1
|
Padzińska-Pruszyńska IB, Taciak B, Kiraga Ł, Smolarska A, Górczak M, Kucharzewska P, Kubiak M, Szeliga J, Matejuk A, Król M. Targeting Cancer: Microenvironment and Immunotherapy Innovations. Int J Mol Sci 2024; 25:13569. [PMID: 39769334 PMCID: PMC11679359 DOI: 10.3390/ijms252413569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
In 2024, the United States was projected to experience 2 million new cancer diagnoses and approximately 611,720 cancer-related deaths, reflecting a broader global trend in which cancer cases are anticipated to exceed 35 million by 2050. This increasing burden highlights ongoing challenges in cancer treatment despite significant advances that have reduced cancer mortality by 31% since 1991. Key obstacles include the disease's inherent heterogeneity and complexity, such as treatment resistance, cancer stem cells, and the multifaceted tumor microenvironment (TME). The TME-comprising various tumor and immune cells, blood vessels, and biochemical factors-plays a crucial role in tumor growth and resistance to therapies. Recent innovations in cancer treatment, particularly in the field of immuno-oncology, have leveraged insights into TME interactions. An emerging example is the FDA-approved therapy using tumor-infiltrating lymphocytes (TILs), demonstrating the potential of cell-based approaches in solid tumors. However, TIL therapy is just one of many strategies being explored. This review provides a comprehensive overview of the emerging field of immuno-oncology, focusing on how novel therapies targeting or harnessing components of the TME could enhance treatment efficacy and address persistent challenges in cancer care.
Collapse
Affiliation(s)
- Irena Barbara Padzińska-Pruszyńska
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| | - Bartłomiej Taciak
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| | - Łukasz Kiraga
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland;
| | - Anna Smolarska
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| | - Małgorzata Górczak
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| | - Paulina Kucharzewska
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| | - Małgorzata Kubiak
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| | - Jacek Szeliga
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| | - Agata Matejuk
- Department of Immunology, Collegium Medicum, University of Zielona Góra, 65-046 Zielona Góra, Poland;
| | - Magdalena Król
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| |
Collapse
|
2
|
Luo L, Zhou H, Wang S, Pang M, Zhang J, Hu Y, You J. The Application of Nanoparticle-Based Imaging and Phototherapy for Female Reproductive Organs Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2207694. [PMID: 37154216 DOI: 10.1002/smll.202207694] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/06/2023] [Indexed: 05/10/2023]
Abstract
Various female reproductive disorders affect millions of women worldwide and bring many troubles to women's daily life. Let alone, gynecological cancer (such as ovarian cancer and cervical cancer) is a severe threat to most women's lives. Endometriosis, pelvic inflammatory disease, and other chronic diseases-induced pain have significantly harmed women's physical and mental health. Despite recent advances in the female reproductive field, the existing challenges are still enormous such as personalization of disease, difficulty in diagnosing early cancers, antibiotic resistance in infectious diseases, etc. To confront such challenges, nanoparticle-based imaging tools and phototherapies that offer minimally invasive detection and treatment of reproductive tract-associated pathologies are indispensable and innovative. Of late, several clinical trials have also been conducted using nanoparticles for the early detection of female reproductive tract infections and cancers, targeted drug delivery, and cellular therapeutics. However, these nanoparticle trials are still nascent due to the body's delicate and complex female reproductive system. The present review comprehensively focuses on emerging nanoparticle-based imaging and phototherapies applications, which hold enormous promise for improved early diagnosis and effective treatments of various female reproductive organ diseases.
Collapse
Affiliation(s)
- Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Huanli Zhou
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Mei Pang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Junlei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Yilong Hu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| |
Collapse
|
3
|
Soltanmohammadi F, Gharehbaba AM, Zangi AR, Adibkia K, Javadzadeh Y. Current knowledge of hybrid nanoplatforms composed of exosomes and organic/inorganic nanoparticles for disease treatment and cell/tissue imaging. Biomed Pharmacother 2024; 178:117248. [PMID: 39098179 DOI: 10.1016/j.biopha.2024.117248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024] Open
Abstract
Exosome-nanoparticle hybrid nanoplatforms, can be prepared by combining exosomes with different types of nanoparticles. The main purpose of combining exosomes with nanoparticles is to overcome the limitations of using each of them as drug delivery systems. Using nanoparticles for drug delivery has some limitations, such as high immunogenicity, poor cellular uptake, low biocompatibility, cytotoxicity, low stability, and rapid clearance by immune cells. However, using exosomes as drug delivery systems also has its own drawbacks, such as poor encapsulation efficiency, low production yield, and the inability to load large molecules. These limitations can be addressed by utilizing hybrid nanoplatforms. Additionally, the use of exosomes allows for targeted delivery within the hybrid system. Exosome-inorganic/organic hybrid nanoparticles may be used for both therapy and diagnosis in the future. This may lead to the development of personalized medicine using hybrid nanoparticles. However, there are a few challenges associated with this. Surface modifications, adding functional groups, surface charge adjustments, and preparing nanoparticles with the desired size are crucial to the possibility of preparing exosome-nanoparticle hybrids. Additional challenges for the successful implementation of hybrid platforms in medical treatments and diagnostics include scaling up the manufacturing process and ensuring consistent quality and reproducibility across various batches. This review focuses on various types of exosome-nanoparticle hybrid systems and also discusses the preparation and loading methods for these hybrid nanoplatforms. Furthermore, the potential applications of these hybrid nanocarriers in drug/gene delivery, disease treatment and diagnosis, and cell/tissue imaging are explained.
Collapse
Affiliation(s)
- Fatemeh Soltanmohammadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Adel Mahmoudi Gharehbaba
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Rajabi Zangi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Javadzadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Wardhani K, Levina A, Grau GER, Lay PA. Fluorescent, phosphorescent, magnetic resonance contrast and radioactive tracer labelling of extracellular vesicles. Chem Soc Rev 2024; 53:6779-6829. [PMID: 38828885 DOI: 10.1039/d2cs00238h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
This review focusses on the significance of fluorescent, phosphorescent labelling and tracking of extracellular vesicles (EVs) for unravelling their biology, pathophysiology, and potential diagnostic and therapeutic uses. Various labeling strategies, such as lipid membrane, surface protein, luminal, nucleic acid, radionuclide, quantum dot labels, and metal complex-based stains, are evaluated for visualizing and characterizing EVs. Direct labelling with fluorescent lipophilic dyes is simple but generally lacks specificity, while surface protein labelling offers selectivity but may affect EV-cell interactions. Luminal and nucleic acid labelling strategies have their own advantages and challenges. Each labelling approach has strengths and weaknesses, which require a suitable probe and technique based on research goals, but new tetranuclear polypyridylruthenium(II) complexes as phosphorescent probes have strong phosphorescence, selective staining, and stability. Future research should prioritize the design of novel fluorescent probes and labelling platforms that can significantly enhance the efficiency, accuracy, and specificity of EV labeling, while preserving their composition and functionality. It is crucial to reduce false positive signals and explore the potential of multimodal imaging techniques to gain comprehensive insights into EVs.
Collapse
Affiliation(s)
- Kartika Wardhani
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
- Biochemistry and Biotechnology (B-TEK) Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Aviva Levina
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
| | - Georges E R Grau
- Sydney Nano, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Cancer Network, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Marie Bashir Institute, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Peter A Lay
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
- Sydney Nano, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Cancer Network, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Marie Bashir Institute, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Analytical, The University of Sydney, Sydney, New South Wales, 2006, Australia
| |
Collapse
|
5
|
Tiwari P, Yadav K, Shukla RP, Gautam S, Marwaha D, Sharma M, Mishra PR. Surface modification strategies in translocating nano-vesicles across different barriers and the role of bio-vesicles in improving anticancer therapy. J Control Release 2023; 363:290-348. [PMID: 37714434 DOI: 10.1016/j.jconrel.2023.09.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
Nanovesicles and bio-vesicles (BVs) have emerged as promising tools to achieve targeted cancer therapy due to their ability to overcome many of the key challenges currently being faced with conventional chemotherapy. These challenges include the diverse and often complex pathophysiology involving the progression of cancer, as well as the various biological barriers that circumvent therapeutic molecules reaching their target site in optimum concentration. The scientific evidence suggests that surface-functionalized nanovesicles and BVs camouflaged nano-carriers (NCs) both can bypass the established biological barriers and facilitate fourth-generation targeting for the improved regimen of treatment. In this review, we intend to emphasize the role of surface-functionalized nanovesicles and BVs camouflaged NCs through various approaches that lead to an improved internalization to achieve improved and targeted oncotherapy. We have explored various strategies that have been employed to surface-functionalize and biologically modify these vesicles, including the use of biomolecule functionalized target ligands such as peptides, antibodies, and aptamers, as well as the targeting of specific receptors on cancer cells. Further, the utility of BVs, which are made from the membranes of cells such as mesenchymal stem cells (MSCs), white blood cells (WBCs), red blood cells (RBCs), platelets (PLTs) as well as cancer cells also been investigated. Lastly, we have discussed the translational challenges and limitations that these NCs can encounter and still need to be overcome in order to fully realize the potential of nanovesicles and BVs for targeted cancer therapy. The fundamental challenges that currently prevent successful cancer therapy and the necessity of novel delivery systems are in the offing.
Collapse
Affiliation(s)
- Pratiksha Tiwari
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Krishna Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Ravi Prakash Shukla
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shalini Gautam
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Disha Marwaha
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Madhu Sharma
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, U.P., India.
| |
Collapse
|
6
|
Mishra S, Kumarasamy M. Microfluidics engineering towards personalized oncology-a review. IN VITRO MODELS 2023; 2:69-81. [PMID: 39871996 PMCID: PMC11756504 DOI: 10.1007/s44164-023-00054-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 01/29/2025]
Abstract
Identifying and monitoring the presence of cancer metastasis and highlighting inter-and intratumoral heterogeneity is a central tenet of targeted precision oncology medicine (POM). This process of relocation of cancer cells is often referred to as the missing link between a tumor and metastasis. In recent years, microfluidic technologies have been developed to isolate a plethora of different biomarkers, such as circulating tumor cells (CTCs), tumor-derived vesicles (exosomes), or cell/free nucleic acids and proteins directly from patients' blood samples. With the advent of microfluidic developments, minimally invasive and quantitative assessment of different tumors is becoming a reality. This short review article will touch briefly on how microfluidics at early-stage achievements can be combined or developed with the active vs passive microfluidic technologies, depending on whether they utilize external fields and forces (active) or just microchannel geometry and inherent fluid forces (passive) from the market to precision oncology research and our future prospectives in terms of the emergence of ultralow cost and rapid prototyping of microfluidics in precision oncology.
Collapse
Affiliation(s)
- Sushmita Mishra
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur (NIPERHajipur) Export Promotion Industrial Park (EPIP), Industrial Area, Vaishali, 844102 Bihar India
| | - Murali Kumarasamy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur (NIPERHajipur) Export Promotion Industrial Park (EPIP), Industrial Area, Vaishali, 844102 Bihar India
| |
Collapse
|
7
|
Zheng D, Ruan H, Chen W, Zhang Y, Cui W, Chen H, Shen H. Advances in extracellular vesicle functionalization strategies for tissue regeneration. Bioact Mater 2023; 25:500-526. [PMID: 37056271 PMCID: PMC10087114 DOI: 10.1016/j.bioactmat.2022.07.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/06/2022] [Accepted: 07/19/2022] [Indexed: 11/02/2022] Open
Abstract
Extracellular vesicles (EVs) are nano-scale vesicles derived by cell secretion with unique advantages such as promoting cell proliferation, anti-inflammation, promoting blood vessels and regulating cell differentiation, which benefit their wide applications in regenerative medicine. However, the in vivo therapeutic effect of EVs still greatly restricted by several obstacles, including the off-targetability, rapid blood clearance, and undesired release. To address these issues, biomedical engineering techniques are vastly explored. This review summarizes different strategies to enhance EV functions from the perspective of drug loading, modification, and combination of biomaterials, and emphatically introduces the latest developments of functionalized EV-loaded biomaterials in different diseases, including cardio-vascular system diseases, osteochondral disorders, wound healing, nerve injuries. Challenges and future directions of EVs are also discussed.
