1
|
Varagnolo S, Hatton RA. Condensation Coefficient Modulation: An Unconventional Approach to the Fabrication of Transparent and Patterned Silver Electrodes for Photovoltaics and Beyond. ACS APPLIED ENERGY MATERIALS 2024; 7:7140-7151. [PMID: 39301422 PMCID: PMC11412282 DOI: 10.1021/acsaem.4c01092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/08/2024] [Accepted: 08/09/2024] [Indexed: 09/22/2024]
Abstract
Silver is the metal of choice for the fabrication of highly transparent grid electrodes for photovoltaics because it has the highest electrical conductivity among metals together with high stability toward oxidation in air. Conventional methods for fabricating silver grid electrodes involve printing the metal grid from costly colloidal solutions of nanoparticles, selective removal of metal by etching using harmful chemicals, or electrochemical deposition of the silver, an inherently chemical intensive and slow process. This Spotlight highlights an emerging approach to the fabrication of transparent and patterned silver electrodes that can be applied to glass and flexible plastic substrates or directly on top of a device, based on spatial modulation of silver vapor condensation. This counterintuitive approach has been possible since the discovery in 2019 that thin films of perfluorinated organic compounds are highly resistant to the condensation of silver vapor, so silver condenses only where the perfluorinated layer is not. The beauty of this approach lies in its simplicity and versatility because vacuum evaporation is a well-established and widely available deposition method for silver and the shape and dimensions of metallized regions depend only on the method used to pattern the perfluorinated layer. The aim of this Spotlight is to describe this approach and summarize its electronic applications to date with particular emphasis on organic photovoltaics, a rapidly emerging class of thin-film photovoltaics that requires a flexible alternative to the conventional conducting oxide electrodes currently used to allow light into the device.
Collapse
Affiliation(s)
- Silvia Varagnolo
- School of Engineering and Innovation, The Open University, Walton Hall, MK7 6AA Milton Keynes, U.K
| | - Ross A Hatton
- Department of Chemistry, University of Warwick, CV4 7AL Coventry, U.K
| |
Collapse
|
2
|
Ding Y, Xiong S, Sun L, Wang Y, Zhou Y, Li Y, Peng J, Fukuda K, Someya T, Liu R, Zhang X. Metal nanowire-based transparent electrode for flexible and stretchable optoelectronic devices. Chem Soc Rev 2024; 53:7784-7827. [PMID: 38953906 DOI: 10.1039/d4cs00080c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
High-quality transparent electrodes are indispensable components of flexible optoelectronic devices as they guarantee sufficient light transparency and electrical conductivity. Compared to commercial indium tin oxide, metal nanowires are considered ideal candidates as flexible transparent electrodes (FTEs) owing to their superior optoelectronic properties, excellent mechanical flexibility, solution treatability, and higher compatibility with semiconductors. However, certain key challenges associated with material preparation and device fabrication remain for the practical application of metal nanowire-based electrodes. In this review, we discuss state-of-the-art solution-processed metal nanowire-based FTEs and their applications in flexible and stretchable optoelectronic devices. Specifically, the important properties of FTEs and a cost-benefit analysis of existing technologies are introduced, followed by a summary of the synthesis strategy, key properties, and fabrication technologies of the nanowires. Subsequently, we explore the applications of metal-nanowire-based FTEs in different optoelectronic devices including solar cells, photodetectors, and light-emitting diodes. Finally, the current status, future challenges, and emerging strategies in this field are presented.
Collapse
Affiliation(s)
- Yu Ding
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Institute of Functional Nano and Soft Materials (FUNSOM) and College of Energy, Soochow University, Suzhou 215006, P. R. China.
| | - Sixing Xiong
- Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Lulu Sun
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yiying Wang
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Institute of Functional Nano and Soft Materials (FUNSOM) and College of Energy, Soochow University, Suzhou 215006, P. R. China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215006, P. R. China
| | - Yinhua Zhou
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Yaowen Li
- College of Chemistry, Soochow University, Suzhou 215123, P. R. China
| | - Jun Peng
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Institute of Functional Nano and Soft Materials (FUNSOM) and College of Energy, Soochow University, Suzhou 215006, P. R. China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215006, P. R. China
| | - Kenjiro Fukuda
- Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takao Someya
- Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ruiyuan Liu
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Institute of Functional Nano and Soft Materials (FUNSOM) and College of Energy, Soochow University, Suzhou 215006, P. R. China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215006, P. R. China
| | - Xiaohong Zhang
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Institute of Functional Nano and Soft Materials (FUNSOM) and College of Energy, Soochow University, Suzhou 215006, P. R. China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215006, P. R. China
| |
Collapse
|
3
|
Liao Y, Zhao G, Ling Y, Yan Z, Yu Q. Trimethylsilane Plasma-Nanocoated Silver Nanowires for Improved Stability. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3635. [PMID: 39124299 PMCID: PMC11313449 DOI: 10.3390/ma17153635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024]
Abstract
The objective of this study was to evaluate the effectiveness of trimethylsilane (TMS) plasma nanocoatings in protecting silver nanowires (AgNWs) from degradation and thus to improve their stability. TMS plasma nanocoatings at various thicknesses were deposited onto AgNWs that were prepared on three different substrates, including glass, porous styrene-ethylene-butadiene-styrene (SEBS), and poly-L-lactic acid (PLLA). The experimental results showed that the application of TMS plasma nanocoatings to AgNWs induced little increase, up to ~25%, in their electrical resistance but effectively protected them from degradation. Over a two-month storage period in summer (20-22 °C, 55-70% RH), the resistance of the coated AgNWs on SEBS increased by only ~90%, compared to a substantial increase of ~700% for the uncoated AgNWs. On glass, the resistance of the coated AgNWs increased by ~30%, versus ~190% for the uncoated ones. When stored in a 37 °C phosphate-buffered saline (PBS) solution for 2 months, the resistance of the coated AgNWs on glass increased by ~130%, while the uncoated AgNWs saw a ~970% rise. Increasing the TMS plasma nanocoating thickness further improved the conductivity stability of the AgNWs. The nanocoatings also transformed the AgNWs' surfaces from hydrophilic to hydrophobic without significantly affecting their optical transparency. These findings demonstrate the potential of TMS plasma nanocoatings in protecting AgNWs from environmental and aqueous degradation, preserving their electrical conductivity and suitability for use in transparent electrodes and wearable electronics.
Collapse
Affiliation(s)
- Yixuan Liao
- Department of Mechanical and Aerospace Engineering, University of Missouri, Lafferre Hall, Columbia, MO 65211, USA; (Y.L.); (G.Z.); (Y.L.)
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, USA;
| | - Ganggang Zhao
- Department of Mechanical and Aerospace Engineering, University of Missouri, Lafferre Hall, Columbia, MO 65211, USA; (Y.L.); (G.Z.); (Y.L.)
| | - Yun Ling
- Department of Mechanical and Aerospace Engineering, University of Missouri, Lafferre Hall, Columbia, MO 65211, USA; (Y.L.); (G.Z.); (Y.L.)
| | - Zheng Yan
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, USA;
| | - Qingsong Yu
- Department of Mechanical and Aerospace Engineering, University of Missouri, Lafferre Hall, Columbia, MO 65211, USA; (Y.L.); (G.Z.); (Y.L.)
| |
Collapse
|
4
|
Lin H, Zheng D, Wu X, He R, He L, Zhou X, Zuo H, Yuan C, Zeng B, Xu Y, Dai L. Electrically weldable conductive elastomers. SCIENCE ADVANCES 2024; 10:eadp0730. [PMID: 38896623 PMCID: PMC11186498 DOI: 10.1126/sciadv.adp0730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Flexible and stretchable electronic devices are subject to failure because of vulnerable circuit interconnections. We develop a low-voltage (1.5 to 4.5 V) and rapid (as low as 5 s) electric welding strategy to integrate both rigid electronic components and soft sensors in flexible circuits under ambient conditions. This is achieved through the design of conductive elastomers composed of borate ester polymers and conductive fillers, which can be self-welded and generate welding effects to various materials including metals, hydrogels, and other conductive elastomers. The welding effect is generated through the electrochemical reaction-triggered exposure of interfacial adhesive promotors or the cleavage/reformation of dynamic bonds. Our strategy can ensure both mechanical compliance and conductivity at the circuit interfaces and easily produce welding strengths in the kilopascal to megapascal range. The as-designed conductive elastomers in combination with the electric welding technique provide a robust platform for constructing standalone flexible and stretchable electronic devices that are detachable and assemblable on demand.
Collapse
Affiliation(s)
- Haimen Lin
- College of Materials, Xiamen University, Xiamen 361005, China
| | - Dandan Zheng
- College of Materials, Xiamen University, Xiamen 361005, China
| | - Xiaoling Wu
- College of Materials, Xiamen University, Xiamen 361005, China
| | - Rubin He
- College of Materials, Xiamen University, Xiamen 361005, China
| | - Liu He
- College of Materials, Xiamen University, Xiamen 361005, China
| | - Xiangfu Zhou
- College of Materials, Xiamen University, Xiamen 361005, China
| | - Haiyan Zuo
- College of Materials, Xiamen University, Xiamen 361005, China
| | - Conghui Yuan
- College of Materials, Xiamen University, Xiamen 361005, China
- Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, China
| | - Birong Zeng
- College of Materials, Xiamen University, Xiamen 361005, China
- Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, China
| | - Yiting Xu
- College of Materials, Xiamen University, Xiamen 361005, China
- Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, China
| | - Lizong Dai
- College of Materials, Xiamen University, Xiamen 361005, China
- Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, China
| |
Collapse
|
5
|
Zhou K, Ding R, Ma X, Lin Y. Printable and flexible integrated sensing systems for wireless healthcare. NANOSCALE 2024; 16:7264-7286. [PMID: 38470428 DOI: 10.1039/d3nr06099c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The rapid development of wearable sensing devices and artificial intelligence has enabled portable and wireless tracking of human health, fulfilling the promise of digitalized healthcare applications. To achieve versatile design and integration of multi-functional modules including sensors and data transmission units onto various flexible platforms, printable technologies emerged as some of the most promising strategies. This review first introduces the commonly utilized printing technologies, followed by discussion of the printable ink formulations and flexible substrates to ensure reliable device fabrication and system integration. The advances of printable sensors for body status monitoring are then discussed. Moreover, the integration of wireless data transmission via printable approaches is also presented. Finally, the challenges in achieving printable sensing devices and wireless integrated systems with competitive performances are considered, so as to realize their practical applications for personalized healthcare.
Collapse
Affiliation(s)
- Kemeng Zhou
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Ruochen Ding
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Xiaohao Ma
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Yuanjing Lin
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
6
|
Zhao Y, Kang J, Huang W, Kong P, An D, He G. Copper Nanowire/Polydopamine-Modified Sodium Alginate Composite Films with Enhanced Long-Term Stability and Adhesion for Flexible Organic Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37917355 DOI: 10.1021/acsami.3c13443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Copper nanowire (CuNW), with combined advantages of high conductivity and cost-effectiveness, is considered a promising material for the development of next-generation transparent conductive films (TCFs) in the field of flexible optoelectronics. However, the practical application of CuNW TCFs is hindered by some limitations, such as conductivity degradation and poor adhesion. Here, we demonstrate a stable CuNW composite film by embedding CuNWs into a polydopamine (PDA)-modified sodium alginate (NaAlg) matrix without sacrificing the optoelectronic properties of the CuNW network. The introduction of the PDA modifier significantly enhances the antiaging capability of the NaAlg layer, providing strengthened protection of the embedded CuNWs against moisture and oxygen, thereby resulting in minimal degradation of the conductivity of CuNWs for up to 9 months under ambient conditions. Simultaneously, the interface adhesion between the CuNW network and the substrate is further enhanced due to the abundance of catechol structures in PDA, allowing for the maintenance of the electrical conductivity of the CuNW network even under cyclic external bending stress and tape-peeling forces. In addition, embedding CuNWs into the polymer binding layer produces a CuNW composite film with a very smooth surface. A flexible OLED based on the PDA-modified NaAlg/CuNW TCF is successfully fabricated, exhibiting performance comparable to that of a traditional rigid indium tin oxide-based device, while also demonstrating remarkable mechanical durability. The modification strategy can promote practical applications of the CuNW network in flexible optoelectronic devices.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Jiachen Kang
- Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Wenzhe Huang
- Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Peng Kong
- Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Di An
- Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Gufeng He
- Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
7
|
Kumar S, Seo Y. Flexible Transparent Conductive Electrodes: Unveiling Growth Mechanisms, Material Dimensions, Fabrication Methods, and Design Strategies. SMALL METHODS 2023:e2300908. [PMID: 37821417 DOI: 10.1002/smtd.202300908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/09/2023] [Indexed: 10/13/2023]
Abstract
Flexible transparent conductive electrodes (FTCEs) constitute an indispensable component in state-of-the-art electronic devices, such as wearable flexible sensors, flexible displays, artificial skin, and biomedical devices, etc. This review paper offers a comprehensive overview of the fabrication techniques, growth modes, material dimensions, design, and their impacts on FTCEs fabrication. The growth modes, such as the "Stranski-Krastanov growth," "Frank-van der Merwe growth," and "Volmer-Weber growth" modes provide flexibility in fabricating FTCEs. Application of different materials including 0D, 1D, 2D, polymer composites, conductive oxides, and hybrid materials in FTCE fabrication, emphasizing their suitability in flexible devices are discussed. This review also delves into the design strategies of FTCEs, including microgrids, nanotroughs, nanomesh, nanowires network, and "kirigami"-inspired patterns, etc. The pros and cons associated with these materials and designs are also addressed appropriately. Considerations such as trade-offs between electrical conductivity and optical transparency or "figure of merit (FoM)," "strain engineering," "work function," and "haze" are also discussed briefly. Finally, this review outlines the challenges and opportunities in the current and future development of FTCEs for flexible electronics, including the improved trade-offs between optoelectronic parameters, novel materials development, mechanical stability, reproducibility, scalability, and durability enhancement, safety, biocompatibility, etc.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Nanotechnology and Advanced Materials Engineering and HMC, Sejong University, Seoul, 05006, South Korea
| | - Yongho Seo
- Department of Nanotechnology and Advanced Materials Engineering and HMC, Sejong University, Seoul, 05006, South Korea
| |
Collapse
|
8
|
Bagchi B, Datta P, Fernandez CS, Gupta P, Jaufuraully S, David AL, Siassakos D, Desjardins A, Tiwari MK. Flexible triboelectric nanogenerators using transparent copper nanowire electrodes: energy harvesting, sensing human activities and material recognition. MATERIALS HORIZONS 2023; 10:3124-3134. [PMID: 37221946 PMCID: PMC10389064 DOI: 10.1039/d3mh00404j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Triboelectric nanogenerators (TENGs) have emerged as a promising green technology to efficiently harvest otherwise wasted mechanical energy from the environment and human activities. However, cost-effective and reliably performing TENGs require rational integration of triboelectric materials, spacers, and electrodes. The present work reports for the first time the use of oxydation-resistant pure copper nanowires (CuNWs) as an electrode to develop a flexible, and inexpensive TENG through a potentially scalable approach involving vacuum filtration and lactic acid treatment. A ∼6 cm2 device yields a remarkable open circuit voltage (Voc) of 200 V and power density of 10.67 W m-2 under human finger tapping. The device is robust, flexible and noncytotoxic as assessed by stretching/bending maneuvers, corrosion tests, continuous operation for 8000 cycles, and biocompatibility tests using human fibroblast cells. The device can power 115 light emitting diodes (LEDs) and a digital calculator; sense bending and motion from the human hand; and transmit Morse code signals. The robustness, flexibility, transparency, and non-cytotoxicity of the device render it particularly promising for a wide range of energy harvesting and advanced healthcare applications, such as sensorised smart gloves for tactile sensing, material identification and safer surgical intervention.
Collapse
Affiliation(s)
- Biswajoy Bagchi
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, UCL, London, W1W 7TS, UK.
- Nanoengineered Systems Laboratory, UCL Mechanical Engineering, London, WC1E 7JE, UK
| | - Priyankan Datta
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, UCL, London, W1W 7TS, UK.
- Nanoengineered Systems Laboratory, UCL Mechanical Engineering, London, WC1E 7JE, UK
| | - Carmen Salvadores Fernandez
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, UCL, London, W1W 7TS, UK.
- Nanoengineered Systems Laboratory, UCL Mechanical Engineering, London, WC1E 7JE, UK
| | - Priya Gupta
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, UCL, London, W1W 7TS, UK.
- Nanoengineered Systems Laboratory, UCL Mechanical Engineering, London, WC1E 7JE, UK
| | - Shireen Jaufuraully
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, UCL, London, W1W 7TS, UK.
- Elizabeth Garrett Anderson Institute for Women's Health, UCL, London, WC1E 6AU, UK
| | - Anna L David
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, UCL, London, W1W 7TS, UK.
- Elizabeth Garrett Anderson Institute for Women's Health, UCL, London, WC1E 6AU, UK
- NIHR Biomedical Research Centre at UCL, UK
| | - Dimitrios Siassakos
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, UCL, London, W1W 7TS, UK.
- Elizabeth Garrett Anderson Institute for Women's Health, UCL, London, WC1E 6AU, UK
- NIHR Biomedical Research Centre at UCL, UK
| | - Adrien Desjardins
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, UCL, London, W1W 7TS, UK.
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT, UK
| | - Manish K Tiwari
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, UCL, London, W1W 7TS, UK.
- Nanoengineered Systems Laboratory, UCL Mechanical Engineering, London, WC1E 7JE, UK
| |
Collapse
|
9
|
Bellchambers P, Henderson C, Abrahamczyk S, Choi S, Lee JK, Hatton RA. High Performance Transparent Silver Grid Electrodes for Organic Photovoltaics Fabricated by Selective Metal Condensation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300166. [PMID: 36912419 DOI: 10.1002/adma.202300166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/01/2023] [Indexed: 05/26/2023]
Abstract
Silver grid electrodes on glass and flexible plastic substrates with performance that exceeds that of commercial indium-tin oxide (ITO) coated glass are reported and show their suitability as a drop-in replacement for ITO glass in solution-processed organic photovoltaics (OPVs). When supported on flexible plastic substrates these electrodes are stable toward repeated bending through a small radius of curvature over tens of thousands of cycles. The grid electrodes are fabricated by the unconventional approach of condensation coefficient modulation using a perfluorinated polymer shown to be far superior to the other compounds used for this purpose to date. The very narrow line width and small grid pitch that can be achieved also open the door to the possibility of using grid electrodes in OPVs without a conducting poly(3,4-ethylenedioxythiophene-poly(styrenesulfonate) (PEDOT: PSS) layer to span the gaps between grid lines.
Collapse
Affiliation(s)
| | - Charlie Henderson
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Seungsoo Choi
- Program in Environment and Polymer Engineering, Inha University, Incheon, 22212, South Korea
| | - Jin-Kyun Lee
- Program in Environment and Polymer Engineering, Inha University, Incheon, 22212, South Korea
- Department of Polymer Science and Engineering, Inha University, Incheon, 22212, South Korea
| | - Ross A Hatton
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
10
|
Nizameev IR, Nizameeva GR, Kadirov MK. Doping of Transparent Electrode Based on Oriented Networks of Nickel in Poly(3,4-Ethylenedioxythiophene) Polystyrene Sulfonate Matrix with P-Toluenesulfonic Acid. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:831. [PMID: 36903709 PMCID: PMC10005722 DOI: 10.3390/nano13050831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/21/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
This work aimed to obtain an optically transparent electrode based on the oriented nanonetworks of nickel in poly(3,4-ethylenedioxythiophene) polystyrene sulfonate matrix. Optically transparent electrodes are used in many modern devices. Therefore, the search for new inexpensive and environmentally friendly materials for them remains an urgent task. We have previously developed a material for optically transparent electrodes based on oriented platinum nanonetworks. This technique was upgraded to obtain a cheaper option from oriented nickel networks. The study was carried out to find the optimal electrical conductivity and optical transparency values of the developed coating, and the dependence of these values on the amount of nickel used was investigated. The figure of merit (FoM) was used as a criterion for the quality of the material in terms of finding the optimal characteristics. It was shown that doping PEDOT: PSS with p-toluenesulfonic acid in the design of an optically transparent electroconductive composite coating based on oriented nickel networks in a polymer matrix is expedient. It was found that the addition of p-toluenesulfonic acid to an aqueous dispersion of PEDOT: PSS with a concentration of 0.5% led to an eight-fold decrease in the surface resistance of the resulting coating.
Collapse
Affiliation(s)
- Irek R. Nizameev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, Kazan 420088, Russia
- Department of Nanotechnology in Electronics, Kazan National Research Technical University named after A.N. Tupolev—KAI, 10, K. Marx Str., Kazan 420111, Russia
| | - Guliya R. Nizameeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, Kazan 420088, Russia
- Department of Physics, Kazan National Research Technological University, 68, K. Marx Str., Kazan 420015, Russia
| | - Marsil K. Kadirov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, Kazan 420088, Russia
- Department of Physics, Kazan National Research Technological University, 68, K. Marx Str., Kazan 420015, Russia
| |
Collapse
|
11
|
All-atmospheric fabrication of Ag-Cu core-shell nanowire transparent electrodes with Haacke figure of merit >600 × 10 -3 Ω -1. Sci Rep 2022; 12:20962. [PMID: 36470957 PMCID: PMC9722900 DOI: 10.1038/s41598-022-25080-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Transparent conducting electrodes (TCEs) are essential components in devices such as touch screens, smart windows, and photovoltaics. Metal nanowire networks are promising next-generation TCEs, but best-performing examples rely on expensive metal catalysts (palladium or platinum), vacuum processing, or transfer processes that cannot be scaled. This work demonstrates a metal nanowire TCE fabrication process that focuses on high performance and simple fabrication. Here we combined direct and plating metallization processes on electrospun nanowires. We first directly metallize silver nanowires using reactive silver ink. The silver catalyzes subsequent copper plating to produce Ag-Cu core-shell nanowires and eliminates nanowire junction resistances. The process allows for tunable transmission and sheet resistance properties by adjusting electrospinning and plating time. We demonstrate state-of-the-art, low-haze TCEs using an all-atmospheric process with sheet resistances of 0.33 Ω sq-1 and visible light transmittances of 86% (including the substrate), leading to a Haacke figure of merit of 652 × 10-3 Ω-1. The core-shell nanowire electrode also demonstrates high chemical and bending durability.
Collapse
|
12
|
Zeng X, He P, Hu M, Zhao W, Chen H, Liu L, Sun J, Yang J. Copper inks for printed electronics: a review. NANOSCALE 2022; 14:16003-16032. [PMID: 36301077 DOI: 10.1039/d2nr03990g] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Conductive inks have attracted tremendous attention owing to their adaptability and the convenient large-scale fabrication. As a new type of conductive ink, copper-based ink is considered to be one of the best candidate materials for the conductive layer in flexible printed electronics owing to its high conductivity and low price, and suitability for large-scale manufacturing processes. Recently, tremendous progress has been made in the preparation of cooper-based inks for electronic applications, but the antioxidation ability of copper-based nanomaterials within inks or films, that is, long-term reliability upon exposure to water and oxygen, still needs more exploration. In this review, we present a comprehensive overview of copper inks for printed electronics from ink preparation, printing methods and sintering, to antioxidation strategies and electronic applications. The review begins with an overview of the development of copper inks, followed by a demonstration of various preparation methods for copper inks. Then, the diverse printing techniques and post-annealing strategies used to fabricate conductive copper patterns are discussed. In addition, antioxidation strategies utilized to stabilize the mechanical and electrical properties of copper nanomaterials are summarized. Then the diverse applications of copper inks for electronic devices, such as transparent conductive electrodes, sensors, optoelectronic devices, and thin-film transistors, are discussed. Finally, the future development of copper-based inks and the challenges of their application in printed electronics are discussed.
Collapse
Affiliation(s)
- Xianghui Zeng
- Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, People's Republic of China.
| | - Pei He
- Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, People's Republic of China.
| | - Minglu Hu
- Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, People's Republic of China.
| | - Weikai Zhao
- Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, People's Republic of China.
| | - Huitong Chen
- Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, People's Republic of China.
| | - Longhui Liu
- Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, People's Republic of China.
| | - Jia Sun
- Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, People's Republic of China.
| | - Junliang Yang
- Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, People's Republic of China.
| |
Collapse
|
13
|
Kim J, Hwang I, Kim M, Jung H, Bae H, Lee Y. Simple, Fast, and Scalable Reverse-Offset Printing of Micropatterned Copper Nanowire Electrodes with Sub-10 μm Resolution. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5807-5814. [PMID: 35041372 DOI: 10.1021/acsami.1c21223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Copper nanowires (CuNWs) possess key characteristics for realizing flexible transparent electronics. High-quality CuNW micropatterns with high resolution and uniform thickness are required to realize integrated transparent electronic devices. However, patterning high-aspect-ratio CuNWs is challenging because of their long length, exceeding the target pattern dimension. This work reports a novel reverse-offset printing technology that enables the sub-10 μm high-resolution micropatterning of CuNW transparent conducting electrodes (TCEs). The CuNW ink for reverse-offset printing was formulated to control viscoelasticity, cohesive force, and adhesion by adjusting the ligands, solvents, surface energy modifiers, and leveling additives. An inexpensive commercial adhesive handroller achieved a simple, fast, and scalable micropatterning of CuNW TCEs. Easy production of high-quality CuNW micropatterns with various curvatures and shapes was possible, regardless of the printing direction. The reverse-offset-printed CuNW micropatterns exhibited a minimum of 7 μm line width and excellent pattern qualities such as fine line spacing, sharp edge definition, and outstanding pattern uniformity. In addition, they exhibited excellent sheet resistance, high optical transparency, outstanding mechanical durability, and long-term stability. Flexible light-emitting diode (LED) circuits, transparent heaters, and organic LEDs (OLEDs) can be fabricated using high-resolution reverse-offset-printed CuNW micropatterns for applications in flexible transparent electronic devices.
Collapse
Affiliation(s)
- Jongyoun Kim
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| | - Inkook Hwang
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| | - Minkyoung Kim
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| | - Hyeonwoo Jung
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| | - Hyejeong Bae
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| | - Youngu Lee
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| |
Collapse
|
14
|
da Cruz ADSE, Puydinger Dos Santos MV, Campanelli RB, Pagliuso PG, Bettini J, Pirota KR, Béron F. Low-temperature electronic transport of manganese silicide shell-protected single crystal nanowires for nanoelectronics applications. NANOSCALE ADVANCES 2021; 3:3251-3259. [PMID: 36133655 PMCID: PMC9419286 DOI: 10.1039/d0na00809e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 04/15/2021] [Indexed: 05/12/2023]
Abstract
Recently, core-shell nanowires have been proposed as potential electrical connectors for nanoelectronics components. A promising candidate is Mn5Si3 nanowires encapsulated in an oxide shell, due to their low reactivity and large flexibility. In this work, we investigate the use of the one-step metallic flux nanonucleation method to easily grow manganese silicide single crystal oxide-protected nanowires by performing their structural and electrical characterization. We find that the fabrication method yields a room-temperature hexagonal crystalline structure with the c-axis along the nanowire. Moreover, the obtained nanowires are metallic at low temperature and low sensitive to a strong external magnetic field. Finally, we observe an unknown electron scattering mechanism for small diameters. In conclusion, the one-step metallic flux nanonucleation method yields intermetallic nanowires suitable for both integration in flexible nanoelectronics as well as low-dimensionality transport experiments.
Collapse
Affiliation(s)
| | | | - Raul B Campanelli
- Institute of Physics Gleb Wataghin (IFGW), University of Campinas (UNICAMP) Campinas 13083-859 São Paulo Brazil
| | - Pascoal G Pagliuso
- Institute of Physics Gleb Wataghin (IFGW), University of Campinas (UNICAMP) Campinas 13083-859 São Paulo Brazil
| | - Jefferson Bettini
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Nanotechnology National Laboratory (LNNano) Campinas 13085-903 São Paulo Brazil
| | - Kleber R Pirota
- Institute of Physics Gleb Wataghin (IFGW), University of Campinas (UNICAMP) Campinas 13083-859 São Paulo Brazil
| | - Fanny Béron
- Institute of Physics Gleb Wataghin (IFGW), University of Campinas (UNICAMP) Campinas 13083-859 São Paulo Brazil
| |
Collapse
|
15
|
Jeong G, Seo J, Kim Y, Seo DH, Baik JM, Jeon EC, Lee G, Park H. Graphene Antiadhesion Layer for the Effective Peel-and-Pick Transfer of Metallic Electrodes toward Flexible Electronics. ACS APPLIED MATERIALS & INTERFACES 2021; 13:22000-22008. [PMID: 33904704 DOI: 10.1021/acsami.1c03081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Owing to its exceptional physicochemical properties, graphene has demonstrated unprecedented potential in a wide array of scientific and industrial applications. By exploiting its chemically inert surface endowed with unique barrier functionalities, we herein demonstrate antiadhesive monolayer graphene films for realizing a peel-and-pick transfer process of target materials from the donor substrate. When the graphene antiadhesion layer (AAL) is inserted at the interface between the metal and the arbitrary donor substrate, the interfacial interactions can be effectively weakened by the weak interplanar van der Waals forces of graphene, enabling the effective release of the metallic electrode from the donor substrate. The flexible embedded metallic electrode with graphene AAL exhibited excellent electrical conductivity, mechanical durability, and chemical resistance, as well as excellent performance in flexible heater applications. This study afforded an effective strategy for fabricating high-performance and ultraflexible embedded metallic electrodes for applications in the field of highly functional flexible electronics.
Collapse
Affiliation(s)
- Gyujeong Jeong
- Department of Materials Science and Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jihyung Seo
- Department of Materials Science and Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yongchul Kim
- Department of Chemistry, Center for Superfunctional Materials, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dong-Hyun Seo
- School of Materials Science and Engineering, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Jeong Min Baik
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Eun-Chae Jeon
- School of Materials Science and Engineering, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Geunsik Lee
- Department of Chemistry, Center for Superfunctional Materials, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyesung Park
- Department of Materials Science and Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
16
|
Zhu X, Liu M, Qi X, Li H, Zhang YF, Li Z, Peng Z, Yang J, Qian L, Xu Q, Gou N, He J, Li D, Lan H. Templateless, Plating-Free Fabrication of Flexible Transparent Electrodes with Embedded Silver Mesh by Electric-Field-Driven Microscale 3D Printing and Hybrid Hot Embossing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007772. [PMID: 33829552 DOI: 10.1002/adma.202007772] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Flexible transparent electrodes (FTEs) with an embedded metal mesh are considered a promising alternative to traditional indium tin oxide (ITO) due to their excellent photoelectric performance, surface roughness, and mechanical and environmental stability. However, great challenges remain for achieving simple, cost-effective, and environmentally friendly manufacturing of high-performance FTEs with embedded metal mesh. Herein, a maskless, templateless, and plating-free fabrication technique is proposed for FTEs with embedded silver mesh by combining an electric-field-driven (EFD) microscale 3D printing technique and a newly developed hybrid hot-embossing process. The final fabricated FTE exhibits superior optoelectronic properties with a transmittance of 85.79%, a sheet resistance of 0.75 Ω sq-1 , a smooth surface of silver mesh (Ra ≈ 18.8 nm) without any polishing treatment, and remarkable mechanical stability and environmental adaptability with a negligible increase in sheet resistance under diverse cyclic tests and harsh working conditions (1000 bending cycles, 80 adhesion tests, 120 scratch tests, 100 min ultrasonic test, and 72 h chemical attack). The practical viability of this FTE is successfully demonstrated with a flexible transparent heater applied to deicing. The technique proposed offers a promising fabrication strategy with a cost-effective and environmentally friendly process for high-performance FTE.
Collapse
Affiliation(s)
- Xiaoyang Zhu
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520, China
| | - Mingyang Liu
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520, China
| | - Ximeng Qi
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520, China
| | - Hongke Li
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520, China
| | - Yuan-Fang Zhang
- Digital Manufacturing and Design Centre, Singapore University of Technology and Design, Singapore, 487372, Singapore
| | - Zhenghao Li
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520, China
| | - Zilong Peng
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520, China
- College of Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Jianjun Yang
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520, China
| | - Lei Qian
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, China
| | - Quan Xu
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520, China
| | - Nairui Gou
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520, China
| | - Jiankang He
- State Key Laboratory for Manufacturing System Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Dichen Li
- State Key Laboratory for Manufacturing System Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Hongbo Lan
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520, China
| |
Collapse
|
17
|
Saleh R, Barth M, Eberhardt W, Zimmermann A. Bending Setups for Reliability Investigation of Flexible Electronics. MICROMACHINES 2021; 12:78. [PMID: 33451151 PMCID: PMC7828635 DOI: 10.3390/mi12010078] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 11/16/2022]
Abstract
Flexible electronics is a rapidly growing technology for a multitude of applications. Wearables and flexible displays are some application examples. Various technologies and processes are used to produce flexible electronics. An important aspect to be considered when developing these systems is their reliability, especially with regard to repeated bending. In this paper, the frequently used methods for investigating the bending reliability of flexible electronics are presented. This is done to provide an overview of the types of tests that can be performed to investigate the bending reliability. Furthermore, it is shown which devices are developed and optimized to gain more knowledge about the behavior of flexible systems under bending. Both static and dynamic bending test methods are presented.
Collapse
Affiliation(s)
- Rafat Saleh
- Hahn-Schickard, Allmandring 9b, 70569 Stuttgart, Germany; (M.B.); (W.E.); (A.Z.)
- Institute for Micro Integration (IFM), University of Stuttgart, Allmandring 9B, 70569 Stuttgart, Germany
| | - Maximilian Barth
- Hahn-Schickard, Allmandring 9b, 70569 Stuttgart, Germany; (M.B.); (W.E.); (A.Z.)
| | - Wolfgang Eberhardt
- Hahn-Schickard, Allmandring 9b, 70569 Stuttgart, Germany; (M.B.); (W.E.); (A.Z.)
| | - André Zimmermann
- Hahn-Schickard, Allmandring 9b, 70569 Stuttgart, Germany; (M.B.); (W.E.); (A.Z.)
- Institute for Micro Integration (IFM), University of Stuttgart, Allmandring 9B, 70569 Stuttgart, Germany
| |
Collapse
|
18
|
Im HG, Jang J, Jeon Y, Noh J, Jin J, Lee JY, Bae BS. Flexible Transparent Crystalline-ITO/Ag Nanowire Hybrid Electrode with High Stability for Organic Optoelectronics. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56462-56469. [PMID: 33258583 DOI: 10.1021/acsami.0c17130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Metal nanowires (NWs) are promising transparent conducting electrode (TCE) materials because of their excellent optoelectrical performance, intrinsic mechanical flexibility, and large-scale processability. However, the surface roughness, thermal/chemical instability, and limited electrical conductivity associated with empty spaces between metal NWs are problems that are yet to be solved. Here, we report a highly reliable and robust composite TCE/substrate all-in-one platform that consists of crystalline indium tin oxide (c-ITO) top layer and surface-embedded metal NW (c-ITO/AgNW-GFRH) films for flexible optoelectronics. The c-ITO top layer (thickness: 10-30 nm) greatly improves the electrical performance of a AgNW-based electrode, retaining its transparency even after a high-temperature annealing process at 250 °C because of its thermally stable basal substrate (i.e., AgNW-GFRH). By introducing c-ITO thin film, we achieve an extremely smooth surface (Rrms < 1 nm), excellent optoelectrical performance, superior thermal (> 250 °C)/chemical stability (in sulfur-contained solution), and outstanding mechanical flexibility (bending radius = 1 mm). As a demonstration, we fabricate flexible organic devices (organic photovoltaic and organic light-emitting diode) on c-ITO/AgNW-GFRH films that show device performance comparable to that of references ITO/glass substrates and superior mechanical flexibility. With excellent stability and demonstrations, we expect that the c-ITO/AgNW-GFRHs can be used as flexible TCE/substrate films for future thin-film optoelectronics.
Collapse
Affiliation(s)
- Hyeon-Gyun Im
- Electrical Materials Research Division, Korea Electrotechnology Research Institute (KERI), Changwon-si 51543, Republic of Korea
| | - Junho Jang
- Wearable Platform Materials Technology Center (WMC), Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yeonjee Jeon
- School of Electrical Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Jonghyeon Noh
- School of Electrical Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Jungho Jin
- School of Materials Science and Engineering, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Jung-Yong Lee
- School of Electrical Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Byeong-Soo Bae
- Wearable Platform Materials Technology Center (WMC), Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
19
|
Polat Genlik S, Tigan D, Kocak Y, Ercan KE, Cicek MO, Tunca S, Koylan S, Coskun S, Ozensoy E, Unalan HE. All-Solution-Processed, Oxidation-Resistant Copper Nanowire Networks for Optoelectronic Applications with Year-Long Stability. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45136-45144. [PMID: 32896125 DOI: 10.1021/acsami.0c11729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Copper nanowires (Cu NWs) hold promise as they possess equivalent intrinsic electrical conductivity and optical transparency to silver nanowires (Ag NWs) and cost substantially less. However, poor resistance to oxidation is the historical challenge that has prevented the large-scale industrial utilization of Cu NWs. Here, we use benzotriazole (BTA), an organic corrosion inhibitor, to passivate Cu NW networks. The stability of BTA-passivated networks under various environmental conditions was monitored and compared to that of bare Cu NW control samples. BTA passivation greatly enhanced the stability of networks without deteriorating their optoelectronic performance. Moreover, to demonstrate their potential, BTA-passivated networks were successfully utilized in the fabrication of a flexible capacitive tactile sensor. This passivation strategy has a strong potential to pave the way for large-scale utilization of Cu NW networks in optoelectronic devices.
Collapse
Affiliation(s)
- Sevim Polat Genlik
- Department of Materials Science and Engineering, Ohio State University, Columbus, Ohio 43210, United States
| | - Dogancan Tigan
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara 06800, Turkey
| | - Yusuf Kocak
- Department of Chemistry, Bilkent University, Ankara 06800, Turkey
| | - Kerem Emre Ercan
- Department of Chemistry, Bilkent University, Ankara 06800, Turkey
| | - Melih Ogeday Cicek
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara 06800, Turkey
| | - Sensu Tunca
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara 06800, Turkey
| | - Serkan Koylan
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara 06800, Turkey
| | - Sahin Coskun
- Department of Metallurgical and Materials Engineering, Eskisehir Osmangazi University, Eskisehir 26040, Turkey
| | - Emrah Ozensoy
- Department of Chemistry, Bilkent University, Ankara 06800, Turkey
- UNAM-National Nanotechnology Center, Bilkent University, Ankara 06800, Turkey
| | - Husnu Emrah Unalan
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara 06800, Turkey
- Department of Micro and Nanotechnology, Middle East Technical University, Ankara 06800, Turkey
- Centre for Solar Energy Research and Applications (GÜNAM), Middle East Technical University, Ankara 06800, Turkey
| |
Collapse
|
20
|
Kim DW, Lee G, Pal M, Jeong U. Highly Deformable Transparent Au Film Electrodes and Their Uses in Deformable Displays. ACS APPLIED MATERIALS & INTERFACES 2020; 12:41969-41980. [PMID: 32806891 DOI: 10.1021/acsami.0c11630] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
With emerging interest in foldable and stretchable displays, the need to develop transparent deformable electrode and interconnection is increasing. Even though metal films have been standard electrodes in conventional electronic devices due to their high conductivity and well-established process, they have never been used for transparent deformable electrodes. We present highly conductive transparent deformable Au film electrodes and use them to fabricate a foldable perovskite light-emitting diode (PeLED) and a biaxially stretchable alternating current electroluminescence (ACEL) display. We exhibit the formation of an ultrathin (6 nm) continuous Au film on an anisotropic conductive ultrathin film (ACUF) of amorphous carbon. The ultrathin Au film was first formed on an ACUF-coated Si wafer (4 in. scale) through metal evaporation and transferred to the polymer substrates by a simple and effective water-assisted delamination process. Then, a hybrid electrode (ACUF/ACUF/Au) was produced as the transparent deformable electrode. Complicated interconnections could be created by metal deposition through a mask. The electrical conductance of the hybrid electrode was not affected by the crack formation in the Au film during electrode folding, crumpling, and stretching. We reveal the reason why the hybrid electrode can maintain such excellent electrical stability under deformation.
Collapse
Affiliation(s)
- Dong Wook Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Gilwoon Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Monalisa Pal
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Unyong Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| |
Collapse
|
21
|
Lim YW, Jin J, Bae BS. Optically Transparent Multiscale Composite Films for Flexible and Wearable Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907143. [PMID: 32187405 DOI: 10.1002/adma.201907143] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/03/2020] [Indexed: 06/10/2023]
Abstract
One of the key breakthroughs enabling flexible electronics with novel form factors is the deployment of flexible polymer films in place of brittle glass, which is one of the major structural materials for conventional electronic devices. Flexible electronics requires polymer films with the core properties of glass (i.e., dimensional stability and transparency) while retaining the pliability of the polymer, which, however, is fundamentally intractable due to the mutually exclusive nature of these characteristics. An overview of a transparent fiber-reinforced polymer, which is suggested as a potentially viable structural material for emerging flexible/wearable electronics, is provided. This includes material concept and fabrication and a brief review of recent research progress on its applications over the past decade.
Collapse
Affiliation(s)
- Young-Woo Lim
- Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jungho Jin
- School of Materials Science and Engineering, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan, 44610, Republic of Korea
| | - Byeong-Soo Bae
- Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
22
|
Kim TI, Park IJ, Choi SY. Synthesis of Ultrathin Metal Nanowires with Chemically Exfoliated Tungsten Disulfide Nanosheets. NANO LETTERS 2020; 20:3740-3746. [PMID: 32191476 DOI: 10.1021/acs.nanolett.0c00735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Transition metal dichalcogenides (TMDs) have attracted great interest owing to their fascinating properties with atomically thin nature. Although TMDs have been exploited for diverse applications, the effective role of TMDs in the synthesis of metal nanowires has not been explored. Here, we propose a new approach to synthesize ultrathin metal nanowires using TMDs for the first time. High-quality ultrathin nanowires with an average diameter of 11.3 nm are successfully synthesized for realizing high-performance transparent conductors that exhibit excellent conductivity and transparency with low haze. The growth mechanism is carefully investigated using high-resolution transmission electron microscopy, and growth of nanowires with tunable diameters is achieved by controlling the nanosheet dimension. Finally, we unravel the important role of TMDs acting as both reducing and nucleating agents. Therefore, our work provides a new strategy of the TMD as an innovative material for the growth of metal nanowires as a promising building block in next-generation optoelectronics.
Collapse
Affiliation(s)
- Tae In Kim
- School of Electrical Engineering, Graphene/2D Materials Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Ick-Joon Park
- School of Electrical Engineering, Graphene/2D Materials Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Sung-Yool Choi
- School of Electrical Engineering, Graphene/2D Materials Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
23
|
Zhang D, Huang T, Duan L. Emerging Self-Emissive Technologies for Flexible Displays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902391. [PMID: 31595613 DOI: 10.1002/adma.201902391] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/01/2019] [Indexed: 06/10/2023]
Abstract
Featuring a combination of ultrathin and lightweight properties, excellent mechanical flexibility, low power-consumption, and widely tunable saturated emission, flexible displays have opened up a new possibility for optoelectronics. The demands for flexible displays are growing on a continual basis due not only to their successful commercialization but, more importantly, their endless possibilities for wearable integrated systems. Up to now, self-emissive technologies for displays, flexible active-matrix organic light-emitting diodes (flex-AMOLED), flexible quantum dot light-emitting diodes (flex-QLEDs), and flexible perovskite light-emitting diodes (flex-PeLEDs) have been widely reported, but despite the significant progress made in these technologies, enormous obstacles and challenges remain for the vision of truly wearable applications, in particular with flex-QLEDs and flex-PeLEDs. Here, a review of the recent progress of all three self-emissive technologies for flexible displays is conducted, including the emissive active materials, device structures and approaches to manufacturing, the flexible substrates, and conductive electrodes, as well as the encapsulation techniques. The fast-paced improvement made to the efficiency of flexible devices in recent years is also summarized. The review concludes by making suggestions on the future development in this area, and is expected to help researchers in gaining a comprehensive understanding about the newly emerging technologies for flexible displays.
Collapse
Affiliation(s)
- Dongdong Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Tianyu Huang
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Lian Duan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
24
|
Kim DW, Min SY, Lee Y, Jeong U. Transparent Flexible Nanoline Field-Effect Transistor Array with High Integration in a Large Area. ACS NANO 2020; 14:907-918. [PMID: 31895536 DOI: 10.1021/acsnano.9b08199] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Transparent flexible transistor array requests large-area fabrication, high integration, high manufacturing throughput, inexpensive process, uniformity in transistor performance, and reproducibility. This study suggests a facile and reliable approach to meet the requirements. We use the Al-coated polymer nanofiber patterns obtained by electrohydrodynamic (EHD) printing as a photomask. We use the lithography and deposition to produce highly aligned nanolines (NLs) of metals, insulators, and semiconductors on large substrates. With these NLs, we demonstrate a highly integrated NL field-effect transistor (NL-FET) array (105/(4 × 4 in2), 254 pixel-per-inch) made of pentacene and indium zinc oxide semiconductor NLs. In addition, we demonstrate a NL complementary inverter (NL-CI) circuit consisting of pentacene and fullerene NLs. The NL-FET array shows high transparency (∼90%), flexibility (stable at 2.5 mm bending radius), uniformity (∼90%), and high performances (mobility = 0.52 cm2/(V s), on-off ratio = 7.0 × 106). The NL-CI circuit also shows high transparency, flexibility, and typical switching characteristic with a gain of 21. The reliable large-scale fabrication of the various NLs proposed in this study is expected to be applied for manufacturing transparent flexible nanoelectronic devices.
Collapse
Affiliation(s)
- Dong Wook Kim
- Department of Materials Science and Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-Ro , Nam-Gu, Pohang , Gyeongbuk 37673 , Republic of Korea
| | - Sung-Yong Min
- Department of Materials Science and Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-Ro , Nam-Gu, Pohang , Gyeongbuk 37673 , Republic of Korea
| | - Yeongjun Lee
- Department of Materials Science and Engineering , Seoul National University , 1 Gwanak-gu , 08826 Seoul , Republic of Korea
| | - Unyong Jeong
- Department of Materials Science and Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-Ro , Nam-Gu, Pohang , Gyeongbuk 37673 , Republic of Korea
| |
Collapse
|
25
|
He Z, Yang Y, Liang HW, Liu JW, Yu SH. Nanowire Genome: A Magic Toolbox for 1D Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902807. [PMID: 31566828 DOI: 10.1002/adma.201902807] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/07/2019] [Indexed: 06/10/2023]
Abstract
1D nanomaterials with high aspect ratio, i.e., nanowires and nanotubes, have inspired considerable research interest thanks to the fact that exotic physical and chemical properties emerge as their diameters approach or fall into certain length scales, such as the wavelength of light, the mean free path of phonons, the exciton Bohr radius, the critical size of magnetic domains, and the exciton diffusion length. On the basis of their components, aspect ratio, and properties, there may be imperceptible connections among hundreds of nanowires prepared by different strategies. Inspired by the heredity system in life, a new concept termed the "nanowire genome" is introduced here to clarify the relationships between hundreds of nanowires reported previously. As such, this approach will not only improve the tools incorporating the prior nanowires but also help to precisely synthesize new nanowires and even assist in the prediction on the properties of nanowires. Although the road from start-ups to maturity is long and fraught with challenges, the genetical syntheses of more than 200 kinds of nanostructures stemming from three mother nanowires (Te, Ag, and Cu) are summarized here to demonstrate the nanowire genome as a versatile toolbox. A summary and outlook on future challenges in this field are also presented.
Collapse
Affiliation(s)
- Zhen He
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Yuan Yang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Hai-Wei Liang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Jian-Wei Liu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Shu-Hong Yu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
26
|
Ding S, Tian Y. Recent progress of solution-processed Cu nanowires transparent electrodes and their applications. RSC Adv 2019; 9:26961-26980. [PMID: 35528598 PMCID: PMC9070619 DOI: 10.1039/c9ra04404c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/12/2019] [Indexed: 12/19/2022] Open
Abstract
Research on next-generation transparent electrode (TE) materials to replace expensive and fragile indium tin oxide (ITO) is crucial for future electronics. Copper nanowires (Cu NWs) are considered as one of the most promising alternatives due to their excellent electrical properties and low-cost processing. This review summarizes the recent progress on the synthesis methods of long Cu NWs, and the fabrication techniques and protection measures for Cu NW TEs. Applications of Cu NW TEs in electronics, such as solar cells, touch screens, and light emitting diodes (LEDs), are discussed.
Collapse
Affiliation(s)
- Su Ding
- College of Materials and Environmental Engineering, Hangzhou Dianzi University 310018 Hangzhou P. R. China
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology Harbin 150001 China
| | - Yanhong Tian
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology Harbin 150001 China
| |
Collapse
|
27
|
Yang KC, Sung DI, Shin YJ, Yeom GY. Highly oxidation-resistant silver nanowires by C x F y polymers using plasma treatment. NANOTECHNOLOGY 2019; 30:285702. [PMID: 30893668 DOI: 10.1088/1361-6528/ab114c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We demonstrate plasma-treated Ag nanowires (NWs) as flexible transparent electrode materials with enhanced long-term stability against oxidation even in a high humidity environment (80% humidity, 20 °C). Through a simple fluorocarbon (C4F8 or C4F6) plasma treatment method, a C x F y protective polymer was sufficiently cross-linked and attached on the surface of the AgNWs strongly and uniformly. Even though C4F8 and C4F6 activate differently on the AgNW surface due to the different dissociated radicals formed in the plasma, it was found that the C x F y protective polymers obtained by both chemicals work similarly as a protective layer for transparent conductive electrodes; a nearly constant sheet resistance ratio (R s/R o) of 1.6 was found for AgNWs treated with C4F8 and C4F6 plasmas, while the AgNWs without the plasma treatment exhibited a ratio of 176.2 after 36 days in a harsh environment. It is believed that the fluorocarbon plasma treatment can be used as a key method for ensuring long-term oxidation stability in numerous electronic applications including flexible solar cells utilizing various types of metallic nanowires.
Collapse
Affiliation(s)
- Kyung Chae Yang
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, 2066, Seobu-ro, Suwon, 16419, Republic of Korea
| | | | | | | |
Collapse
|
28
|
Park M, Ahn SK, Hwang S, Park S, Kim S, Jeon M. Synthesis of Nitrogen-Doped Graphene on Copper Nanowires for Efficient Thermal Conductivity and Stability by Using Conventional Thermal Chemical Vapor Deposition. NANOMATERIALS 2019; 9:nano9070984. [PMID: 31284632 PMCID: PMC6669628 DOI: 10.3390/nano9070984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/03/2022]
Abstract
Cu nanowires (NWs) possess remarkable potential a slow-cost heat transfer material in modern electronic devices. However, Cu NWs with high aspect ratios undergo surface oxidation, resulting in performance degradation. A growth temperature of approximately <1000 °C is required for preventing the changing of Cu NW morphology by the melting of Cu NWs at over 1000 °C. In addition, nitrogen (N)-doped carbon materials coated on Cu NWs need the formation hindrance of oxides and high thermal conductivity of Cu NWs. Therefore, we investigated the N-doped graphene-coated Cu NWs (NG/Cu NWs) to enhance both the thermal conductivity and oxidation stability of Cu NWs. The Cu NWs were synthesized through an aqueous method, and ethylenediamine with an amine group induced the isotropic growth of Cu to produce Cu NWs. At that time, the amine group could be used as a growth source for the N-doped graphene on Cu NWs. To grow an N-doped graphene without changing the morphology of Cu NWs, we report a double-zone growth process at a low growth temperature of approximately 600 °C. Thermal-interface material measurements were conducted on the NG/Cu NWs to confirm their applicability as heat transfer materials. Our results show that the synthesis technology of N-doped graphene on Cu NWs could promote future research and applications of thermal interface materials in air-stable flexible electronic devices.
Collapse
Affiliation(s)
- Minjeong Park
- Department of Nanoscience and Engineering, Center for Nano Manufacturing, Inje University, Gimhae 50834, Korea
| | - Seul-Ki Ahn
- Department of Nanoscience and Engineering, Center for Nano Manufacturing, Inje University, Gimhae 50834, Korea
| | - Sookhyun Hwang
- Department of Nanoscience and Engineering, Center for Nano Manufacturing, Inje University, Gimhae 50834, Korea
| | - Seongjun Park
- Department of Nanoscience and Engineering, Center for Nano Manufacturing, Inje University, Gimhae 50834, Korea
| | - Seonpil Kim
- Department of Military Information Science, Gyeongju University, Gyeongju 38065, Korea
| | - Minhyon Jeon
- Department of Nanoscience and Engineering, Center for Nano Manufacturing, Inje University, Gimhae 50834, Korea.
| |
Collapse
|
29
|
Wang B, Facchetti A. Mechanically Flexible Conductors for Stretchable and Wearable E-Skin and E-Textile Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901408. [PMID: 31106490 DOI: 10.1002/adma.201901408] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/24/2019] [Indexed: 05/23/2023]
Abstract
Considerable progress in materials development and device integration for mechanically bendable and stretchable optoelectronics will broaden the application of "Internet-of-Things" concepts to a myriad of new applications. When addressing the needs associated with the human body, such as the detection of mechanical functions, monitoring of health parameters, and integration with human tissues, optoelectronic devices, interconnects/circuits enabling their functions, and the core passive components from which the whole system is built must sustain different degrees of mechanical stresses. Herein, the basic characteristics and performance of several of these devices are reported, particularly focusing on the conducting element constituting them. Among these devices, strain sensors of different types, energy storage elements, and power/energy storage and generators are included. Specifically, the advances during the past 3 years are reported, wherein mechanically flexible conducting elements are fabricated from (0D, 1D, and 2D) conducting nanomaterials from metals (e.g., Au nanoparticles, Ag flakes, Cu nanowires), carbon nanotubes/nanofibers, 2D conductors (e.g., graphene, MoS2 ), metal oxides (e.g., Zn nanorods), and conducting polymers (e.g., poly(3,4-ethylenedioxythiophene):poly(4-styrene sulfonate), polyaniline) in combination with passive fibrotic and elastomeric materials enabling, after integration, the so-called electronic skins and electronic textiles.
Collapse
Affiliation(s)
- Binghao Wang
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- Flexterra Corporation, 8025 Lamon Avenue, Skokie, IL, 60077, USA
| |
Collapse
|
30
|
Yu H, Fang D, Dirican M, Wang R, Tian Y, Chen L, Liu H, Wang J, Tang F, Asiri AM, Zhang X, Tao J. Binding Conductive Ink Initiatively and Strongly: Transparent and Thermally Stable Cellulose Nanopaper as a Promising Substrate for Flexible Electronics. ACS APPLIED MATERIALS & INTERFACES 2019; 11:20281-20290. [PMID: 31083900 DOI: 10.1021/acsami.9b04596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
For flexible electronics, the substrates play key roles in ensuring their performance. However, most substrates suffer from weak bonding with the conductive ink and need additional aids. Here, inspired by the Ag-S bond theory, a novel cellulose nanopaper substrate is presented to improve the bond strength with the Ag nanoparticle ink through a facile printing method. The substrate is fabricated using thiol-modified nanofibrillated cellulose and exhibits excellent optical properties (∼85%@550 nm), ultra-small surface roughness (3.47 nm), and high thermal dimensional stability (up to at least 90 °C). Most importantly, it can attract Ag nanoparticles initiatively and bind them firmly, which enable the conductive ink to be printed without using the ink binder and form a strong substrate-ink bonding and maintain a stable conductivity of 2 × 10-4 Ω cm even after extensive peeling and bending. This work may lead to exploring new opportunities to fabricate high-performance flexible electronics using the newly developed nanopaper substrate.
Collapse
Affiliation(s)
- Huang Yu
- State Key Lab of Pulp and Paper Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Dongjun Fang
- State Key Lab of Pulp and Paper Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Mahmut Dirican
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles , North Carolina State University , Raleigh , North Carolina 27695-8301 , United States
| | - Ruiping Wang
- State Key Lab of Pulp and Paper Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Yan Tian
- State Key Lab of Pulp and Paper Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Linlin Chen
- State Key Lab of Pulp and Paper Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Hao Liu
- State Key Lab of Pulp and Paper Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Jiasheng Wang
- Guangzhou Lushan New Materials Co., Ltd , Guangzhou 510530 , China
| | - Fangcheng Tang
- Guangzhou Lushan New Materials Co., Ltd , Guangzhou 510530 , China
| | | | - Xiangwu Zhang
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles , North Carolina State University , Raleigh , North Carolina 27695-8301 , United States
| | - Jinsong Tao
- State Key Lab of Pulp and Paper Engineering , South China University of Technology , Guangzhou 510640 , China
| |
Collapse
|
31
|
Zhang B, Li W, Nogi M, Chen C, Yang Y, Sugahara T, Koga H, Suganuma K. Alloying and Embedding of Cu-Core/Ag-Shell Nanowires for Ultrastable Stretchable and Transparent Electrodes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18540-18547. [PMID: 31055926 DOI: 10.1021/acsami.9b04169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this paper, transparent electrodes with dense Cu@Ag alloy nanowires embedded in the stretchable substrates are successfully fabricated by a high-intensity pulsed light (HIPL) technique within one step. The intense light energy not only induces rapid mutual dissolution between the Cu core and the Ag shell to form dense Cu@Ag alloy nanowires but also embeds the newly formed alloy nanowires into the stretchable substrates. The combination of alloy nanowires and embedded structures greatly improve the thermal stability of the transparent electrodes that maintain a high conductivity unchanged in both high temperature (140 °C) and high humidity (85 °C, 85% RH) for at least 500 h, which is much better than previous reports. The transparent electrodes also exhibit high electromechanical stability due to the strong adhesion between alloy nanowires and substrates, which remain stable after 1000 stretching-relaxation cycles at 30% strain. Stretchable and transparent heaters based on the alloyed and embedded electrodes have a wide outputting temperature range (up to 130 °C) and show excellent thermal stability and stretchability (up to 60% strain) due to the alloy nanowires and embedded structures. To sum up, this study proposes the combination of alloying and embedding structures to greatly improve the stability of Cu nanowire-based stretchable transparent electrodes, showing a huge application prospect in the field of stretchable and wearable electronics.
Collapse
Affiliation(s)
- Bowen Zhang
- Department of Adaptive Machine Systems, Graduate School of Engineering , Osaka University , Yamadaoka 2-1 , Suita , Osaka 565-0871 , Japan
- The Institute of Scientific and Industrial Research (ISIR) , Osaka University , Mihogaoka 8-1 , Ibaraki , Osaka 567-0047 , Japan
| | - Wanli Li
- The Institute of Scientific and Industrial Research (ISIR) , Osaka University , Mihogaoka 8-1 , Ibaraki , Osaka 567-0047 , Japan
| | - Masaya Nogi
- The Institute of Scientific and Industrial Research (ISIR) , Osaka University , Mihogaoka 8-1 , Ibaraki , Osaka 567-0047 , Japan
| | - Chuantong Chen
- The Institute of Scientific and Industrial Research (ISIR) , Osaka University , Mihogaoka 8-1 , Ibaraki , Osaka 567-0047 , Japan
| | - Yang Yang
- Pacific Northwest National Laboratory , P.O. Box 999, Richland , Washington 99352 , United States
| | - Tohru Sugahara
- The Institute of Scientific and Industrial Research (ISIR) , Osaka University , Mihogaoka 8-1 , Ibaraki , Osaka 567-0047 , Japan
| | - Hirotaka Koga
- The Institute of Scientific and Industrial Research (ISIR) , Osaka University , Mihogaoka 8-1 , Ibaraki , Osaka 567-0047 , Japan
| | - Katsuaki Suganuma
- The Institute of Scientific and Industrial Research (ISIR) , Osaka University , Mihogaoka 8-1 , Ibaraki , Osaka 567-0047 , Japan
| |
Collapse
|
32
|
On-chip suspended gold nanowire electrode with a rough surface: Fabrication and electrochemical properties. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.02.106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
33
|
Abstract
Flexible sensors have the potential to be seamlessly applied to soft and irregularly shaped surfaces such as the human skin or textile fabrics. This benefits conformability dependant applications including smart tattoos, artificial skins and soft robotics. Consequently, materials and structures for innovative flexible sensors, as well as their integration into systems, continue to be in the spotlight of research. This review outlines the current state of flexible sensor technologies and the impact of material developments on this field. Special attention is given to strain, temperature, chemical, light and electropotential sensors, as well as their respective applications.
Collapse
|
34
|
Zhang B, Li W, Jiu J, Yang Y, Jing J, Suganuma K, Li CF. Large-Scale and Galvanic Replacement Free Synthesis of Cu@Ag Core-Shell Nanowires for Flexible Electronics. Inorg Chem 2019; 58:3374-3381. [PMID: 30789711 DOI: 10.1021/acs.inorgchem.8b03460] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Copper nanowires (CuNWs) are considered a promising alternative to indium tin oxide due to their cost-effectiveness as well as high conductivity and transparency. However, the practical applications of copper-based conductors are greatly limited due to their rapid oxidation in atmosphere. Herein, a facile adsorption and decomposition process is developed for galvanic replacement free and large-scale synthesis of highly stable Cu@Ag core-shell nanowires. First, Ag-amine complex ([Ag(NH2R)2]+) as silver source adsorbs on CuNWs surface, and Cu@Ag-amine complex core-shell structure is formed. After that, Ag-amine complex is easily decomposed to pure Ag shell through a simple thermal annealing under air. By adjusting the concentration of Ag-aminein CuNWs solution, Cu@Ag core-shell nanowires with different thickness of silver shell can be easily obtained. The obtained core-shell nanowires exhibit high stability for at least 500 h at high temperature (140 °C) and high humidity (85 °C, 85% RH) due to the protection of Ag shell. More importantly, the conductivity and transparency of Cu@Ag nanowires-based conductors is similar to that of pure CuNWs. The large-scale and facile synthesis of Cu@Ag core-shell nanowires provides a new method to prepare stable metallic core-shell nanowires.
Collapse
Affiliation(s)
| | | | | | - Yang Yang
- Pacific Northwest National Laboratory , P.O. Box 999, Richland , Washington 99352 , United States
| | - Jiangbo Jing
- State Key Laboratory of Supramolecular Structure and Materials, College of chemistry , Jilin University , Changchun , China
| | | | | |
Collapse
|
35
|
Yin Z, Chen S, Guan Y, Ran Q, Zhang Q, Yan X, Jin R, Yu H, Li L, Yu J. Copper Nanowire Dispersion through an Electrostatic Dispersion Mechanism for High-Performance Flexible Transparent Conducting Films and Optoelectronic Devices. ACS APPLIED MATERIALS & INTERFACES 2019; 11:5264-5275. [PMID: 30644720 DOI: 10.1021/acsami.8b19277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Highly dispersed copper nanowire (CuNW) is an essential prerequisite for its practical application in various electronic devices. At present, the dispersion of CuNW is almost realized through the steric hindrance effect of polymers. However, the high post-treatment temperature of polymers makes this dispersion mechanism impractical for many actual applications. Here, after investigating the relationship between the electrostatic dispersion force and influence factors, an electrostatic dispersion mechanism is refined by us. Under the guidance of this mechanism, high dispersion of CuNW and a record low post-treatment temperature (80 °C) are realized simultaneously. The high dispersity endows CuNW with good stability (-45.66 mV) in water-based ink, high uniformity (65.7 ± 2.5 Ω sq-1) in the prepared transparent conducting film (TCF) (23 cm × 23 cm), and industrial film preparation process, which are the issues that hinder the widespread application of CuNW-based TCF at present. The low post-treatment temperature makes the application of CuNW possible on any substrate. In addition, the charge modifier, 2-mercaptoethanol, enables CuNW to resist oxidation well. Finally, flexible optoelectronic devices employing the CuNW film as the electrode are fabricated and show efficiencies comparable to those of optoelectronic devices on indium tin oxide/glass.
Collapse
Affiliation(s)
- Zhongmin Yin
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering , University of Electronic Science and Technology of China (UESTC) , Chengdu 610054 , P. R. China
- Research Institute for New Materials Technology , Chongqing University of Arts and Sciences , Yongchuan 402160 , P. R. China
| | - Shanyong Chen
- Research Institute for New Materials Technology , Chongqing University of Arts and Sciences , Yongchuan 402160 , P. R. China
| | - Youwei Guan
- Research Institute for New Materials Technology , Chongqing University of Arts and Sciences , Yongchuan 402160 , P. R. China
| | - Qinqin Ran
- Research Institute for New Materials Technology , Chongqing University of Arts and Sciences , Yongchuan 402160 , P. R. China
| | - Qingsong Zhang
- Research Institute for New Materials Technology , Chongqing University of Arts and Sciences , Yongchuan 402160 , P. R. China
| | - Xingwu Yan
- Research Institute for New Materials Technology , Chongqing University of Arts and Sciences , Yongchuan 402160 , P. R. China
| | - Rong Jin
- Research Institute for New Materials Technology , Chongqing University of Arts and Sciences , Yongchuan 402160 , P. R. China
| | - Hong Yu
- Research Institute for New Materials Technology , Chongqing University of Arts and Sciences , Yongchuan 402160 , P. R. China
| | - Lu Li
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering , University of Electronic Science and Technology of China (UESTC) , Chengdu 610054 , P. R. China
- Research Institute for New Materials Technology , Chongqing University of Arts and Sciences , Yongchuan 402160 , P. R. China
| | - Junsheng Yu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering , University of Electronic Science and Technology of China (UESTC) , Chengdu 610054 , P. R. China
| |
Collapse
|
36
|
Youn DY, Jung U, Naqi M, Choi SJ, Lee MG, Lee S, Park HJ, Kim ID, Kim S. Wireless Real-Time Temperature Monitoring of Blood Packages: Silver Nanowire-Embedded Flexible Temperature Sensors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:44678-44685. [PMID: 30489065 DOI: 10.1021/acsami.8b11928] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Real-time temperature monitoring of individual blood packages capable of wireless data transmission to ensure the safety of blood samples and minimize wastes has become a critical issue in recent years. In this work, we propose flexible temperature sensors using silver nanowires (NWs) and a flexible colorless polyimide (CPI) film integrated with a wireless data transmission circuit. The unique design of the temperature sensors was achieved by patterning Ag NWs using a three-dimensional printed mold and embedding the patterned Ag NWs in the CPI film (p-Ag NWs/CPI), which resulted in a flexible temperature sensor with electrical, mechanical, and temperature stability for applications in blood temperature monitoring. Indeed, a reliable resistance change of the p-Ag NWs/CPI was observed in the temperature range of -20 to 20 °C with a robust bending stability of up to 5000 cycles at 5 mm bending radius. Real-time and wireless temperature monitoring using the p-Ag NWs/CPI was demonstrated with the packages of rat blood. The result revealed that the stable and consistent temperature monitoring of individual blood packages could be achieved in a blood box, which was mainly attributed to the conformal attachment of the p-Ag NWs/CPI to different packages in a blood container.
Collapse
Affiliation(s)
- Doo-Young Youn
- Department of Materials Science and Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea
| | - Uihyun Jung
- Multi-Functional Nano Bio Electronics Lab, Department of Advanced Materials Science and Engineering , Sungkyunkwan University , Gyeonggi 16419 , Republic of Korea
| | - Muhammad Naqi
- Multi-Functional Nano Bio Electronics Lab, Department of Advanced Materials Science and Engineering , Sungkyunkwan University , Gyeonggi 16419 , Republic of Korea
| | - Seon-Jin Choi
- Department of Chemistry , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Min-Goo Lee
- Convergence System R&D Division , Korea Electronics Technology Institute , Gyeonggi 13509 , Republic of Korea
| | - Sungho Lee
- Convergence System R&D Division , Korea Electronics Technology Institute , Gyeonggi 13509 , Republic of Korea
| | - Hi-Joon Park
- Acupuncture & Meridian Science Research Center, College of Korean Medicine , Kyung Hee University , 26, Kyungheedae-ro , Dongdaemoon-gu, Seoul 02447 , Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea
- Advanced Nanosensor Research Center, KAIST Institute for the NanoCentury , KAIST , Daejeon 34141 , Republic of Korea
| | - Sunkook Kim
- Multi-Functional Nano Bio Electronics Lab, Department of Advanced Materials Science and Engineering , Sungkyunkwan University , Gyeonggi 16419 , Republic of Korea
| |
Collapse
|
37
|
Transparent Conductive Electrodes Based on Graphene-Related Materials. MICROMACHINES 2018; 10:mi10010013. [PMID: 30587828 PMCID: PMC6356588 DOI: 10.3390/mi10010013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 11/17/2022]
Abstract
Transparent conducting electrodes (TCEs) are the most important key component in photovoltaic and display technology. In particular, graphene has been considered as a viable substitute for indium tin oxide (ITO) due to its optical transparency, excellent electrical conductivity, and chemical stability. The outstanding mechanical strength of graphene also provides an opportunity to apply it as a flexible electrode in wearable electronic devices. At the early stage of the development, TCE films that were produced only with graphene or graphene oxide (GO) were mainly reported. However, since then, the hybrid structure of graphene or GO mixed with other TCE materials has been investigated to further improve TCE performance by complementing the shortcomings of each material. This review provides a summary of the fabrication technology and the performance of various TCE films prepared with graphene-related materials, including graphene that is grown by chemical vapor deposition (CVD) and GO or reduced GO (rGO) dispersed solution and their composite with other TCE materials, such as carbon nanotubes, metal nanowires, and other conductive organic/inorganic material. Finally, several representative applications of the graphene-based TCE films are introduced, including solar cells, organic light-emitting diodes (OLEDs), and electrochromic devices.
Collapse
|
38
|
Qian D, Yang L, Zhang Y, Xin C, Hu Z, Hu K, Wang Y, Pan D, Li J, Wu D, Hu Y, Chu J. Flexible and rapid fabrication of silver microheaters with spatial-modulated multifoci by femtosecond laser multiphoton reduction. OPTICS LETTERS 2018; 43:5335-5338. [PMID: 30383000 DOI: 10.1364/ol.43.005335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 09/28/2018] [Indexed: 06/08/2023]
Abstract
In this Letter, parallel writing of silver microwire (AgMW) arrays based on femtosecond laser multiphoton reduction (MPR) is realized by modulating a femtosecond laser beam into a multifoci pattern with a spatial light modulator (SLM). Arbitrarily distributed multifoci are generated with predesigned holograms loaded on a SLM for MPR. The experimental parameters for the desired fabrication of AgMWs with multifoci are systematically investigated and optimized. On this basis, different AgMW patterns are dynamically and simultaneously fabricated by loading different holograms onto a high-frequency refreshed SLM in sequence. The quantity and distribution of multifoci can be controlled dynamically by the SLM in the fabrication process, and even the intensity of individual focus is dynamically modulated by the control of the gray level of holograms. Finally, the potential application of this flexible and rapid AgMW fabrication method in microheater fabrication is demonstrated. The microheaters exhibit a controllable temperature gradient after energized.
Collapse
|
39
|
Jo HS, Kwon HJ, Kim TG, Park CW, An S, Yarin AL, Yoon SS. Wearable transparent thermal sensors and heaters based on metal-plated fibers and nanowires. NANOSCALE 2018; 10:19825-19834. [PMID: 30334563 DOI: 10.1039/c8nr04810j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Electrospun metal-plated nanofibers and supersonically sprayed nanowires were used to fabricate hybrid films exhibiting a superior low sheet resistance of 0.18 Ω sq-1, a transparency of 91.1%, and a figure-of-merit of 2.315 Ω-1. The films are suitable to serve as thermal sensors and heaters. Such hybrid transparent conducting films are highly flexible and thus wearable. They can be used as body-temperature monitors and heaters. The employed hybrid approach improved the sheet resistance diminishing it to a minimum, while maintaining transparency. In addition, the low sheet resistance of the films facilitates their powering with a low-voltage battery and thus, portability. The thermal sensing and heating capabilities were demonstrated for such films with various sheet resistances and degrees of transparency. The temperature sensing was achieved by the resistance change of the film; the resistance value was converted back to temperature. The sensing performance increased with the improvement in the sheet resistance. The temperature coefficient of resistivity was TCR = 0.0783 K-1. The uniform distribution of the metal-plated nanofibers and nanowires resulted in a uniform Joule heating contributing to an efficient convection heat transfer from the heaters to the surrounding, demonstrated by an improved convective heat transfer coefficient.
Collapse
Affiliation(s)
- Hong Seok Jo
- School of Mechanical Engineering, Korea University, Seoul 02841, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
40
|
Kim Y, Sul YE, Kang H, Choi Y, Lim HS, Lee S, Pu L, Yi GR, Cho SM, Cho JH. Roll-to-roll redox-welding and embedding for silver nanowire network electrodes. NANOSCALE 2018; 10:18627-18634. [PMID: 30259934 DOI: 10.1039/c8nr01040d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We developed a continuous roll-to-roll redox-welding and embedding method for the fabrication of electrodes of silver nanowire (AgNWs) networks. The roll-to-roll welding method involved a sequence of oxidation and reduction reactions in an aqueous solution. The redox-welding significantly decreased the sheet resistance of the AgNW film owing to the strong fusion and interlocking at the nanowire junction, while the optical transmittance was maintained. The first oxidation step using HNO3 generated ionized silver (Ag+) which got re-deposited onto the nanowire junctions via an autocatalytic reaction. The oxide layers, which formed on the nanowire surface by both air exposure and the first step of oxidation, were removed by the second reduction step using NaBH4. The redox-welded AgNW electrodes exhibited a sheet resistance of 11.3 Ω sq-1 at the optical transmittance of 90.5% at 550 nm. Furthermore, redox-welding of the AgNWs significantly enhanced their mechanical robustness compared to that of the as-coated AgNWs. The redox-welded AgNWs embedded in a UV curable resin, using a roll-to-roll embedding process, were successfully applied as anode electrodes for large-area and flexible organic light emitting diodes (OLEDs). The device performance is superior to that of a device based on the as-coated AgNW electrode, and is also comparable to that of a device using commercial ITO as the electrode. The redox-welding and embedding processes provide a facile and reliable method for fabricating large-area transparent flexible electrodes for next-generation flexible optoelectronic devices.
Collapse
Affiliation(s)
- Yeontae Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746, Republic of Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Wang S, Zou Y, Shan Q, Xue J, Dong Y, Gu Y, Song J. Nanowire network-based photodetectors with imaging performance for omnidirectional photodetecting through a wire-shaped structure. RSC Adv 2018; 8:33666-33673. [PMID: 35548790 PMCID: PMC9086547 DOI: 10.1039/c8ra06555a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/11/2018] [Indexed: 12/02/2022] Open
Abstract
Wearable photodetectors (PDs) have attracted extensive attention from both scientific and industrial areas due to intrinsic detection abilities as well as promising applications in flexible, intelligent, and portable fields. However, most of the existing PDs have rigid planar or bulky structures which cannot fully meet the demands of these unique occasions. Here, we present a highly flexible, omnidirectional PD based on ZnO nanowire (NW) networks. ZnO NW network-based PDs exhibit the imageable level performance with an on/off ratio of about 104. Importantly, a ZnO NW network can be assembled onto wire-shaped substrates to construct omnidirectional PDs. As a result, the wire-shaped PDs have excellent flexibility, a large light on/off ratio larger than 103, and 360° no blind angle detecting. Besides, they exhibit extraordinary stability against bending and irradiation. These results demonstrate a novel strategy for building wire-shaped optoelectronic devices through a NW network structure, which is highly promising for future smart and wearable applications.
Collapse
Affiliation(s)
- Shalong Wang
- Institute of Optoelectronics & Nanomaterials, MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science & Technology Nanjing 210094 China
| | - Yousheng Zou
- Institute of Optoelectronics & Nanomaterials, MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science & Technology Nanjing 210094 China
| | - Qingsong Shan
- Institute of Optoelectronics & Nanomaterials, MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science & Technology Nanjing 210094 China
| | - Jie Xue
- Institute of Optoelectronics & Nanomaterials, MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science & Technology Nanjing 210094 China
| | - Yuhui Dong
- Institute of Optoelectronics & Nanomaterials, MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science & Technology Nanjing 210094 China
| | - Yu Gu
- Institute of Optoelectronics & Nanomaterials, MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science & Technology Nanjing 210094 China
| | - Jizhong Song
- Institute of Optoelectronics & Nanomaterials, MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science & Technology Nanjing 210094 China
| |
Collapse
|
42
|
Chang L, Zhang X, Ding Y, Liu H, Liu M, Jiang L. Ionogel/Copper Grid Composites for High-Performance, Ultra-Stable Flexible Transparent Electrodes. ACS APPLIED MATERIALS & INTERFACES 2018; 10:29010-29018. [PMID: 30080390 DOI: 10.1021/acsami.8b09023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Production of high-performance and stable low-cost copper (Cu)-based flexible transparent electrodes (FTEs) is urgently needed for the development of new-generation flexible optoelectronic devices, but it still remains challenging. Herein, we developed a facile approach to fabricate high-performance, ultra-stable Cu grid (CuG)-based FTEs by UV lithography-assisted electroless deposition of patterned Cu on flexible polyethylene terephthalate (PET), which is then encapsulated by a thin poly(1-vinyl-3-ethylimidazolium bis(trifluoromethanesulfonyl)imide) (P[VEIM][NTf2]) ionogel layer to improve the mechanical flexibility and stability. The as-prepared composite FTE (ionogel/CuG@PET) exhibits a sheet resistance of 10.9 Ω sq-1 and optical transmittance of 90% at 550 nm. Introduction of the thin uniform P[VEIM][NTf2] ionogel nanofilm by virtue of the superwettability of the Cu layer endows the electrode with excellent mechanical flexibility and stability. This new high-performance Cu-based FTE should be an attractive alternative to indium tin oxide for practical optoelectrical applications.
Collapse
Affiliation(s)
- Li Chang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and Department of Chemistry , Lanzhou University , Lanzhou 730000 , P. R. China
| | - Xiqi Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Yi Ding
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Organic Solid, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Hongliang Liu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Mingzhu Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and Department of Chemistry , Lanzhou University , