1
|
Vozgirdaite D, Allard-Vannier E, Velge-Roussel F, Douez E, Jolivet L, Boursin F, Chourpa I, Aubrey N, Hervé-Aubert K. Metformin-encapsulating immunoliposomes conjugated with anti-TROP 2 antibody fragments for the active targeting of triple-negative breast cancer. NANOSCALE 2025; 17:4058-4072. [PMID: 39775761 DOI: 10.1039/d4nr03224a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Trophoblast cell-surface antigen 2 (TROP 2) has re-emerged as a promising biomarker in triple-negative breast cancer (TNBC), with high overexpression in many TNBC cases. However, despite its potential and approval as an antibody-drug-conjugate for TNBC treatment, TROP 2-targeted delivery systems are currently underexplored. Therefore, this study was aimed at exploiting the potential of TROP 2 targeting by encapsulating metformin (Met), an antidiabetic drug associated with tumor growth inhibitory properties, inside liposomes decorated with TROP 2-targeting single-chain variable fragments (scFvs). The optimization of scFv grafting resulted in Met-immunoliposomes with an average diameter of less than 200 nm, low polydispersity index (∼0.1), negative surface charge (<-10 mV), high Met drug loading (>150 mg g-1), and high affinity towards TROP 2 binding. Furthermore, Met-immunoliposomes were reproducible, and the scFv conjugation was stable in the presence of serum for five days. Their cellular uptake increased 4 folds in two-dimensional and 9 folds in three-dimensional TNBC models owing to the high affinity towards TROP 2 binding. Finally, it was observed that the therapeutic effect of Met in suppressing cancer cell growth and proliferation was superior when using anti-TROP 2 scFv-grafted Met-immunoliposomes, which completely stopped the spheroid growth and inhibited the expression of adenosine triphosphate. This study is one of the first reports to explore the combination of nanoparticle-based drug delivery systems to target the TROP 2 protein in TNBC, and to the best of our knowledge, this is the first report to specifically combine the use of scFvs with TROP 2 targeting to deliver therapeutics for TNBC treatment.
Collapse
Affiliation(s)
- Daiva Vozgirdaite
- UPR 4301 CBM, CNRS, NMNS Department, University of Tours, 37200 Tours, France.
| | | | | | - Emmanuel Douez
- UPR 4301 CBM, CNRS, NMNS Department, University of Tours, 37200 Tours, France.
- Pharmacy Department, University Hospital Center of Tours, 37200 Tours, France
| | - Louis Jolivet
- ISP UMR 1282, INRAE, BioMAP team, University of Tours, 37200 Tours, France
| | - Fanny Boursin
- ISP UMR 1282, INRAE, BioMAP team, University of Tours, 37200 Tours, France
| | - Igor Chourpa
- UPR 4301 CBM, CNRS, NMNS Department, University of Tours, 37200 Tours, France.
| | - Nicolas Aubrey
- ISP UMR 1282, INRAE, BioMAP team, University of Tours, 37200 Tours, France
| | - Katel Hervé-Aubert
- UPR 4301 CBM, CNRS, NMNS Department, University of Tours, 37200 Tours, France.
| |
Collapse
|
2
|
Faderin E, Iorkula TH, Aworinde OR, Awoyemi RF, Awoyemi CT, Acheampong E, Chukwu JU, Agyemang P, Onaiwu GE, Ifijen IH. Platinum nanoparticles in cancer therapy: chemotherapeutic enhancement and ROS generation. Med Oncol 2025; 42:42. [PMID: 39789336 DOI: 10.1007/s12032-024-02598-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
Platinum nanoparticles (PtNPs) offer significant promise in cancer therapy by enhancing the therapeutic effects of platinum-based chemotherapies like cisplatin. These nanoparticles improve tumor targeting, reduce off-target effects, and help overcome drug resistance. PtNPs exert their anti-cancer effects primarily through the generation of reactive oxygen species (ROS), which induce oxidative stress and apoptosis in cancer cells. Additionally, PtNPs interact with cellular signaling pathways such as PI3K/AKT and MAPK, sensitizing cancer cells to chemotherapy. Advances in PtNP synthesis focus on optimizing size, shape, and surface modifications to enhance biocompatibility and targeting. Functionalization with biomolecules allows selective tumor delivery, while smart release systems enable controlled drug release. In vivo studies have shown that PtNPs significantly inhibit tumor growth and metastasis. Ongoing clinical trials are evaluating their safety and efficacy. This review explores PtNPs' mechanisms of action, nanotechnology advancements, and challenges in biocompatibility, with a focus on their potential integration into cancer treatments.
Collapse
Affiliation(s)
- Emmanuel Faderin
- Department of Pharmaceutical Sciences, Southern Illinois University, Edwardsville, 1 Hairpin Drive, Edwardsville, IL, 62026-001, USA
| | - Terungwa H Iorkula
- Department of Chemistry and Biochemistry, Brigham Young University Provo, Provo, UT, USA
| | - Omowunmi Rebecca Aworinde
- Department of Chemistry, Michigan Technological University, 1400 Townsend Dr, Houghton, MI, 49931, USA
| | - Raymond Femi Awoyemi
- Department of Chemistry, Mississippi State University, Starkville, MS, 39762, USA
| | - Christopher Taiwo Awoyemi
- Laboratory Department, Covenant University Medical Centre, Canaanland, KM 10, Idiroko Road, Ota, Ogun State, Nigeria
| | - Edward Acheampong
- Department of Chemistry, Mississippi State University, Starkville, MS, 39762, USA
| | - Janefrances U Chukwu
- C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Stewart Hall, PO Box 6201, Morgantown, WV, 26506-6201, USA
| | - Peter Agyemang
- Department of Chemistry, Michigan Technological University, 1400 Townsend Dr, Houghton, MI, 49931, USA
| | - Gregory E Onaiwu
- Department of Physical Science (Chemistry Option), Benson Idahosa University, PMB 1100, Benin City, Edo State, Nigeria
| | - Ikhazuagbe Hilary Ifijen
- Department of Research Outreach, Rubber Research Institute of Nigeria, PMB 1049, Benin City, Edo State, Nigeria.
| |
Collapse
|
3
|
Tiwari P, Shukla RP, Yadav K, Panwar D, Agarwal N, Kumar A, Singh N, Bakshi AK, Marwaha D, Gautam S, Rai N, Mishra PR. Exploring nanocarriers as innovative materials for advanced drug delivery strategies in onco-immunotherapies. J Mol Graph Model 2024; 128:108702. [PMID: 38219505 DOI: 10.1016/j.jmgm.2024.108702] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/16/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024]
Abstract
In recent years, Onco-immunotherapies (OIMTs) have been shown to be a potential therapy option for cancer. Several immunotherapies have received regulatory approval, while many others are now undergoing clinical testing or are in the early stages of development. Despite this progress, a large number of challenges to the broad use of immunotherapies to treat cancer persists. To make immunotherapy more useful as a treatment while reducing its potentially harmful side effects, we need to know more about how to improve response rates to different types of immunotherapies. Nanocarriers (NCs) have the potential to harness immunotherapies efficiently, enhance the efficiency of these treatments, and reduce the severe adverse reactions that are associated with them. This article discusses the necessity to incorporate nanomedicines in OIMTs and the challenges we confront with current anti-OIMT approaches. In addition, it examines the most important considerations for building nanomedicines for OIMT, which may improve upon current immunotherapy methods. Finally, it highlights the applications and future scenarios of using nanotechnology.
Collapse
Affiliation(s)
- Pratiksha Tiwari
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India; Jawaharlal Nehru University, New Delhi, India
| | - Ravi Prakash Shukla
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India
| | - Krishna Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India
| | - Dilip Panwar
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India
| | - Neha Agarwal
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India
| | - Ankit Kumar
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India
| | - Neha Singh
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India
| | - Avijit Kumar Bakshi
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India
| | - Disha Marwaha
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India
| | - Shalini Gautam
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India
| | - Nikhil Rai
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, U.P., India.
| |
Collapse
|
4
|
George N, Chakraborty S, Mary NL, Suguna L. Incorporating silver nanoparticles into electrospun nanofibers of casein/polyvinyl alcohol to develop scaffolds for tissue engineering. Int J Biol Macromol 2024; 267:131501. [PMID: 38614170 DOI: 10.1016/j.ijbiomac.2024.131501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 03/18/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Developing novel antimicrobial wound dressings that have the potential to address the challenges associated with chronic wounds is highly imperative in providing effective infection control and wound healing support. Biocompatible electrospun nanofibers with their high porosity and surface area enabling efficient drug loading and delivery have been investigated in this regard as viable candidates for chronic wound care. Here, we design Casein/Polyvinyl alcohol (CAN/PVA) nanofibers reinforced with silver nanoparticles (Ag NPs) by the electrospinning technique to develop diabetic wound healing scaffolds. The prepared samples were characterized using spectroscopic and electron microscopic techniques. The biocompatibility of the polymer samples were assessed using 3 T3 fibroblast cell lines and the maximum cell viability was found to 95 % at a concentration of 50 μg/mL for the prepared nanofibers. Scratch assay tests were also performed to analyze the wound healing activity of the nanofibers wherein they demonstrated increased migration and proliferation of fibroblast 3 T3 cells. Moreover, these nanofibers also exhibit antibacterial efficiency against Gram-negative bacteria, Escherichia coli (E.coli). Therefore, the antimicrobial nature of the electrospun nanofibers coupled with their moisture absorption properties and wound healing ability render them as effective materials for wound dressing applications.
Collapse
Affiliation(s)
- Nisha George
- Department of Chemistry, St. Joseph's College (Autonomous), Irinjalakuda, Kerala, India
| | - Sohini Chakraborty
- Department of Chemistry, Stella Maris College (Autonomous), Chennai, Tamil Nadu, India
| | - N L Mary
- Department of Chemistry, Stella Maris College (Autonomous), Chennai, Tamil Nadu, India.
| | - L Suguna
- Biotechnology and Biochemistry, CSIR- Central Leather Research Institute, Chennai, Tamil Nādu, India
| |
Collapse
|
5
|
Lai Z, Bai F, Pu T, Li J, Wu L, Zhou Z, Yang N. Tumor-targeted gypenoside nanodrug delivery system with double protective layers. J Cancer Res Ther 2024; 20:684-694. [PMID: 38687941 DOI: 10.4103/jcrt.jcrt_134_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/31/2023] [Indexed: 05/02/2024]
Abstract
OBJECTIVES Gypenoside (Gyp) is easily degraded in the gastrointestinal tract, resulting in its low bioavailability. We aimed to develop a tumor-targeted Gyp nanodrug delivery system and to investigate its antitumor effect in vitro. MATERIALS AND METHODS We used Gyp as the therapeutic drug molecule, mesoporous silica (MSN) and liposome (Lipo) as the drug carrier and protective layers, and aptamer SYL3C as the targeting element to establish a tumor-targeted nanodrug delivery system (i.e., SYL3C-Lipo@Gyp-MSN). The characteristics of SYL3C-Lipo@Gyp-MSN were investigated, and its drug release performance, cell uptake, and antitumor activity in vitro were evaluated. RESULTS A tumor-targeted Gyp nanodrug delivery system was successfully prepared. The SYL3C-Lipo@Gyp-MSN was spherical or ellipsoidal; had good dispersion, which enabled it to specifically target and kill the liver tumor cell HepG2; and effectively protected the early leakage of Gyp. CONCLUSIONS We have established a tumor-targeted nanodrug delivery system that can target and kill liver cancer cells and may provide a strategy for preparing new nanodrug-loaded preparations of traditional Chinese medicine.
