1
|
Liu D, Wang X, Xu L, Al-Delfi ZNS, Mekonnen ZA, Gao S, Grubor-Bauk B, Zhao CX. Screening lipid nanoparticles using DNA barcoding and qPCR. Colloids Surf B Biointerfaces 2025; 251:114598. [PMID: 40023120 DOI: 10.1016/j.colsurfb.2025.114598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/13/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
Quantifying the biodistribution of lipid nanoparticles (LNPs) is critical for optimizing mRNA delivery systems, yet current approaches have inherent limitations. This study introduces a cost-effective method utilizing double-stranded DNA (dsDNA) barcodes and quantitative polymerase chain reaction (qPCR) for rapid analysis of a small library of mRNA-LNPs biodistribution and functional delivery in vivo. Three unique 100-bp dsDNA barcodes were designed to represent for three FDA-approved LNP formulations. Concurrently, these three formulations carrying luciferase mRNA were mixed with DNA-barcoding LNPs as a pool. Following intravenous administration of the pooled LNPs in mice, qPCR analysis revealed the highest abundance of DNA barcodes and accumulation of luciferase mRNA in spleen, with positive correlation between barcodes presence and mRNA localization across organs, validating DNA barcodes as reliable indicators of mRNA-LNPs biodistribution in vivo. Bioluminescence imaging further confirmed successful delivery and protein translation of luciferase mRNA facilitated by the LNPs in vivo. Integrating DNA barcodes for biodistribution analysis and luciferase mRNA for assessing functional delivery enabled comprehensive evaluation of LNP performance. This robust methodology provides valuable insights into the localization patterns and mRNA delivery capabilities of different LNP formulations, paving the way for the development of more effective and targeted mRNA-based therapeutics.
Collapse
Affiliation(s)
- Dawei Liu
- School of Chemical Engineering, Faculty of Science, Engineering and Technology, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Xing Wang
- School of Chemical Engineering, Faculty of Science, Engineering and Technology, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Letao Xu
- School of Chemical Engineering, Faculty of Science, Engineering and Technology, The University of Adelaide, Adelaide, SA 5005, Australia; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zahraa Nima Saeed Al-Delfi
- Viral Immunology Group, Adelaide Medical School, The University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5011, Australia
| | - Zelalem Addis Mekonnen
- Viral Immunology Group, Adelaide Medical School, The University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5011, Australia
| | - Song Gao
- School of Chemical Engineering, Faculty of Science, Engineering and Technology, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Branka Grubor-Bauk
- Viral Immunology Group, Adelaide Medical School, The University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5011, Australia.
| | - Chun-Xia Zhao
- School of Chemical Engineering, Faculty of Science, Engineering and Technology, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
2
|
Rodríguez-Castejón J, Fernández-Muro P, Beraza-Millor M, Solinís MÁ, Rodríguez-Gascón A, Del Pozo-Rodríguez A. Asialofetuin-Coupled Lipid-Based nanosystems to target the Asialoglycoprotein receptor: Delivering genes to hepatocytes for the treatment of Fabry disease. Eur J Pharm Sci 2025; 210:107118. [PMID: 40328357 DOI: 10.1016/j.ejps.2025.107118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 05/02/2025] [Accepted: 05/04/2025] [Indexed: 05/08/2025]
Abstract
Exploiting the protein production capacity of hepatocytes for de novo expression of α-Galactosidase A (α-Gal A) by gene supplementation therapy represents one of the most promising strategies for the treatment of Fabry disease (FD). The asialoglycoprotein receptor (ASGPr) has proven to be one of the target receptors of choice for hepatocyte-directed nanomedicines, and natural glycoproteins such as asialofetuin (AF) can be used as specific ligands. Herein, we have developed AF-decorated solid lipid nanoparticles (SLNs), prepared by different techniques and cationic lipid compositions, for restoring the enzyme deficiency in FD by gene supplementation targeted to hepatocytes. After the physicochemical characterization of the vectors, cell association and transfection efficacy were evaluated in vitro in human hepatocytes (Hep G2), and the capacity to increase α-Gal A activity was evaluated in vivo after intravenous administration to α-Gal A knockout mice. The efficacy and targeting effect were conditioned by the type of SLN. In general, vectors containing a mixture of the cationic lipids DOTAP and DODAP showed enhanced transfection efficacy compared to their counterparts without DODAP. The incorporation of AF in the vectors formulated with SLNs prepared with DOTAP and DODAP by hot-melt emulsification significantly improved the efficacy to induce the expression of α-Gal A in hepatocytes in vitro compared to the control without AF. However, the administration to Fabry mice did not result in a significant increase in enzyme activity. The lack of in vitro-in vivo correlation corroborates the need to understand key factors influencing the behavior of non-viral vectors in biological media for nucleic acid therapies, as well as the desirability of in vivo studies in the early stages of pharmaceutical development of nucleic acid delivery systems.
Collapse
Affiliation(s)
- Julen Rodríguez-Castejón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01006, Vitoria-Gasteiz, Spain
| | - Paula Fernández-Muro
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01006, Vitoria-Gasteiz, Spain
| | - Marina Beraza-Millor
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01006, Vitoria-Gasteiz, Spain
| | - María Ángeles Solinís
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01006, Vitoria-Gasteiz, Spain
| | - Alicia Rodríguez-Gascón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01006, Vitoria-Gasteiz, Spain.
| | - Ana Del Pozo-Rodríguez
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01006, Vitoria-Gasteiz, Spain.
| |
Collapse
|
3
|
Honrath S, Burger M, Leroux JC. Hurdles to healing: Overcoming cellular barriers for viral and nonviral gene therapy. Int J Pharm 2025; 674:125470. [PMID: 40112901 DOI: 10.1016/j.ijpharm.2025.125470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/26/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Gene delivery offers great potential for treating various diseases, yet its success requires overcoming several biological barriers. These hurdles span from extracellular degradation, reaching the target cells, and inefficient cellular uptake to endosomal entrapment, cytoplasmic transport, nuclear entry, and transcription limitations. Viruses and non-viral vectors deal with these barriers via different mechanisms. Viral vectors, such as adenoviruses, adeno-associated viruses, and lentiviruses use natural mechanisms to efficiently deliver genetic material but face limitations including immunogenicity, cargo capacity, and production complexity. Nonviral vectors, including lipid nanoparticles, polymers, and protein-based systems, offer scalable and safer alternatives but often fall short in overcoming intracellular barriers and achieving high transfection efficiencies. Recent advancements in vector engineering have partially overcome several of these challenges. Ionizable lipids improve endosomal escape while minimizing toxicity. Biodegradable polymers balance efficacy with safety, and engineered protein systems, inspired by viral or bacterial entry mechanisms, integrate multifunctionality for enhanced delivery. Despite these advances, challenges, particularly in achieving robust in vivo translatability, scalability, and reduced immunogenicity, remain. This review synthesizes current knowledge of cellular barriers and the approaches to overcome them, providing a roadmap for designing more efficient gene delivery systems. By addressing these barriers, the field can advance toward safer, and more effective therapies.
Collapse
Affiliation(s)
- Steffen Honrath
- ETH Zurich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Michael Burger
- ETH Zurich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland.
| | - Jean-Christophe Leroux
- ETH Zurich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland.
| |
Collapse
|
4
|
Zhang L, Chen P, Tian XL, Hu Y, Wang R, Zhang J. Cyclen-based lipidoids for mRNA delivery and immunotherapy. Biomater Sci 2025. [PMID: 40223782 DOI: 10.1039/d5bm00317b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
As mRNA vaccines continue to gain widespread attention, the development of lipid nanoparticles (LNPs), as the preferred platform for mRNA delivery, has become a key focus of research. 1,4,7,10-Tetraazacyclododecane (cyclen), with its excellent protonation capability and ease of modification, has emerged as a promising candidate for the ionizable head group of lipid materials. In this study, a series of cyclen-based lipidoids with different linkages and hydrophobic tails was designed and conveniently synthesized. Structure-activity relationship studies were performed to screen out the carriers capable of efficient mRNA delivery and with potential for tumor therapeutic applications. In vivo biodistribution experiments in mice revealed that the lipidoid OEs-K, containing both hydroxyl and ester groups in its linkage, exhibited high mRNA delivery efficiency and lymph node-targeting properties. Using a subcutaneous EG.7-OVA tumor model in mice, the delivery of tumor antigen OVA mRNA using the lipidoid material was evaluated for its antitumor immunotherapeutic potential. Results demonstrated that LNPs formulated with OEs-K promoted dendritic cell uptake in lymph nodes, effectively activated immune responses, and inhibited tumor growth. Hematological and histopathological evaluations indicated no significant toxicity to the body. This study provides insights into the design and development of carrier materials for mRNA vaccines.
Collapse
Affiliation(s)
- Lan Zhang
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Ping Chen
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Xiao-Li Tian
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Yue Hu
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Rong Wang
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Ji Zhang
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| |
Collapse
|
5
|
Ojansivu M, Barriga HMG, Holme MN, Morf S, Doutch JJ, Andaloussi SEL, Kjellman T, Johnsson M, Barauskas J, Stevens MM. Formulation and Characterization of Novel Ionizable and Cationic Lipid Nanoparticles for the Delivery of Splice-Switching Oligonucleotides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2419538. [PMID: 40091434 PMCID: PMC12038542 DOI: 10.1002/adma.202419538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/24/2025] [Indexed: 03/19/2025]
Abstract
Despite increasing knowledge about the mechanistic aspects of lipid nanoparticles (LNPs) as oligonucleotide carriers, the structure-function relationship in LNPs has been generally overlooked. Understanding this correlation is critical in the rational design of LNPs. Here, a materials characterization approach is utilized, applying structural information from small-angle X-ray scattering experiments to design novel LNPs focusing on distinct lipid organizations with a minimal compositional variation. The lipid phase structures are characterized in these LNPs and their corresponding bulk lipid mixtures with small-angle scattering techniques, and the LNP-cell interactions in vitro with respect to cytotoxicity, hemolysis, cargo delivery, cell uptake, and lysosomal swelling. An LNP is identified that outperforms Onpattro lipid composition using lipid components and molar ratios which differ from the gold standard clinical LNPs. The base structure of these LNPs has an inverse micellar phase organization, whereas the LNPs with inverted hexagonal phases are not functional, suggesting that this phase formation may not be needed for LNP-mediated oligonucleotide delivery. The importance of stabilizer choice for the LNP function is demonstrated and super-resolution microscopy highlights the complexity of the delivery mechanisms, where lysosomal swelling for the majority of LNPs is observed. This study highlights the importance of advanced characterization for the rational design of LNPs to enable the study of structure-function relationships.
