibility and cellular internalization. Mol Pharm 2012; 9:2770-7. [PMID: 22738645 DOI: 10.1021/mp200613y] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A controlled release system composed of mesoporous silica nanoparticles with covalently bound dipalmitoyl moieties supporting phosphorylated lipids has been successfully synthesized and characterized. This MSN system demonstrates controlled release of fluorescein molecules under disulfide reducing conditions. Flow cytometry analyses confirm increased biocompatibility of the resulting lipid bilayer MSNs (LB-MSNs) from nonfunctional MSNs. Fluorescently labeled LB-MSNs are examined via confocal fluorescent microscopy ex vivo and were found to enter both normal and cancer cell lines. The LB-MSNs presented here have potential to be used as rapid and diverse functionalized, stable liposome analogues for drug delivery.
Collapse
Affiliation(s)
- Robert A Roggers
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | | | | |
Collapse
|
47
|
Tang F, Li L, Chen D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:1504-34. [PMID: 22378538 DOI: 10.1002/adma.201104763] [Citation(s) in RCA: 1825] [Impact Index Per Article: 140.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Indexed: 05/18/2023]
Abstract
In the past decade, mesoporous silica nanoparticles (MSNs) have attracted more and more attention for their potential biomedical applications. With their tailored mesoporous structure and high surface area, MSNs as drug delivery systems (DDSs) show significant advantages over traditional drug nanocarriers. In this review, we overview the recent progress in the synthesis of MSNs for drug delivery applications. First, we provide an overview of synthesis strategies for fabricating ordered MSNs and hollow/rattle-type MSNs. Then, the in vitro and in vivo biocompatibility and biotranslocation of MSNs are discussed in relation to their chemophysical properties including particle size, surface properties, shape, and structure. The review also highlights the significant achievements in drug delivery using mesoporous silica nanoparticles and their multifunctional counterparts as drug carriers. In particular, the biological barriers for nano-based targeted cancer therapy and MSN-based targeting strategies are discussed. We conclude with our personal perspectives on the directions in which future work in this field might be focused.
Collapse
Affiliation(s)
- Fangqiong Tang
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China .
| | | | | |
Collapse
|
48
|
Gary-Bobo M, Hocine O, Brevet D, Maynadier M, Raehm L, Richeter S, Charasson V, Loock B, Morère A, Maillard P, Garcia M, Durand JO. Cancer therapy improvement with mesoporous silica nanoparticles combining targeting, drug delivery and PDT. Int J Pharm 2012; 423:509-15. [DOI: 10.1016/j.ijpharm.2011.11.045] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 11/28/2011] [Accepted: 11/29/2011] [Indexed: 01/19/2023]
|
49
|
El Kadib A, Katir N, Bousmina M, Majoral JP. Dendrimer–silica hybrid mesoporous materials. NEW J CHEM 2012. [DOI: 10.1039/c1nj20443b] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
50
|
Polini A, Pagliara S, Camposeo A, Biasco A, Schröder HC, Müller WEG, Pisignano D. Biosilica electrically-insulating layers by soft lithography-assisted biomineralisation with recombinant silicatein. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2011; 23:4674-4678. [PMID: 21913238 DOI: 10.1002/adma.201102691] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Indexed: 05/31/2023]
Affiliation(s)
- Alessandro Polini
- National Nanotechnology Laboratory, Istituto Nanoscienze-CNR, Dipartimento di Ingegneria dell'Innovazione, Università del Salento, via Arnesano, I-73100 Lecce, Italy
| | | | | | | | | | | | | |
Collapse
|