Collapse
Affiliation(s)
- Dandan Zheng
- Department of Spine Surgery, Renji Hospital, Shanghai JiaoTong University School of Medicine, 160 Pujian Road, Shanghai, 200127, PR China
| | - Huitong Ruan
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Wei Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Yuhui Zhang
- Department of Spine Surgery, Renji Hospital, Shanghai JiaoTong University School of Medicine, 160 Pujian Road, Shanghai, 200127, PR China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Hao Chen
- Department of Spine Surgery, Renji Hospital, Shanghai JiaoTong University School of Medicine, 160 Pujian Road, Shanghai, 200127, PR China
| | - Hongxing Shen
- Department of Spine Surgery, Renji Hospital, Shanghai JiaoTong University School of Medicine, 160 Pujian Road, Shanghai, 200127, PR China
| |
Collapse
|
8
|
Wu M, Wang M, Jia H, Wu P. Extracellular vesicles: emerging anti-cancer drugs and advanced functionalization platforms for cancer therapy. Drug Deliv 2022; 29:2513-2538. [PMID: 35915054 PMCID: PMC9347476 DOI: 10.1080/10717544.2022.2104404] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Increasing evidences show that unmodified extracellular vesicles (EVs) derived from various cells can effectively inhibit the malignant progression of different types of tumors by delivering the bioactive molecules. Therefore, EVs are expected to be developed as emerging anticancer drugs. Meanwhile, unmodified EVs as an advanced and promising nanocarrier that is frequently used in targeted delivery therapeutic cargos and personalized reagents for the treatment and diagnosis of cancer. To improve the efficacy of EV-based treatments, researchers are trying to engineering EVs as an emerging nanomedicine translational therapy platform through biological, physical and chemical approaches, which can be broaden and altered to enhance their therapeutic capability. EVs loaded with therapeutic components such as tumor suppressor drugs, siRNAs, proteins, peptides, and conjugates exhibit significantly enhanced anti-tumor effects. Moreover, the design and preparation of tumor-targeted modified EVs greatly enhance the specificity and effectiveness of tumor therapy, and these strategies are expected to become novel ideas for tumor precision medicine. This review will focus on reviewing the latest research progress of functionalized EVs, clarifying the superior biological functions and powerful therapeutic potential of EVs, for researchers to explore new design concepts based on EVs and build next-generation nanomedicine therapeutic platforms.
Collapse
Affiliation(s)
- Manling Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of UST C, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China
- Anhui Provincial Children’s Hospital, Hefei, Anhui, P.R. China
| | - Min Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Haoyuan Jia
- Department of Clinical Laboratory, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, P.R. China
| | - Peipei Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of UST C, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China
- Anhui Provincial Children’s Hospital, Hefei, Anhui, P.R. China
| |
Collapse
|
9
|
Percivalle NM, Carofiglio M, Conte M, Rosso G, Bentivogli A, Mesiano G, Vighetto V, Cauda V. Artificial and Naturally Derived Phospholipidic Bilayers as Smart Coatings of Solid-State Nanoparticles: Current Works and Perspectives in Cancer Therapy. Int J Mol Sci 2022; 23:ijms232415815. [PMID: 36555455 PMCID: PMC9779745 DOI: 10.3390/ijms232415815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/24/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Recent advances in nanomedicine toward cancer treatment have considered exploiting liposomes and extracellular vesicles as effective cargos to deliver therapeutic agents to tumor cells. Meanwhile, solid-state nanoparticles are continuing to attract interest for their great medical potential thanks to their countless properties and possible applications. However, possible drawbacks arising from the use of nanoparticles in nanomedicine, such as the nonspecific uptake of these materials in healthy organs, their aggregation in biological environments and their possible immunogenicity, must be taken into account. Considering these limitations and the intrinsic capability of phospholipidic bilayers to act as a biocompatible shield, their exploitation for effectively encasing solid-state nanoparticles seems a promising strategy to broaden the frontiers of cancer nanomedicine, also providing the possibility to engineer the lipid bilayers to further enhance the therapeutic potential of such nanotools. This work aims to give a comprehensive overview of the latest developments in the use of artificial liposomes and naturally derived extracellular vesicles for the coating of solid-state nanoparticles for cancer treatment, starting from in vitro works until the up-to-date advances and current limitations of these nanopharmaceutics in clinical applications, passing through in vivo and 3D cultures studies.
Collapse
|
10
|
Shi R, Dong Z, Ma C, Wu R, Lv R, Liu S, Ren Y, Liu Z, van der Mei HC, Busscher HJ, Liu J. High-Yield, Magnetic Harvesting of Extracellular Outer-Membrane Vesicles from Escherichia coli. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204350. [PMID: 36269872 DOI: 10.1002/smll.202204350] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Extracellular outer-membrane vesicles (OMVs) are attractive for use as drug nanocarriers, because of their high biocompatibility and ability to enter cells. However, widespread use is hampered by low yields. Here, a high-yield method for magnetic harvesting of OMVs from Escherichia coli is described. To this end, E. coli are grown in the presence of magnetic iron-oxide nanoparticles (MNPs). Uptake of MNPs by E. coli is low and does not increase secretion of OMVs. Uptake of MNPs can be enhanced through PEGylation of MNPs. E. coli growth in the presence of PEGylated MNPs increases bacterial MNP-uptake and OMV-secretion, accompanied by upregulation of genes involved in OMV-secretion. OMVs containing MNPs can be magnetically harvested at 60-fold higher yields than achieved by ultracentrifugation. Functionally, magnetically-harvested OMVs and OMVs harvested by ultracentrifugation are both taken-up in similar numbers by bacteria. Uniquely, in an applied magnetic field, magnetically-harvested OMVs with MNPs accumulate over the entire depth of an infectious biofilm. OMVs harvested by ultracentrifugation without MNPs only accumulate near the biofilm surface. In conclusion, PEGylation of MNPs is essential for their uptake in E. coli and yields magnetic OMVs allowing high-yield magnetic-harvesting. Moreover, magnetic OMVs can be magnetically targeted to a cargo delivery site in the human body.
Collapse
Affiliation(s)
- Rui Shi
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Rd, Suzhou, Jiangsu, 215123, P. R. China
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Ziliang Dong
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Rd, Suzhou, Jiangsu, 215123, P. R. China
| | - Chongqing Ma
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Rd, Suzhou, Jiangsu, 215123, P. R. China
| | - Renfei Wu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Rd, Suzhou, Jiangsu, 215123, P. R. China
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Rui Lv
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Rd, Suzhou, Jiangsu, 215123, P. R. China
| | - Sidi Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Rd, Suzhou, Jiangsu, 215123, P. R. China
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Yijin Ren
- Department of Orthodontics, University of Groningen and University Medical Center of Groningen, Hanzeplein 1, Groningen, 9700 RB, The Netherlands
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Rd, Suzhou, Jiangsu, 215123, P. R. China
| | - Henny C van der Mei
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Henk J Busscher
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Jian Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Rd, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
11
|
Qian K, Fu W, Li T, Zhao J, Lei C, Hu S. The roles of small extracellular vesicles in cancer and immune regulation and translational potential in cancer therapy. J Exp Clin Cancer Res 2022; 41:286. [PMID: 36167539 PMCID: PMC9513874 DOI: 10.1186/s13046-022-02492-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022] Open
Abstract
Extracellular vesicles (EVs) facilitate the extracellular transfer of proteins, lipids, and nucleic acids and mediate intercellular communication among multiple cells in the tumour environment. Small extracellular vesicles (sEVs) are defined as EVs range in diameter from approximately 50 to 150 nm. Tumour-derived sEVs (TDsEVs) and immune cell-derived sEVs have significant immunological activities and participate in cancer progression and immune responses. Cancer-specific molecules have been identified on TDsEVs and can function as biomarkers for cancer diagnosis and prognosis, as well as allergens for TDsEVs-based vaccination. Various monocytes, including but not limited to dendritic cells (DCs), B cells, T cells, natural killer (NK) cells, macrophages, and myeloid-derived suppressor cells (MDSCs), secrete sEVs that regulate immune responses in the complex immune network with either protumour or antitumour effects. After engineered modification, sEVs from immune cells and other donor cells can provide improved targeting and biological effects. Combined with their naïve characteristics, these engineered sEVs hold great potential as drug carriers. When used in a variety of cancer therapies, they can adjunctly enhance the safety and antitumor efficacy of multiple therapeutics. In summary, both naïve sEVs in the tumour environment and engineered sEVs with effector cargoes are regarded as showing promising potential for use in cancer diagnostics and therapeutics.
Collapse
|
12
|
Xu J, Cao W, Wang P, Liu H. Tumor-Derived Membrane Vesicles: A Promising Tool for Personalized Immunotherapy. Pharmaceuticals (Basel) 2022; 15:ph15070876. [PMID: 35890175 PMCID: PMC9318328 DOI: 10.3390/ph15070876] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor-derived membrane vesicles (TDMVs) are non-invasive, chemotactic, easily obtained characteristics and contain various tumor-borne substances, such as nucleic acid and proteins. The unique properties of tumor cells and membranes make them widely used in drug loading, membrane fusion and vaccines. In particular, personalized vectors prepared using the editable properties of cells can help in the design of personalized vaccines. This review focuses on recent research on TDMV technology and its application in personalized immunotherapy. We elucidate the strengths and challenges of TDMVs to promote their application from theory to clinical practice.
Collapse
Affiliation(s)
- Jiabin Xu
- School of Stomatology, Xuzhou Medical University, Xuzhou 221004, China; (J.X.); (P.W.)
- Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou 221004, China
| | - Wenqiang Cao
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Jinan University, Zhuhai 519000, China;
| | - Penglai Wang
- School of Stomatology, Xuzhou Medical University, Xuzhou 221004, China; (J.X.); (P.W.)
- Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou 221004, China
| | - Hong Liu
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Jinan University, Zhuhai 519000, China;
- Correspondence:
| |
Collapse
|
13
|
Jiang XC, Zhang T, Gao JQ. The in vivo fate and targeting engineering of crossover vesicle-based gene delivery system. Adv Drug Deliv Rev 2022; 187:114324. [PMID: 35640803 DOI: 10.1016/j.addr.2022.114324] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/22/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022]
Abstract
Exosomes and biomimetic vesicles are widely used for gene delivery because of their excellent gene loading capacity and stability and their natural targeting delivery potential. These vesicles take advantages of both cell-based bioactive delivery system and synthetical lipid-derived nanovectors to form crossover characteristics. To further optimize the specific targeting properties of crossover vesicles, studies of their in vivo fate and various engineering approaches including nanobiotechnology are required. This review describes the preparation process of exosomes and biomimetic vesicles, and summarizes the mechanism of loading and delivery of nucleic acids or gene editing systems. We provide a comprehensive overview of the techniques employed for preparing the targeting crossover vesicles based on their cellular uptake and targeting mechanism. To delineate the future prospects of crossover vesicle gene delivery systems, various challenges and clinical applications of vesicles have also been discussed.
Collapse
|
14
|
Hu Y, Sun Y, Wan C, Dai X, Wu S, Lo PC, Huang J, Lovell JF, Jin H, Yang K. Microparticles: biogenesis, characteristics and intervention therapy for cancers in preclinical and clinical research. J Nanobiotechnology 2022; 20:189. [PMID: 35418077 PMCID: PMC9006557 DOI: 10.1186/s12951-022-01358-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/08/2022] [Indexed: 12/24/2022] Open
Abstract
Extracellular vesicles (EVs), spherical biological vesicles, mainly contain nucleic acids, proteins, lipids and metabolites for biological information transfer between cells. Microparticles (MPs), a subtype of EVs, directly emerge from plasma membranes, and have gained interest in recent years. Specific cell stimulation conditions, such as ultraviolet and X-rays irradiation, can induce the release of MPs, which are endowed with unique antitumor functionalities, either for therapeutic vaccines or as direct antitumor agents. Moreover, the size of MPs (100–1000 nm) and their spherical structures surrounded by a lipid bilayer membrane allow MPs to function as delivery vectors for bioactive antitumor compounds, with favorable phamacokinetic behavior, immunostimulatory activity and biological function, without inherent carrier-specific toxic side effects. In this review, the mechanisms underlying MP biogenesis, factors that influence MP production, properties of MP membranes, size, composition and isolation methods of MPs are discussed. Additionally, the applications and mechanisms of action of MPs, as well as the main hurdles for their applications in cancer management, are introduced.
Collapse
Affiliation(s)
- Yan Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yajie Sun
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chao Wan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaomeng Dai
- Department of Medical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shuhui Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Pui-Chi Lo
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong kong, China
| | - Jing Huang
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Honglin Jin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
15
|
Chen Y, Hou S. Application of magnetic nanoparticles in cell therapy. Stem Cell Res Ther 2022; 13:135. [PMID: 35365206 PMCID: PMC8972776 DOI: 10.1186/s13287-022-02808-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/09/2022] [Indexed: 02/08/2023] Open
Abstract
Fe3O4 magnetic nanoparticles (MNPs) are biomedical materials that have been approved by the FDA. To date, MNPs have been developed rapidly in nanomedicine and are of great significance. Stem cells and secretory vesicles can be used for tissue regeneration and repair. In cell therapy, MNPs which interact with external magnetic field are introduced to achieve the purpose of cell directional enrichment, while MRI to monitor cell distribution and drug delivery. This paper reviews the size optimization, response in external magnetic field and biomedical application of MNPs in cell therapy and provides a comprehensive view.
Collapse
Affiliation(s)
- Yuling Chen
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China. .,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China.
| | - Shike Hou
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| |
Collapse
|
16
|
Scutigliani EM, Kochan JA, Desclos ECB, Jonker A, Heger M, Krawczyk PM. Super-Resolution Imaging of Intracellular Lipid Nanocarriers to Study Drug Delivery in Photodynamic Therapy. Methods Mol Biol 2022; 2451:703-709. [PMID: 35505042 DOI: 10.1007/978-1-0716-2099-1_37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Liposomal nanocarriers are intensively investigated as delivery vehicles for photoactivatable agents used in photodynamic therapy (PDT). The uptake, intracellular distribution, and processing of the nanocarriers are of paramount importance for the effectiveness of the therapy; visualization and analysis of these processes can, therefore, stimulate the development of improved PDT modalities. Here we describe a simple protocol, based on super-resolution imaging, that can be used for detailed quantification of concentration, distribution, and size of individual lipid nanocarriers in adherent mammalian cells.
Collapse
Affiliation(s)
- Enzo M Scutigliani
- Department of Medical Biology, Amsterdam University Medical Centers (location AMC), Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Jakub A Kochan
- Department of Medical Biology, Amsterdam University Medical Centers (location AMC), Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Emilie C B Desclos
- Department of Medical Biology, Amsterdam University Medical Centers (location AMC), Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Art Jonker
- Department of Medical Biology, Amsterdam University Medical Centers (location AMC), Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, P. R. China
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Przemek M Krawczyk
- Department of Medical Biology, Amsterdam University Medical Centers (location AMC), Cancer Center Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Kumar TSJ, Arumugam M. Optical Properties of Magnetic Nanoalloys and Nanocomposites. HANDBOOK OF MAGNETIC HYBRID NANOALLOYS AND THEIR NANOCOMPOSITES 2022:547-573. [DOI: 10.1007/978-3-030-90948-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
18
|
Kumar TSJ, Arumugam M. Optical Properties of Magnetic Nanoalloys and Nanocomposites. HANDBOOK OF MAGNETIC HYBRID NANOALLOYS AND THEIR NANOCOMPOSITES 2022:1-27. [DOI: 10.1007/978-3-030-34007-0_18-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 02/25/2022] [Indexed: 06/16/2023]
|
19
|
Aubertin K, Piffoux M, Sebbagh A, Gauthier J, Silva AKA, Gazeau F. [Therapeutic applications of extracellular vesicles]. Med Sci (Paris) 2021; 37:1146-1157. [PMID: 34928219 DOI: 10.1051/medsci/2021207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Extracellular vesicles, secreted spontaneously or in response to stress by all cell types, are proposed as alternative biotherapies to cellular therapies and to synthetic nanomedicines. Their logistical advantages (storage, stability, availability, tolerance), their ability to cross biological barriers, to deliver their contents (proteins, lipids and nucleic acids) in order to modify their target cells, as well as their immunomodulatory and regenerative activities, are of growing interest for a very wide spectrum of diseases. Here we review the challenges to bring these biotherapies to the clinic and discuss some promising applications in cancer and regenerative medicine.
Collapse
Affiliation(s)
- Kelly Aubertin
- Laboratoire matière et systèmes complexes (MSC), université de Paris, CNRS UMR7057, 45 rue des Saints Pères, 75006 Paris, France
| | - Max Piffoux
- Service d'Oncologie médicale, Centre Léon Bérard, Lyon, France - Oncologie médicale, Institut de Cancérologie des Hospices Civils de Lyon (IC-HCL), CITOHL, Centre Hospitalier Lyon-Sud, Lyon, France
| | - Anna Sebbagh
- Laboratoire matière et systèmes complexes (MSC), université de Paris, CNRS UMR7057, 45 rue des Saints Pères, 75006 Paris, France
| | | | - Amanda K A Silva
- Laboratoire matière et systèmes complexes (MSC), université de Paris, CNRS UMR7057, 45 rue des Saints Pères, 75006 Paris, France
| | - Florence Gazeau
- Laboratoire matière et systèmes complexes (MSC), université de Paris, CNRS UMR7057, 45 rue des Saints Pères, 75006 Paris, France
| |
Collapse
|
20
|
Silva AKA, Morille M, Piffoux M, Arumugam S, Mauduit P, Larghero J, Bianchi A, Aubertin K, Blanc-Brude O, Noël D, Velot E, Ravel C, Elie-Caille C, Sebbagh A, Boulanger C, Wilhelm C, Rahmi G, Raymond-Letron I, Cherukula K, Montier T, Martinaud C, Bach JM, Favre-Bulle O, Spadavecchia J, Jorgensen C, Menasché P, Aussel C, Chopineau J, Mosser M, Ullah M, Sailliet N, Luciani N, Mathieu N, Rautou PE, Brouard S, Boireau W, Jauliac S, Dedier M, Trouvin JH, Gazeau F, Trouillas M, Peltzer J, Monsel A, Banzet S. Development of extracellular vesicle-based medicinal products: A position paper of the group "Extracellular Vesicle translatiOn to clinicaL perspectiVEs - EVOLVE France". Adv Drug Deliv Rev 2021; 179:114001. [PMID: 34673131 DOI: 10.1016/j.addr.2021.114001] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EV) are emergent therapeutic effectors that have reached clinical trial investigation. To translate EV-based therapeutic to clinic, the challenge is to demonstrate quality, safety, and efficacy, as required for any medicinal product. EV research translation into medicinal products is an exciting and challenging perspective. Recent papers, provide important guidance on regulatory aspects of pharmaceutical development, defining EVs for therapeutic applications and critical considerations for the development of potency tests. In addition, the ISEV Task Force on Regulatory Affairs and Clinical Use of EV-based Therapeutics as well as the Exosomes Committee from the ISCT are expected to contribute in an active way to the development of EV-based medicinal products by providing update on the scientific progress in EVs field, information to patients and expert resource network for regulatory bodies. The contribution of our work group "Extracellular Vesicle translatiOn to clinicaL perspectiVEs - EVOLVE France", created in 2020, can be positioned in complement to all these important initiatives. Based on complementary scientific, technical, and medical expertise, we provide EV-specific recommendations for manufacturing, quality control, analytics, non-clinical development, and clinical trials, according to current European legislation. We especially focus on early phase clinical trials concerning immediate needs in the field. The main contents of the investigational medicinal product dossier, marketing authorization applications, and critical guideline information are outlined for the transition from research to clinical development and ultimate market authorization.
Collapse
Affiliation(s)
- Amanda K A Silva
- Laboratoire Matière et Systèmes Complexes (UMR 7057), Paris, France.
| | - Marie Morille
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
| | - Max Piffoux
- Laboratoire Matière et Systèmes Complexes (UMR 7057), Paris, France; INSERM UMR 1197 - Interaction cellules souches-niches: physiologie, tumeurs et réparation tissulaire, 94807 Villejuif, France; Service d'oncologie médicale, Centre Léon Bérard, 69008 Lyon, France
| | | | - Phlippe Mauduit
- INSERM UMR 1197 - Interaction cellules souches-niches: physiologie, tumeurs et réparation tissulaire, 94807 Villejuif, France; Université Paris Saclay, Hôpital Paul Brousse, 94807 Villejuif, France
| | - Jérôme Larghero
- AP-HP, Hôpital Saint-Louis, Centre MEARY de Thérapie Cellulaire et Génique, Unité de Thérapie Cellulaire, 75010 Paris, France; Université de Paris, U976 et CIC-BT, INSERM, 1 avenue Claude Vellefaux, 75010 Paris, France
| | - Arnaud Bianchi
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | - Kelly Aubertin
- Laboratoire Matière et Systèmes Complexes (UMR 7057), Paris, France
| | - Olivier Blanc-Brude
- Paris Centre de Recherche Cardiovasculaire (ParCC), U970 INSERM-Université de Paris, F-75737 Paris cedex 15, France
| | - Danièle Noël
- IRMB, University of Montpellier, INSERM, Montpellier, France; Consortium ECell, France
| | - Emilie Velot
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France; Campus Brabois-Santé, Faculté de Pharmacie, Université de Lorraine, France
| | - Célia Ravel
- CHU Rennes, Département de Gynécologie-Obstétrique et Reproduction-CECOS, 35000 Rennes, France; Université de Rennes, INSERM, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR-S 1085, F-35000 Rennes, France
| | - Céline Elie-Caille
- Institut FEMTO-ST, UMR 6174 CNRS-Université de Bourgogne Franche-Comté, 25030 Besançon, France
| | - Anna Sebbagh
- Laboratoire Matière et Systèmes Complexes (UMR 7057), Paris, France
| | - Chantal Boulanger
- Paris Centre de Recherche Cardiovasculaire (ParCC), U970 INSERM-Université de Paris, F-75737 Paris cedex 15, France
| | - Claire Wilhelm
- Laboratoire PhysicoChimie Curie, Institut Curie, PSL Research University-Sorbonne Université-CNRS, 75005 Paris, France
| | - Gabriel Rahmi
- Service de gastro-entérologie, Hôpital Européen Georges Pompidou, 75015 Paris, France; Université de Paris, France
| | - Isabelle Raymond-Letron
- Département des Sciences Biologiques et Fonctionnelles, Laboratoire d'HistoPathologie Expérimentale et Comparée (LabHPEC), ENVT, Université de Toulouse, 31076 Toulouse, France; STROMALab, CNRS ERL5311, EFS, ENVT, INSERM U1031, Université de Toulouse, 31100 Toulouse, France
| | | | - Tristan Montier
- Université de Brest, INSERM, EFS, UMR 1078, GGB, F-29200 Brest, France; CHRU de Brest, Service de Génétique Médicale et Biologie de la Reproduction, F-29200 Brest, France
| | - Christophe Martinaud
- INSERM UMR 1197 - Interaction cellules souches-niches: physiologie, tumeurs et réparation tissulaire, 94807 Villejuif, France; Consortium ECell, France; Centre de Transfusion Sanguine des Armées, 92140 Clamart, France
| | - Jean-Marie Bach
- Immuno-Endocrinologie Cellulaire et Moléculaire, IECM, ONIRIS, INRAE, USC1383, 44300 Nantes, France
| | | | | | - Christian Jorgensen
- IRMB, University of Montpellier, INSERM, Montpellier, France; Consortium ECell, France
| | - Philippe Menasché
- Paris Centre de Recherche Cardiovasculaire (ParCC), U970 INSERM-Université de Paris, F-75737 Paris cedex 15, France; Service de chirurgie cardiovasculaire, Hôpital Européen Georges Pompidou, France
| | - Clotilde Aussel
- INSERM UMR 1197 - Interaction cellules souches-niches: physiologie, tumeurs et réparation tissulaire, 94807 Villejuif, France; Institut de Recherche Biomédicale des Armées, Clamart, France
| | - Joël Chopineau
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
| | - Mathilde Mosser
- Immuno-Endocrinologie Cellulaire et Moléculaire, IECM, ONIRIS, INRAE, USC1383, 44300 Nantes, France
| | - Matti Ullah
- Laboratoire Matière et Systèmes Complexes (UMR 7057), Paris, France
| | - Nicolas Sailliet
- CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | - Nathalie Luciani
- Laboratoire Matière et Systèmes Complexes (UMR 7057), Paris, France
| | - Noëlle Mathieu
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Human Health Department, PSE-SANTE, SERAMED, LRMed, 92262 Fontenay-aux-Roses, France
| | - Pierre-Emmanuel Rautou
- Université de Paris, AP-HP, Service d'Hépatologie, Hôpital Beaujon, DMU DIGEST, Centre de Référence des Maladies Vasculaires du Foie, FILFOIE, ERN RARE-LIVER, Centre de recherche sur l'inflammation, INSERM UMR 1149, 75475 Paris, France
| | - Sophie Brouard
- CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | - Wilfrid Boireau
- Institut FEMTO-ST, UMR 6174 CNRS-Université de Bourgogne Franche-Comté, 25030 Besançon, France
| | - Sébastien Jauliac
- Université de Paris, Research Saint Louis Institute (IRSL), INSERM HIPI U976, F-75010 Paris, France
| | - Marianne Dedier
- INSERM UMR 1197 - Interaction cellules souches-niches: physiologie, tumeurs et réparation tissulaire, 94807 Villejuif, France; Institut de Recherche Biomédicale des Armées, Clamart, France
| | | | - Florence Gazeau
- Laboratoire Matière et Systèmes Complexes (UMR 7057), Paris, France
| | - Marina Trouillas
- INSERM UMR 1197 - Interaction cellules souches-niches: physiologie, tumeurs et réparation tissulaire, 94807 Villejuif, France; Consortium ECell, France; Institut de Recherche Biomédicale des Armées, Clamart, France
| | - Juliette Peltzer
- INSERM UMR 1197 - Interaction cellules souches-niches: physiologie, tumeurs et réparation tissulaire, 94807 Villejuif, France; Consortium ECell, France; Institut de Recherche Biomédicale des Armées, Clamart, France
| | - Antoine Monsel
- Service d'anesthésie réanimation, Hôpital La Pitié-Salpêtrière, APHP, Sorbonne Université, 75005 Paris, France; INSERM UMR S 959, Immunologie Immunopathologie Immunothérapeutique (I3), Sorbonne Université, Paris F-75005, France
| | - Sébastien Banzet
- INSERM UMR 1197 - Interaction cellules souches-niches: physiologie, tumeurs et réparation tissulaire, 94807 Villejuif, France; Consortium ECell, France; Institut de Recherche Biomédicale des Armées, Clamart, France.
| |
Collapse
|
21
|
Biocompatible Nanocarriers for Enhanced Cancer Photodynamic Therapy Applications. Pharmaceutics 2021; 13:pharmaceutics13111933. [PMID: 34834348 PMCID: PMC8624654 DOI: 10.3390/pharmaceutics13111933] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023] Open
Abstract
In recent years, the role of nanotechnology in drug delivery has become increasingly important, and this field of research holds many potential benefits for cancer treatment, particularly, in achieving cancer cell targeting and reducing the side effects of anticancer drugs. Biocompatible and biodegradable properties have been essential for using a novel material as a carrier molecule in drug delivery applications. Biocompatible nanocarriers are easy to synthesize, and their surface chemistry often enables them to load different types of photosensitizers (PS) to use targeted photodynamic therapy (PDT) for cancer treatment. This review article explores recent studies on the use of different biocompatible nanocarriers, their potential applications in PDT, including PS-loaded biocompatible nanocarriers, and the effective targeting therapy of PS-loaded biocompatible nanocarriers in PDT for cancer treatment. Furthermore, the review briefly recaps the global clinical trials of PDT and its applications in cancer treatment.
Collapse
|
22
|
Engineering and loading therapeutic extracellular vesicles for clinical translation: A data reporting frame for comparability. Adv Drug Deliv Rev 2021; 178:113972. [PMID: 34509573 DOI: 10.1016/j.addr.2021.113972] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/06/2021] [Accepted: 09/07/2021] [Indexed: 02/08/2023]
Abstract
Extracellular vesicles (EVs) have emerged as new drug delivery systems as well as a regenerative cell-free effectors going beyond academic research to reach industrial research and development (R&D). Many proof-of-concept studies are now published describing the delivery of drugs, nanoparticles or biologics among which nucleic acids, proteins, viruses, etc. Their main interests rely on their intrinsic biocompatibility, targeting capabilities and biological activities. The possibility of loading EVs with exogenous therapeutic drug/nanoparticles or imaging tracers opens up the perspectives to extend EV therapeutic properties and enable EV tracking. Clinical translation is still hampered by the difficulty to produce and load EVs with large scale, efficient and cGMP methods. In this review, we critically discuss important notions related to EV engineering and the methods available with a particular focus on technologies fitted for clinical translation. Besides, we provide a tentative data reporting frame in order to support comparability and standardization in the field.
Collapse
|
23
|
Kawassaki RK, Romano M, Dietrich N, Araki K. Titanium and Iron Oxide Nanoparticles for Cancer Therapy: Surface Chemistry and Biological Implications. FRONTIERS IN NANOTECHNOLOGY 2021; 3. [DOI: 10.3389/fnano.2021.735434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Currently, cancer is among the most challenging diseases due to its ability to continuously evolve into a more complex muldimentional system, in addition to its high capability to spread to other organs and tissues. In this context, the relevance of nanobiomaterials (NBMs) for the development of new more effective and less harmful treatments is increasing. NBMs provide the possibility of combining several functionalities on a single system, expectedly in a synergic way, to better perform the treatment and cure. However, the control of properties such as colloidal stability, circulation time, pharmacokinetics, and biodistribution, assuring the concentration in specific target tissues and organs, while keeping all desired properties, tends to be dependent on subtle changes in surface chemistry. Hence, the behavior of such materials in different media/environments is of uttermost relevance and concern since it can compromise their efficiency and safety on application. Given the bright perspectives, many efforts have been focused on the development of nanomaterials fulfilling the requirements for real application. These include robust and reproducible preparation methods to avoid aggregation while preserving the interaction properties. The possible impact of nanomaterials in different forms of diagnosis and therapy has been demonstrated in the past few years, given the perspectives on how revolutionary they can be in medicine and health. Considering the high biocompatibility and suitability, this review is focused on titanium dioxide– and iron oxide–based nanoagents highlighting the current trends and main advancements in the research for cancer therapies. The effects of phenomena, such as aggregation and agglomeration, the formation of the corona layer, and how they can compromise relevant properties of nanomaterials and their potential applicability, are also addressed. In short, this review summarizes the current understanding and perspectives on such smart nanobiomaterials for diagnostics, treatment, and theranostics of diseases.
Collapse
|
24
|
Zhao Y, Liu P, Tan H, Chen X, Wang Q, Chen T. Exosomes as Smart Nanoplatforms for Diagnosis and Therapy of Cancer. Front Oncol 2021; 11:743189. [PMID: 34513718 PMCID: PMC8427309 DOI: 10.3389/fonc.2021.743189] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022] Open
Abstract
Exosomes are composed of a lipid bilayer membrane, containing proteins, nucleic acids, DNA, RNA, etc., derived from donor cells. They have a size range of approximately 30-150 nm. The intrinsic characteristics of exosomes, including efficient cellular uptake, low immunogenicity, low toxicity, intrinsic ability to traverse biological barriers, and inherent targeting ability, facilitate their application to the drug delivery system. Here, we review the generation, uptake, separation, and purification methods of exosomes, focusing on their application as carriers in tumor diagnosis and treatment, especially in brain tumors, as well as the patent applications of exosomes in recent years.
Collapse
Affiliation(s)
- Yuying Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Mammary Disease, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Piaoxue Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hanxu Tan
- School of Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
25
|
Escudé Martinez de Castilla P, Tong L, Huang C, Sofias AM, Pastorin G, Chen X, Storm G, Schiffelers RM, Wang JW. Extracellular vesicles as a drug delivery system: A systematic review of preclinical studies. Adv Drug Deliv Rev 2021; 175:113801. [PMID: 34015418 DOI: 10.1016/j.addr.2021.05.011] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/10/2021] [Accepted: 05/15/2021] [Indexed: 02/06/2023]
Abstract
During the past decades, extracellular vesicles (EVs) have emerged as an attractive drug delivery system. Here, we assess their pre-clinical applications, in the form of a systematic review. For each study published in the past decade, disease models, animal species, EV donor cell types, active pharmaceutical ingredients (APIs), EV surface modifications, API loading methods, EV size and charge, estimation of EV purity, presence of biodistribution studies and administration routes were quantitatively analyzed in a defined and reproducible way. We have interpreted the trends we observe over the past decade, to define the niches where to apply EVs for drug delivery in the future and to provide a basis for regulatory guidelines.
Collapse
|
26
|
Cao XH, Liang MX, Wu Y, Yang K, Tang JH, Zhang W. Extracellular vesicles as drug vectors for precise cancer treatment. Nanomedicine (Lond) 2021; 16:1519-1537. [PMID: 34011162 DOI: 10.2217/nnm-2021-0123] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are nano-sized vesicle structures secreted from a variety of cells, which carry numerous biological macromolecules, participate in cell signal transduction and avoid immune system clearance. EVs have a plethora of specific signal recognition factors, and many studies have shown that they can play an important role in the precise treatment of tumors. This review aims to compile the applications of EVs as nanocarriers for antitumor drugs, gene drugs and other nanomaterials with anticancer capability. Additionally, we systematically summarize the preparation methodology and expound upon how to improve the drug loading and cancer-targeting capacity of EVs. We highlight that EV-based drug delivery has the potential to become the future of precise cancer treatment.
Collapse
Affiliation(s)
- Xin-Hui Cao
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China.,School of Clinical Medicine, Xuzhou Medical University, Xuzhou 221000, PR China
| | - Ming-Xing Liang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Yang Wu
- Biobank, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Kai Yang
- School of Clinical Medicine, Xuzhou Medical University, Xuzhou 221000, PR China
| | - Jin-Hai Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China.,School of Clinical Medicine, Xuzhou Medical University, Xuzhou 221000, PR China
| | - Wei Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| |
Collapse
|
27
|
Kang K, Zhou X, Zhang Y, Zhu N, Li G, Yi Q, Wu Y. Cell-Released Magnetic Vesicles Capturing Metabolic Labeled Rare Circulating Tumor Cells Based on Bioorthogonal Chemistry. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007796. [PMID: 33749110 DOI: 10.1002/smll.202007796] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Capture of circulating tumor cells (CTCs) with high efficiency and high purity holds great value for potential clinical applications. Besides the existing problems of contamination from blood cells and plasma proteins, unknown/down-regulated expression of targeting markers (e.g., antigen, receptor, etc.) of CTCs have questioned the reliability and general applicability of current CTCs capture methodologies based on immune/aptamer-affinity. Herein, a cell-engineered strategy is designed to break down such barriers by employing the cell metabolism as the leading force to solve key problems. Generally, through an extracellular vesicle generation way, the cell-released magnetic vesicles inherited parent cellular membrane characteristics are produced, and then functionalized with dibenzoazacyclooctyne to target and isolate the metabolic labeled rare CTCs. This strategy offers good reliability and broader possibilities to capture different types of tumor cells, as proven by the capture efficiency above 84% and 82% for A549 and HepG2 cell lines as well as an extremely low detection limitation of 5 cells. Moreover, it enabled high purity enrichment of CTCs from 1 mL blood samples of tumor-bearing mice, only ≈5-757 white blood cells are non-specific caught, ignoring the potential phenotypic fluctuation associated with the cancer progression.
Collapse
Affiliation(s)
- Ke Kang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Xiaoxi Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Yujia Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Nanhang Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Guohao Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Qiangying Yi
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Yao Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| |
Collapse
|
28
|
Zhang X, Zhang H, Gu J, Zhang J, Shi H, Qian H, Wang D, Xu W, Pan J, Santos HA. Engineered Extracellular Vesicles for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005709. [PMID: 33644908 DOI: 10.1002/adma.202005709] [Citation(s) in RCA: 237] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/22/2020] [Indexed: 05/12/2023]
Abstract
Extracellular vesicles (EVs) have emerged as a novel cell-free strategy for the treatment of many diseases including cancer. As a result of their natural properties to mediate cell-to-cell communication and their high physiochemical stability and biocompatibility, EVs are considered as excellent delivery vehicles for a variety of therapeutic agents such as nucleic acids and proteins, drugs, and nanomaterials. Increasing studies have shown that EVs can be modified, engineered, or designed to improve their efficiency, specificity, and safety for cancer therapy. Herein, a comprehensive overview of the recent advances in the strategies and methodologies of engineering EVs for scalable production and improved cargo-loading and tumor-targeting is provided. Additionally, the potential applications of engineered EVs in cancer therapy are discussed by presenting prominent examples, and the opportunities and challenges for translating engineered EVs into clinical practice are evaluated.
Collapse
Affiliation(s)
- Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory and Turku Bioscience Centre, Åbo Akademi University, Turku, 20520, Finland
- Department of Radiology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, P. R. China
| | - Jianmei Gu
- Department of Clinical Laboratory Medicine, Nantong Tumor Hospital, Nantong, 226361, P. R. China
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Jiayin Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Hui Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Dongqing Wang
- Department of Radiology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, P. R. China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, FI-00014, Finland
| |
Collapse
|
29
|
Pinto A, Marangon I, Méreaux J, Nicolás-Boluda A, Lavieu G, Wilhelm C, Sarda-Mantel L, Silva AKA, Pocard M, Gazeau F. Immune Reprogramming Precision Photodynamic Therapy of Peritoneal Metastasis by Scalable Stem-Cell-Derived Extracellular Vesicles. ACS NANO 2021; 15:3251-3263. [PMID: 33481565 DOI: 10.1021/acsnano.0c09938] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The dissemination of tumor metastasis in the peritoneal cavity, also called peritoneal metastasis (PM) or carcinomatosis, represents a late stage of gastrointestinal and gynecological cancer with very poor prognosis, even when cytoreductive surgery is effective, due to residual microscopic disease. Photodynamic therapy (PDT) in the management of peritoneal metastasis has been clinically limited by the low tumor selectivity of photosensitizers (PS) and important adverse effects. Here, we propose extracellular nanovesicles (EVs) derived from mesenchymal stem/stromal cells (MSCs) as the fourth generation of immune active PS vectors that are able to target peritoneal metastasis with superior selectivity, potentiate PDT cytotoxicity at the tumor site without affecting healthy tissues, modulate the tumor microenvironment of immunocompetent colorectal and ovarian carcinomatosis models, and promote an antitumor immune response. A pioneering strategy was developed for high yield, large-scale production of MSC-EVs encapsulating the drug meta(tetrahydroxyphenyl)chlorin (mTHPC) (EVs-mTHPC) that is compatible with requirements of clinical translation and also preserves the topology and integrity of naturally produced EVs. Intraperitoneal injection of EVs-mTHPC showed an impressive enhancement of tumoral selectivity in comparison to the free drug and to the liposomal formulation Foslip (mean ratio of PS in tumors/organs of 40 for EVs-mTHPC versus 1.5 for the free PS and 5.5 for Foslip). PDT mediated by EVs-mTHPC permitted an important tumoral necrosis (55% of necrotic tumoral nodules versus 18% for Foslip (p < 0.0001)) and promoted antitumor immune cell infiltration, mainly proinflammatory M1-like CD80+ and CD8+ T cell effector. Intratumor proliferation was significantly decreased after PDT with EVs-mTHPC. Overall EVs vectorization of mTHPC afforded important tumoral selectivity while overcoming the PDT toxicity of the free drug and prolonged mice survival in the colorectal carcinomatosis model. MSC-EVs produced by our scalable manufacturing method appears like the clinically relevant fourth-generation PDT vehicle to overcome current limitations of PDT in the treatment of peritoneal metastasis and promote a hot tumor immune environment in PM.
Collapse
Affiliation(s)
- Amandine Pinto
- Inserm UMR 1275 CAP Paris-Tech, Université de Paris, F-75010 Paris, France
- Service de Chirurgie Digestive et Cancérologique, Hôpital Lariboisière AP-HP, 2 rue Ambroise Paré, F-75010 Paris, France
| | - Iris Marangon
- Laboratoire MSC Matière et Systèmes Complexes, CNRS UMR 7057, Université de Paris, 10 Rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France
| | - Julie Méreaux
- Inserm UMR 1275 CAP Paris-Tech, Université de Paris, F-75010 Paris, France
- Service de Chirurgie Digestive et Cancérologique, Hôpital Lariboisière AP-HP, 2 rue Ambroise Paré, F-75010 Paris, France
| | - Alba Nicolás-Boluda
- Laboratoire MSC Matière et Systèmes Complexes, CNRS UMR 7057, Université de Paris, 10 Rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France
| | - Grégory Lavieu
- Laboratoire MSC Matière et Systèmes Complexes, CNRS UMR 7057, Université de Paris, 10 Rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France
| | - Claire Wilhelm
- Laboratoire MSC Matière et Systèmes Complexes, CNRS UMR 7057, Université de Paris, 10 Rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France
| | - Laure Sarda-Mantel
- Service de Médecine Nucléaire, Université de Paris, Hôpital Lariboisière AP-HP, 2 rue Ambroise Paré, F-75010 Paris, France
| | - Amanda K A Silva
- Laboratoire MSC Matière et Systèmes Complexes, CNRS UMR 7057, Université de Paris, 10 Rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France
| | - Marc Pocard
- Inserm UMR 1275 CAP Paris-Tech, Université de Paris, F-75010 Paris, France
- Service de Chirurgie Digestive et Cancérologique, Hôpital Lariboisière AP-HP, 2 rue Ambroise Paré, F-75010 Paris, France
| | - Florence Gazeau
- Laboratoire MSC Matière et Systèmes Complexes, CNRS UMR 7057, Université de Paris, 10 Rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France
| |
Collapse
|
30
|
Role of extracellular vesicles in neurodegenerative diseases. Prog Neurobiol 2021; 201:102022. [PMID: 33617919 DOI: 10.1016/j.pneurobio.2021.102022] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/27/2020] [Accepted: 02/11/2021] [Indexed: 02/08/2023]
Abstract
Extracellular vesicles (EVs) are heterogeneous cell-derived membranous structures that arise from the endosome system or directly detach from the plasma membrane. In recent years, many advances have been made in the understanding of the clinical definition and pathogenesis of neurodegenerative diseases, but translation into effective treatments is hampered by several factors. Current research indicates that EVs are involved in the pathology of diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). Besides, EVs are also involved in the process of myelin formation, and can also cross the blood-brain barrier to reach the sites of CNS injury. It is suggested that EVs have great potential as a novel therapy for the treatment of neurodegenerative diseases. Here, we reviewed the advances in understanding the role of EVs in neurodegenerative diseases and addressed the critical function of EVs in the CNS. We have also outlined the physiological mechanisms of EVs in myelin regeneration and highlighted the therapeutic potential of EVs in neurodegenerative diseases.
Collapse
|
31
|
Ou YH, Liang J, Czarny B, Wacker MG, Yu V, Wang JW, Pastorin G. Extracellular Vesicle (EV) biohybrid systems for cancer therapy: Recent advances and future perspectives. Semin Cancer Biol 2021; 74:45-61. [PMID: 33609664 DOI: 10.1016/j.semcancer.2021.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) are a class of cell-derived lipid-bilayer membrane vesicles secreted by almost all mammalian cells and involved in intercellular communication by shuttling various biological cargoes. Over the last decade, EVs - namely exosomes and microvesicles - have been extensively explored as next-generation nanoscale drug delivery systems (DDSs). This is in large due to their endogenous origin, which enables EVs to circumvent some of the limitations associated with existing cancer therapy approaches (i.e. by preventing recognition by the immune system and improving selectivity towards tumor tissue). However, successful translation of these cell-derived vesicles into clinical applications has been hindered by several factors, among which the loading of exogenous therapeutic molecules still represents a great challenge. In order to address this issue and to further advance these biologically-derived systems as drug carriers, EV-biohybrid nano-DDSs, obtained through the fusion of EVs with conventional synthetic nano-DDSs, have recently been proposed as a valuable alternative as DDSs. Building on the idea of "combining the best of both worlds", a combination of these two unique entities aims to harness the beneficial properties associated with both EVs and conventional nano-DDSs, while overcoming the flaws of the individual components. These biohybrid systems also provide a unique opportunity for exploitation of new synergisms, often leading to improved therapeutic outcomes, thus paving the way for advancements in cancer therapy. This review aims to describe the recent developments of EV-biohybrid nano-DDSs in cancer therapy, to highlight the most promising results and breakthroughs, as well as to provide a glimpse on the possible intrinsic targeting mechanisms of EVs that can be bequeathed to their hybrid systems. Finally, we also provide some insights in the future perspectives of EV-hybrid DDSs.
Collapse
Affiliation(s)
- Yi-Hsuan Ou
- Department of Pharmacy, National University of Singapore, Singapore
| | - Jeremy Liang
- Department of Pharmacy, National University of Singapore, Singapore
| | - Bertrand Czarny
- School of Materials Science & Engineering and Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | | | - Victor Yu
- Department of Pharmacy, National University of Singapore, Singapore
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Cardiovascular Research Institute, National University Heart Centre, Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Giorgia Pastorin
- Department of Pharmacy, National University of Singapore, Singapore.
| |
Collapse
|
32
|
Aziz AA, Siddiqui RA, Amtul Z. Engineering of fluorescent or photoactive Trojan probes for detection and eradication of β-Amyloids. Drug Deliv 2020; 27:917-926. [PMID: 32597244 PMCID: PMC8216438 DOI: 10.1080/10717544.2020.1785048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 11/04/2022] Open
Abstract
Trojan horse technology institutes a potentially promising strategy to bring together a diagnostic or cell-based drug design and a delivery platform. It provides the opportunity to re-engineer a novel multimodal, neurovascular detection probe, or medicine to fuse with blood-brain barrier (BBB) molecular Trojan horse. In Alzheimer's disease (AD) this could allow the targeted delivery of detection or therapeutic probes across the BBB to the sites of plaques and tangles development to image or decrease amyloid load, enhance perivascular Aβ clearance, and improve cerebral blood flow, owing principally to the significantly improved cerebral permeation. A Trojan horse can also be equipped with photosensitizers, nanoparticles, quantum dots, or fluorescent molecules to function as multiple targeting theranostic compounds that could be activated following changes in disease-specific processes of the diseased tissue such as pH and protease activity, or exogenous stimuli such as, light. This concept review theorizes the use of receptor-mediated transport-based platforms to transform such novel ideas to engineer systemic and smart Trojan detection or therapeutic probes to advance the neurodegenerative field.
Collapse
Affiliation(s)
- Amal A. Aziz
- Sir Wilfrid Laurier Secondary School, Thames Valley District School Board, London, Canada
| | - Rafat A. Siddiqui
- Nutrition Science and Food Chemistry Laboratory, Agricultural Research Station, Virginia State University, Petersburg, VA, USA
| | - Zareen Amtul
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Canada
| |
Collapse
|
33
|
Xu H, Lee CW, Wang YF, Huang S, Shin LY, Wang YH, Wan Z, Zhu X, Yung PSH, Lee OKS. The Role of Paracrine Regulation of Mesenchymal Stem Cells in the Crosstalk With Macrophages in Musculoskeletal Diseases: A Systematic Review. Front Bioeng Biotechnol 2020; 8:587052. [PMID: 33324622 PMCID: PMC7726268 DOI: 10.3389/fbioe.2020.587052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/28/2020] [Indexed: 12/27/2022] Open
Abstract
The phenotypic change of macrophages (Mφs) plays a crucial role in the musculoskeletal homeostasis and repair process. Although mesenchymal stem cells (MSCs) have been shown as a novel approach in tissue regeneration, the therapeutic potential of MSCs mediated by the interaction between MSC-derived paracrine mediators and Mφs remains elusive. This review focused on the elucidation of paracrine crosstalk between MSCs and Mφs during musculoskeletal diseases and injury. The search method was based on the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) and Cochrane Guidelines. The search strategies included MeSH terms and other related terms of MSC-derived mediators and Mφs. Ten studies formed the basis of this review. The current finding suggested that MSC administration promoted proliferation and activation of CD163+ or CD206+ M2 Mφs in parallel with reduction of proinflammatory cytokines and increase in anti-inflammatory cytokines. During such period, Mφs also induced MSCs into a motile and active phenotype via the influence of proinflammatory cytokines. Such crosstalk between Mφs and MSCs further strengthens the effect of paracrine mediators from MSCs to regulate Mφs phenotypic alteration. In conclusion, MSCs in musculoskeletal system, mediated by the interaction between MSC paracrine and Mφs, have therapeutic potential in musculoskeletal diseases.
Collapse
Affiliation(s)
- Hongtao Xu
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Chien-Wei Lee
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Developmental and Regenerative Biology TRP, Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu-Fan Wang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Shuting Huang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Lih-Ying Shin
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu-Hsuan Wang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Zihao Wan
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaobo Zhu
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Patrick Shu Hang Yung
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Oscar Kuang-Sheng Lee
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Faculty of Medicine, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Department of Orthopadics, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
34
|
Wu P, Zhang B, Ocansey DKW, Xu W, Qian H. Extracellular vesicles: A bright star of nanomedicine. Biomaterials 2020; 269:120467. [PMID: 33189359 DOI: 10.1016/j.biomaterials.2020.120467] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/12/2020] [Accepted: 10/18/2020] [Indexed: 02/08/2023]
Abstract
Extracellular vesicles (EVs) have unique structural, compositional, and morphological characteristics as well as predominant physiochemical stability and biocompatibility properties. They play a crucial role in pathophysiological regulation, and also have broad prospects for clinical application in the diagnosis, prognosis, and therapy of disease, and tissue regeneration and repair. Herein, the biosynthesis and physiological functions and current methods for separation and identification of EVs are summarized. Specifically, engineered EVs may be used to enhance targeted therapy in cancer and repair damaged tissues, and they may be developed as an individualized imaging diagnostic reagent, among other potential applications. We will focus on reviewing recent studies on engineered EVs in which alterations enhanced their therapeutic capability or diagnostic imaging potential via physical, chemical, and biological modification approaches. This review will clarify the superior biological functions and powerful therapeutic potential of EVs, particularly with regard to new designs based on EVs and their utilization in a new generation of nanomedicine diagnosis and treatment platforms.
Collapse
Affiliation(s)
- Peipei Wu
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, 301 Xuefu Road, Zhenjiang, Jiangsu, PR China; Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, PR China
| | - Bin Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong, PR China
| | - Dickson Kofi Wiredu Ocansey
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, 301 Xuefu Road, Zhenjiang, Jiangsu, PR China; Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, PR China
| | - Wenrong Xu
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, 301 Xuefu Road, Zhenjiang, Jiangsu, PR China; Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, PR China; Aoyang Institute of Cancer, Jiangsu University, 279 Jingang Road, Suzhou, 215600, Jiangsu, PR China.
| | - Hui Qian
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, 301 Xuefu Road, Zhenjiang, Jiangsu, PR China; Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, PR China; Aoyang Institute of Cancer, Jiangsu University, 279 Jingang Road, Suzhou, 215600, Jiangsu, PR China.
| |
Collapse
|
35
|
Villata S, Canta M, Cauda V. EVs and Bioengineering: From Cellular Products to Engineered Nanomachines. Int J Mol Sci 2020; 21:ijms21176048. [PMID: 32842627 PMCID: PMC7504061 DOI: 10.3390/ijms21176048] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/15/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are natural carriers produced by many different cell types that have a plethora of functions and roles that are still under discovery. This review aims to be a compendium on the current advancement in terms of EV modifications and re-engineering, as well as their potential use in nanomedicine. In particular, the latest advancements on artificial EVs are discussed, with these being the frontier of nanomedicine-based therapeutics. The first part of this review gives an overview of the EVs naturally produced by cells and their extraction methods, focusing on the possibility to use them to carry desired cargo. The main issues for the production of the EV-based carriers are addressed, and several examples of the techniques used to upload the cargo are provided. The second part focuses on the engineered EVs, obtained through surface modification, both using direct and indirect methods, i.e., engineering of the parental cells. Several examples of the current literature are proposed to show the broad variety of engineered EVs produced thus far. In particular, we also report the possibility to engineer the parental cells to produce cargo-loaded EVs or EVs displaying specific surface markers. The third and last part focuses on the most recent advancements based on synthetic and chimeric EVs and the methods for their production. Both top-down or bottom-up techniques are analyzed, with many examples of applications.
Collapse
|
36
|
mTHPC-Loaded Extracellular Vesicles Significantly Improve mTHPC Diffusion and Photodynamic Activity in Preclinical Models. Pharmaceutics 2020; 12:pharmaceutics12070676. [PMID: 32709026 PMCID: PMC7407764 DOI: 10.3390/pharmaceutics12070676] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 12/23/2022] Open
Abstract
Extracellular vesicles (EVs), derived from the cell, display a phospholipid bilayer membrane that protects the cargo molecules from degradation and contributes to increasing their stability in the bloodstream and tumor targeting. EVs are interesting in regard to the delivery of photosensitizers (PSs) used in the photodynamic therapy (PDT), as they allow us to overcome the limitations observed with liposomes. In fact, liposomal formulation of meta-tetra(hydroxyphenyl)chlorin (mTHPC) (Foslip®), one of the most potent clinically approved PSs, is rapidly destroyed in circulation, thus decreasing in vivo PDT efficacy. mTHPC-EV uptake was evaluated in vitro in a 3D human colon HT-29 microtumor and in vivo study was performed in HT-29 xenografted mice. The obtained data were compared with Foslip®. After intravenous injection of the mTHPC formulations, biodistribution, pharmacokinetics and PDT-induced tumor regrowth were evaluated. In a 3D model of cells, mTHPC-EV uptake featured a deeper penetration after 24h incubation compared to liposomal mTHPC. In vivo results showed a considerable improvement of 33% tumor cure with PDT treatment applied 24h after injection, while 0% was observed after Foslip®/PDT. Moreover, 47 days were required to obtain ten times the initial tumor volume after mTHPC-EVs/PDT compared to 30 days for liposomal mTHPC. In conclusion, compared to Foslip®, mTHPC-EVs improved mTHPC biodistribution and PDT efficacy in vivo. We deduced that a major determinant factor for the improved in vivo PDT efficacy is the deep mTHPC intratumor penetration.
Collapse
|
37
|
Duan Y, Dhar A, Patel C, Khimani M, Neogi S, Sharma P, Siva Kumar N, Vekariya RL. A brief review on solid lipid nanoparticles: part and parcel of contemporary drug delivery systems. RSC Adv 2020; 10:26777-26791. [PMID: 35515778 PMCID: PMC9055574 DOI: 10.1039/d0ra03491f] [Citation(s) in RCA: 264] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/03/2020] [Indexed: 12/24/2022] Open
Abstract
Drug delivery technology has a wide spectrum, which is continuously being upgraded at a stupendous speed. Different fabricated nanoparticles and drugs possessing low solubility and poor pharmacokinetic profiles are the two major substances extensively delivered to target sites. Among the colloidal carriers, nanolipid dispersions (liposomes, deformable liposomes, virosomes, ethosomes, and solid lipid nanoparticles) are ideal delivery systems with the advantages of biodegradation and nontoxicity. Among them, nano-structured lipid carriers and solid lipid nanoparticles (SLNs) are dominant, which can be modified to exhibit various advantages, compared to liposomes and polymeric nanoparticles. Nano-structured lipid carriers and SLNs are non-biotoxic since they are biodegradable. Besides, they are highly stable. Their (nano-structured lipid carriers and SLNs) morphology, structural characteristics, ingredients used for preparation, techniques for their production, and characterization using various methods are discussed in this review. Also, although nano-structured lipid carriers and SLNs are based on lipids and surfactants, the effect of these two matrixes to build excipients is also discussed together with their pharmacological significance with novel theranostic approaches, stability and storage.
Collapse
Affiliation(s)
- Yongtao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University Henan 450018 China
| | - Abhishek Dhar
- Department of Instrumentation & Electronics Engineering, Jadavpur University Kolkata 700106 India
| | - Chetan Patel
- School of Sciences, P P Savani University NH-8, GETCO, Near Biltech, Village: Dhamdod, Kosamba, Dist. Surat 394125 Gujarat India
| | - Mehul Khimani
- School of Sciences, P P Savani University NH-8, GETCO, Near Biltech, Village: Dhamdod, Kosamba, Dist. Surat 394125 Gujarat India
| | - Swarnali Neogi
- Department of Instrumentation & Electronics Engineering, Jadavpur University Kolkata 700106 India
| | - Prolay Sharma
- Department of Instrumentation & Electronics Engineering, Jadavpur University Kolkata 700106 India
| | - Nadavala Siva Kumar
- Department of Chemical Engineering, King Saud University P.O. Box 800 Riyadh 11421 Saudi Arabia
| | - Rohit L Vekariya
- Department for Management of Science and Technology Development, Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University Ho Chi Minh City Vietnam
| |
Collapse
|
38
|
Borgheti-Cardoso LN, Kooijmans SAA, Chamorro LG, Biosca A, Lantero E, Ramírez M, Avalos-Padilla Y, Crespo I, Fernández I, Fernandez-Becerra C, Del Portillo HA, Fernàndez-Busquets X. Extracellular vesicles derived from Plasmodium-infected and non-infected red blood cells as targeted drug delivery vehicles. Int J Pharm 2020; 587:119627. [PMID: 32653596 DOI: 10.1016/j.ijpharm.2020.119627] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/23/2020] [Accepted: 07/06/2020] [Indexed: 12/21/2022]
Abstract
Among several factors behind drug resistance evolution in malaria is the challenge of administering overall doses that are not toxic for the patient but that, locally, are sufficiently high to rapidly kill the parasites. Thus, a crucial antimalarial strategy is the development of drug delivery systems capable of targeting antimalarial compounds to Plasmodium with high specificity. In the present study, extracellular vesicles (EVs) have been evaluated as a drug delivery system for the treatment of malaria. EVs derived from naive red blood cells (RBCs) and from Plasmodium falciparum-infected RBCs (pRBCs) were isolated by ultrafiltration followed by size exclusion chromatography. Lipidomic characterization showed that there were no significant qualitative differences between the lipidomic profiles of pRBC-derived EVs (pRBC-EVs) and RBC-derived EVs (RBC-EVs). Both EVs were taken up by RBCs and pRBCs, although pRBC-EVs were more efficiently internalized than RBC-EVs, which suggested their potential use as drug delivery vehicles for these cells. When loaded into pRBC-EVs, the antimalarial drugs atovaquone and tafenoquine inhibited in vitro P. falciparum growth more efficiently than their free drug counterparts, indicating that pRBC-EVs can potentially increase the efficacy of several small hydrophobic drugs used for the treatment of malaria.
Collapse
Affiliation(s)
- Livia Neves Borgheti-Cardoso
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain.
| | | | - Lucía Gutiérrez Chamorro
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
| | - Arnau Biosca
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
| | - Elena Lantero
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
| | - Miriam Ramírez
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
| | - Yunuen Avalos-Padilla
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
| | - Isabel Crespo
- Plataforma de Citometria, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Irene Fernández
- Unitat d'Espectrometria de Masses de Caracterització Molecular, CCiTUB, Universitat de Barcelona (UB), Barcelona, Spain
| | - Carmen Fernandez-Becerra
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain; Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Hernando A Del Portillo
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain; Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain; Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Xavier Fernàndez-Busquets
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain; Nanoscience and Nanotechnology Institute (IN2UB, UB), Barcelona, Spain.
| |
Collapse
|
39
|
Tang S, Yu S, Cheng J, Zhang Y, Huang X. The versatile roles and clinical implications of exosomal mRNAs and microRNAs in cancer. Int J Biol Markers 2020; 35:3-19. [PMID: 32389046 DOI: 10.1177/1724600820920293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Extracellular vesicles (EVs), which include exosomes, microvesicles, and apoptotic bodies, are nanosized structures that are secreted by various cells and act as important mediators in intercellular communication. Recent studies have shown that exosomes carrying bioactive molecules are generated from multivesicular bodies and are present in various body fluids. mRNAs and microRNAs (miRNAs) are encapsulated in exosomes and have been found to be involved in multiple pathophysiological processes. Here, we provide a review of tumor-associated exosomal mRNAs and miRNAs and their roles in metastasis and drug resistance. In particular, we emphasize their clinical application potential as diagnostic and prognostic biomarkers of cancer and in cancer therapy.
Collapse
Affiliation(s)
- Shuli Tang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Siming Yu
- Department of Pharmacy, Drug Clinical Trails Institution, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Jianan Cheng
- Institute of immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Xiaoyi Huang
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| |
Collapse
|
40
|
Zhang Y, Liu Y, Zhang W, Tang Q, Zhou Y, Li Y, Rong T, Wang H, Chen Y. Isolated cell-bound membrane vesicles (CBMVs) as a novel class of drug nanocarriers. J Nanobiotechnology 2020; 18:69. [PMID: 32375799 PMCID: PMC7204042 DOI: 10.1186/s12951-020-00625-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/27/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cell-bound membrane vesicles (CBMVs) are a type of membrane vesicles different from the well-known extracellular vesicles (EVs). In recent years, the applications of EVs as drug delivery systems have been studied widely. A question may arise whether isolated CBMVs also have the possibility of being recruited as a drug delivery system or nanocarrier? METHODS To test the possibility, CBMVs were isolated/purified from the surfaces of cultured endothelial cells, loaded with a putative antitumor drug doxorubicin (Dox), and characterized. Subsequently, cellular experiments and animal experiments using mouse models were performed to determine the in vitro and in vivo antitumor effects of Dox-loaded CBMVs (Dox-CBMVs or Dox@CBMVs), respectively. RESULTS Both Dox-free and Dox-loaded CBMVs were globular-shaped and nanometer-sized with an average diameter of ~ 300-400 nm. Dox-CBMVs could be internalized by cells and could kill multiple types of cancer cells. The in vivo antitumor ability of Dox-CBMVs also was confirmed. Moreover, Quantifications of blood cells (white blood cells and platelets) and specific enzymes (aspartate aminotransferase and creatine kinase isoenzymes) showed that Dox-CBMVs had lower side effects compared with free Dox. CONCLUSIONS The data show that the CBMV-entrapped Doxorubicin has the antitumor efficacy with lower side effects. This study provides evidence supporting the possibility of isolated cell-bound membrane vesicles as a novel drug nanocarrier.
Collapse
Affiliation(s)
- Yang Zhang
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study, Institute for Advanced Study, Nanchang University, 999 Xuefu Ave., Honggutan District, Nanchang, Jiangxi 330031 People’s Republic of China
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031 People’s Republic of China
| | - Yang Liu
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study, Institute for Advanced Study, Nanchang University, 999 Xuefu Ave., Honggutan District, Nanchang, Jiangxi 330031 People’s Republic of China
| | - Wendiao Zhang
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study, Institute for Advanced Study, Nanchang University, 999 Xuefu Ave., Honggutan District, Nanchang, Jiangxi 330031 People’s Republic of China
| | - Qisheng Tang
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study, Institute for Advanced Study, Nanchang University, 999 Xuefu Ave., Honggutan District, Nanchang, Jiangxi 330031 People’s Republic of China
| | - Yun Zhou
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study, Institute for Advanced Study, Nanchang University, 999 Xuefu Ave., Honggutan District, Nanchang, Jiangxi 330031 People’s Republic of China
| | - Yuanfang Li
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study, Institute for Advanced Study, Nanchang University, 999 Xuefu Ave., Honggutan District, Nanchang, Jiangxi 330031 People’s Republic of China
| | - Tong Rong
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study, Institute for Advanced Study, Nanchang University, 999 Xuefu Ave., Honggutan District, Nanchang, Jiangxi 330031 People’s Republic of China
| | - Huaying Wang
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study, Institute for Advanced Study, Nanchang University, 999 Xuefu Ave., Honggutan District, Nanchang, Jiangxi 330031 People’s Republic of China
| | - Yong Chen
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study, Institute for Advanced Study, Nanchang University, 999 Xuefu Ave., Honggutan District, Nanchang, Jiangxi 330031 People’s Republic of China
| |
Collapse
|
41
|
Munteanu R, Onaciu A, Moldovan C, Zimta AA, Gulei D, Paradiso AV, Lazar V, Berindan-Neagoe I. Adipocyte-Based Cell Therapy in Oncology: The Role of Cancer-Associated Adipocytes and Their Reinterpretation as Delivery Platforms. Pharmaceutics 2020; 12:E402. [PMID: 32354024 PMCID: PMC7284545 DOI: 10.3390/pharmaceutics12050402] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer-associated adipocytes have functional roles in tumor development through secreted adipocyte-derived factors and exosomes and also through metabolic symbiosis, where the malignant cells take up the lactate, fatty acids and glutamine produced by the neighboring adipocytes. Recent research has demonstrated the value of adipocytes as cell-based delivery platforms for drugs (or prodrugs), nucleic acids or loaded nanoparticles for cancer therapy. This strategy takes advantage of the biocompatibility of the delivery system, its ability to locate the tumor site and also the predisposition of cancer cells to come in functional contact with the adipocytes from the tumor microenvironment for metabolic sustenance. Also, their exosomal content can be used in the context of cancer stem cell reprogramming or as a delivery vehicle for different cargos, like non-coding nucleic acids. Moreover, the process of adipocytes isolation, processing and charging is quite straightforward, with minimal economical expenses. The present review comprehensively presents the role of adipocytes in cancer (in the context of obese and non-obese individuals), the main methods for isolation and characterization and also the current therapeutic applications of these cells as delivery platforms in the oncology sector.
Collapse
Affiliation(s)
- Raluca Munteanu
- Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Anca Onaciu
- Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Cristian Moldovan
- Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Alina-Andreea Zimta
- Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Diana Gulei
- Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Angelo V. Paradiso
- Oncologia Sperimentale, Istituto Tumori G Paolo II, IRCCS, 70125 Bari, Italy
| | - Vladimir Lazar
- Worldwide Innovative Network for Personalized Cancer Therapy, 94800 Villejuif, France
| | - Ioana Berindan-Neagoe
- Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| |
Collapse
|
42
|
Kauscher U, Penders J, Nagelkerke A, Holme MN, Nele V, Massi L, Gopal S, Whittaker TE, Stevens MM. Gold Nanocluster Extracellular Vesicle Supraparticles: Self-Assembled Nanostructures for Three-Dimensional Uptake Visualization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3912-3923. [PMID: 32250120 PMCID: PMC7161082 DOI: 10.1021/acs.langmuir.9b03479] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Extracellular vesicles (EVs) are secreted by the vast majority of cells and are being intensively studied due to their emerging involvement in a variety of cellular communication processes. However, the study of their cellular uptake and fate has been hampered by difficulty in imaging EVs against the cellular background. Here, we show that EVs combined with hydrophobic gold nanoclusters (AuNCs) can self-assemble into supraparticles, offering an excellent labeling strategy for high-resolution electron microscopic imaging in vitro. We have tracked and visualized the reuptake of breast cancer cell-derived EV AuNC supraparticles into their parent cells, from early endocytosis to lysosomal degradation, using focused ion beam-scanning electron microscopy (FIB-SEM). The presence of gold within the EVs and lysosomes was confirmed via DF-STEM EDX analysis of lift-out sections. The demonstrated formation of AuNC EV supraparticles will facilitate future applications in EV imaging as well as the EV-assisted cellular delivery of AuNCs.
Collapse
Affiliation(s)
- Ulrike Kauscher
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jelle Penders
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Anika Nagelkerke
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
- University
of Groningen, Groningen Research Institute
of Pharmacy, Pharmaceutical Analysis,
POB 196 XB20, NL-9700 AD Groningen, The Netherlands
| | - Margaret N. Holme
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Valeria Nele
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Lucia Massi
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Sahana Gopal
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Thomas E. Whittaker
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Molly M. Stevens
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden
| |
Collapse
|
43
|
Xiong LH, Tu JW, Zhang YN, Yang LL, Cui R, Zhang ZL, Pang DW. Designer cell-self-implemented labeling of microvesicles in situ with the intracellular-synthesized quantum dots. Sci China Chem 2020. [DOI: 10.1007/s11426-019-9697-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Wang D, Yao Y, He J, Zhong X, Li B, Rao S, Yu H, He S, Feng X, Xu T, Yang B, Yong T, Gan L, Hu J, Yang X. Engineered Cell-Derived Microparticles Bi 2Se 3/DOX@MPs for Imaging Guided Synergistic Photothermal/Low-Dose Chemotherapy of Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901293. [PMID: 32042550 PMCID: PMC7001653 DOI: 10.1002/advs.201901293] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 11/21/2019] [Indexed: 05/20/2023]
Abstract
Cell-derived microparticles, which are recognized as nanosized phospholipid bilayer membrane vesicles, have exhibited great potential to serve as drug delivery systems in cancer therapy. However, for the purpose of comprehensive therapy, microparticles decorated with multiple therapeutic components are needed, but effective engineering strategies are limited and still remain enormous challenges. Herein, Bi2Se3 nanodots and doxorubicin hydrochloride (DOX) co-embedded tumor cell-derived microparticles (Bi2Se3/DOX@MPs) are successfully constructed through ultraviolet light irradiation-induced budding of parent cells which are preloaded with Bi2Se3 nanodots and DOX via electroporation. The multifunctional microparticles are obtained with high controllability and drug-loading capacity without unfavorable membrane surface destruction, maintaining their excellent intrinsic biological behaviors. Through membrane fusion cellular internalization, Bi2Se3/DOX@MPs show enhanced cellular internalization and deepened tumor penetration, resulting in extreme cell damage in vitro without considering endosomal escape. Because of their distinguished photothermal performance and tumor homing target capability, Bi2Se3/DOX@MPs exhibit admirable dual-modal imaging capacity and outstanding tumor suppression effect. Under 808 nm laser irradiation, intravenous injection of Bi2Se3/DOX@MPs into H22 tumor-bearing mice results in remarkably synergistic antitumor efficacy by combining photothermal therapy with low-dose chemotherapy in vivo. Furthermore, the negligible hemolytic activity, considerable metabolizability, and low systemic toxicity of Bi2Se3/DOX@MPs imply their distinguished biocompatibility and great potential for tumor theranostics.
Collapse
Affiliation(s)
- Dongdong Wang
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Yuzhu Yao
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Junkai He
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Xiaoyan Zhong
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Basen Li
- Department of RadiologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Shiyu Rao
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Haiting Yu
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Shuaicheng He
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Xiaoyu Feng
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Tuo Xu
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Bin Yang
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Tuying Yong
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Lu Gan
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Jun Hu
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Xiangliang Yang
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074P. R. China
| |
Collapse
|
45
|
Susa F, Limongi T, Dumontel B, Vighetto V, Cauda V. Engineered Extracellular Vesicles as a Reliable Tool in Cancer Nanomedicine. Cancers (Basel) 2019; 11:E1979. [PMID: 31835327 PMCID: PMC6966613 DOI: 10.3390/cancers11121979] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 12/15/2022] Open
Abstract
Fast diagnosis and more efficient therapies for cancer surely represent one of the huge tasks for the worldwide researchers' and clinicians' community. In the last two decades, our understanding of the biology and molecular pathology of cancer mechanisms, coupled with the continuous development of the material science and technological compounds, have successfully improved nanomedicine applications in oncology. This review argues on nanomedicine application of engineered extracellular vesicles (EVs) in oncology. All the most innovative processes of EVs engineering are discussed together with the related degree of applicability for each one of them in cancer nanomedicines.
Collapse
Affiliation(s)
| | | | | | | | - Valentina Cauda
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (F.S.); (T.L.); (B.D.); (V.V.)
| |
Collapse
|
46
|
Extracellular Vesicles in Modifying the Effects of Ionizing Radiation. Int J Mol Sci 2019; 20:ijms20225527. [PMID: 31698689 PMCID: PMC6888126 DOI: 10.3390/ijms20225527] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/26/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane-coated nanovesicles actively secreted by almost all cell types. EVs can travel long distances within the body, being finally taken up by the target cells, transferring information from one cell to another, thus influencing their behavior. The cargo of EVs comprises of nucleic acids, lipids, and proteins derived from the cell of origin, thereby it is cell-type specific; moreover, it differs between diseased and normal cells. Several studies have shown that EVs have a role in tumor formation and prognosis. It was also demonstrated that ionizing radiation can alter the cargo of EVs. EVs, in turn can modulate radiation responses and they play a role in radiation-induced bystander effects. Due to their biocompatibility and selective targeting, EVs are suitable nanocarrier candidates of drugs in various diseases, including cancer. Furthermore, the cargo of EVs can be engineered, and in this way they can be designed to carry certain genes or even drugs, similar to synthetic nanoparticles. In this review, we describe the biological characteristics of EVs, focusing on the recent efforts to use EVs as nanocarriers in oncology, the effects of EVs in radiation therapy, highlighting the possibilities to use EVs as nanocarriers to modulate radiation effects in clinical applications.
Collapse
|
47
|
Engineered human platelet-derived microparticles as natural vectors for targeted drug delivery. Oncotarget 2019; 10:5835-5846. [PMID: 31645903 PMCID: PMC6791386 DOI: 10.18632/oncotarget.27223] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/10/2019] [Indexed: 12/31/2022] Open
Abstract
Drug targeting has opened a new paradigm in therapeutics with development of delivery vectors like liposomes and polymeric nanoparticles. Although their clinical application is crippled by limited biological adaptability. Off-target toxicity and biocompatibility still remains one of the critical problems in anticancer therapeutics that can be life-threatening. Here we report a quick, simple and facile method of engineering human platelets to generate drug loaded platelet-derived microparticles (PMPs) by top-down approach, which are biocompatible and naturally target leukemia cells. Drug loaded PMPs and cancer cell uptake were characterized by flow cytometry, confocal microscopy, Nanoparticle Tracking Analysis and fluorimetry. Effective drug delivery was tested in cancer cell lines as well as in clinical samples from leukemia patients. We explored that PMPs are capable of carrying multiple drug payloads, have long shelf life and can be harvested in large quantity in short period. Importantly, PMPs exhibited remarkably higher toxicity towards cancer cells than free drug and had lower escape into extravascular spaces. Transfer of drug to cancer cells of leukemia patients was significantly higher than free drug, when delivered through PMPs. Our experiments validated therapeutic application of PMPs as biocompatible drug delivery vector against cancer cells with minimal off-target delivery.
Collapse
|
48
|
Mizuta R, Sasaki Y, Kawasaki R, Katagiri K, Sawada SI, Mukai SA, Akiyoshi K. Magnetically Navigated Intracellular Delivery of Extracellular Vesicles Using Amphiphilic Nanogels. Bioconjug Chem 2019; 30:2150-2155. [DOI: 10.1021/acs.bioconjchem.9b00369] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ryosuke Mizuta
- Department of Polymer Chemistry, Graduate School of Engineering, A3-317, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, A3-317, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Riku Kawasaki
- Department of Polymer Chemistry, Graduate School of Engineering, A3-317, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Kiyofumi Katagiri
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Shin-ichi Sawada
- Department of Polymer Chemistry, Graduate School of Engineering, A3-317, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Sada-atsu Mukai
- Department of Polymer Chemistry, Graduate School of Engineering, A3-317, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, A3-317, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
49
|
Yakavets I, Millard M, Zorin V, Lassalle HP, Bezdetnaya L. Current state of the nanoscale delivery systems for temoporfin-based photodynamic therapy: Advanced delivery strategies. J Control Release 2019; 304:268-287. [PMID: 31136810 DOI: 10.1016/j.jconrel.2019.05.035] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 12/22/2022]
Abstract
Enthusiasm for photodynamic therapy (PDT) as a promising technique to eradicate various cancers has increased exponentially in recent decades. The majority of clinically approved photosensitizers are hydrophobic in nature, thus, the effective delivery of photosensitizers at the targeted site is the main hurdle associated with PDT. Temoporfin (mTHPC, medicinal product name: Foscan®), is one of the most potent clinically approved photosensitizers, is not an exception. Successful temoporfin-PDT requires nanoscale delivery systems for selective delivery of photosensitizer. Over the last 25 years, the number of papers on nanoplatforms developed for mTHPC delivery such as conjugates, host-guest inclusion complexes, lipid-and polymer-based nanoparticles and carbon nanotubes is burgeoning. However, none of them appeared to be "ultimate". The present review offers the description of different challenges and achievements in nanoparticle-based mTHPC delivery focusing on the synergetic combination of various nano-platforms to improve temoporfin delivery at all stages of biodistribution. Furthermore, the association of different nanoparticles in one nanoplatform might be considered as an advanced strategy allowing the combination of several treatment modalities.
Collapse
Affiliation(s)
- Ilya Yakavets
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique UMR 7039, Université de Lorraine, Campus Sciences, Boulevard des Aiguillette, 54506 Vandoeuvre-lès-Nancy, France; Research Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, 54519 Vandoeuvre-lès-Nancy, France; Laboratory of Biophysics and Biotechnology, Belarusian State University, 4 Nezavisimosti Avenue, 220030 Minsk, Belarus.
| | - Marie Millard
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique UMR 7039, Université de Lorraine, Campus Sciences, Boulevard des Aiguillette, 54506 Vandoeuvre-lès-Nancy, France; Research Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, 54519 Vandoeuvre-lès-Nancy, France.
| | - Vladimir Zorin
- Laboratory of Biophysics and Biotechnology, Belarusian State University, 4 Nezavisimosti Avenue, 220030 Minsk, Belarus; International Sakharov Environmental Institute, Belarusian State University, Dauhabrodskaja 23, 220030 Minsk, Belarus.
| | - Henri-Pierre Lassalle
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique UMR 7039, Université de Lorraine, Campus Sciences, Boulevard des Aiguillette, 54506 Vandoeuvre-lès-Nancy, France; Research Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, 54519 Vandoeuvre-lès-Nancy, France.
| | - Lina Bezdetnaya
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique UMR 7039, Université de Lorraine, Campus Sciences, Boulevard des Aiguillette, 54506 Vandoeuvre-lès-Nancy, France; Research Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, 54519 Vandoeuvre-lès-Nancy, France.
| |
Collapse
|
50
|
Rossowska J, Anger N, Wegierek K, Szczygieł A, Mierzejewska J, Milczarek M, Szermer-Olearnik B, Pajtasz-Piasecka E. Antitumor Potential of Extracellular Vesicles Released by Genetically Modified Murine Colon Carcinoma Cells With Overexpression of Interleukin-12 and shRNA for TGF-β1. Front Immunol 2019; 10:211. [PMID: 30814999 PMCID: PMC6381037 DOI: 10.3389/fimmu.2019.00211] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/24/2019] [Indexed: 12/20/2022] Open
Abstract
Recent developments demonstrate that tumor-derived extracellular vesicles (EVs) could become a highly effective tool for delivery of antitumor factors. The main objective of the study was to determine whether EVs secreted by MC38 colon carcinoma cells genetically engineered for overproduction of interleukin (IL-)12 and/or shRNA targeting TGF-β1 are effectively loaded with these molecules and whether the obtained EVs could be an efficient tool for antitumor therapy. Fractions of EVs released by genetically modified MC38 cells [both modified tumor-derived exosomes (mTEx) and modified microvesicles (mTMv)] and those released by unmodified, wild-type MC38 cells were characterized in terms of loading efficacy, using real-time PCR and ELISA, as well as their antitumor potential. In order to examine the therapeutic potential of mTEx, they were applied in the form of sole treatment as well as in combination with dendritic cell (DC)-based vaccines stimulated with mTMv in the therapy of mice with subcutaneously growing MC38 tumors. The results demonstrated that genetic modification of wild-type MC38 tumor cells is an effective method of loading the molecules of interest into extracellular vesicles secreted by the cells (both TEx and TMv). The results also showed that mTEx secreted by cells engineered for overproduction of IL-12 and/or shRNA for TGF-β1 are able to induce tumor growth inhibition as opposed to TEx from unmodified MC38 cells. Additionally, antitumor therapy composed of mTEx (especially those deprived of TGF-β1) and DC-based vaccines allowed for regeneration of antitumor immunity and induction of the systemic Th1 response responsible for the sustained effect of the therapy. In conclusion, tumor-derived exosomes loaded with IL-12 and/or deprived of TGF-β1 could become an efficient adjuvant supporting induction of a specific antitumor response in both immuno- and chemotherapeutic schemes of treatment.
Collapse
Affiliation(s)
- Joanna Rossowska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Natalia Anger
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Katarzyna Wegierek
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Agnieszka Szczygieł
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Jagoda Mierzejewska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Magdalena Milczarek
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Bożena Szermer-Olearnik
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Elżbieta Pajtasz-Piasecka
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|