Collapse
Affiliation(s)
- Zongqiang Lai
- Department of Pharmaceutical, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Facheng Bai
- Department of Pharmaceutical, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Tao Pu
- Department of Puberty Gynecology, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Jun Li
- Department of Pharmaceutical, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Lining Wu
- Department of Pharmaceutical, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhou Zhou
- Department of Pharmaceutical, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Nuo Yang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
6
|
Guo Q, Wang S, Xu R, Tang Y, Xia X. Cancer cell membrane-coated nanoparticles: a promising anti-tumor bionic platform. RSC Adv 2024; 14:10608-10637. [PMID: 38567339 PMCID: PMC10985588 DOI: 10.1039/d4ra01026d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024] Open
Abstract
Nanoparticle (NP) drug delivery systems have shown promise in tumor therapy. However, limitations such as susceptibility to immune clearance and poor targeting in a complex intercellular environment still exist. Recently, cancer cell membrane-encapsulated nanoparticles (CCM-NPs) constructed using biomimetic nanotechnology have been developed to overcome these problems. Proteins on the membrane surface of cancer cells can provide a wide range of activities for CCM-NPs, including immune escape and homologous cell recognition properties. Meanwhile, the surface of the cancer cell membrane exhibits obvious antigen enrichment, so that CCM-NPs can transmit tumor-specific antigen, activate a downstream immune response, and produce an effective anti-tumor effect. In this review, we first provided an overview of the functions of cancer cell membranes and summarized the preparation techniques and characterization methods of CCM-NPs. Then, we focused on the application of CCM-NPs in tumor therapy. In addition, we summarized the functional modifications of cancer cell membranes and compiled the patent applications related to CCM-NPs in recent years. Finally, we proposed the future challenges and directions of this technology in order to provide guidance for researchers in this field.
Collapse
Affiliation(s)
- Qiuyan Guo
- School of Pharmacy, Hunan University of Chinese Medicine Changsha Hunan 410208 China
| | - Shengmei Wang
- School of Pharmacy, Hunan University of Chinese Medicine Changsha Hunan 410208 China
| | - Rubing Xu
- School of Pharmacy, Hunan University of Chinese Medicine Changsha Hunan 410208 China
| | - Yingnan Tang
- School of Pharmacy, Hunan Vocational College of Science and Technology Changsha Hunan 410208 China
| | - Xinhua Xia
- School of Pharmacy, Hunan University of Chinese Medicine Changsha Hunan 410208 China
| |
Collapse
|
7
|
Gong Z, Peng S, Cao J, Tan H, Zhao H, Bai J. Advances in the variations and biomedical applications of stimuli-responsive nanodrug delivery systems. NANOTECHNOLOGY 2024; 35:132001. [PMID: 38198449 DOI: 10.1088/1361-6528/ad170b] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
Chemotherapy is an important cancer treatment modality, but the clinical utility of chemotherapeutics is limited by their toxic side effects, inadequate distribution and insufficient intracellular concentrations. Nanodrug delivery systems (NDDSs) have shown significant advantages in cancer diagnosis and treatment. Variable NDDSs that respond to endogenous and exogenous triggers have attracted much research interest. Here, we summarized nanomaterials commonly used for tumor therapy, such as peptides, liposomes, and carbon nanotubes, as well as the responses of NDDSs to pH, enzymes, magnetic fields, light, and multiple stimuli. Specifically, well-designed NDDSs can change in size or morphology or rupture when induced by one or more stimuli. The varying responses of NDDSs to stimulation contribute to the molecular design and development of novel NDDSs, providing new ideas for improving drug penetration and accumulation, inhibiting tumor resistance and metastasis, and enhancing immunotherapy.
Collapse
Affiliation(s)
- Zhongying Gong
- College of Economics and Management, Qingdao University of Science and Technology, Qingdao 266061, People's Republic of China
| | - Shan Peng
- School of Stomatology, Weifang Medical University, Weifang 261053, People's Republic of China
| | - Juanjuan Cao
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, People's Republic of China
| | - Haining Tan
- National Glycoengineering Research Center, Shandong University, Jinan 250012, People's Republic of China
| | - Hongxia Zhao
- College of Economics and Management, Qingdao University of Science and Technology, Qingdao 266061, People's Republic of China
| | - Jingkun Bai
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, People's Republic of China
| |
Collapse
|
8
|
Eghtedari S, Behdani M, Kazemi-Lomedasht F. Neuropilin-1 Binding Peptide as Fusion to Diphtheria Toxin Induces Apoptosis in Non-small Cell Lung Cancer Cell Line. Curr Pharm Des 2024; 30:1317-1325. [PMID: 38584554 DOI: 10.2174/0113816128292382240325074032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/21/2024] [Accepted: 03/04/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND Targeted cancer therapy can be considered as a new strategy to overcome the side effects of current cancer treatments. Neuropilin-1 (NRP-1) is a transmembrane glycoprotein that is expressed in endothelial cells and tumor vessels to stimulate angiogenesis progression. Targeted diphtheria toxin (DT)- based therapeutics are promising tools for cancer treatment. This study aimed to construct a novel NRP-1 binding peptide (as three repeats) (CRGDK) as a fusion to truncated DT (DTA) (DTA-triCRGDK) for targeted delivery of DT into NRP-1 expressing cells. METHODS The concept of DTA-triCRGDK was designed, synthesized and cloned into the bacterial host. Expression of DTA-triCRGDK was induced by Isopropyl ß-D-1-thiogalactopyranoside (IPTG) and purification was performed using Ni-NTA chromatography. Biological activity of DTA-triCRGDK was evaluated using MTT, apoptosis, and wound healing assays. In addition, expression levels of apoptotic Bax, Bcl2, and Casp3 genes were determined by Real-time PCR. RESULTS Cytotoxicity analysis showed the IC50 values of DTA-triCRGDK for A549 and MRC5 were 0.43 nM and 4.12 nM after 24 h, respectively. Bcl2 expression levels decreased 0.4 and 0.72 fold in A549 and MRC5, respectively. However, Bax and Casp3 expression level increased by 6.75 and 8.19 in A549 and 2.51 and 3.6 in MRC5 cells. CONCLUSION Taken together, DTA-triCRGDK is a promising tool for targeted therapy of NRP-1 overexpressing cancer cells.
Collapse
Affiliation(s)
- Sara Eghtedari
- Department of Biology, Faculty of Basic Sciences, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mahdi Behdani
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Kazemi-Lomedasht
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
9
|
Javid H, Oryani MA, Rezagholinejad N, Esparham A, Tajaldini M, Karimi‐Shahri M. RGD peptide in cancer targeting: Benefits, challenges, solutions, and possible integrin-RGD interactions. Cancer Med 2024; 13:e6800. [PMID: 38349028 PMCID: PMC10832341 DOI: 10.1002/cam4.6800] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 02/15/2024] Open
Abstract
RGD peptide can be found in cell adhesion and signaling proteins, such as fibronectin, vitronectin, and fibrinogen. RGD peptides' principal function is to facilitate cell adhesion by interacting with integrin receptors on the cell surface. They have been intensively researched for use in biotechnology and medicine, including incorporation into biomaterials, conjugation to medicinal molecules or nanoparticles, and labeling with imaging agents. RGD peptides can be utilized to specifically target cancer cells and the tumor vasculature by engaging with these integrins, improving drug delivery efficiency and minimizing adverse effects on healthy tissues. RGD-functionalized drug carriers are a viable option for cancer therapy as this focused approach has demonstrated promise in the future. Writing a review on the RGD peptide can significantly influence how drugs are developed in the future by improving our understanding of the peptide, finding knowledge gaps, fostering innovation, and making drug design easier.
Collapse
Affiliation(s)
- Hossein Javid
- Department of Medical Laboratory SciencesVarastegan Institute for Medical SciencesMashhadIran
- Department of Clinical Biochemistry, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
- Surgical Oncology Research CenterMashhad University of Medical SciencesMashhadIran
| | - Mahsa Akbari Oryani
- Department of Pathology, School of MedicineMashhad University of Medical SciencesMashhadIran
| | | | - Ali Esparham
- Student Research Committee, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Mahboubeh Tajaldini
- Ischemic Disorder Research CenterGolestan University of Medical SciencesGorganIran
| | - Mehdi Karimi‐Shahri
- Department of Pathology, School of MedicineMashhad University of Medical SciencesMashhadIran
- Department of Pathology, School of MedicineGonabad University of Medical SciencesGonabadIran
| |
Collapse
|
10
|
Varaprasad GL, Gupta VK, Prasad K, Kim E, Tej MB, Mohanty P, Verma HK, Raju GSR, Bhaskar L, Huh YS. Recent advances and future perspectives in the therapeutics of prostate cancer. Exp Hematol Oncol 2023; 12:80. [PMID: 37740236 PMCID: PMC10517568 DOI: 10.1186/s40164-023-00444-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 09/10/2023] [Indexed: 09/24/2023] Open
Abstract
Prostate cancer (PC) is one of the most common cancers in males and the fifth leading reason of death. Age, ethnicity, family history, and genetic defects are major factors that determine the aggressiveness and lethality of PC. The African population is at the highest risk of developing high-grade PC. It can be challenging to distinguish between low-risk and high-risk patients due to the slow progression of PC. Prostate-specific antigen (PSA) is a revolutionary discovery for the identification of PC. However, it has led to an increase in over diagnosis and over treatment of PC in the past few decades. Even if modifications are made to the standard PSA testing, the specificity has not been found to be significant. Our understanding of PC genetics and proteomics has improved due to advances in different fields. New serum, urine, and tissue biomarkers, such as PC antigen 3 (PCA3), have led to various new diagnostic tests, such as the prostate health index, 4K score, and PCA3. These tests significantly reduce the number of unnecessary and repeat biopsies performed. Chemotherapy, radiotherapy, and prostatectomy are standard treatment options. However, newer novel hormone therapy drugs with a better response have been identified. Androgen deprivation and hormonal therapy are evolving as new and better options for managing hormone-sensitive and castration-resistant PC. This review aimed to highlight and discuss epidemiology, various risk factors, and developments in PC diagnosis and treatment regimens.
Collapse
Affiliation(s)
- Ganji Lakshmi Varaprasad
- Department of Biological Sciences and Bioengineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, 22212, Republic of Korea
| | - Vivek Kumar Gupta
- Department of Biological Sciences and Bioengineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, 22212, Republic of Korea
| | - Kiran Prasad
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Eunsu Kim
- Department of Biological Sciences and Bioengineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, 22212, Republic of Korea
| | - Mandava Bhuvan Tej
- Department of Health Care Informatics, Sacred Heart University, 5151 Park Avenue, Fair Fields, CT, 06825, USA
| | - Pratik Mohanty
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Henu Kumar Verma
- Department of Immunopathology, Institute of Lungs Health and Immunity, Helmholtz Zentrum, 85764, Neuherberg, Munich, Germany
| | - Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea.
| | - Lvks Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India.
| | - Yun Suk Huh
- Department of Biological Sciences and Bioengineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
11
|
Pranav, Laskar P, Jaggi M, Chauhan SC, Yallapu MM. Biomolecule-functionalized nanoformulations for prostate cancer theranostics. J Adv Res 2023; 51:197-217. [PMID: 36368516 PMCID: PMC10491979 DOI: 10.1016/j.jare.2022.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/21/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Even with the advancement in the areas of cancer nanotechnology, prostate cancer still poses a major threat to men's health. Nanomaterials and nanomaterial-derived theranostic systems have been explored for diagnosis, imaging, and therapy for different types of cancer still, for prostate cancer they have not delivered at full potential because of the limitations like in vivo biocompatibility, immune responses, precise targetability, and therapeutic outcome associated with the nanostructured system. AIM OF REVIEW Functionalizing nanomaterials with different biomolecules and bioactive agents provides advantages like specificity towards cancerous tumors, improved circulation time, and modulation of the immune response leading to early diagnosis and targeted delivery of cargo at the site of action. KEY SCIENTIFIC CONCEPTS OF REVIEW In this review, we have emphasized the classification and comparison of various nanomaterials based on biofunctionalization strategy and source of biomolecules such that it can be used for possible translation in clinical settings and future developments. This review highlighted the opportunities for embedding highly specific biological targeting moieties (antibody, aptamer, oligonucleotides, biopolymer, peptides, etc.) on nanoparticles which can improve the detection of prostate cancer-associated biomarkers at a very low limit of detection, direct visualization of prostate tumors and lastly for its therapy. Lastly, special emphasis was given to biomimetic nanomaterials which include functionalization with extracellular vesicles, exosomes and viral particles and their application for prostate cancer early detection and drug delivery. The present review paves a new pathway for next-generation biofunctionalized nanomaterials for prostate cancer theranostic application and their possibility in clinical translation.
Collapse
Affiliation(s)
- Pranav
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Partha Laskar
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA.
| |
Collapse
|
12
|
Tan KF, In LLA, Vijayaraj Kumar P. Surface Functionalization of Gold Nanoparticles for Targeting the Tumor Microenvironment to Improve Antitumor Efficiency. ACS APPLIED BIO MATERIALS 2023; 6:2944-2981. [PMID: 37435615 DOI: 10.1021/acsabm.3c00202] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Gold nanoparticles (AuNPs) have undergone significant research for their use in the treatment of cancer. Numerous researchers have established their potent antitumor properties, which have greatly impacted the treatment of cancer. AuNPs have been used in four primary anticancer treatment modalities, namely radiation, photothermal therapy, photodynamic therapy, and chemotherapy. However, the ability of AuNPs to destroy cancer is lacking and can even harm healthy cells without the right direction to transport them to the tumor microenvironment. Consequently, a suitable targeting technique is needed. Based on the distinct features of the human tumor microenvironment, this review discusses four different targeting strategies that target the four key features of the tumor microenvironment, including abnormal vasculature, overexpression of specific receptors, an acidic microenvironment, and a hypoxic microenvironment, to direct surface-functionalized AuNPs to the tumor microenvironment and increase antitumor efficacies. In addition, some current completed or ongoing clinical trials of AuNPs will also be discussed below to further reinforce the concept of using AuNPs in anticancer therapy.
Collapse
Affiliation(s)
- Kin Fai Tan
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, Taman Connaught, Cheras, Kuala Lumpur 56000, Malaysia
| | - Lionel Lian Aun In
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Palanirajan Vijayaraj Kumar
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, Taman Connaught, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
13
|
Yerpude ST, Potbhare AK, Bhilkar P, Rai AR, Singh RP, Abdala AA, Adhikari R, Sharma R, Chaudhary RG. Biomedical,clinical and environmental applications of platinum-based nanohybrids: An updated review. ENVIRONMENTAL RESEARCH 2023; 231:116148. [PMID: 37211181 DOI: 10.1016/j.envres.2023.116148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/25/2023] [Accepted: 05/13/2023] [Indexed: 05/23/2023]
Abstract
Platinum nanoparticles (Pt NPs) have numerous applications in various sectors, including pharmacology, nanomedicine, cancer therapy, radiotherapy, biotechnology and environment mitigation like removal of toxic metals from wastewater, photocatalytic degradation of toxic compounds, adsorption, and water splitting. The multifaceted applications of Pt NPs because of their ultra-fine structures, large surface area, tuned porosity, coordination-binding, and excellent physiochemical properties. The various types of nanohybrids (NHs) of Pt NPs can be fabricated by doping with different metal/metal oxide/polymer-based materials. There are several methods to synthesize platinum-based NHs, but biological processes are admirable because of green, economical, sustainable, and non-toxic. Due to the robust physicochemical and biological characteristics of platinum NPs, they are widely employed as nanocatalyst, antioxidant, antipathogenic, and anticancer agents. Indeed, Pt-based NHs are the subject of keen interest and substantial research area for biomedical and clinical applications. Hence, this review systematically studies antimicrobial, biological, and environmental applications of platinum and platinum-based NHs, predominantly for treating cancer and photo-thermal therapy. Applications of Pt NPs in nanomedicine and nano-diagnosis are also highlighted. Pt NPs-related nanotoxicity and the potential and opportunity for future nano-therapeutics based on Pt NPs are also discussed.
Collapse
Affiliation(s)
- Sachin T Yerpude
- Post Graduate Department of Microbiology, Seth Kesarimal Porwal College of Arts and Science and Commerce, Kamptee, 441001, India.
| | - Ajay K Potbhare
- Post Graduate Department of Chemistry, Seth Kesarimal Porwal College of Arts and Science and Commerce, Kamptee, 441001, India.
| | - Pavan Bhilkar
- Post Graduate Department of Chemistry, Seth Kesarimal Porwal College of Arts and Science and Commerce, Kamptee, 441001, India.
| | - Alok R Rai
- Post Graduate Department of Microbiology, Seth Kesarimal Porwal College of Arts and Science and Commerce, Kamptee, 441001, India.
| | - Raghvendra P Singh
- Department of Research & Development, Azoth Biotech Pvt. Ltd., Noida, 201306, India.
| | - Ahmed A Abdala
- Chemical Engineering Program, Texas A and M University at Qatar POB, 23784, Doha, Qatar.
| | - Rameshwar Adhikari
- Central Department of Chemistry and Research Centre for Applied Science and Technology (RECAST), Tribhuvan University, Kathmandu, Nepal.
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Science, Banaras Hindu University, Varanasi, India.
| | - Ratiram G Chaudhary
- Post Graduate Department of Chemistry, Seth Kesarimal Porwal College of Arts and Science and Commerce, Kamptee, 441001, India.
| |
Collapse
|
14
|
Zhang P, Chen L, Zhou F, He Z, Wang G, Luo Y. NRP1 promotes prostate cancer progression via modulating EGFR-dependent AKT pathway activation. Cell Death Dis 2023; 14:159. [PMID: 36841806 PMCID: PMC9958327 DOI: 10.1038/s41419-023-05696-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/27/2023]
Abstract
Prostate cancer (PCa) is the most common malignant tumor with a high global incidence in males. The mechanism underlying PCa progression is still not clear. This study observed that NRP1 was highly expressed in PCa and associated with poor prognosis in PCa patients. Functionally, NRP1 depletion attenuated the proliferation and migration ability of PCa cells in vitro and in vivo, while NRP1 overexpression promoted PCa cell proliferation and migration. Moreover, it was observed that NRP1 depletion induced G1 phase arrest in PCa cells. Mechanistically, HIF1α is bound to the specific promoter region of NRP1, thereby regulating its transcriptional activation. Subsequently, NRP1 interacted with EGFR, leading to EGFR phosphorylation. This study also provided evidence that the b1/b2 domain of NRP1 was responsible for the interaction with the extracellular domain of EGFR. Moreover, EGFR mediated NRP1-induced activation of the AKT signaling pathway, which promoted the malignant progression of PCa. In addition, the administration of NRP1 inhibitor EG01377 significantly inactivated the EGFR/AKT signaling axis, thereby suppressing PCa progression. In conclusion, the findings from this study highlighted the molecular mechanism underlying NRP1 expression in PCa and provide a potential predictor and therapeutic target for clinical prognosis and treatment of PCa.
Collapse
Affiliation(s)
- Peng Zhang
- grid.413247.70000 0004 1808 0969Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China ,grid.413247.70000 0004 1808 0969Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Liang Chen
- grid.413247.70000 0004 1808 0969Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China ,grid.413247.70000 0004 1808 0969Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fenfang Zhou
- grid.413247.70000 0004 1808 0969Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China ,grid.413247.70000 0004 1808 0969Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhiwen He
- grid.413247.70000 0004 1808 0969Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China ,grid.413247.70000 0004 1808 0969Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China. .,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China. .,Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Yongwen Luo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China. .,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China. .,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China. .,Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China. .,Medical Research Institute, Wuhan University, Wuhan, China.
| |
Collapse
|
15
|
Wang Z, Ren X, Wang D, Guan L, Li X, Zhao Y, Liu A, He L, Wang T, Zvyagin AV, Yang B, Lin Q. Novel strategies for tumor radiosensitization mediated by multifunctional gold-based nanomaterials. Biomater Sci 2023; 11:1116-1136. [PMID: 36601661 DOI: 10.1039/d2bm01496c] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Radiotherapy (RT) is one of the most effective and commonly used cancer treatments for malignant tumors. However, the existing radiosensitizers have a lot of side effects and poor efficacy, which limits the curative effect and further application of radiotherapy. In recent years, emerging nanomaterials have shown unique advantages in enhancing radiosensitization. In particular, gold-based nanomaterials, with high X-ray attenuation capacity, good biocompatibility, and promising chemical, electronic and optical properties, have become a new type of radiotherapy sensitizer. In addition, gold-based nanomaterials can be used as a carrier to load a variety of drugs and immunosuppressants; in particular, its photothermal therapy, photodynamic therapy and multi-mode imaging functions aid in providing excellent therapeutic effect in coordination with RT. Recently, many novel strategies of radiosensitization mediated by multifunctional gold-based nanomaterials have been reported, which provides a new idea for improving the efficacy and reducing the side effects of RT. In this review, we systematically summarize the recent progress of various new gold-based nanomaterials that mediate radiosensitization and describe the mechanism. We further discuss the challenges and prospects in the field. It is hoped that this review will help researchers understand the latest progress of gold-based nanomaterials for radiosensitization, and encourage people to optimize the existing methods or explore novel approaches for radiotherapy.
Collapse
Affiliation(s)
- Ze Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Xiaojun Ren
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin Province, China.
| | - Dongzhou Wang
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin Province, China.
| | - Lin Guan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Xingchen Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Yue Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Annan Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Liang He
- Department of Urology, the First Hospital of Jilin University, Changchun 130021, Jilin, China.
| | - Tiejun Wang
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin Province, China.
| | - Andrei V Zvyagin
- Australian Research Council Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, NSW 2109, Australia
- Institute of Biology and Biomedicine, Lobachevsky Nizhny Novgorod State University, 603105, Nizhny Novgorod, Russia
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Quan Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| |
Collapse
|
16
|
Wlodarczyk MT, Dragulska SA, Chen Y, Poursharifi M, Acosta Santiago M, Martignetti JA, Mieszawska AJ. Pt(II)-PLGA Hybrid in a pH-Responsive Nanoparticle System Targeting Ovarian Cancer. Pharmaceutics 2023; 15:pharmaceutics15020607. [PMID: 36839929 PMCID: PMC9961376 DOI: 10.3390/pharmaceutics15020607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
Platinum-based agents are the main treatment option in ovarian cancer (OC). Herein, we report a poly(lactic-co-glycolic acid) (PLGA) nanoparticle (NP) encapsulating platinum (II), which is targeted to a cell-spanning protein overexpressed in above 90% of late-stage OC, mucin 1 (MUC1). The NP is coated with phospholipid-DNA aptamers against MUC1 and a pH-sensitive PEG derivative containing an acid-labile hydrazone linkage. The pH-sensitive PEG serves as an off-on switch that provides shielding effects at the physiological pH and is shed at lower pH, thus exposing the MUC1 ligands. The pH-MUC1-Pt NPs are stable in the serum and display pH-dependent PEG cleavage and drug release. Moreover, the NPs effectively internalize in OC cells with higher accumulation at lower pH. The Pt (II) loading into the NP was accomplished via PLGA-Pt (II) coordination chemistry and was found to be 1.62 wt.%. In vitro screening using a panel of OC cell lines revealed that pH-MUC1-Pt NP has a greater effect in reducing cellular viability than carboplatin, a clinically relevant drug analogue. Biodistribution studies have demonstrated NP accumulation at tumor sites with effective Pt (II) delivery. Together, these results demonstrate a potential for pH-MUC1-Pt NP for the enhanced Pt (II) therapy of OC and other solid tumors currently treated with platinum agents.
Collapse
Affiliation(s)
- Marek T. Wlodarczyk
- Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Sylwia A. Dragulska
- Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
| | - Ying Chen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Mina Poursharifi
- Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Maxier Acosta Santiago
- Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
| | - John A. Martignetti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
- Women’s Health Research Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
- Rudy Ruggles Research Institute, Western Connecticut Health Network, 131 West St., Danbury, CT 06810, USA
| | - Aneta J. Mieszawska
- Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
- Correspondence:
| |
Collapse
|
17
|
Mondal SK, Jinka S, Shankar G, Srinivas R, Banerjee R. Modification of α-Tocopherol Succinate with a Tumor-targeting Peptide Conjugate Enhances the Antitumor Efficacy of a Paclitaxel-loaded Lipid Aggregate. Chem Asian J 2023; 18:e202201136. [PMID: 36482874 DOI: 10.1002/asia.202201136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Paclitaxel (PTX) is a widely used chemotherapeutic agent in the clinic. However, its clinical benefit is limited due to its low water solubility, off-target toxicity, and for being a multidrug-resistant (MDR) substrate. To overcome these limitations in this study, a tumor-targeting peptide (CRGDK peptide, a ligand for NRP-1 receptor) conjugate of α-tocopheryl succinate (α-TOS) was synthesized and modified on PTX-loaded lipid aggregate (TL-PTX) to leverage the benefits of α-TOS, which include a) anti-cancer activity, b) increased PTX loading, and c) inhibition of MDR activity. Use of peptide conjugate of α-TOS (α-TOS-CRGDK) in lipid aggregate increased PTX entrapment efficiency by 20%, helped in NRP-1 specific cellular uptake and significantly enhanced apoptotic and cell killing activity (p <0.01) of PTX compared to control formulation (CL-PTX) by inhibiting MDR-activity in melanoma resulting in ∼70% increment in overall survival of melanoma tumor-bearing mice. In conclusion, CRGDK- α-TOS conjugate in association with PTX-loaded liposome provided a unique NRP-1 targeted, drug-resistant reversing anticancer regimen for treating aggressive melanoma.
Collapse
Affiliation(s)
- Sujan Kumar Mondal
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific & Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, India
- Department of Radiology, Michigan State University, East Lansing, Michigan (USA
| | - Sudhakar Jinka
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific & Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, India
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gajji Shankar
- Mass Spectrometry Division, CSIR - Indian Institute of Chemical Technology (CSIRIICT), Uppal Road, Tarnaka, Hyderabad, 500 007, Telangana State, India
| | - Ragampeta Srinivas
- Mass Spectrometry Division, CSIR - Indian Institute of Chemical Technology (CSIRIICT), Uppal Road, Tarnaka, Hyderabad, 500 007, Telangana State, India
| | - Rajkumar Banerjee
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific & Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, India
| |
Collapse
|
18
|
Farhadian N, Kazemi MS, Moosavi Baigi F, Khalaj M. Molecular dynamics simulation of drug delivery across the cell membrane by applying gold nanoparticle carrier: Flutamide as hydrophobic and glutathione as hydrophilic drugs as the case studies. J Mol Graph Model 2022; 116:108271. [PMID: 35863117 DOI: 10.1016/j.jmgm.2022.108271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 12/15/2022]
Abstract
In this study, molecular dynamics simulation is applied to investigate drug transport in both pure state and conjugated with neutral gold nanoparticle (AuNP) as a drug carrier inside dipalmitoylphosphatidylcholine (DPPC) membrane. Flutamide (Flu) as a hydrophobic and Glutathione (GSH) as a hydrophilic anticancer drug are selected as the case studies. Dynamics of each drug including adhesion on and penetration into the cell membrane are investigated. Pure and conjugated form of drugs inside the water and near the membrane are studied. Simulation results show that the interaction between drug molecules and DPPC changes after drug conjugating with AuNP. GSH, as a hydrophilic drug, intends to remain above the membrane bilayer and after conjugating with AuNP diffuses inside DPPC. However, hydrophobic Flu molecule likes to diffuse inside DPPC, but after conjugating with AuNP, its diffusion inside the lipid bilayer decreases, and its retention time at the surface of DPPC increases. Presence of Flu-NP at the surface of DPPC could enhance its impact on blocking dihydrotestosterone binding at androgen receptors resulting in tumor cell growth arrest. In addition, the tendency of GSH-NP for diffusion to the DPPC is a positive factor for the successful transport of heavy metals such as AuNP without rapid clearance through either the hepatobiliary pathway or the renal system. In conclusion, such MD simulation results may solve problems in nanomedicine translation and turn into a bridge toward maximizing targeting and minimizing nanotoxicity of metal NPs.
Collapse
Affiliation(s)
- Nafiseh Farhadian
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, 9177948944, Iran.
| | - Malihe Samadi Kazemi
- Department of Chemistry, Faculty of Science, Bojnourd Branch, Islamic Azad University, Bojnourd, 9417697796, Iran.
| | - Fatemeh Moosavi Baigi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran
| | - Mehdi Khalaj
- Department of Chemistry, Buinzahra Branch, Islamic Azad University, Buinzahra, Iran
| |
Collapse
|
19
|
Johnson RP, Ratnacaram CK, Kumar L, Jose J. Combinatorial approaches of nanotherapeutics for inflammatory pathway targeted therapy of prostate cancer. Drug Resist Updat 2022; 64:100865. [PMID: 36099796 DOI: 10.1016/j.drup.2022.100865] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 12/24/2022]
Abstract
Prostate cancer (PC) is the most prevalent male urogenital cancer worldwide. PC patients presenting an advanced or metastatic cancer succumb to the disease, even after therapeutic interventions including radiotherapy, surgery, androgen deprivation therapy (ADT), and chemotherapy. One of the hallmarks of PC is evading immune surveillance and chronic inflammation, which is a major challenge towards designing effective therapeutic formulations against PC. Chronic inflammation in PC is often characterized by tumor microenvironment alterations, epithelial-mesenchymal transition and extracellular matrix modifications. The inflammatory events are modulated by reactive nitrogen and oxygen species, inflammatory cytokines and chemokines. Major signaling pathways in PC includes androgen receptor, PI3K and NF-κB pathways and targeting these inter-linked pathways poses a major therapeutic challenge. Notably, many conventional treatments are clinically unsuccessful, due to lack of targetability and poor bioavailability of the therapeutics, untoward toxicity and multidrug resistance. The past decade witnessed an advancement of nanotechnology as an excellent therapeutic paradigm for PC therapy. Modern nanovectorization strategies such as stimuli-responsive and active PC targeting carriers offer controlled release patterns and superior anti-cancer effects. The current review initially describes the classification, inflammatory triggers and major inflammatory pathways of PC, various PC treatment strategies and their limitations. Subsequently, recent advancement in combinatorial nanotherapeutic approaches, which target PC inflammatory pathways, and the mechanism of action are discussed. Besides, the current clinical status and prospects of PC homing nanovectorization, and major challenges to be addressed towards the advancement PC therapy are also addressed.
Collapse
Affiliation(s)
- Renjith P Johnson
- Polymer Nanobiomaterial Research Laboratory, Nanoscience and Microfluidics Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Chandrahas Koumar Ratnacaram
- Cell Signaling and Cancer Biology Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Lalit Kumar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576 104, India
| | - Jobin Jose
- NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India.
| |
Collapse
|
20
|
Abstract
The term "molecular ZIP (or area) codes" refers to an originally hypothetical system of cell adhesion molecules that would control cell trafficking in the body. Subsequent discovery of the integrins, cadherins, and other cell adhesion molecules confirmed this hypothesis. The recognition system encompassing integrins and their ligands came particularly close to fulfilling the original ZIP code hypothesis, as multiple integrins with closely related specificities mediate cell adhesion by binding to an RGD or related sequence in various extracellular matrix proteins. Diseased tissues have their own molecular addresses that, although not necessarily involved in cell trafficking, can be made use of in targeted drug delivery. This article discusses the molecular basis of ZIP codes and the extensive effort under way to harness them for drug delivery purposes.
Collapse
|
21
|
Ruella Oliveira S, Tuttis K, Rita Thomazela Machado A, Cristina de Souza Rocha C, Maria Greggi Antunes L, Barbosa F. Cell-to-cell heterogeneous association of prostate cancer with gold nanoparticles elucidated by single-cell inductively coupled plasma mass spectrometry. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Reconstructed adoptive-macrophages with DNA-tetrahedron-CpG/siRNA for synergistic solid tumor immunotherapy. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Longoria-García S, Sánchez-Domínguez CN, Gallardo-Blanco H. Recent applications of cell-penetrating peptide guidance of nanosystems in breast and prostate cancer (Review). Oncol Lett 2022; 23:103. [PMID: 35154434 PMCID: PMC8822396 DOI: 10.3892/ol.2022.13223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/17/2022] [Indexed: 12/24/2022] Open
Abstract
Cell-penetrating peptides (CPPs) are small peptides from natural sources or designed from other protein sequences that can penetrate cell membranes. This property has been used in biomedicine to add them to biomolecules to improve their capacity for cell internalization and as a guidance tool for specific cell types. CPPs have been shown to enhance cellular uptake in vitro and in vivo, improving the efficacy of anticancer drugs such as doxorubicin and paclitaxel, while also limiting their cytotoxic effects on healthy cells and tissues. The current study reviews the internalization and major therapeutic results achieved from the functionalization of nanosystems with CPPs for guidance into breast and prostate cancer cells in vitro and in vivo. In addition, the practical results obtained are specifically discussed for use as a starting point for scientists looking to begin research in this field.
Collapse
Affiliation(s)
- Samuel Longoria-García
- Department of Biochemistry and Molecular Medicine, School of Medicine, Autonomous University of Nuevo Leon, Monterrey, Nuevo León 64460, Mexico
| | - Celia Nohemi Sánchez-Domínguez
- Department of Biochemistry and Molecular Medicine, School of Medicine, Autonomous University of Nuevo Leon, Monterrey, Nuevo León 64460, Mexico
| | - Hugo Gallardo-Blanco
- Department of Genetics, University Hospital ‘José Eleuterio González’, Autonomous University of Nuevo Leon, Monterrey, Nuevo León 64460, Mexico
| |
Collapse
|
24
|
Cohen L, Assaraf YG, Livney YD. Novel Selectively Targeted Multifunctional Nanostructured Lipid Carriers for Prostate Cancer Treatment. Pharmaceutics 2021; 14:pharmaceutics14010088. [PMID: 35056984 PMCID: PMC8781189 DOI: 10.3390/pharmaceutics14010088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer (PC) is the most common cancer in men over 50 and the 4th most prevalent human malignancy. PC treatment may include surgery, androgen deprivation therapy, chemotherapy, and radiation therapy. However, the therapeutic efficacy of systemic chemotherapy is limited due to low drug solubility and insufficient tumor specificity, inflicting toxic side effects and frequently provoking the emergence of drug resistance. Towards the efficacious treatment of PC, we herein developed novel selectively PC-targeted nanoparticles (NPs) harboring a cytotoxic drug cargo. This delivery system is based upon PEGylated nanostructured lipid carriers (NLCs), decorated with a selective ligand, targeted to prostate-specific membrane antigen (PSMA). NPs loaded with cabazitaxel (CTX) displayed a remarkable loading capacity of 168 ± 3 mg drug/g SA-PEG, encapsulation efficiency of 67 ± 1%, and an average diameter of 159 ± 3 nm. The time-course of in vitro drug release from NPs revealed a substantial drug retention profile compared to the unencapsulated drug. These NPs were selectively internalized into target PC cells overexpressing PSMA, and displayed a dose-dependent growth inhibition compared to cells devoid of the PSMA receptor. Remarkably, these targeted NPs exhibited growth-inhibitory activity at pM CTX concentrations, being markedly more potent than the free drug. This selectively targeted nano-delivery platform bears the promise of enhanced efficacy and minimal untoward toxicity.
Collapse
Affiliation(s)
- Lital Cohen
- The Laboratory of Biopolymers for Food and Health, Department of Biotechnology and Food Engineering, Technion–Israel Institute of Technology, Haifa 3200003, Israel;
| | - Yehuda G. Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion–Israel Institute of Technology, Haifa 3200003, Israel
- Correspondence: (Y.G.A.); (Y.D.L.)
| | - Yoav D. Livney
- The Laboratory of Biopolymers for Food and Health, Department of Biotechnology and Food Engineering, Technion–Israel Institute of Technology, Haifa 3200003, Israel;
- Correspondence: (Y.G.A.); (Y.D.L.)
| |
Collapse
|
25
|
Tan H, Zhang M, Wang Y, Timashev P, Zhang Y, Zhang S, Liang XJ, Li F. Innovative nanochemotherapy for overcoming cancer multidrug resistance. NANOTECHNOLOGY 2021; 33:052001. [PMID: 34700307 DOI: 10.1088/1361-6528/ac3355] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Tumor multidrug resistance (MDR) is a phenomenon in which drug-resistant tumor cells are resistant to multiple other unexposed antitumor drugs with different structures and targets. MDR of cancer is a primary cause of clinical chemotherapy failure. With the progress of nanotechnology in the medical field, more and more research works have developed many nanotechnology-based strategies to challenge drug resistance. This review details the recent studies at the National Center for Nanoscience and Technology utilizing various nanochemotherapy strategies for overcoming chemotherapy resistance of tumor. We discuss the benefits and limitations of the diverse strategies, as well as possible ways to overcome these limitations. Importantly, in order to combat cancer chemotherapy resistance with nanomedicine, the mechanisms of drug endocytosis and subsequent fate need to be explored and focused on. In the meanwhile, due to the complexity and diversity of chemotherapy resistance mechanisms, the development of more intelligent and controllable nanodrugs may have greater scope for clinical application.
Collapse
Affiliation(s)
- Hong Tan
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Mengyu Zhang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Yuqing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Peter Timashev
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, Moscow 119991, Russia
| | - Yuanyuan Zhang
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, Moscow 119991, Russia
| | - Shouwen Zhang
- Neurophysiology Department, Beijing Chao Yang Emergency Medical Center, Beijing 100122, People's Republic of China
| | - Xing-Jie Liang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Fangzhou Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| |
Collapse
|
26
|
Chen T, Li T, Wang J. Nanoscale Au@SiO 2-drug/VEGF as an in vivo probe for osteosarcoma diagnosis and therapy. Oncol Lett 2021; 22:766. [PMID: 34589145 PMCID: PMC8442140 DOI: 10.3892/ol.2021.13027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/05/2021] [Indexed: 11/05/2022] Open
Abstract
Osteosarcoma is a common primary bone malignancy, with a 5-year survival rate of only 20–30% in patients undergoing surgical treatment. Thus, it is important to identify novel methods for diagnosing and treating osteosarcoma, which was the aim of the present study. Vascular endothelial growth factor (VEGF) was used as the tumor-targeting protein to synthesize a multifunctional core-shell nanostructure, Au@SiO2-drug/VEGF, in which the drug can be indocyanine green (ICG; as an optical tracer) or doxorubicin (DOX; as a chemotherapeutic agent). With VEGF as the osteosarcoma-targeting protein, Au exhibited optimal photothermal transformation performance, while SiO2 served as the carrier for the drug. Au@SiO2-ICG/VEGF nanoparticles (NPs) were evaluated for imaging and for the monitoring of drug accumulation in a tumor region in mice. Once the optimal drug accumulation was achieved, combined treatment of osteosarcoma (chemotherapy and photothermal therapy) was assessed. In the perioperative period associated with minimal invasive embolization of osteosarcoma, photothermal therapy and chemotherapy were applied for osteosarcoma diagnosis using Au@SiO2-DOX/VEGF NPs. Taken together, the results of the present study provide a promising strategy for tumor detection prior to surgical treatment to improve the survival outcome of patients with osteosarcoma.
Collapse
Affiliation(s)
- Tiangui Chen
- Department of Orthopedics Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Tianbo Li
- Department of Orthopedics Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Jiangning Wang
- Department of Orthopedics Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| |
Collapse
|
27
|
Ma Z, Dong Z. Dual anticancer drug-loaded self-assembled nanomaterials delivery system for the treatment of prostate cancer. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:2103-2117. [PMID: 34328067 DOI: 10.1080/09205063.2021.1958449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This study explains the engineering of polylactide-polyethylene succinate glycol nanomaterials (NMs), to achieve superior anticancer effectiveness in prostate cancer therapy as a carriers of crizotinib (CZT) and marizomib (MAR). We have shown that the block polymers and hydrophobic drugs can be self-assembled to construct a highly stable nanocarrier with highly adaptable to support the use of cancer medicines. The Drug Release analysis revealed that the interference in the hydrophobic cores of micelles was a continuous release series. In both PC3pip and LNCAP prostate cancer cells, CZT@MAR NMs demonstrated noticeable cytotoxic effects in a dose-responsive method. In addition, morphology analysis and the AO-EB and nuclear staining assay showed a higher effectiveness in prostate cancer for nanomaterials. The polymeric nanomaterials displayed a prominent existence in the cytoplasmic cell regions, which shows a characteristic cell uptake by endocytosis. A significant apoptosis, compared to free CZT@MAR apoptosis, was found in the FITC-Annexin V/PI staining-based apoptosis analysis. In this juncture, the alternative drug delivery mechanism for the improvement of CZT@MAR chemotherapeutic effectiveness in prostate cancer chemotherapy modification PLA nanoparticles.
Collapse
Affiliation(s)
- Zhiqiang Ma
- Department of Urology Surgery, Shijiazhuang Third Hospital, Shijiazhuang, China
| | - Zhongyi Dong
- Department of Urology Surgery, Zaozhuang Municipal Hospital, Zaozhuang, China
| |
Collapse
|
28
|
Du BW, Chu CY, Lin CC, Ko FH. The Multifunctionally Graded System for a Controlled Size Effect on Iron Oxide-Gold Based Core-Shell Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1695. [PMID: 34203315 PMCID: PMC8308135 DOI: 10.3390/nano11071695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 02/07/2023]
Abstract
We report that Fe3O4@Au core-shell nanoparticles (NPs) serve as a multifunctional molecule delivery platform. This platform is also suitable for sensing the doxorubicin (DOX) through DNA hybridization, and the amount of carried DOX molecules was determined by size-dependent Fe3O4@Au NPs. The limits of detection (LODs) for DOX was found to be 1.839 nM. In our approach, an Au nano-shell coating was coupled with a specially designed DNA sequence using thiol bonding. By means of a high-frequency magnetic field (HFMF), a high release percentage of such a molecule could be efficiently achieved in a relatively short period of time. Furthermore, the thickness increase of the Au nano-shell affords Fe3O4@Au NPs with a larger surface area and a smaller temperature increment due to shielding effects from magnetic field. The change of magnetic property may enable the developed Fe3O4@Au-dsDNA/DOX NPs to be used as future nanocarrier material. More importantly, the core-shell NP structures were demonstrated to act as a controllable and efficient factor for molecule delivery.
Collapse
Affiliation(s)
- Bo-Wei Du
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan; (B.-W.D.); (C.-Y.C.)
| | - Chih-Yuan Chu
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan; (B.-W.D.); (C.-Y.C.)
| | - Ching-Chang Lin
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan;
| | - Fu-Hsiang Ko
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan; (B.-W.D.); (C.-Y.C.)
| |
Collapse
|
29
|
Lang T, Li N, Zhang J, Li Y, Rong R, Fu Y. Prodrug-based nano-delivery strategy to improve the antitumor ability of carboplatin in vivo and in vitro. Drug Deliv 2021; 28:1272-1280. [PMID: 34176381 PMCID: PMC8238065 DOI: 10.1080/10717544.2021.1938754] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Chemotherapy plays a major role in the treatment of cancer, but it still has great limitations in anti-tumor effect. Carboplatin (CAR) is the first-line drug in the treatment of non-small cell lung cancer, but the therapeutic effect is demonstrated weak. Therefore, we modified CAR with hexadecyl chain and polyethylene glycol, so as to realize its liposolubility and PEGylation. The synthesized amphiphilic CAR prodrugs could self-assemble into polymer micelles in water with an average particle size about 11.8 nm and low critical micelles concentration (0.0538 mg·mL-1). In vivo pharmacodynamics and cytotoxicity experiment evidenced that the polymer micelles were equipped with preferable anti-tumor effect, finally attained the aim of elevating anti-tumor effect and prolonging retention time in vivo. The self-assembled micelles skillfully solve the shortcomings of weak efficacy of CAR, which provides a powerful platform for the application of chemical drug in oncology.
Collapse
Affiliation(s)
- Tingting Lang
- Department of Pharmaceutics, Yantai University, Yantai, PR China.,Department of Pharmaceutics, Binzhou Medical University, Yantai, PR China
| | - Nuannuan Li
- Department of Pharmaceutics, Yantai University, Yantai, PR China
| | - Jing Zhang
- Department of Pharmaceutics, Binzhou Medical University, Yantai, PR China
| | - Yi Li
- Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, PR China
| | - Rong Rong
- Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, PR China
| | - Yuanlei Fu
- Department of Pharmaceutics, Yantai University, Yantai, PR China.,Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, PR China
| |
Collapse
|
30
|
Luo D, Wang X, Burda C, Basilion JP. Recent Development of Gold Nanoparticles as Contrast Agents for Cancer Diagnosis. Cancers (Basel) 2021; 13:1825. [PMID: 33920453 PMCID: PMC8069007 DOI: 10.3390/cancers13081825] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 12/27/2022] Open
Abstract
The last decade has witnessed the booming of preclinical studies of gold nanoparticles (AuNPs) in biomedical applications, from therapeutics delivery, imaging diagnostics, to cancer therapies. The synthetic versatility, unique optical and electronic properties, and ease of functionalization make AuNPs an excellent platform for cancer theranostics. This review summarizes the development of AuNPs as contrast agents to image cancers. First, we briefly describe the AuNP synthesis, their physical characteristics, surface functionalization and related biomedical uses. Then we focus on the performances of AuNPs as contrast agents to diagnose cancers, from magnetic resonance imaging, CT and nuclear imaging, fluorescence imaging, photoacoustic imaging to X-ray fluorescence imaging. We compare these imaging modalities and highlight the roles of AuNPs as contrast agents in cancer diagnosis accordingly, and address the challenges for their clinical translation.
Collapse
Affiliation(s)
- Dong Luo
- Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Xinning Wang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Clemens Burda
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - James P. Basilion
- Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA;
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA;
| |
Collapse
|
31
|
Zhao L, Chen H, Lu L, Zhao C, Malichewe CV, Wang L, Guo X, Zhang X. Design and screening of a novel neuropilin-1 targeted penetrating peptide for anti-angiogenic therapy in glioma. Life Sci 2021; 270:119113. [PMID: 33508290 DOI: 10.1016/j.lfs.2021.119113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 12/20/2022]
Abstract
AIMS This study aimed to design and screen a dual functional fusion peptide that could penetrate the blood-brain barrier and target neuropilin 1 (NRP1) overexpressed in vascular endothelial cells for the anti-angiogenesis of glioma treatment. MAIN METHODS At the cellular level, the in vitro anti-angiogenic activity of six NRP1 targeting peptides was screened by testing the ability to inhibit the proliferation and tube formation of HUVECs. Then, the in vitro anti-angiogenic activity of two fusion peptides containing different linkers was screened by testing the ability to inhibit HUVECs proliferation, tube formation and migration. The effect of fusion peptide on VEGFR2 related signal pathway was confirmed by Western-blotting. Surface plasmon resonance technology was used to detect the affinity of the fusion peptide to NRP1. The ability of FITC-labeled peptides to penetrate cells was confirmed by cell uptake assay. By establishing an orthotopic glioma model, we evaluated the ability of FITC-labeled peptides to penetrate the blood-brain barrier and their anti-glioma growth activity in vivo. KEY FINDINGS We found that NRP1 targeting peptide RP7 and linker cysteine were the most suitable key components in the fusion peptide. We also found that the fusion peptide Tat-C-RP7 we constructed had the strongest ability to penetrate the blood-brain barrier and anti-angiogenic activity in vitro and in vivo. SIGNIFICANCE At present, NRP1 targeting peptide as a drug delivery tool and molecular probe seems to have received more attention. We constructed a fusion peptide Tat-C-RP7 with strong anti-angiogenic activity for the treatment of glioma.
Collapse
Affiliation(s)
- Lin Zhao
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Hongyuan Chen
- Department of General Surgery, Shandong University Affiliated Shandong Provincial Hospital, Jinan 250021, China
| | - Lu Lu
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Chunqian Zhao
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Christina V Malichewe
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Lei Wang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Xiuli Guo
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| | - Xinke Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| |
Collapse
|
32
|
Cohen L, Livney YD, Assaraf YG. Targeted nanomedicine modalities for prostate cancer treatment. Drug Resist Updat 2021; 56:100762. [PMID: 33857756 DOI: 10.1016/j.drup.2021.100762] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/17/2022]
Abstract
Prostate cancer (PC) is the second most common cause of death amongst men in the USA. Therapy of PC has been transformed in the past decade by introducing novel therapeutics, advanced functional imaging and diagnostic approaches, next generation sequencing, as well as improved application of existing therapies in localized PC. Treatment of PC at the different stages of the disease may include surgery, androgen deprivation therapy (ADT), chemotherapy and radiation therapy. However, although ADT has proven efficacious in PC treatment, its effectiveness may be temporary, as these tumors frequently develop molecular mechanisms of therapy resistance, which allow them to survive and proliferate even under conditions of testosterone deprivation, inhibition of androgen receptor signaling, or cytotoxic drug treatment. Importantly, ADT was found to induce key alterations which frequently result in the formation of metastatic tumors displaying a therapy refractory phenotype. Hence, to overcome these serious therapeutic impediments, novel PC cell-targeted therapeutic strategies are being developed. These include diverse platforms enabling specific enhanced antitumor drug uptake and increased intracellular accumulation. Studies have shown that these novel treatment modalities lead to enhanced antitumor activity and diminished systemic toxicity due to the use of selective targeting and decreased drug doses. The underlying mechanism of targeting and internalization is based upon the interaction between a selective ligand, conjugated to a drug-loaded nanoparticle or directly to an anti-cancer drug, and a specific plasma membrane biomarker, uniquely overexpressed on the surface of PC cells. Another targeted therapeutic approach is the delivery of unique anti-oncogenic signaling pathway-based therapeutic drugs, which are selectively cytotoxic to PC cells. The current paper reviews PC targeted modalities reported in the past 6 years, and discusses both the advantages and limitations of the various targeted treatment strategies.
Collapse
Affiliation(s)
- Lital Cohen
- The Laboratory of Biopolymers for Food and Health, Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Yoav D Livney
- The Laboratory of Biopolymers for Food and Health, Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel.
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel.
| |
Collapse
|
33
|
de Araújo JTC, Duarte JL, Di Filippo LD, Araújo VHS, Carvalho GC, Chorilli M. Nanosystem functionalization strategies for prostate cancer treatment: a review. J Drug Target 2021; 29:808-821. [PMID: 33645369 DOI: 10.1080/1061186x.2021.1892121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Prostate cancer (PC) has a high morbidity and mortality rate worldwide, and the current clinical guidelines can vary depending on the stage of the disease. Drug delivery nanosystems (DDNs) can improve biopharmaceutical properties of encapsulated anti-cancer drugs by modulating their release kinetics, improving physicochemical stability and reducing toxicity. DDN can also enhance the ability of specific targeting through surface modification by coupling ligands (antibodies, nucleic acids, peptides, aptamer, proteins), thus favouring the cell internalisation process by endocytosis. The purposes of this review are to describe the limitations in the treatment of PC, explore different functionalization such as polymeric, lipid and inorganic nanosystems aimed at the treatment of PC, and demonstrate the improvement of this modification for an active target, as alternative and promising candidates for new therapies.
Collapse
Affiliation(s)
| | - Jonatas Lobato Duarte
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Leonardo Delello Di Filippo
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Victor Hugo Sousa Araújo
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Gabriela Corrêa Carvalho
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Marlus Chorilli
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
34
|
Abstract
Currently, peptide-nanoparticle (NP) conjugates have been demonstrated to be efficient and powerful tools for the treatment and the diagnosis of various diseases as well as in the bioimaging application. Several bioconjugation strategies have been adopted to formulate the peptide-NP conjugates. In this review, we discuss the exciting applications of peptide-gold (Au) NP conjugates in the area of drug delivery, targeting, cancer therapy, brain diseases, vaccines, immune modulation, biosensor, colorimetric detection of heavy metals, and bio-labeling in vitro and in vivo models. Within this framework, various approaches such as radiotherapy, photothermal therapy, photodynamic therapy and chemo-photothermal therapy have been demonstrated for the treatment of several diseases. Moreover, we highlight how the morphology, size, density of peptide and the protein corona influence the biological activity, biodistribution and biological fate of peptide-AuNP conjugates. In the end, we discuss the future outlook and the challenges being faced in the clinical translation of the peptide-AuNP conjugates. Overall, this review emphasizes that the peptide-AuNP conjugates might be used as potential theranostic agents for the treatment of life-threatening diseases in an economical fashion in the future.
Collapse
Affiliation(s)
- Akhilesh Rai
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Lino Ferreira
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
35
|
Jia C, Deacon GB, Zhang Y, Gao C. Platinum(IV) antitumor complexes and their nano-drug delivery. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213640] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
36
|
Targeting therapy for prostate cancer by pharmaceutical and clinical pharmaceutical strategies. J Control Release 2021; 333:41-64. [PMID: 33450321 DOI: 10.1016/j.jconrel.2021.01.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/08/2023]
Abstract
For the past few years, nanotechnology has provided a lot of new treatment opportunities for prostate cancer patients, and brilliant achievements have been acquired indeed. It not only prolonged circulation time in vivo but also increased bio-availability of drugs. Among them, nanoparticles with specificity ligand can be better targeted at prostate cancer, which improves the curative effect and reduces side effects. What's more, in terms of combined administration, the synergistic effect of chemotherapeutic drugs and hormones, or co-delivery two or more different drugs into the same delivery system, has achieved good therapeutic progress as well. In this paper, a comprehensive overview of nano-technology and the combination therapy for prostate cancer by pharmaceutical and clinical pharmaceutical strategies have been proposed to further appreciate and recommend the design and development of prostate cancer treatment.
Collapse
|
37
|
Goddard ZR, Marín MJ, Russell DA, Searcey M. Active targeting of gold nanoparticles as cancer therapeutics. Chem Soc Rev 2020; 49:8774-8789. [PMID: 33089858 DOI: 10.1039/d0cs01121e] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Gold nanoparticles (AuNPs) are of increasing interest for their unique properties and their biocompatability, minimal toxicity, multivalency and size tunability make them exciting drug carriers. The functionalisaton of AuNPs with targeting moieties allows for their selective delivery to cancers, with antibodies, proteins, peptides, aptamers, carbohydrates and small molecules all exploited. Here, we review the recent advances in targeted-AuNPs for the treatment of cancer, with a particular focus on these classes of targeting ligands. We highlight the benefits and potential drawbacks of each ligand class and propose directions in which the field could grow.
Collapse
Affiliation(s)
- Zoë Rachael Goddard
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | | | | | | |
Collapse
|
38
|
Erkisa M, Ari F, Ulku I, Khodadust R, Yar Y, Yagci Acar H, Ulukaya E. Etoposide Loaded SPION-PNIPAM Nanoparticles Improve the in vitro Therapeutic Outcome on Metastatic Prostate Cancer Cells via Enhanced Apoptosis. Chem Biodivers 2020; 17:e2000607. [PMID: 32918383 DOI: 10.1002/cbdv.202000607] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/11/2020] [Indexed: 01/02/2023]
Abstract
Prostate cancer is among the leading causes of death worldwide because its metastatic form is a deadly disease. Therefore, the development of new chemotherapeutics is of immense importance. Nanoparticle technology seems to provide diverse options in this regard. Therefore, poly(N-isopropylacrylamide) (PNIPAM) coated superparamagnetic iron oxide nanoparticles (SPION) loaded with Etoposide were prepared in small sizes (57 nm) and with 3.5 % drug content to improve the efficiency of Etoposide in prostate cancer therapy. Sustained release of the drug was achieved, which found to be sensitive to low pH and high temperature. The anti-growth activity of SPION-PNIPAM-Etoposide formulation against metastatic prostate cancer cells (PC-3, LNCaP) were investigated by SRB assay, then, confirmed by ATP assay. Mode of cell death was evaluated by using flow cytometry analyses. A significant improvement of nanoformulated drug was observed at 5-10 μg/ml doses of the drug in both cell lines. More importantly, this formulation enhanced the cytotoxic effect of Etoposide on PC-3 cells, which is considered more resistant to Etoposide than LNCaP and reduced the IC50 value by 55 % reaching to 4.5 μg drug/ml, which is a very significant improvement in the literature. It was clearly shown that nanoformulated drug provided about 3-fold increases in caspase-dependent early apoptotic cells in PC-3 cells. The novel formulation seems to successfully cause cell death of especially PC-3 metastatic prostate cancer cells. It should therefore be taken into consideration for further animal studies as a novel potent anticancer agent.
Collapse
Affiliation(s)
- Merve Erkisa
- Bursa Uludag University, Science and Art Faculty, Department of Biology, 16059, Bursa, Turkey.,Istinye University, Faculty of Medicine, Molecular Cancer Research Center, 34010, Istanbul, Turkey
| | - Ferda Ari
- Bursa Uludag University, Science and Art Faculty, Department of Biology, 16059, Bursa, Turkey
| | - Irem Ulku
- Koc University, Department of Chemistry, 34450, Istanbul, Turkey
| | | | - Yasemin Yar
- Koc University, Materials Science and Engineering, 34450, Istanbul, Turkey
| | - Havva Yagci Acar
- Koc University, Department of Chemistry, 34450, Istanbul, Turkey.,Koc University, Materials Science and Engineering, 34450, Istanbul, Turkey
| | - Engin Ulukaya
- Istinye University, School of Medicine, Department of Clinical Biochemistry, 34010, Istanbul, Turkey
| |
Collapse
|
39
|
Chiral gold nanoparticles enantioselectively rescue memory deficits in a mouse model of Alzheimer's disease. Nat Commun 2020; 11:4790. [PMID: 32963242 PMCID: PMC7509831 DOI: 10.1038/s41467-020-18525-2] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/27/2020] [Indexed: 01/01/2023] Open
Abstract
Preventing aggregation of amyloid beta (Aβ) peptides is a promising strategy for the treatment of Alzheimer’s disease (AD), and gold nanoparticles have previously been explored as a potential anti-Aβ therapeutics. Here we design and prepare 3.3 nm L- and D-glutathione stabilized gold nanoparticles (denoted as L3.3 and D3.3, respectively). Both chiral nanoparticles are able to inhibit aggregation of Aβ42 and cross the blood-brain barrier (BBB) following intravenous administration without noticeable toxicity. D3.3 possesses a larger binding affinity to Aβ42 and higher brain biodistribution compared with its enantiomer L3.3, giving rise to stronger inhibition of Aβ42 fibrillation and better rescue of behavioral impairments in AD model mice. This conjugation of a small nanoparticle with chiral recognition moiety provides a potential therapeutic approach for AD. Nanoparticles are being explored as a potential method to target Aβ aggregation in Alzheimer’s disease. Here, the authors develop gold nanoparticles that were capped with chiral L or D-glutathione which has been shown to improve BBB permeability and demonstrate their ability to improve cognitive function in a mouse model of AD.
Collapse
|
40
|
Ashrafizadeh M, Hushmandi K, Rahmani Moghadam E, Zarrin V, Hosseinzadeh Kashani S, Bokaie S, Najafi M, Tavakol S, Mohammadinejad R, Nabavi N, Hsieh CL, Zarepour A, Zare EN, Zarrabi A, Makvandi P. Progress in Delivery of siRNA-Based Therapeutics Employing Nano-Vehicles for Treatment of Prostate Cancer. Bioengineering (Basel) 2020; 7:E91. [PMID: 32784981 PMCID: PMC7552721 DOI: 10.3390/bioengineering7030091] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer (PCa) accounts for a high number of deaths in males with no available curative treatments. Patients with PCa are commonly diagnosed in advanced stages due to the lack of symptoms in the early stages. Recently, the research focus was directed toward gene editing in cancer therapy. Small interfering RNA (siRNA) intervention is considered as a powerful tool for gene silencing (knockdown), enabling the suppression of oncogene factors in cancer. This strategy is applied to the treatment of various cancers including PCa. The siRNA can inhibit proliferation and invasion of PCa cells and is able to promote the anti-tumor activity of chemotherapeutic agents. However, the off-target effects of siRNA therapy remarkably reduce its efficacy in PCa therapy. To date, various carriers were designed to improve the delivery of siRNA and, among them, nanoparticles are of importance. Nanoparticles enable the targeted delivery of siRNAs and enhance their potential in the downregulation of target genes of interest. Additionally, nanoparticles can provide a platform for the co-delivery of siRNAs and anti-tumor drugs, resulting in decreased growth and migration of PCa cells. The efficacy, specificity, and delivery of siRNAs are comprehensively discussed in this review to direct further studies toward using siRNAs and their nanoscale-delivery systems in PCa therapy and perhaps other cancer types.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran; (K.H.); (S.B.)
| | - Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
| | - Vahideh Zarrin
- Laboratory for Stem Cell Research, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
| | | | - Saied Bokaie
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran; (K.H.); (S.B.)
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran;
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614525, Iran;
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kermaan 55425147, Iran;
| | - Noushin Nabavi
- Research Services, University of Victoria, Victoria, BC V8W 2Y2, Canada;
| | - Chia-Ling Hsieh
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei City 110, Taiwan;
| | - Atefeh Zarepour
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 8174673441, Iran;
| | | | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 61537-53843, Iran
| |
Collapse
|
41
|
(S)TEM structural and compositional nanoanalyses of chemically synthesized glutathione-shelled nanoparticles. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01418-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
42
|
Das SS, Alkahtani S, Bharadwaj P, Ansari MT, ALKahtani MDF, Pang Z, Hasnain MS, Nayak AK, Aminabhavi TM. Molecular insights and novel approaches for targeting tumor metastasis. Int J Pharm 2020; 585:119556. [PMID: 32574684 DOI: 10.1016/j.ijpharm.2020.119556] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/01/2020] [Accepted: 06/14/2020] [Indexed: 12/18/2022]
Abstract
In recent years, due to the effective drug delivery and preciseness of tumor sites or microenvironment, the targeted drug delivery approaches have gained ample attention for tumor metastasis therapy. The conventional treatment approaches for metastasis therapy have reported with immense adverse effects because they exhibited maximum probability of killing the carcinogenic cells along with healthy cells. The tumor vasculature, comprising of vasculogenic impressions and angiogenesis, greatly depends upon the growth and metastasis in the tumors. Therefore, various nanocarriers-based delivery approaches for targeting to tumor vasculature have been attempted as efficient and potential approaches for the treatment of tumor metastasis and the associated lesions. Furthermore, the targeted drug delivery approaches have found to be most apt way to overcome from all the limitations and adverse effects associated with the conventional therapies. In this review, various approaches for efficient targeting of pharmacologically active chemotherapeutics against tumor metastasis with the cohesive objectives of prognosis, tracking and therapy are summarized.
Collapse
Affiliation(s)
- Sabya Sachi Das
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835 215, Jharkhand, India
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Priyanshu Bharadwaj
- UFR des Sciences de Santé, Université de Bourgogne Franche-Comté, Dijon 21000, France
| | - Mohammed Tahir Ansari
- School of Pharmacy, University of Nottingham Malaysia, Jalan Broga, Semenyih, Kajang, Selangor 43500, Malaysia
| | - Muneera D F ALKahtani
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 102275, Riyadh 11675, Saudi Arabia
| | - Zhiqing Pang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, China
| | - Md Saquib Hasnain
- Department of Pharmacy, Shri Venkateshwara University, NH-24, Rajabpur, Gajraula, Amroha 244236, U.P., India.
| | - Amit Kumar Nayak
- Department of Pharmaceutics, Seemanta Institute of Pharmaceutical Sciences, Mayurbhanj 757086, Odisha, India.
| | | |
Collapse
|
43
|
Relationship between neuropilin-1 expression and prognosis, according to gastric cancer histology. J Mol Histol 2020; 51:199-208. [PMID: 32242307 DOI: 10.1007/s10735-020-09870-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/23/2020] [Indexed: 02/08/2023]
Abstract
Neuropilin-1 (NRP-1) is known to be related to various types of cancer and is considered a novel tumor marker or therapeutic target. The aim of this study was to identify the clinical implications of NRP-1 expression in terms of prognosis in patients with gastric cancer. A total of 265 patients who underwent radical gastrectomy for the treatment of gastric cancer from 2008 to 2011 were included in this retrospective study. NRP-1 expression of tumors was determined by immunohistochemistry. The patients' clinicopathological characteristics, operative details, and long-term outcomes were retrospectively analyzed. A total of 181 (68.3%) patients demonstrated expression of NRP-1. No survival difference was observed according to NRP-1 expression in any patient. The patients were divided into the gland formation (GF) and the no gland formation (nGF) types, according to histology. NRP-1 expression rates were 65.6% (84/128) and 70.8% (97/137), respectively. NRP-1 expression was not an independent prognostic factor in the GF group, although patients who expressed NRP-1 had better survival outcomes. In contrast, patients who expressed NRP-1 in the nGF group had worse 5-year survival rates (p = 0.027), and NRP-1 was an independent prognostic factor in a multivariate analysis (hazard ratio, 1.923; 95% confidence interval, 1.041-3.551). NRP-1 expression in patients with nGF type gastric cancer is predictive of a poor prognosis.
Collapse
|
44
|
Fan M, Han Y, Gao S, Yan H, Cao L, Li Z, Liang XJ, Zhang J. Ultrasmall gold nanoparticles in cancer diagnosis and therapy. Theranostics 2020; 10:4944-4957. [PMID: 32308760 PMCID: PMC7163431 DOI: 10.7150/thno.42471] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/15/2020] [Indexed: 12/19/2022] Open
Abstract
Due to their lower systemic toxicity, faster kidney clearance and higher tumor accumulation, ultrasmall gold nanoparticles (less than 10 nm in diameter) have been proved to be promising in biomedical applications. However, their potential applications in cancer imaging and treatment have not been reviewed yet. This review summarizes the efforts to develop systems based on ultrasmall gold nanoparticles for use in cancer diagnosis and therapy. First, we describe the methods for controlling the size and surface functionalization of ultrasmall gold nanoparticles. Second, we review the research on ultrasmall gold nanoparticles in cancer imaging and treatment. Specifically, we focus on the applications of ultrasmall gold nanoparticles in tumor visualization and bioimaging in different fields such as magnetic resonance imaging, photoacoustic imaging, fluorescence imaging, and X-ray scatter imaging. We also highlight the applications of ultrasmall gold nanoparticles in tumor chemotherapy, radiotherapy, photodynamic therapy and gene therapy.
Collapse
|
45
|
Targeting drug delivery system for platinum(Ⅳ)-Based antitumor complexes. Eur J Med Chem 2020; 194:112229. [PMID: 32222677 DOI: 10.1016/j.ejmech.2020.112229] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/04/2020] [Accepted: 03/10/2020] [Indexed: 12/22/2022]
Abstract
Classical platinum(II) anticancer agents are widely-used chemotherapeutic drugs in the clinic against a range of cancers. However, severe systemic toxicity and drug resistance have become the main obstacles which limit their application and effectiveness. Because divalent cisplatin analogues are easily destroyed in vivo, their bioavailability is low and no selective to tumor tissues. The platinum(IV) prodrugs are attractive compounds for cancer treatment because they have great advantages, e.g., higher stability in biological media, aqueous solubility and no cross-resistance with cisplatin, which may become the next generation of platinum anticancer drugs. In addition, platinum(IV) drugs could be taken orally, which could be more acceptable to cancer patients, breaking the current situation that platinum(II) drugs can only be given by injection. The coupling of platinum(IV) complexes with tumor targeting groups avoids the disadvantages such as instability in blood, irreversible binding to plasma proteins, rapid renal clearance, and non-specific distribution in normal tissues. Because of the above advantages, the combination of platinum complexes and tumor targeting groups has become the hottest field in the research and development of new platinum drugs. These approaches can be roughly categorized into two groups: active and passive targeted strategies. This review concentrates on various targeting and delivery strategies for platinum(IV) complexes to improve the efficacy and reduce the side effects of platinum-based anticancer drugs. We have made a summary of the related articles on platinum(IV) targeted delivery in recent years. We believe the results of the studies described in this review will provide new ideas and strategies for the development of platinum drugs.
Collapse
|
46
|
Liang K, Chen H. Protein-based nanoplatforms for tumor imaging and therapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1616. [PMID: 31999083 DOI: 10.1002/wnan.1616] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 12/19/2022]
Abstract
Cancer is one of the leading causes of death all over the world. The development of nanoplatform provides a promising strategy for the diagnosis and treatment of cancer. As the foundation of the nanoplatform, the composition of nanocarrier decides the basic properties. Protein exists in all kinds of life and participates in any life activities, having great potentials to serve as a nanocarrier because of its excellent biocompatibility, abundance of functional groups, and inherent biological activity. As a result, protein-based nanoplatforms have evoked extensive interests for tumor imaging and therapy. This review presents the latest progresses on the advancement of protein-based nanoplatforms, introducing the most common protein nanocarriers (such as human/bovine serum albumin, ferritin, human transferrin) thoroughly including their physiochemical properties and specific applications. Also, other kinds of protein are briefly involved. Finally, the prospects and challenges of the development of protein-based nanoplatforms are summarized. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Kaicheng Liang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People's Republic of China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Hangrong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People's Republic of China
| |
Collapse
|
47
|
Xue X, Lindstrom A, Qu H, Li Y. Recent advances on small-molecule nanomedicines for cancer treatment. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1607. [PMID: 31840421 DOI: 10.1002/wnan.1607] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 01/15/2023]
Abstract
Nanomedicines have made important contributions in the development of cancer therapies due to their tumor selectivity, multifunctionality, and synergistic effect between the payloads. In addition to the required pharmaceutical ingredients, nanomedicines are generally composed of nonpharmaceutical excipients. These excipients generally form a large proportion of the nanomedicine, and they may have potential toxicity and greatly increase the cost for drug development. Small molecule nanomedicines (SMNs) minimize or abandon the excipients and are directly assembled from pharmaceutical ingredients, which can largely improve the drug delivery efficiency and biosafety while also relieving the financial burden of drug development. In this review, we summarize recently developed SMNs that are composed of a single drug, physical mixtures of multiple drugs, drug-drug covalent conjugates, dyes with drugs, photosensitizers with drugs, photosensitizers with peptides, and drugs with peptides. This review focuses on the SMN's applications in cancer treatments, their limitations, and the future development outlook of SMNs. We hope that our insights on SMNs may be helpful to the future of drug development and make nanomedicine more powerful in the battle with cancer. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Xiangdong Xue
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California
| | - Aaron Lindstrom
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California
| | - Haijing Qu
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California
| | - Yuanpei Li
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California
| |
Collapse
|
48
|
Youssef Z, Yesmurzayeva N, Larue L, Jouan-Hureaux V, Colombeau L, Arnoux P, Acherar S, Vanderesse R, Frochot C. New Targeted Gold Nanorods for the Treatment of Glioblastoma by Photodynamic Therapy. J Clin Med 2019; 8:E2205. [PMID: 31847227 PMCID: PMC6947424 DOI: 10.3390/jcm8122205] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 01/10/2023] Open
Abstract
This study describes the employment of gold nanorods (AuNRs), known for their good reputation in hyperthermia-based cancer therapy, in a hybrid combination of photosensitizers (PS) and peptides (PP). We report here, the design and the synthesis of this nanosystem and its application as a vehicle for the selective drug delivery and the efficient photodynamic therapy (PDT). AuNRs were functionalized by polyethylene glycol, phototoxic pyropheophorbide-a (Pyro) PS, and a "KDKPPR" peptide moiety to target neuropilin-1 receptor (NRP-1). The physicochemical characteristics of AuNRs, the synthesized peptide and the intermediate PP-PS conjugates were investigated. The photophysical properties of the hybrid AuNRs revealed that upon conjugation, the AuNRs acquired the characteristic properties of Pyro concerning the extension of the absorption profile and the capability to fluoresce (Φf = 0.3) and emit singlet oxygen (ΦΔ = 0.4) when excited at 412 nm. Even after being conjugated onto the surface of the AuNRs, the molecular affinity of "KDKPPR" for NRP-1 was preserved. Under irradiation at 652 nm, in vitro assays were conducted on glioblastoma U87 cells incubated with different PS concentrations of free Pyro, intermediate PP-PS conjugate and hybrid AuNRs. The AuNRs showed no cytotoxicity in the absence of light even at high PS concentrations. However, they efficiently decreased the cell viability by 67% under light exposure. This nanosystem possesses good efficiency in PDT and an expected potential effect in a combined photodynamic/photothermal therapy guided by NIR fluorescence imaging of the tumors due to the presence of both the hyperthermic agent, AuNRs, and the fluorescent active phototoxic PS.
Collapse
Affiliation(s)
- Zahraa Youssef
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, CNRS, Université de Lorraine, 54000 Nancy, France; (Z.Y.); (N.Y.); (L.L.); (L.C.); (P.A.)
| | - Nurlykyz Yesmurzayeva
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, CNRS, Université de Lorraine, 54000 Nancy, France; (Z.Y.); (N.Y.); (L.L.); (L.C.); (P.A.)
- Kazakh National Research Technical University after K.I Satpayev, 22 Satpayev str., Almaty 050013, Kazakhstan
| | - Ludivine Larue
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, CNRS, Université de Lorraine, 54000 Nancy, France; (Z.Y.); (N.Y.); (L.L.); (L.C.); (P.A.)
| | | | - Ludovic Colombeau
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, CNRS, Université de Lorraine, 54000 Nancy, France; (Z.Y.); (N.Y.); (L.L.); (L.C.); (P.A.)
| | - Philippe Arnoux
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, CNRS, Université de Lorraine, 54000 Nancy, France; (Z.Y.); (N.Y.); (L.L.); (L.C.); (P.A.)
| | - Samir Acherar
- Laboratoire de Chimie Physique Macromoléculaire (LCPM), UMR 7375, CNRS, Université de Lorraine, 54000 Nancy, France; (S.A.); (R.V.)
| | - Régis Vanderesse
- Laboratoire de Chimie Physique Macromoléculaire (LCPM), UMR 7375, CNRS, Université de Lorraine, 54000 Nancy, France; (S.A.); (R.V.)
| | - Céline Frochot
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, CNRS, Université de Lorraine, 54000 Nancy, France; (Z.Y.); (N.Y.); (L.L.); (L.C.); (P.A.)
| |
Collapse
|
49
|
Cano-Cortes MV, Navarro-Marchal SA, Ruiz-Blas MP, Diaz-Mochon JJ, Marchal JA, Sanchez-Martin RM. A versatile theranostic nanodevice based on an orthogonal bioconjugation strategy for efficient targeted treatment and monitoring of triple negative breast cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 24:102120. [PMID: 31676374 DOI: 10.1016/j.nano.2019.102120] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022]
Abstract
A novel chemical-based orthogonal bioconjugation strategy to produce tri-functionalized nanoparticles (NPs) an chemotherapy drug, doxorubicin (DOX), a near-infrared cyanine dye (Cy7) and CRGDK homing peptide, a peptide specifically binds to neuropilin-1 (Nrp-1) overexpressed on triple negative breast cancer (TNBC) cells, has been validated. These theranostic NPs have been evaluated in vitro and in vivo using an orthotopic xenotransplant mouse model using TNBC cells. In vitro assays show that theranostic NPs improve the therapeutic index in comparison with free DOX. Remarkably, in vivo studies showed preferred location of theranostic NPs in the tumor area reducing the volume at the same level than free DOX while presenting lower side effects. This multifunctionalized theranostic nanodevice based on orthogonal conjugation strategies could be a good candidate for the treatment and monitoring of Nrp-1 overexpressing tumors. Moreover, this versatile nanodevice can be easily adapted to treat and monitor different cancer types by adapting the conjugation strategy.
Collapse
Affiliation(s)
- María Victoria Cano-Cortes
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain; Department of Medicinal & Organic Chemistry and Excellence Research Unit of "Chemistry applied to Biomedicine and the Environment," Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Universidad de Granada, Granada, Spain
| | - Saúl Abenhamar Navarro-Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain; Department of Applied Physics, Faculty of Sciences, University of Granada, Granada, Spain; Department of Human Anatomy and Embryology and Excellence Research Unit "Modeling Nature" (MNat), Faculty of Medicine, University of Granada, Granada, Spain
| | - María Paz Ruiz-Blas
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain; Department of Medicinal & Organic Chemistry and Excellence Research Unit of "Chemistry applied to Biomedicine and the Environment," Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Universidad de Granada, Granada, Spain
| | - Juan José Diaz-Mochon
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain; Department of Medicinal & Organic Chemistry and Excellence Research Unit of "Chemistry applied to Biomedicine and the Environment," Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Universidad de Granada, Granada, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Universidad de Granada, Granada, Spain; Department of Human Anatomy and Embryology and Excellence Research Unit "Modeling Nature" (MNat), Faculty of Medicine, University of Granada, Granada, Spain.
| | - Rosario M Sanchez-Martin
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain; Department of Medicinal & Organic Chemistry and Excellence Research Unit of "Chemistry applied to Biomedicine and the Environment," Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Universidad de Granada, Granada, Spain.
| |
Collapse
|
50
|
Ramalingam V. Multifunctionality of gold nanoparticles: Plausible and convincing properties. Adv Colloid Interface Sci 2019; 271:101989. [PMID: 31330396 DOI: 10.1016/j.cis.2019.101989] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/17/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022]
Abstract
In a couple of decades, nanotechnology has become a trending area in science due to it covers all subject that combines diverse range of fields including but not limited to chemistry, physics and medicine. Various metal and metal oxide nanomaterials have been developed for wide range applications. However, the application of gold nanostructures and nanoparticles has been received more attention in various biomedical applications. The unique property of gold nanoparticles (AuNPs) is surface plasmon resonance (SPR) that determine the size, shape and stability. The wide surface area of AuNPs eases the proteins, peptides, oligonucleotides, and many other compounds to tether and enhance the biological activity of AuNPs. AuNPs have multifunctionality including antimicrobial, anticancer, drug and gene delivery, sensing applications and imaging. This state-of-the-art review is focused on the role of unique properties of AuNPs in multifunctionality and its various applications.
Collapse
|