Collapse
Affiliation(s)
- Miina Ojansivu
- Department of Medical Biochemistry and BiophysicsKarolinska InstituteHuddingeStockholm171 77Sweden
| | - Hanna M. G. Barriga
- Department of Medical Biochemistry and BiophysicsKarolinska InstituteHuddingeStockholm171 77Sweden
- Present address:
Division of NanobiotechnologyDepartment of Protein ScienceSciLifeLab, KTH Royal Institute of TechnologySolnaSweden
| | - Margaret N. Holme
- Department of Medical Biochemistry and BiophysicsKarolinska InstituteHuddingeStockholm171 77Sweden
| | - Stefanie Morf
- Department of Medical Biochemistry and BiophysicsKarolinska InstituteHuddingeStockholm171 77Sweden
| | - James J. Doutch
- ISIS Neutron and Muon SourceRutherford Appleton LaboratoryHarwell CampusOxfordshireOX11 0QXUK
| | - Samir EL Andaloussi
- Division of Biomolecular and Cellular MedicineDepartment of Laboratory MedicineKarolinska InstituteHuddinge14152StockholmSweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalStockholm141 86Sweden
- Karolinska ATMP CenterKarolinska InstituteHuddinge14152StockholmSweden
| | | | | | | | - Molly M. Stevens
- Department of Medical Biochemistry and BiophysicsKarolinska InstituteHuddingeStockholm171 77Sweden
- Department of Physiology, Anatomy and GeneticsDepartment of Engineering ScienceKavli Institute for Nanoscience DiscoveryUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
6
|
Lindsay S, Hussain M, Binici B, Perrie Y. Exploring the Challenges of Lipid Nanoparticle Development: The In Vitro-In Vivo Correlation Gap. Vaccines (Basel) 2025; 13:339. [PMID: 40333261 PMCID: PMC12031360 DOI: 10.3390/vaccines13040339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND/OBJECTIVES The development of lipid nanoparticles (LNPs) as delivery platforms for nucleic acids has revolutionised possibilities for both therapeutic and vaccine applications. However, emerging studies highlight challenges in achieving reliable in vitro-in vivo correlation (IVIVC), which delays the translation of experimental findings into clinical applications. This study investigates these potential discrepancies by evaluating the physicochemical properties, in vitro efficacy (across three commonly used cell lines), and in vivo performance (mRNA expression and vaccine efficacy) of four LNP formulations. METHODS LNPs composed of DSPC, cholesterol, a PEGylated lipid, and one of four ionizable lipids (SM-102, ALC-0315, MC3, or C12-200) were manufactured using microfluidics. RESULTS All formulations exhibited comparable physicochemical properties, as expected (size 70-100 nm, low PDI, near-neutral zeta potential, and high mRNA encapsulation). In vitro studies demonstrated variable LNP-mediated mRNA expression in both immortalised and immune cells, with SM-102 inducing significantly higher protein expression (p < 0.05) than the other formulations in immortalised and immune cells. However, in vivo results revealed that ALC-0315 and SM-102-based LNPs achieved significantly (p < 0.05) higher protein expression without a significant difference between them, while MC3- and C12-200-based LNPs exhibited lower expression levels. As vaccine formulations, all LNPs elicited strong immune responses with no significant differences among them. CONCLUSIONS These findings highlight the complexities of correlating in vitro and in vivo outcomes in LNP development and demonstrate the importance of holistic evaluation strategies to optimise their clinical translation.
Collapse
Affiliation(s)
| | | | | | - Yvonne Perrie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK; (S.L.); (M.H.); (B.B.)
| |
Collapse
|
7
|
Voke E, Arral M, Squire HJ, Lin TJ, Coreas R, Lui A, Iavarone AT, Pinals RL, Whitehead KA, Landry M. Protein corona formed on lipid nanoparticles compromises delivery efficiency of mRNA cargo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.20.633942. [PMID: 39896592 PMCID: PMC11785072 DOI: 10.1101/2025.01.20.633942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Lipid nanoparticles (LNPs) are the most clinically advanced nonviral RNA-delivery vehicles, though challenges remain in fully understanding how LNPs interact with biological systems. In vivo , proteins form an associated corona on LNPs that redefines their physicochemical properties and influences delivery outcomes. Despite its importance, the LNP protein corona is challenging to study owing to the technical difficulty of selectively recovering soft nanoparticles from biological samples. Herein, we developed a quantitative, label-free mass spectrometry-based proteomics approach to characterize the protein corona on LNPs. Critically, this protein corona isolation workflow avoids artifacts introduced by the presence of endogenous nanoparticles in human biofluids. We applied continuous density gradient ultracentrifugation for protein-LNP complex isolation, with mass spectrometry for protein identification normalized to protein composition in the biofluid alone. With this approach, we quantify proteins consistently enriched in the LNP corona including vitronectin, C-reactive protein, and alpha-2-macroglobulin. We explore the impact of these corona proteins on cell uptake and mRNA expression in HepG2 human liver cells, and find that, surprisingly, increased levels of cell uptake do not correlate with increased mRNA expression in part likely due to protein corona-induced lysosomal trafficking of LNPs. Our results underscore the need to consider the protein corona in the design of LNP-based therapeutics. Abstract Figure
Collapse
|
8
|
Liao S, Wang S, Wadhwa A, Birkenshaw A, Fox K, Cheng MHY, Casmil IC, Magana AA, Bathula NV, Ho CH, Cheng JY, Foster LJ, Harder KW, Ross CJD, Cullis PR, Blakney AK. Transfection Potency of Lipid Nanoparticles Containing mRNA Depends on Relative Loading Levels. ACS APPLIED MATERIALS & INTERFACES 2025; 17:3097-3105. [PMID: 39737597 PMCID: PMC11744497 DOI: 10.1021/acsami.4c20077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 01/01/2025]
Abstract
When formulating mRNA into lipid nanoparticles (LNP), various copy numbers of mRNA are encapsulated, leading to a distribution of mRNA loading levels within the LNPs. It is unclear whether the mRNA loading level affects the functional delivery of the message. Here we show that depending on the mRNA loading level, LNPs exhibit distinct mass densities and can be fractionated via ultracentrifugation. Upon fractionation, we investigated if mRNA loading levels influence LNP sizing, lipid composition, and morphology. We further conducted in vitro and in vivo functional delivery of mRNA and found that the LNP fraction with the highest mRNA loading levels was the least transfection competent.
Collapse
Affiliation(s)
- Suiyang Liao
- Department
of Biochemistry and Molecular Biology, University
of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Michael
Smith Laboratories, University of British
Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- School
of Biomedical Engineering, University of
British Columbia, Vancouver, British Columbia V6T 2B9, Canada
| | - Shuangyu Wang
- Department
of Biochemistry and Molecular Biology, University
of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Abishek Wadhwa
- Department
of Microbiology and Immunology, University
of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Life Sciences
Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Alexandra Birkenshaw
- Faculty
of Pharmaceutical Sciences, University of
British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Kevin Fox
- Department
of Biochemistry and Molecular Biology, University
of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Faculty
of Pharmaceutical Sciences, University of
British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Miffy Hok Yan Cheng
- Department
of Biochemistry and Molecular Biology, University
of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Irafasha C. Casmil
- Michael
Smith Laboratories, University of British
Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- School
of Biomedical Engineering, University of
British Columbia, Vancouver, British Columbia V6T 2B9, Canada
| | - Armando Alcazar Magana
- Michael
Smith Laboratories, University of British
Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Life Sciences
Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Nuthan Vikas Bathula
- Michael
Smith Laboratories, University of British
Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- School
of Biomedical Engineering, University of
British Columbia, Vancouver, British Columbia V6T 2B9, Canada
| | - Chia Hao Ho
- Michael
Smith Laboratories, University of British
Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Jin-Yu Cheng
- Department
of Biochemistry and Molecular Biology, University
of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Leonard J. Foster
- Department
of Biochemistry and Molecular Biology, University
of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Michael
Smith Laboratories, University of British
Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Life Sciences
Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Kenneth W. Harder
- Department
of Microbiology and Immunology, University
of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Life Sciences
Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Colin J. D. Ross
- Faculty
of Pharmaceutical Sciences, University of
British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Pieter R. Cullis
- Department
of Biochemistry and Molecular Biology, University
of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Anna K. Blakney
- Michael
Smith Laboratories, University of British
Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- School
of Biomedical Engineering, University of
British Columbia, Vancouver, British Columbia V6T 2B9, Canada
| |
Collapse
|
9
|
Cheng J, Jian L, Chen Z, Li Z, Yu Y, Wu Y. In Vivo Delivery Processes and Development Strategies of Lipid Nanoparticles. Chembiochem 2024; 25:e202400481. [PMID: 39101874 DOI: 10.1002/cbic.202400481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/06/2024]
Abstract
Lipid nanoparticles (LNPs) represent an advanced and highly efficient delivery system for RNA molecules, demonstrating exceptional biocompatibility and remarkable delivery efficiency. This is evidenced by the clinical authorization of three LNP formulations: Patisiran, BNT162b2, and mRNA-1273. To further maximize the efficacy of RNA-based therapy, it is imperative to develop more potent LNP delivery systems that can effectively protect inherently unstable and negatively charged RNA molecules from degradation by nucleases, while facilitating their cellular uptake into target cells. Therefore, this review presents feasible strategies commonly employed for the development of efficient LNP delivery systems. The strategies encompass combinatorial chemistry for large-scale synthesis of ionizable lipids, rational design strategy of ionizable lipids, functional molecules-derived lipid molecules, the optimization of LNP formulations, and the adjustment of particle size and charge property of LNPs. Prior to introducing these developing strategies, in vivo delivery processes of LNPs, a crucial determinant influencing the clinical translation of LNP formulations, is described to better understand how to develop LNP delivery systems.
Collapse
Affiliation(s)
- Jiashun Cheng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Lina Jian
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhaolin Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhuoyuan Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yaobang Yu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yihang Wu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
10
|
Kalaimani K, Balachandran S, Boopathy LK, Roy A, Jayachandran B, Sankaranarayanan S, Arumugam MK. Recent advancements in small interfering RNA based therapeutic approach on breast cancer. Eur J Pharmacol 2024; 981:176877. [PMID: 39128807 DOI: 10.1016/j.ejphar.2024.176877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/23/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Breast cancer (BC) is the most common and malignant tumor diagnosed in women, with 2.9 million cases in 2023 and the fifth highest cancer-causing mortality worldwide. Recent developments in targeted therapy options for BC have demonstrated the promising potential of small interfering RNA (siRNA)-based cancer therapeutic approaches. As BC continues to be a global burden, siRNA therapy emerges as a potential treatment strategy to regulate disease-related genes in other types of cancers, including BC. siRNAs are tiny RNA molecules that, by preventing their expression, can specifically silence genes linked to the development of cancer. In order to increase the stability and effectiveness of siRNA delivery to BC cells, minimize off-target effects, and improve treatment efficacy, advanced delivery technologies such as lipid nanoparticles and nanocarriers have been created. Additionally, combination therapies, such as siRNAs that target multiple pathways are used in conjunction with conventional chemotherapy agents, have shown synergistic effects in various preclinical studies, opening up new treatment options for breast cancer that are personalized and precision medicine-oriented. Targeting important genes linked to BC growth, metastasis, and chemo-resistance has been reported in BC research using siRNA-based therapies. This study reviews recent reports on therapeutic approaches to siRNA for advanced treatment of BC. Furthermore, this review evaluates the role and mechanisms of siRNA in BC and demonstrates the potential of exploiting siRNA as a novel target for BC therapy.
Collapse
Affiliation(s)
- Kathirvel Kalaimani
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Shana Balachandran
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Lokesh Kumar Boopathy
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Anitha Roy
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, Tamil Nadu, India
| | - Bhuvaneshwari Jayachandran
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Sangamithra Sankaranarayanan
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Madan Kumar Arumugam
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India.
| |
Collapse
|
11
|
Mai LD, Wimberley SC, Champion JA. Intracellular delivery strategies using membrane-interacting peptides and proteins. NANOSCALE 2024; 16:15465-15480. [PMID: 39091235 PMCID: PMC11340348 DOI: 10.1039/d4nr02093f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
While the cellular cytosol and organelles contain attractive targets for disease treatments, it remains a challenge to deliver therapeutic biomacromolecules to these sites. This is due to the selective permeability of the plasma and endosomal membranes, especially for large and hydrophilic therapeutic cargos such as proteins and nucleic acids. In response, many different delivery systems and molecules have been devised to help therapeutics cross these barriers to reach cytosolic targets. Among them are peptide and protein-based systems, which have several advantages over other natural and synthetic materials including their ability to interact with cell membranes. In this review, we will describe recent advances and current challenges of peptide and protein strategies that leverage cell membrane association and modulation to enable cytosolic delivery of biomacromolecule cargo. The approaches covered here include peptides and proteins derived from or inspired by natural sequences as well as those designed de novo for delivery function.
Collapse
Affiliation(s)
- Linh D Mai
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr NW, Atlanta, GA, 30332-2000, USA.
| | - Sydney C Wimberley
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr NW, Atlanta, GA, 30332-2000, USA.
- BioEngineering Program, Georgia Institute of Technology, USA
| | - Julie A Champion
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr NW, Atlanta, GA, 30332-2000, USA.
- BioEngineering Program, Georgia Institute of Technology, USA
| |
Collapse
|
12
|
He Z, Liu Z, Chen Y. Chemical Design Strategy of Ionizable Lipids for In Vivo mRNA Delivery. ChemMedChem 2024; 19:e202400199. [PMID: 38722488 DOI: 10.1002/cmdc.202400199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/08/2024] [Indexed: 06/27/2024]
Abstract
Lipid nanoparticles (LNPs) are the most clinically successful drug delivery systems that have accelerated the development of mRNA drugs and vaccines. Among various structural components of LNPs, more recent attention has been paid in ionizable lipids (ILs) that was supposed as the key component in determining the effectiveness of LNPs for in vivo mRNA delivery. ILs are typically comprised of three moieties including ionizable heads, linkers, and hydrophobic tails, which suggested that the combination of different functional groups in three moieties could produce ILs with diverse chemical structures and biological identities. In this concept article, we provide a summary of chemical design strategy for high-performing IL candidates and discuss their structure-activity relationships for shifting tissue-selective mRNA delivery. We also propose an outlook for the development of next-generation ILs, enabling the broader translation of mRNA formulated with LNPs.
Collapse
Affiliation(s)
- Zepeng He
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhijia Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yongming Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510006, China
- College of Chemistry and Molecular Science, Henan University, Zhengzhou, 450046, China
- State Key Laboratory of Antiviral Drugs, Henan University, Zhengzhou, 450046, China
| |
Collapse
|
13
|
Mukalel AJ, Hamilton AG, Billingsley MM, Li J, Thatte AS, Han X, Safford HC, Padilla MS, Papp T, Parhiz H, Weissman D, Mitchell MJ. Oxidized mRNA Lipid Nanoparticles for In Situ Chimeric Antigen Receptor Monocyte Engineering. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2312038. [PMID: 39628840 PMCID: PMC11611297 DOI: 10.1002/adfm.202312038] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Indexed: 12/06/2024]
Abstract
Chimeric antigen receptor (CAR) monocyte and macrophage therapies are promising solid tumor immunotherapies that can overcome the challenges facing conventional CAR T cell therapy. mRNA lipid nanoparticles (mRNA-LNPs) offer a viable platform for in situ engineering of CAR monocytes with transient and tunable CAR expression to reduce off-tumor toxicity and streamline cell manufacturing. However, identifying LNPs with monocyte tropism and intracellular delivery potency is difficult using traditional screening techniques. Here, ionizable lipid design and high-throughput in vivo screening are utilized to identify a new class of oxidized LNPs with innate tropism and mRNA delivery to monocytes. A library of oxidized (oLNPs) and unoxidized LNPs (uLNPs) is synthesized to evaluate mRNA delivery to immune cells. oLNPs demonstrate notable differences in morphology, ionization energy, and pKa, therefore enhancing delivery to human macrophages, but not T cells. Subsequently, in vivo library screening with DNA barcodes identifies an oLNP formulation, C14-O2, with innate tropism to monocytes. In a proof-of-concept study, the C14-O2 LNP is used to engineer functional CD19-CAR monocytes in situ for robust B cell aplasia (45%) in healthy mice. This work highlights the utility of oxidized LNPs as a promising platform for engineering CAR macrophages/monocytes for solid tumor CAR monocyte therapy.
Collapse
Affiliation(s)
- Alvin J. Mukalel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Alex G. Hamilton
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Margaret M. Billingsley
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jacqueline Li
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ajay S. Thatte
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Xuexiang Han
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Hannah C. Safford
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Marshall S. Padilla
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Tyler Papp
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Hamideh Parhiz
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J. Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
14
|
Androsavich JR. Frameworks for transformational breakthroughs in RNA-based medicines. Nat Rev Drug Discov 2024; 23:421-444. [PMID: 38740953 DOI: 10.1038/s41573-024-00943-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 05/16/2024]
Abstract
RNA has sparked a revolution in modern medicine, with the potential to transform the way we treat diseases. Recent regulatory approvals, hundreds of new clinical trials, the emergence of CRISPR gene editing, and the effectiveness of mRNA vaccines in dramatic response to the COVID-19 pandemic have converged to create tremendous momentum and expectation. However, challenges with this relatively new class of drugs persist and require specialized knowledge and expertise to overcome. This Review explores shared strategies for developing RNA drug platforms, including layering technologies, addressing common biases and identifying gaps in understanding. It discusses the potential of RNA-based therapeutics to transform medicine, as well as the challenges associated with improving applicability, efficacy and safety profiles. Insights gained from RNA modalities such as antisense oligonucleotides (ASOs) and small interfering RNAs are used to identify important next steps for mRNA and gene editing technologies.
Collapse
Affiliation(s)
- John R Androsavich
- RNA Accelerator, Pfizer Inc, Cambridge, MA, USA.
- Ginkgo Bioworks, Boston, MA, USA.
| |
Collapse
|
15
|
Qin Y, Rouatbi N, Wang JTW, Baker R, Spicer J, Walters AA, Al-Jamal KT. Plasmid DNA ionisable lipid nanoparticles as non-inert carriers and potent immune activators for cancer immunotherapy. J Control Release 2024; 369:251-265. [PMID: 38493950 PMCID: PMC11464404 DOI: 10.1016/j.jconrel.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Immunotherapy is currently a standard of care in the treatment of many malignancies. However, predictable side effects caused by systemic administration of highly immunostimulatory molecules have been a serious concern within this field. Intratumoural expression or silencing of immunogenic and immunoinhibitory molecules using nucleic acid-based approaches such as plasmid DNA (pDNA) and small interfering RNA (siRNA), respectively, could represent a next generation of cancer immunotherapy. Here, we employed lipid nanoparticles (LNPs) to deliver either non-specific pDNA and siRNA, or constructs targeting two prominent immunotherapeutic targets OX40L and indoleamine 2,3-dioxygenase-1 (IDO), to tumours in vivo. In the B16F10 mouse model, intratumoural delivery of LNP-formulated non-specific pDNA and siRNA led to strong local immune activation and tumour growth inhibition even at low doses due to the pDNA immunogenic nature. Replacement of these non-specific constructs by pOX40L and siIDO resulted in more prominent immune activation as evidenced by increased immune cell infiltration in tumours and tumour-draining lymph nodes. Consistently, pOX40L alone or in combination with siIDO could prolong overall survival, resulting in complete tumour regression and the formation of immunological memory in tumour rechallenge models. Our results suggest that intratumoural administration of LNP-formulated pDNA and siRNA offers a promising approach for cancer immunotherapy.
Collapse
Affiliation(s)
- Yue Qin
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Nadia Rouatbi
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Julie Tzu-Wen Wang
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Rafal Baker
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - James Spicer
- Department of Medical Oncology, Guy's and St Thomas' NHS Foundation Trust (GSTT), London SE1 9RT, UK; School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 9RT, UK
| | - Adam A Walters
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| | - Khuloud T Al-Jamal
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
16
|
Young RE, Nelson KM, Hofbauer SI, Vijayakumar T, Alameh MG, Weissman D, Papachristou C, Gleghorn JP, Riley RS. Systematic development of ionizable lipid nanoparticles for placental mRNA delivery using a design of experiments approach. Bioact Mater 2024; 34:125-137. [PMID: 38223537 PMCID: PMC10784148 DOI: 10.1016/j.bioactmat.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 01/16/2024] Open
Abstract
Ionizable lipid nanoparticles (LNPs) have gained attention as mRNA delivery platforms for vaccination against COVID-19 and for protein replacement therapies. LNPs enhance mRNA stability, circulation time, cellular uptake, and preferential delivery to specific tissues compared to mRNA with no carrier platform. However, LNPs are only in the beginning stages of development for safe and effective mRNA delivery to the placenta to treat placental dysfunction. Here, we develop LNPs that enable high levels of mRNA delivery to trophoblasts in vitro and to the placenta in vivo with no toxicity. We conducted a Design of Experiments to explore how LNP composition, including the type and molar ratio of each lipid component, drives trophoblast and placental delivery. Our data revealed that utilizing C12-200 as the ionizable lipid and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) as the phospholipid in the LNP design yields high transfection efficiency in vitro. Analysis of lipid molar composition as a design parameter in LNPs displayed a strong correlation between apparent pKa and poly (ethylene) glycol (PEG) content, as a reduction in PEG molar amount increases apparent pKa. Further, we present one LNP platform that exhibits the highest delivery of placental growth factor mRNA to the placenta in pregnant mice, resulting in synthesis and secretion of a potentially therapeutic protein. Lastly, our high-performing LNPs have no toxicity to both the pregnant mice and fetuses. Our results demonstrate the feasibility of LNPs as a platform for mRNA delivery to the placenta, and our top LNP formulations may provide a therapeutic platform to treat diseases that originate from placental dysfunction during pregnancy.
Collapse
Affiliation(s)
- Rachel E. Young
- Department of Biomedical Engineering, Henry M. Rowan College of Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, United States
- School of Translational Biomedical Engineering & Sciences, Virtua College of Medicine & Life Sciences of Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, United States
| | - Katherine M. Nelson
- Department of Chemical and Biomolecular Engineering, College of Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, United States
| | - Samuel I. Hofbauer
- Department of Biomedical Engineering, Henry M. Rowan College of Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, United States
- School of Translational Biomedical Engineering & Sciences, Virtua College of Medicine & Life Sciences of Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, United States
- Cooper Medical School of Rowan University, Rowan University, 401 Broadway, Camden, NJ 08103, United States
| | - Tara Vijayakumar
- Department of Biomedical Engineering, Henry M. Rowan College of Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, United States
- School of Translational Biomedical Engineering & Sciences, Virtua College of Medicine & Life Sciences of Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, United States
| | - Mohamad-Gabriel Alameh
- Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, United States
| | - Drew Weissman
- Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, United States
| | - Charalampos Papachristou
- Department of Mathematics, College of Science & Mathematics, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, United States
| | - Jason P. Gleghorn
- Department of Biomedical Engineering, College of Engineering, University of Delaware, 590 Avenue 1743, Newark, DE 19713, United States
| | - Rachel S. Riley
- Department of Biomedical Engineering, Henry M. Rowan College of Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, United States
- School of Translational Biomedical Engineering & Sciences, Virtua College of Medicine & Life Sciences of Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, United States
| |
Collapse
|
17
|
Yang Z, Chen J, Xiao Y, Yang C, Zhao CX, Chen D, Weitz DA. Digital Barcodes for High-Throughput Screening. CHEM & BIO ENGINEERING 2024; 1:2-12. [PMID: 39973970 PMCID: PMC11835184 DOI: 10.1021/cbe.3c00085] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2025]
Abstract
High-throughput screening is an indispensable technology in drug discovery, cancer therapy, and disease diagnosis, and it could greatly reduce time cost, reagent consumption, and labor expense. Here, four high-throughput screening methods with high sensitivity and accessibility are discussed in detail. Fluorescence, DNA, heavy metal, and nonmetal isotope barcodes, which generally label antibodies, proteins, and saccharides to identify cells, are detected by flow cytometry, second-generation DNA sequencing, mass cytometry, and second-ion mass spectrometry, respectively. Encoding binary information in barcodes, labeling individual cells by barcodes, performing the characterization of cells together, and identifying the result belonging to individual cells via barcodes are the main steps for high-throughput screening. Applications of the four digital barcodes in high-throughput screening for both in vitro and in vivo tests are described in detail, and their advantages and disadvantages are also summarized. High-throughput screening has provided a powerful platform widely accessible for multidisciplinary studies and has greatly sped up the progress of drug discovery, disease diagnosis, and cancer therapy.
Collapse
Affiliation(s)
- Ze Yang
- College
of Energy Engineering and State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310003, Zhejiang
Province, People’s Republic
of China
- Zhejiang
Key Laboratory of Smart Biomaterials, College of Chemical and Biological
Engineering, Zhejiang University, Hangzhou 310027, Zhejiang Province, People’s Republic of China
| | - Jingyi Chen
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Yao Xiao
- College
of Energy Engineering and State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310003, Zhejiang
Province, People’s Republic
of China
| | - Chenjing Yang
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Wenzhou
Institute, University of Chinese Academy
of Sciences, Wenzhou, Zhejiang 325001, People’s Republic of China
| | - Chun-Xia Zhao
- School
of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Dong Chen
- College
of Energy Engineering and State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310003, Zhejiang
Province, People’s Republic
of China
- Zhejiang
Key Laboratory of Smart Biomaterials, College of Chemical and Biological
Engineering, Zhejiang University, Hangzhou 310027, Zhejiang Province, People’s Republic of China
- Department
of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang
Province, People’s Republic
of China
| | - David A. Weitz
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
18
|
Yun H, Wang K, Zhang J, Peng G, Zhao H. Construction of Peptide-Lipoic Acid Cationic Polymers with Redox Responsiveness and Low Toxicity for Gene Delivery. ACS OMEGA 2024; 9:3499-3506. [PMID: 38284089 PMCID: PMC10809251 DOI: 10.1021/acsomega.3c07194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 01/30/2024]
Abstract
As gene therapy continues to evolve, the development of safe and effective cationic polymer carriers is critical. In this work, three polymers have been prepared by ring-opening polymerization on the basis of peptide-lipoic acid monomers. By adjusting the sequence of the peptides, redox-responsive cationic polymers with different positive charge numbers were obtained, as well as investigating their performance as gene carriers. The results showed that the polymers complexed with negatively charged genes by electrostatic interaction and successfully transported the genes into the cells, additionally degrading and releasing the genes under glutathione (GSH) conditions. Furthermore, the polymers as gene carriers in different cell lines demonstrated lower cytotoxicity, with an excellent cell survival rate of 8 times higher than the "gold standard" polyethylenimine (PEI) at the same concentration. In vitro transfection experiments showed that the polymers successfully released and transfected genes into cells, demonstrating their immense potential in gene therapy.
Collapse
Affiliation(s)
- Hui Yun
- School
of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Kang Wang
- School
of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Jun Zhang
- Shandong
Pharmaceutical Glass Co., Ltd., Zibo 256100, China
| | - Guofeng Peng
- Shandong
Rike Chemical Co., Ltd, Changle 262400, China
| | - Hui Zhao
- School
of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
19
|
Strelkova Petersen DM, Chaudhary N, Arral ML, Weiss RM, Whitehead KA. The mixing method used to formulate lipid nanoparticles affects mRNA delivery efficacy and organ tropism. Eur J Pharm Biopharm 2023; 192:126-135. [PMID: 37838143 PMCID: PMC10826902 DOI: 10.1016/j.ejpb.2023.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023]
Abstract
mRNA is a versatile drug molecule with therapeutic applications ranging from protein replacement therapies to in vivo gene engineering. mRNA delivery is often accomplished using lipid nanoparticles, which are formulated via mixing of aqueous and organic solutions. Although this has historically been accomplished by manual mixing for bench scale science, microfluidic mixing is required for scalable continuous manufacturing and batch to batch control. Currently, there is limited understanding on how the mixing process affects mRNA delivery efficacy, particularly in regard to tropism. To address this knowledge gap, we examined the influence of the type of mixing and microfluidic mixing parameters on the performance of lipid nanoparticles in mice. This was accomplished with a Design of Experiment approach using four nanoparticle formulations with varied ionizable lipid chemistry. We found that each formulation required unique optimization of mixing parameters, with the total delivery efficacy of each lipid nanoparticle generated with microfluidics ranging from 100-fold less to 4-fold more than manually mixed LNPs. Further, mixing parameters influenced organ tropism, with the most efficacious formulations disproportionately increasing liver delivery compared to other organs. These data suggest that mixing parameters for lipid nanoparticle production may require optimization for each unique chemical formulation, complicating translational efforts. Further, microfluidic parameters must be chosen carefully to balance overall mRNA delivery efficacy with application-specific tropism requirements.
Collapse
Affiliation(s)
- Daria M Strelkova Petersen
- Department of Biomedical Engineering, Carnegie Mellon University, 5000, Forbes Ave, Pittsburgh, PA 15213, USA
| | - Namit Chaudhary
- Department of Chemical Engineering, Carnegie Mellon University, 5000, Forbes Ave, Pittsburgh, PA 15213, USA
| | - Mariah L Arral
- Department of Chemical Engineering, Carnegie Mellon University, 5000, Forbes Ave, Pittsburgh, PA 15213, USA
| | - Ryan M Weiss
- Department of Chemical Engineering, Carnegie Mellon University, 5000, Forbes Ave, Pittsburgh, PA 15213, USA
| | - Kathryn A Whitehead
- Department of Biomedical Engineering, Carnegie Mellon University, 5000, Forbes Ave, Pittsburgh, PA 15213, USA; Department of Chemical Engineering, Carnegie Mellon University, 5000, Forbes Ave, Pittsburgh, PA 15213, USA.
| |
Collapse
|
20
|
Zhang W, Pfeifle A, Lansdell C, Frahm G, Cecillon J, Tamming L, Gravel C, Gao J, Thulasi Raman SN, Wang L, Sauve S, Rosu-Myles M, Li X, Johnston MJW. The Expression Kinetics and Immunogenicity of Lipid Nanoparticles Delivering Plasmid DNA and mRNA in Mice. Vaccines (Basel) 2023; 11:1580. [PMID: 37896985 PMCID: PMC10610642 DOI: 10.3390/vaccines11101580] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
In recent years, lipid nanoparticles (LNPs) have emerged as a revolutionary technology for vaccine delivery. LNPs serve as an integral component of mRNA vaccines by protecting and transporting the mRNA payload into host cells. Despite their prominence in mRNA vaccines, there remains a notable gap in our understanding of the potential application of LNPs for the delivery of DNA vaccines. In this study, we sought to investigate the suitability of leading LNP formulations for the delivery of plasmid DNA (pDNA). In addition, we aimed to explore key differences in the properties of popular LNP formulations when delivering either mRNA or DNA. To address these questions, we compared three leading LNP formulations encapsulating mRNA- or pDNA-encoding firefly luciferase based on potency, expression kinetics, biodistribution, and immunogenicity. Following intramuscular injection in mice, we determined that RNA-LNPs formulated with either SM-102 or ALC-0315 lipids were the most potent (all p-values < 0.01) and immunogenic (all p-values < 0.05), while DNA-LNPs formulated with SM-102 or ALC-0315 demonstrated the longest duration of signal. Additionally, all LNP formulations were found to induce expression in the liver that was proportional to the signal at the injection site (SM102: r = 0.8787, p < 0.0001; ALC0315: r = 0.9012, p < 0.0001; KC2: r = 0.9343, p < 0.0001). Overall, this study provides important insights into the differences between leading LNP formulations and their applicability to DNA- and RNA-based vaccinations.
Collapse
Affiliation(s)
- Wanyue Zhang
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (W.Z.); (A.P.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Annabelle Pfeifle
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (W.Z.); (A.P.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Casey Lansdell
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (W.Z.); (A.P.)
| | - Grant Frahm
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (W.Z.); (A.P.)
| | - Jonathon Cecillon
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (W.Z.); (A.P.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Levi Tamming
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (W.Z.); (A.P.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Caroline Gravel
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (W.Z.); (A.P.)
| | - Jun Gao
- Centre for Vaccines, Clinical Trials and Biostatistics, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada
| | - Sathya N. Thulasi Raman
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (W.Z.); (A.P.)
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Simon Sauve
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (W.Z.); (A.P.)
| | - Michael Rosu-Myles
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (W.Z.); (A.P.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Xuguang Li
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (W.Z.); (A.P.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Michael J. W. Johnston
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (W.Z.); (A.P.)
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
21
|
Qin Y, Walters AA, Rouatbi N, Wang JTW, Abdel-Bar HM, Al-Jamal KT. Evaluation of a DoE based approach for comprehensive modelling of the effect of lipid nanoparticle composition on nucleic acid delivery. Biomaterials 2023; 299:122158. [PMID: 37243988 DOI: 10.1016/j.biomaterials.2023.122158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/29/2023]
Abstract
Therapeutic nucleic acids (TNAs) comprise an alternative to conventional drugs for cancer therapy. Recently, stable nucleic acid lipid particles (SNALPs) have been explored to deliver TNA efficiently and safely both in vitro and in vivo. Small interfering RNA (siRNA) and messenger RNA (mRNA) based drugs have been suggested for a wide range of pathologies, and their respective lipid nanoparticle (LNP) formulations have been optimised using a Design of Experiments (DoE) approach. However, it is uncertain as to whether data obtained from DoE using simple experimental outputs can be used to generate a general heuristic for delivery of diverse TNA both in vitro and in vivo. Using plasmid DNA (pDNA), for which limited DoE optimisation has been performed, and siRNA to represent the two extremities of the TNA spectrum in terms of size and biological requirements, we performed a comparative DoE for both molecules and assessed the predictive qualities of the model both in vitro and in vivo. By producing a minimum run of 24 SNALP formulations with different lipid compositions incorporating either pDNA or siRNA, DoE models were successfully established for predicting the effect of individual lipid composition on particle size, TNA encapsulation and transfection both in vitro and in vivo. The results showed that the particle size, and in vitro and in vivo transfection efficiency of both pDNA and siRNA SNALP formulations were affected by lipid compositions. The encapsulation efficiency of pDNA SNALPs but not siRNA SNALPs was affected by the lipid composition. Notably, the optimal lipid compositions of SNALPs for pDNA/siRNA delivery were not identical. Furthermore, in vitro transfection efficiency could not be used to predict promising LNP candidates in vivo. The DoE approach described in this study may provide a method for comprehensive optimisation of LNPs for various applications. The model and optimal formulation described in this study can serve as a foundation from which to develop other novel NA containing LNPs for multiple applications such as NA based vaccines, cancer immunotherapies and other TNA therapies.
Collapse
Affiliation(s)
- Yue Qin
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Adam A Walters
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Nadia Rouatbi
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Julie Tzu-Wen Wang
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Hend Mohamed Abdel-Bar
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK; Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, Sadat City, 32958, Egypt
| | - Khuloud T Al-Jamal
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
22
|
Rhym LH, Manan RS, Koller A, Stephanie G, Anderson DG. Peptide-encoding mRNA barcodes for the high-throughput in vivo screening of libraries of lipid nanoparticles for mRNA delivery. Nat Biomed Eng 2023; 7:901-910. [PMID: 37127709 DOI: 10.1038/s41551-023-01030-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/26/2023] [Indexed: 05/03/2023]
Abstract
Developing safe and effective nanoparticles for the delivery of messenger RNA (mRNA) is slow and expensive, partly due to the lack of predictive power of in vitro screening methods and the low-throughput nature of in vivo screening. While DNA barcoding and batch analysis present methods for increasing in vivo screening throughput, they can also result in incomplete or misleading measures of efficacy. Here, we describe a high-throughput and accurate method for the screening of pooled nanoparticle formulations within the same animal. The method uses liquid chromatography with tandem mass spectrometry to detect peptide barcodes translated from mRNAs in nanoparticle-transfected cells. We show the method's applicability by evaluating a library of over 400 nanoparticle formulations with 384 unique ionizable lipids using only nine mice to optimize the formulation of a biodegradable lipid nanoparticle for mRNA delivery to the liver. Barcoding lipid nanoparticles with peptide-encoding mRNAs may facilitate the rapid development of nanoparticles for mRNA delivery to specific cells and tissues.
Collapse
Affiliation(s)
- Luke H Rhym
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rajith S Manan
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Antonius Koller
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Georgina Stephanie
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
23
|
Kim S, Choi B, Kim Y, Shim G. Immune-Modulating Lipid Nanomaterials for the Delivery of Biopharmaceuticals. Pharmaceutics 2023; 15:1760. [PMID: 37376208 DOI: 10.3390/pharmaceutics15061760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/20/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
In recent years, with the approval of preventative vaccines for pandemics, lipid nanoparticles have become a prominent RNA delivery vehicle. The lack of long-lasting effects of non-viral vectors is an advantage for infectious disease vaccines. With the introduction of microfluidic processes that facilitate the encapsulation of nucleic acid cargo, lipid nanoparticles are being studied as delivery vehicles for various RNA-based biopharmaceuticals. In particular, using microfluidic chip-based fabrication processes, nucleic acids such as RNA and proteins can be effectively incorporated into lipid nanoparticles and utilized as delivery vehicles for various biopharmaceuticals. Due to the successful development of mRNA therapies, lipid nanoparticles have emerged as a promising approach for the delivery of biopharmaceuticals. Biopharmaceuticals of various types (DNA, mRNA, short RNA, proteins) possess expression mechanisms that are suitable for manufacturing personalized cancer vaccines, while also requiring formulation with lipid nanoparticles. In this review, we describe the basic design of lipid nanoparticles, the types of biopharmaceuticals used as carriers, and the microfluidic processes involved. We then present research cases focusing on lipid-nanoparticle-based immune modulation and discuss the current status of commercially available lipid nanoparticles, as well as future prospects for the development of lipid nanoparticles for immune regulation purposes.
Collapse
Affiliation(s)
- Songhee Kim
- School of Systems Biomedical Science and Integrative Institute of Basic Sciences, Soongsil University, Seoul 06978, Republic of Korea
| | - Boseung Choi
- School of Systems Biomedical Science and Integrative Institute of Basic Sciences, Soongsil University, Seoul 06978, Republic of Korea
| | - Yoojin Kim
- School of Systems Biomedical Science and Integrative Institute of Basic Sciences, Soongsil University, Seoul 06978, Republic of Korea
| | - Gayong Shim
- School of Systems Biomedical Science and Integrative Institute of Basic Sciences, Soongsil University, Seoul 06978, Republic of Korea
| |
Collapse
|
24
|
Dong S, Feng Z, Ma R, Zhang T, Jiang J, Li Y, Zhang Y, Li S, Liu X, Liu X, Meng H. Engineered Design of a Mesoporous Silica Nanoparticle-Based Nanocarrier for Efficient mRNA Delivery in Vivo. NANO LETTERS 2023; 23:2137-2147. [PMID: 36881967 DOI: 10.1021/acs.nanolett.2c04486] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We have developed tailor-designed mesoporous silica nanoparticles (MSNPs) specifically for delivering mRNA. Our unique assembly protocol involves premixing mRNA with a cationic polymer and then electrostatically binding it to the MSNP surface. Since the key physicochemical parameters of MSNPs could influence the biological outcome, we also investigated the roles of size, porosity, surface topology, and aspect ratio on the mRNA delivery. These efforts allow us to identify the best-performing carrier, which was able to achieve efficient cellular uptake and intracellular escape while delivering a luciferase mRNA in mice. The optimized carrier remained stable and active for at least 7 days after being stored at 4 °C and was able to enable tissue-specific mRNA expression, particularly in the pancreas and mesentery after intraperitoneal injection. The optimized carrier was further manufactured in a larger batch size and found to be equally efficient in delivering mRNA in mice and rats, without any obvious toxicity.
Collapse
Affiliation(s)
- Shuwen Dong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing 100190, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Zhenhan Feng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing 100190, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runpu Ma
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- College of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Tianyu Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jinhong Jiang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yibo Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yumo Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing 100190, China
| | - Silu Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xiao Liu
- Department of Gastroenterology, Beijing Hospital, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, National Center of Gerontology, Beijing 100730, China
| | - Xiangsheng Liu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Meng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Abstract
The highly specific induction of RNA interference-mediated gene knockdown, based on the direct application of small interfering RNAs (siRNAs), opens novel avenues towards innovative therapies. Two decades after the discovery of the RNA interference mechanism, the first siRNA drugs received approval for clinical use by the US Food and Drug Administration and the European Medicines Agency between 2018 and 2022. These are mainly based on an siRNA conjugation with a targeting moiety for liver hepatocytes, N-acetylgalactosamine, and cover the treatment of acute hepatic porphyria, transthyretin-mediated amyloidosis, hypercholesterolemia, and primary hyperoxaluria type 1. Still, the development of siRNA therapeutics faces several challenges and issues, including the definition of optimal siRNAs in terms of target, sequence, and chemical modifications, siRNA delivery to its intended site of action, and the absence of unspecific off-target effects. Further siRNA drugs are in clinical studies, based on different delivery systems and covering a wide range of different pathologies including metabolic diseases, hematology, infectious diseases, oncology, ocular diseases, and others. This article reviews the knowledge on siRNA design and chemical modification, as well as issues related to siRNA delivery that may be addressed using different delivery systems. Details on the mode of action and clinical status of the various siRNA therapeutics are provided, before giving an outlook on issues regarding the future of siRNA drugs and on their potential as one emerging standard modality in pharmacotherapy. Notably, this may also cover otherwise un-druggable diseases, the definition of non-coding RNAs as targets, and novel concepts of personalized and combination treatment regimens.
Collapse
Affiliation(s)
- Maik Friedrich
- Faculty of Leipzig, Institute of Clinical Immunology, Max-Bürger-Forschungszentrum (MBFZ), University of Leipzig, Leipzig, Germany.,Department of Vaccines and Infection Models, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Achim Aigner
- Rudolf-Boehm Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, Haertelstrasse 16-18, 04107, Leipzig, Germany.
| |
Collapse
|
26
|
Spadea A, Jackman M, Cui L, Pereira S, Lawrence MJ, Campbell RA, Ashford M. Nucleic Acid-Loaded Lipid Nanoparticle Interactions with Model Endosomal Membranes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30371-30384. [PMID: 35758331 PMCID: PMC9264317 DOI: 10.1021/acsami.2c06065] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Lipid nanoparticles (LNPs) are important delivery systems for RNA-based therapeutics, yet the mechanism of their interaction with endosomal membranes remains unclear. Here, the interactions of nucleic acid-loaded LNPs that contain an ionizable lipid with models of the early and late endosomal membranes are studied, for the first time, using different reflectometry techniques. Novel insight is provided with respect to the subphase pH, the stage of the endosome, and the nature of the nucleic acid cargo. It is found that the insertion of lipids from the LNPs into the model membrane is greatest at pH 6.5 and 5.5, whereas at higher pH, lipid insertion is suppressed with evidence instead for the binding of intact LNPs, demonstrating the importance of the pH in the fusion of LNPs undergoing the endosomal pathway. Furthermore, and independently of the pH, the effect of the early- versus late-stage endosomal models is minimal, suggesting that the increased fluidity and anionic nature of the late endosome has little effect on the extent of LNP interaction. Last, there is greater nucleic acid delivery from LNPs containing mRNA than Poly(A), indicating that the extent of interaction can be tuned according to the nature of the nucleic acid cargo. Such new information on the relative impact of factors influencing nucleic acid delivery by LNP interactions with endosomal membranes is important in the design and tuning of vehicles with improved nucleic acid delivery capacities.
Collapse
Affiliation(s)
- Alice Spadea
- NorthWest
Centre for Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, U.K.
- Division
of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, U.K.
| | - Mark Jackman
- Advanced
Drug Delivery, Pharmaceutical Sciences, AstraZeneca R&D, Cambridge CB2 0AA, U.K.
| | - Lili Cui
- Advanced
Drug Delivery, Pharmaceutical Sciences, AstraZeneca R&D, Cambridge CB2 0AA, U.K.
| | - Sara Pereira
- Advanced
Drug Delivery, Pharmaceutical Sciences, AstraZeneca R&D, Cambridge CB2 0AA, U.K.
| | - M. Jayne Lawrence
- NorthWest
Centre for Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, U.K.
- Division
of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, U.K.
| | - Richard A. Campbell
- Division
of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, U.K.
| | - Marianne Ashford
- Advanced
Drug Delivery, Pharmaceutical Sciences, AstraZeneca R&D, Macclesfield SK10 2NA, U.K.
| |
Collapse
|
27
|
Doxorubicin-conjugated siRNA lipid nanoparticles for combination cancer therapy. Acta Pharm Sin B 2022; 13:1429-1437. [PMID: 37139433 PMCID: PMC10150035 DOI: 10.1016/j.apsb.2022.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/27/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Evasion of apoptosis is a hallmark of cancer, attributed in part to overexpression of the anti-apoptotic protein B-cell lymphoma 2 (Bcl-2). In a variety of cancer types, including lymphoma, Bcl-2 is overexpressed. Therapeutic targeting of Bcl-2 has demonstrated efficacy in the clinic and is the subject of extensive clinical testing in combination with chemotherapy. Therefore, the development of co-delivery systems for Bcl-2 targeting agents, such as small interfering RNA (siRNA), and chemotherapeutics, such as doxorubicin (DOX), holds promise for enabling combination cancer therapies. Lipid nanoparticles (LNPs) are a clinically advanced nucleic acid delivery system with a compact structure suitable for siRNA encapsulation and delivery. Inspired by ongoing clinical trials of albumin-hitchhiking doxorubicin prodrugs, here we developed a DOX-siRNA co-delivery strategy via conjugation of doxorubicin to the surface of siRNA-loaded LNPs. Our optimized LNPs enabled potent knockdown of Bcl-2 and efficient delivery of DOX into the nucleus of Burkitts' lymphoma (Raji) cells, leading to effective inhibition of tumor growth in a mouse model of lymphoma. Based on these results, our LNPs may provide a platform for the co-delivery of various nucleic acids and DOX for the development of new combination cancer therapies.
Collapse
|
28
|
Ly HH, Daniel S, Soriano SKV, Kis Z, Blakney AK. Optimization of Lipid Nanoparticles for saRNA Expression and Cellular Activation Using a Design-of-Experiment Approach. Mol Pharm 2022; 19:1892-1905. [PMID: 35604765 DOI: 10.1021/acs.molpharmaceut.2c00032] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lipid nanoparticles (LNPs) are the leading technology for RNA delivery, given the success of the Pfizer/BioNTech and Moderna COVID-19 mRNA (mRNA) vaccines, and small interfering RNA (siRNA) therapies (patisiran). However, optimization of LNP process parameters and compositions for larger RNA payloads such as self-amplifying RNA (saRNA), which can have complex secondary structures, have not been carried out. Furthermore, the interactions between process parameters, critical quality attributes (CQAs), and function, such as protein expression and cellular activation, are not well understood. Here, we used two iterations of design of experiments (DoE) (definitive screening design and Box-Behnken design) to optimize saRNA formulations using the leading, FDA-approved ionizable lipids (MC3, ALC-0315, and SM-102). We observed that PEG is required to preserve the CQAs and that saRNA is more challenging to encapsulate and preserve than mRNA. We identified three formulations to minimize cellular activation, maximize cellular activation, or meet a CQA profile while maximizing protein expression. The significant parameters and design of the response surface modeling and multiple response optimization may be useful for designing formulations for a range of applications, such as vaccines or protein replacement therapies, for larger RNA cargoes.
Collapse
Affiliation(s)
- Han Han Ly
- Michael Smith Laboratories, School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Simon Daniel
- Department of Chemical Engineering, Imperial College London, London SW7 2BX, United Kingdom
| | - Shekinah K V Soriano
- Michael Smith Laboratories, School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Zoltán Kis
- Department of Chemical Engineering, Imperial College London, London SW7 2BX, United Kingdom.,Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Anna K Blakney
- Michael Smith Laboratories, School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
29
|
Berger S, Berger M, Bantz C, Maskos M, Wagner E. Performance of nanoparticles for biomedical applications: The in vitro/ in vivo discrepancy. BIOPHYSICS REVIEWS 2022; 3:011303. [PMID: 38505225 PMCID: PMC10903387 DOI: 10.1063/5.0073494] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/04/2022] [Indexed: 03/21/2024]
Abstract
Nanomedicine has a great potential to revolutionize the therapeutic landscape. However, up-to-date results obtained from in vitro experiments predict the in vivo performance of nanoparticles weakly or not at all. There is a need for in vitro experiments that better resemble the in vivo reality. As a result, animal experiments can be reduced, and potent in vivo candidates will not be missed. It is important to gain a deeper knowledge about nanoparticle characteristics in physiological environment. In this context, the protein corona plays a crucial role. Its formation process including driving forces, kinetics, and influencing factors has to be explored in more detail. There exist different methods for the investigation of the protein corona and its impact on physico-chemical and biological properties of nanoparticles, which are compiled and critically reflected in this review article. The obtained information about the protein corona can be exploited to optimize nanoparticles for in vivo application. Still the translation from in vitro to in vivo remains challenging. Functional in vitro screening under physiological conditions such as in full serum, in 3D multicellular spheroids/organoids, or under flow conditions is recommended. Innovative in vivo screening using barcoded nanoparticles can simultaneously test more than hundred samples regarding biodistribution and functional delivery within a single mouse.
Collapse
Affiliation(s)
- Simone Berger
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig–Maximilians-Universität (LMU) Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
| | - Martin Berger
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Christoph Bantz
- Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Str. 18-20, D-55129 Mainz, Germany
| | | | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig–Maximilians-Universität (LMU) Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
| |
Collapse
|
30
|
Nanoscale delivery platforms for RNA therapeutics: Challenges and the current state of the art. MED 2022; 3:167-187. [DOI: 10.1016/j.medj.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/18/2022] [Accepted: 02/04/2022] [Indexed: 12/25/2022]
|
31
|
Van de Vyver T, De Smedt SC, Raemdonck K. Modulating intracellular pathways to improve non-viral delivery of RNA therapeutics. Adv Drug Deliv Rev 2022; 181:114041. [PMID: 34763002 DOI: 10.1016/j.addr.2021.114041] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/12/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022]
Abstract
RNA therapeutics (e.g. siRNA, oligonucleotides, mRNA, etc.) show great potential for the treatment of a myriad of diseases. However, to reach their site of action in the cytosol or nucleus of target cells, multiple intra- and extracellular barriers have to be surmounted. Several non-viral delivery systems, such as nanoparticles and conjugates, have been successfully developed to meet this requirement. Unfortunately, despite these clear advances, state-of-the-art delivery agents still suffer from relatively low intracellular delivery efficiencies. Notably, our current understanding of the intracellular delivery process is largely oversimplified. Gaining mechanistic insight into how RNA formulations are processed by cells will fuel rational design of the next generation of delivery carriers. In addition, identifying which intracellular pathways contribute to productive RNA delivery could provide opportunities to boost the delivery performance of existing nanoformulations. In this review, we discuss both established as well as emerging techniques that can be used to assess the impact of different intracellular barriers on RNA transfection performance. Next, we highlight how several modulators, including small molecules but also genetic perturbation technologies, can boost RNA delivery by intervening at differing stages of the intracellular delivery process, such as cellular uptake, intracellular trafficking, endosomal escape, autophagy and exocytosis.
Collapse
Affiliation(s)
- Thijs Van de Vyver
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
32
|
Boehnke N, Hammond PT. Power in Numbers: Harnessing Combinatorial and Integrated Screens to Advance Nanomedicine. JACS AU 2022; 2:12-21. [PMID: 35098219 PMCID: PMC8791056 DOI: 10.1021/jacsau.1c00313] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Indexed: 05/02/2023]
Abstract
Nanocarriers have significant potential to advance personalized medicine through targeted drug delivery. However, to date, efforts to improve nanoparticle accumulation at target disease sites have largely failed to translate clinically, stemming from an incomplete understanding of nano-bio interactions. While progress has been made to evaluate the effects of specific physical and chemical nanoparticle properties on trafficking and uptake, there is much to be gained from controlling these properties singularly and in combination to determine their interactions with different cell types. We and others have recently begun leveraging library-based nanoparticle screens to study structure-function relationships of lipid- and polymer-based drug delivery systems to guide nanoparticle design. These combinatorial screening efforts are showing promise in leading to the successful identification of critical characteristics that yield improved and specific accumulation at target sites. However, there is a crucial need to equally consider the influence of biological complexity on nanoparticle delivery, particularly in the context of clinical translation. For example, tissue and cellular heterogeneity presents an additional dimension to nanoparticle trafficking, uptake, and accumulation; applying imaging and screening tools as well as bioinformatics may further expand our understanding of how nanoparticles engage with cells and tissues. Given recent advances in the fields of omics and machine learning, there is substantial promise to revolutionize nanocarrier development through the use of integrated screens, harnessing the combinatorial parameter space afforded both by nanoparticle libraries and clinically annotated biological data sets in combination with high throughput in vivo studies.
Collapse
Affiliation(s)
- Natalie Boehnke
- Koch
Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
| | - Paula T. Hammond
- Koch
Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, 25 Ames
Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
33
|
Álvarez-Benedicto E, Farbiak L, Márquez Ramírez M, Wang X, Johnson LT, Mian O, Guerrero ED, Siegwart DJ. Optimization of phospholipid chemistry for improved lipid nanoparticle (LNP) delivery of messenger RNA (mRNA). Biomater Sci 2022; 10:549-559. [PMID: 34904974 PMCID: PMC9113778 DOI: 10.1039/d1bm01454d] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Lipid nanoparticles (LNPs) have been established as an essential platform for nucleic acid delivery. Efforts have led to the development of vaccines that protect against SARS-CoV-2 infection using LNPs to deliver messenger RNA (mRNA) coding for the viral spike protein. Out of the four essential components that comprise LNPs, phospholipids represent an underappreciated opportunity for fundamental and translational study. We investigated this avenue by systematically modulating the identity of the phospholipid in LNPs with the goal of identifying specific moieties that directly enhance or hinder delivery efficacy. Results indicate that phospholipid chemistry can enhance mRNA delivery by increasing membrane fusion and enhancing endosomal escape. Phospholipids containing phosphoethanolamine (PE) head groups likely increase endosomal escape due to their fusogenic properties. Additionally, it was found that zwitterionic phospholipids mainly aided liver delivery, whereas negatively charged phospholipids changed the tropism of the LNPs from liver to spleen. These results demonstrate that the choice of phospholipid plays a role intracellularly by enhancing endosomal escape, while also driving organ tropism in vivo. These findings were then applied to Selective Organ Targeting (SORT) LNPs to manipulate and control spleen-specific delivery. Overall, selection of the phospholipid in LNPs provides an important handle to design and optimize LNPs for improved mRNA delivery and more effective therapeutics.
Collapse
Affiliation(s)
- Ester Álvarez-Benedicto
- Department of Biochemistry, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| | - Lukas Farbiak
- Department of Biochemistry, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| | - Martha Márquez Ramírez
- Department of Biochemistry, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| | - Xu Wang
- Department of Biochemistry, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| | - Lindsay T Johnson
- Department of Biochemistry, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| | - Osamah Mian
- Department of Biochemistry, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| | - Erick D Guerrero
- Department of Biochemistry, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| | - Daniel J Siegwart
- Department of Biochemistry, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| |
Collapse
|
34
|
Roh E, Epps TH, Sullivan MO. Kinetic Modeling to Accelerate the Development of Nucleic Acid Formulations. ACS NANO 2021; 15:16055-16066. [PMID: 34636541 PMCID: PMC8860063 DOI: 10.1021/acsnano.1c04555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A critical hurdle in the clinical translation of nucleic acid drugs is the inefficiency in testing formulations for therapeutic potential. Specifically, the ability to quantitatively predict gene expression is lacking when transitioning between cell culture and animal studies. We address this challenge by developing a mathematical framework that can reliably predict short-interfering RNA (siRNA)-mediated gene silencing with as few as one experimental data point as an input, evaluate the efficacies of existing formulations in an expeditious manner, and ultimately guide the design of nanocarriers with optimized performances. The model herein consisted of only essential rate-limiting steps and parameters with easily characterizable values of the RNA interference process, enabling the easy identification of which parameters play dominant roles in determining the potencies of siRNA formulations. Predictions from our framework were in close agreement with in vitro and in vivo experimental results across a retrospective analysis using multiple published data sets. Notably, our findings suggested that siRNA dilution was the primary determinant of gene-silencing kinetics. Our framework shed light on the fact that this dilution rate is governed by different parameters, i.e., cell dilution (in vitro) versus clearance from target tissue (in vivo), highlighting a key reason why in vitro experiments do not always predict in vivo outcomes. Moreover, although our current effort focuses on siRNA, we anticipate that the framework can be modified and applied to other nucleic acids, such as mRNA, that rely on similar biological processes.
Collapse
Affiliation(s)
- Esther
H. Roh
- Department
of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Thomas H. Epps
- Department
of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
- Center
for Research in Soft matter and Polymers (CRiSP), University of Delaware, Newark, Delaware 19716, United States
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United
States
| | - Millicent O. Sullivan
- Department
of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department
of Biomedical Engineering, University of
Delaware, Newark, Delaware 19716, United
States
| |
Collapse
|
35
|
Tao J, Wei Z, Xu M, Xi L, Cheng Y, Lee SMY, Ge W, Zheng Y. Particle Integrity and Size Effect on the Journey of Polymeric Nanocarriers in Zebrafish Model and the Correlation with Mice. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103584. [PMID: 34528394 DOI: 10.1002/smll.202103584] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/15/2021] [Indexed: 05/25/2023]
Abstract
Polymeric nanocarriers have high biocompatibility for potential drug delivery applications. After entering bloodstream, nanocarriers will circulate, interact with proteins, dissociate, or be cleared by reticuloendothelial system. Zebrafish as a visual animal model, can serve as a tool for screening nanomedicines and monitoring nanocarrier behaviors in vivo. However, a comprehensive correlation between zebrafish and rodent models is currently deficient. Here, different-sized poly(caprolactone) nanocarriers (PCL NCs) are fabricated with or without PEGylation to investigate correlation between zebrafish and mice regarding their biofate via Förster resonance energy transfer technique. Results show that PEGylated PCL NCs have higher integrity in both zebrafish and mice. Small PEG-PCL NCs have longer circulation, while large PEG-PCL NCs have dramatically higher macrophage sequestration in zebrafish and mice spleen, leading to poor circulation. PCL NCs dissociate rapidly with less macrophage sequestration. Moreover, in 7 days postfertilization (dpf) zebrafish, polymers are eliminated via hepatobiliary pathway, which is not fully functional at earlier stages of development. The effects of nanocarrier integrity on macrophage sequestration in zebrafish and good correlation with mice spleen are pioneered to be demonstrated. The findings suggest that 7 dpf zebrafish are suitable as an in vivo screening model of nanocarriers and predict their biofate in rodents.
Collapse
Affiliation(s)
- Jinsong Tao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Zhengjie Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Meng Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Long Xi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Yaxin Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Wei Ge
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| |
Collapse
|
36
|
Sharifiaghdam M, Shaabani E, Sharifiaghdam Z, De Keersmaecker H, Lucas B, Lammens J, Ghanbari H, Teimoori-Toolabi L, Vervaet C, De Beer T, Faridi-Majidi R, De Smedt SC, Braeckmans K, Fraire JC. Macrophage reprogramming into a pro-healing phenotype by siRNA delivered with LBL assembled nanocomplexes for wound healing applications. NANOSCALE 2021; 13:15445-15463. [PMID: 34505619 DOI: 10.1039/d1nr03830c] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Excessive inflammatory responses in wounds are characterized by the presence of high levels of pro-inflammatory M1 macrophages rather than pro-healing M2 macrophages, which leads to delayed wound healing. Macrophage reprogramming from the M1 to M2 phenotype through knockdown of interferon regulatory factor 5 (irf5) has emerged as a possible therapeutic strategy. While downregulation of irf5 could be achieved by siRNA, it very much depends on successful intracellular delivery by suitable siRNA carriers. Here, we report on highly stable selenium-based layer-by-layer (LBL) nanocomplexes (NCs) for siRNA delivery with polyethyleneimine (PEI-LBL-NCs) as the final polymer layer. PEI-LBL-NCs showed good protection of siRNA with only 40% siRNA release in a buffer of pH = 8.5 after 72 h or in simulated wound fluid after 4 h. PEI-LBL-NCs also proved to be able to transfect RAW 264.7 cells with irf5-siRNA, resulting in successful reprogramming to the M2 phenotype as evidenced by a 3.4 and 2.6 times decrease in NOS-2 and TNF-α mRNA expression levels, respectively. Moreover, irf5-siRNA transfected cells exhibited a 2.5 times increase of the healing mediator Arg-1 and a 64% increase in expression of the M2 cell surface marker CD206+. Incubation of fibroblast cells with conditioned medium isolated from irf5-siRNA transfected RAW 264.7 cells resulted in accelerated wound healing in an in vitro scratch assay. These results show that irf5-siRNA loaded PEI-LBL-NCs are a promising therapeutic approach to tune macrophage polarization for improved wound healing.
Collapse
Affiliation(s)
- Maryam Sharifiaghdam
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium.
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Elnaz Shaabani
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium.
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Zeynab Sharifiaghdam
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Herlinde De Keersmaecker
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium.
- Center for Advanced Light Microscopy, Ghent University, 9000 Ghent, Belgium
| | - Bart Lucas
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium.
| | - Joris Lammens
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Hossein Ghanbari
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Chris Vervaet
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Thomas De Beer
- Laboratory of Pharmaceutical Process Analytical Technology (LPPAT), Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Reza Faridi-Majidi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium.
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium.
- Center for Advanced Light Microscopy, Ghent University, 9000 Ghent, Belgium
| | - Juan C Fraire
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium.
| |
Collapse
|
37
|
Kim J, Vaughan HJ, Zamboni CG, Sunshine JC, Green JJ. High-throughput evaluation of polymeric nanoparticles for tissue-targeted gene expression using barcoded plasmid DNA. J Control Release 2021; 337:105-116. [PMID: 34097924 DOI: 10.1016/j.jconrel.2021.05.047] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 05/03/2021] [Accepted: 05/31/2021] [Indexed: 12/17/2022]
Abstract
Successful systemic gene delivery requires specific tissue targeting as well as efficient intracellular transfection. Increasingly, research laboratories are fabricating libraries of novel nanoparticles, engineering both new biomaterial structures and composition ratios of multicomponent systems. Yet, methods for screening gene delivery vehicles directly in vivo are often low-throughout, limiting the number of candidate nanoparticles that can be investigated. Here, we report a comprehensive, high-throughput method to evaluate a library of polymeric nanoparticles in vivo for tissue-specific gene delivery. The method involves pairing each nanoparticle formulation with a plasmid DNA (pDNA) that harbors a unique nucleotide sequence serving as the identifying "barcode". Using real time quantitative PCR (qPCR) for detection of the barcoded pDNA and quantitative reverse transcription PCR (RT-qPCR) for transcribed barcoded mRNA, we can quantify accumulation and transfection in tissues of interest. The barcode pDNA and primers were designed with sufficient sensitivity and specificity to evaluate multiple nanoparticle formulations per mouse, improving screening efficiency. Using this platform, we evaluated the biodistribution and transfection of 8 intravenously administered poly(beta-amino ester; PBAE) nanoparticle formulations, each with a PBAE polymer of differential structure. Significant levels of nanoparticle accumulation and gene transfection were observed mainly in organs involved in clearance, including spleen, liver, and kidneys. Interestingly, higher levels of transfection of select organs did not necessarily correlate with higher levels of tissue accumulation, highlighting the importance of directly measuring in vivo transfection efficiency as the key barcoded parameter in gene delivery vector optimization. To validate this method, nanoparticle formulations were used individually for luciferase pDNA delivery in vivo. The distribution of luciferase expression in tissues matched the transfection analysis by the barcode qPCR method, confirming that this platform can be used to accurately evaluate systemic gene delivery.
Collapse
Affiliation(s)
- Jayoung Kim
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Hannah J Vaughan
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Camila G Zamboni
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Joel C Sunshine
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA; Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Jordan J Green
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA; Departments of Neurosurgery, Oncology, and Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
38
|
Osteogenic effects of microRNA-335-5p/lipidoid nanoparticles coated on titanium surface. Arch Oral Biol 2021; 129:105207. [PMID: 34273868 DOI: 10.1016/j.archoralbio.2021.105207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 06/26/2021] [Accepted: 07/03/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE In this study, we aimed to investigate the therapeutic potential of miR-335-5p lipidoid nanocomplexes coated on Titanium (Ti) SLActive surface by lyophilization. DESIGN In our model, we coated miR-335-5p/Lipidoid nanoparticles on titanium implant, seeded GFP-labelled mouse bone marrow stromal cells (BMSCs) onto the functionalized Ti implant surface, and analyzed the transfection efficiency, cell adhesion, proliferation, and osteogenic activity of the bone-implant interface. RESULTS The Ti SLActive surface displayed a suitable hydrophilicity ability and provided a large surface area for miRNA loading, enabling spatial retention of the miRNAs within the nanopores until cellular delivery. We demonstrated a high transfection efficiency of miR-335-5p lipidoid nanoparticles in BMSCs seeded onto the Ti SLActive surface, even after 14 days. Alkaline phosphatase (ALP) activity and cell vitality were significantly increased in BMSCs transfected with miR-335-5p at 7 and 14 days as opposed to cells transfected with negative controls. When miR-335-5p transfected BMSCs were induced to undergo osteogenic differentiation, we detected increased mRNA expression of osteogenic markers including Alkaline phosphatase (ALP), collagen I (COL1), osteocalcin (OCN) and bone sialoprotein (BSP) at 7 and 14 days as compared with negative controls. CONCLUSION MiR-335-5p lipidoid nanoparticles could be used as a new cost-effective methodology to increase the osteogenic capacity of biomedical Ti implants.
Collapse
|
39
|
Kaczmarek JC, Patel AK, Rhym LH, Palmiero UC, Bhat B, Heartlein MW, DeRosa F, Anderson DG. Systemic delivery of mRNA and DNA to the lung using polymer-lipid nanoparticles. Biomaterials 2021; 275:120966. [PMID: 34147715 DOI: 10.1016/j.biomaterials.2021.120966] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 12/20/2022]
Abstract
Non-viral vectors offer the potential to deliver nucleic acids including mRNA and DNA into cells in vivo. However, designing materials that effectively deliver to target organs and then to desired compartments within the cell remains a challenge. Here we develop polymeric materials that can be optimized for either DNA transcription in the nucleus or mRNA translation in the cytosol. We synthesized poly(beta amino ester) terpolymers (PBAEs) with modular changes to monomer chemistry to investigate influence on nucleic acid delivery. We identified two PBAEs with a single monomer change as being effective for either DNA (D-90-C12-103) or mRNA (DD-90-C12-103) delivery to lung endothelium following intravenous injection in mice. Physical properties such as particle size or charge did not account for the difference in transfection efficacy. However, endosome co-localization studies revealed that D-90-C12-103 nanoparticles resided in late endosomes to a greater extent than DD-90-C12-103. We compared luciferase expression in vivo and observed that, even with nucleic acid optimized vectors, peak luminescence using mRNA was two orders of magnitude greater than pDNA in the lungs of mice following systemic delivery. This study indicates that different nucleic acids require tailored delivery vectors, and further support the potential of PBAEs as intracellular delivery materials.
Collapse
Affiliation(s)
- James C Kaczmarek
- Deparment of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Asha Kumari Patel
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; National Heart & Lung Institute, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Luke H Rhym
- Deparment of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Umberto Capasso Palmiero
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Department of Chemistry, Materials, And Chemical Engineering, Politecnico di Milano, Via Mancinelli 7, 20131, Milano, Italy
| | | | | | | | - Daniel G Anderson
- Deparment of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
40
|
Nanotechnology-based drug delivery systems for the improved sensitization of tamoxifen. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
41
|
Chan C, Du S, Dong Y, Cheng X. Computational and Experimental Approaches to Investigate Lipid Nanoparticles as Drug and Gene Delivery Systems. Curr Top Med Chem 2021; 21:92-114. [PMID: 33243123 PMCID: PMC8191596 DOI: 10.2174/1568026620666201126162945] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/16/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023]
Abstract
Lipid nanoparticles (LNPs) have been widely applied in drug and gene delivery. More than twenty years ago, DoxilTM was the first LNPs-based drug approved by the US Food and Drug Administration (FDA). Since then, with decades of research and development, more and more LNP-based therapeutics have been used to treat diverse diseases, which often offer the benefits of reduced toxicity and/or enhanced efficacy compared to the active ingredients alone. Here, we provide a review of recent advances in the development of efficient and robust LNPs for drug/gene delivery. We emphasize the importance of rationally combining experimental and computational approaches, especially those providing multiscale structural and functional information of LNPs, to the design of novel and powerful LNP-based delivery systems.
Collapse
Affiliation(s)
- Chun Chan
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Shi Du
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Yizhou Dong
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
- Department of Biomedical Engineering; The Center for Clinical and Translational Science; The Comprehensive Cancer Center; Dorothy M. Davis Heart & Lung Research Institute; Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, USA
| | - Xiaolin Cheng
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
- Biophysics Graduate Program, Translational Data Analytics Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
42
|
Spencer DS, Shodeinde AB, Beckman DW, Luu BC, Hodges HR, Peppas NA. Biodegradable cationic nanogels with tunable size, swelling and pK a for drug delivery. Int J Pharm 2020; 588:119691. [PMID: 32721561 DOI: 10.1016/j.ijpharm.2020.119691] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023]
Abstract
Cationic polymers have garnered significant interest for their utility in intracellular drug delivery and gene therapy. However, due to their associated toxicities, novel synthesis approaches must be explored to develop materials that are biocompatible. The novel library of nanoparticles synthesized in this study exhibit tunable hydrodynamic diameters, composition and pH-responsive properties as a function of synthesis parameters. In addition, differences in the responsiveness of these nanoparticles under different pH conditions affords greater control over intracellular drug release.
Collapse
Affiliation(s)
- D S Spencer
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX 78712, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX 78712, USA
| | - A B Shodeinde
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX 78712, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX 78712, USA
| | - D W Beckman
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX 78712, USA
| | - B C Luu
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - H R Hodges
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - N A Peppas
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX 78712, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX 78712, USA; Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX 78712, USA; Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave. Stop A1900, Austin, TX 78712, USA; Department of Surgery and Perioperative Care, Dell Medical School, 1601 Trinity St., Bldg. B, Stop Z0800, Austin, TX 78712, USA
| |
Collapse
|
43
|
Bulanadi JC, Xue A, Gong X, Bean PA, Julovi SM, de Campo L, Smith RC, Moghaddam MJ. Biomimetic Gemcitabine-Lipid Prodrug Nanoparticles for Pancreatic Cancer. Chempluschem 2020; 85:1283-1291. [PMID: 32543086 DOI: 10.1002/cplu.202000253] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/15/2020] [Indexed: 12/18/2022]
Abstract
Gemcitabine (Gem) is a key drug for pancreatic cancer, yet limited by high systemic toxicity, low bioavailability and poor pharmacokinetic profiles. To overcome these limitations, Gem prodrug amphiphiles were synthesised with oleyl, linoleyl and phytanyl chains. Self-assembly and lyotropic mesophase behaviour of these amphiphiles were examined using polarised optical microscopy and Synchrotron SAXS (SSAXS). Gem-phytanyl was found to form liquid crystalline inverse cubic mesophase. This prodrug was combined with phospholipids and cholesterol to create biomimetic Gem-lipid prodrug nanoparticles (Gem-LPNP), verified by SSAXS and cryo-TEM to form liposomes. In vitro testing of the Gem-LPNP in several pancreatic cancer cell lines showed lower toxicity than Gem. However, in a cell line-derived pancreatic cancer mouse model Gem-LPNP displayed greater tumour growth inhibition than Gem using a fraction (<6 %) of the clinical dose and without any systemic toxicity. The easy production, improved efficacy and low toxicity of Gem-LPNP represents a promising new nanomedicine for pancreatic cancer.
Collapse
Affiliation(s)
- Jerikho C Bulanadi
- CSIRO Manufacturing, P.O. BOX 52, North Ryde, NSW, 1670, Australia
- Cancer Surgery and Metabolism Group, University of Sydney, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| | - Aiqun Xue
- Cancer Surgery and Metabolism Group, University of Sydney, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| | - Xiaojuan Gong
- CSIRO Manufacturing, P.O. BOX 52, North Ryde, NSW, 1670, Australia
- NanoMed Pty Ltd., 2/11-13 Orion Road, Lane Cove West, NSW, 2066, Australia
| | - Penelope A Bean
- CSIRO Manufacturing, P.O. BOX 52, North Ryde, NSW, 1670, Australia
- NanoMed Pty Ltd., 2/11-13 Orion Road, Lane Cove West, NSW, 2066, Australia
| | - Sohel M Julovi
- Cancer Surgery and Metabolism Group, University of Sydney, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| | | | - Ross C Smith
- Cancer Surgery and Metabolism Group, University of Sydney, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
- NanoMed Pty Ltd., 2/11-13 Orion Road, Lane Cove West, NSW, 2066, Australia
| | - Minoo J Moghaddam
- CSIRO Manufacturing, P.O. BOX 52, North Ryde, NSW, 1670, Australia
- NanoMed Pty Ltd., 2/11-13 Orion Road, Lane Cove West, NSW, 2066, Australia
| |
Collapse
|
44
|
Zhang JH, He X, Xiao YP, Zhang J, Wu XR, Yu XQ. Cationic Heteropolymers with Various Functional Groups as Efficient and Biocompatible Nonviral Gene Vectors. ACS APPLIED BIO MATERIALS 2020; 3:3526-3534. [DOI: 10.1021/acsabm.0c00118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Ju-Hui Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xi He
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Ya-Ping Xiao
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Ji Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xiao-Ru Wu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
45
|
Yu X, Liu S, Cheng Q, Wei T, Lee S, Zhang D, Siegwart DJ. Lipid-Modified Aminoglycosides for mRNA Delivery to the Liver. Adv Healthc Mater 2020; 9:e1901487. [PMID: 32108440 PMCID: PMC8152636 DOI: 10.1002/adhm.201901487] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 01/02/2020] [Indexed: 01/10/2023]
Abstract
Cationic lipid nanoparticles (LNPs) are widely used as carriers for delivery of nucleic acids. Most synthetic routes toward cationic lipids have derived from simple amine cores. Greater chemical diversity can be obtained through starting with natural products containing basic nitrogen atoms, which offers routes to more complex molecules. Natural building blocks are not extensively explored, such as aminoglycosides, which are both structurally and functionally interesting for developing new carriers for nucleic acid delivery. Herein, cationic lipid-modified aminoglycosides (CLAs) are explored as a family of vehicles for messenger RNA (mRNA) delivery. CLAs are synthesized from natural existing aminoglycosides coupling with alkyl epoxides and acrylates. The top hit (GT-EP10) is able to deliver Luc mRNA to C57BL/6 mice at a dose of 0.05 mg kg-1 to achieve a 107 average luminescence intensity in the liver. The Lox-Stop-Lox tdTomato mouse model is used to further demonstrate that this efficient mRNA delivery system can be potentially used for gene editing. Successful delivery of human erythropoietin mRNA shows that CLA-based LNPs have promising opportunities for delivery of therapeutic nucleic acids in the future.
Collapse
Affiliation(s)
- Xueliang Yu
- Department of Biochemistry, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Shuai Liu
- Department of Biochemistry, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Qiang Cheng
- Department of Biochemistry, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Tuo Wei
- Department of Biochemistry, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Sang Lee
- Department of Biochemistry, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Di Zhang
- Department of Biochemistry, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Daniel J Siegwart
- Department of Biochemistry, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
46
|
Day CM, Hickey SM, Song Y, Plush SE, Garg S. Novel Tamoxifen Nanoformulations for Improving Breast Cancer Treatment: Old Wine in New Bottles. Molecules 2020; 25:E1182. [PMID: 32151063 PMCID: PMC7179425 DOI: 10.3390/molecules25051182] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/24/2020] [Accepted: 03/01/2020] [Indexed: 12/15/2022] Open
Abstract
Breast cancer (BC) is one of the leading causes of death from cancer in women; second only to lung cancer. Tamoxifen (TAM) is a hydrophobic anticancer agent and a selective estrogen modulator (SERM), approved by the FDA for hormone therapy of BC. Despite having striking efficacy in BC therapy, concerns regarding the dose-dependent carcinogenicity of TAM still persist, restricting its therapeutic applications. Nanotechnology has emerged as one of the most important strategies to solve the issue of TAM toxicity, owing to the ability of nano-enabled-formulations to deliver smaller concentrations of TAM to cancer cells, over a longer period of time. Various TAM-containing-nanosystems have been successfully fabricated to selectively deliver TAM to specific molecular targets found on tumour membranes, reducing unwanted toxic effects. This review begins with an outline of breast cancer, the current treatment options and a history of how TAM has been used as a combatant of BC. A detailed discussion of various nanoformulation strategies used to deliver lower doses of TAM selectively to breast tumours will then follow. Finally, a commentary on future perspectives of TAM being employed as a targeting vector, to guide the delivery of other therapeutic and diagnostic agents selectively to breast tumours will be presented.
Collapse
Affiliation(s)
- Candace M. Day
- School of Pharmacy and Medical Sciences, University of South Australia, Cancer Research Institute, North Terrace, 5000 Adelaide, SA, Australia; (C.M.D.); (S.M.H.); (Y.S.)
| | - Shane M. Hickey
- School of Pharmacy and Medical Sciences, University of South Australia, Cancer Research Institute, North Terrace, 5000 Adelaide, SA, Australia; (C.M.D.); (S.M.H.); (Y.S.)
| | - Yunmei Song
- School of Pharmacy and Medical Sciences, University of South Australia, Cancer Research Institute, North Terrace, 5000 Adelaide, SA, Australia; (C.M.D.); (S.M.H.); (Y.S.)
| | - Sally E. Plush
- School of Pharmacy and Medical Sciences, University of South Australia, Cancer Research Institute, North Terrace, 5000 Adelaide, SA, Australia; (C.M.D.); (S.M.H.); (Y.S.)
- Future Industry Institute, University of South Australia, 5095 Mawson Lakes, SA, Australia
| | - Sanjay Garg
- School of Pharmacy and Medical Sciences, University of South Australia, Cancer Research Institute, North Terrace, 5000 Adelaide, SA, Australia; (C.M.D.); (S.M.H.); (Y.S.)
- Future Industry Institute, University of South Australia, 5095 Mawson Lakes, SA, Australia
| |
Collapse
|
47
|
Parashar D, Rajendran V, Shukla R, Sistla R. Lipid-based nanocarriers for delivery of small interfering RNA for therapeutic use. Eur J Pharm Sci 2020; 142:105159. [DOI: 10.1016/j.ejps.2019.105159] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/03/2019] [Accepted: 11/15/2019] [Indexed: 12/14/2022]
|
48
|
Chen D, Parayath N, Ganesh S, Wang W, Amiji M. The role of apolipoprotein- and vitronectin-enriched protein corona on lipid nanoparticles for in vivo targeted delivery and transfection of oligonucleotides in murine tumor models. NANOSCALE 2019; 11:18806-18824. [PMID: 31595922 DOI: 10.1039/c9nr05788a] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The application of lipid-based nanoparticle (LNP) delivery systems remains a popular strategy for the systemic delivery of gene therapies to specific disease targets, including solid tumors. It is now well acknowledged that upon systemic administration, biomolecules from blood will adsorb onto nanoparticles' surfaces, forming a "protein corona", affording nanoparticles a "biological identity" on top of their "synthetic identity". Detailed analysis of nanoparticle protein corona is gradually revealing the "missing link" between nanoparticle chemical properties and the biological identity. Nevertheless, the discovery of nanoparticle protein corona's impact on tumor delivery is limited. In this study, we demonstrate that protein corona can be manipulated by formulation composition and particle surface charge changes, and a single lipid switch could switch the nanoparticle protein corona profile. The protein corona composition differences had a profound impact on cell transfection, in vivo biodistribution as well as tumor-specific delivery efficiency. Nanoparticles with apolipoprotein-rich corona showed better delivery to hepatocellular carcinoma (HepG2) as compared to those with vitronectin-rich corona. In addition, we found that, the PEG conjugated lipid chain length and PEG amount in LNPs were key factors to consider in successful RNA interference therapy for solid tumors.
Collapse
Affiliation(s)
- Dongyu Chen
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA 02115, USA.
| | - Neha Parayath
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA 02115, USA.
| | | | - Weimin Wang
- Dicerna Pharmaceuticals, Cambridge, MA 02140, USA
| | - Mansoor Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA 02115, USA. and Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
49
|
Miao L, Li L, Huang Y, Delcassian D, Chahal J, Han J, Shi Y, Sadtler K, Gao W, Lin J, Doloff JC, Langer R, Anderson DG. Delivery of mRNA vaccines with heterocyclic lipids increases anti-tumor efficacy by STING-mediated immune cell activation. Nat Biotechnol 2019; 37:1174-1185. [PMID: 31570898 DOI: 10.1038/s41587-019-0247-3] [Citation(s) in RCA: 455] [Impact Index Per Article: 75.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 07/13/2019] [Accepted: 07/29/2019] [Indexed: 12/20/2022]
Abstract
Therapeutic messenger RNA vaccines enable delivery of whole antigens, which can be advantageous over peptide vaccines. However, optimal efficacy requires both intracellular delivery, to allow antigen translation, and appropriate immune activation. Here, we developed a combinatorial library of ionizable lipid-like materials to identify mRNA delivery vehicles that facilitate mRNA delivery in vivo and provide potent and specific immune activation. Using a three-dimensional multi-component reaction system, we synthesized and evaluated the vaccine potential of over 1,000 lipid formulations. The top candidate formulations induced a robust immune response, and were able to inhibit tumor growth and prolong survival in melanoma and human papillomavirus E7 in vivo tumor models. The top-performing lipids share a common structure: an unsaturated lipid tail, a dihydroimidazole linker and cyclic amine head groups. These formulations induce antigen-presenting cell maturation via the intracellular stimulator of interferon genes (STING) pathway, rather than through Toll-like receptors, and result in limited systemic cytokine expression and enhanced anti-tumor efficacy.
Collapse
Affiliation(s)
- Lei Miao
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Linxian Li
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong, China
| | - Yuxuan Huang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Derfogail Delcassian
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Anesthesiology, Boston Children's Hospital, Boston, MA, USA.,Division of Regenerative Medicine and Cellular Therapy, University of Nottingham, Nottingham, UK
| | - Jasdave Chahal
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jinsong Han
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong, China
| | - Yunhua Shi
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kaitlyn Sadtler
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Anesthesiology, Boston Children's Hospital, Boston, MA, USA
| | - Wenting Gao
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jiaqi Lin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joshua C Doloff
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Anesthesiology, Boston Children's Hospital, Boston, MA, USA.,Departments of Biomedical & Materials Science Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute and the Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Anesthesiology, Boston Children's Hospital, Boston, MA, USA.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.,Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Anesthesiology, Boston Children's Hospital, Boston, MA, USA. .,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
50
|
White DT, Saxena MT, Mumm JS. Let's get small (and smaller): Combining zebrafish and nanomedicine to advance neuroregenerative therapeutics. Adv Drug Deliv Rev 2019; 148:344-359. [PMID: 30769046 PMCID: PMC6937731 DOI: 10.1016/j.addr.2019.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 12/21/2018] [Accepted: 01/28/2019] [Indexed: 01/18/2023]
Abstract
Several key attributes of zebrafish make them an ideal model system for the discovery and development of regeneration promoting therapeutics; most notably their robust capacity for self-repair which extends to the central nervous system. Further, by enabling large-scale drug discovery directly in living vertebrate disease models, zebrafish circumvent critical bottlenecks which have driven drug development costs up. This review summarizes currently available zebrafish phenotypic screening platforms, HTS-ready neurodegenerative disease modeling strategies, zebrafish small molecule screens which have succeeded in identifying regeneration promoting compounds and explores how intravital imaging in zebrafish can facilitate comprehensive analysis of nanocarrier biodistribution and pharmacokinetics. Finally, we discuss the benefits and challenges attending the combination of zebrafish and nanoparticle-based drug optimization, highlighting inspiring proof-of-concept studies and looking toward implementation across the drug development community.
Collapse
Affiliation(s)
- David T White
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| | - Meera T Saxena
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA; Luminomics Inc., Baltimore, MD 21286, USA
| | - Jeff S Mumm
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|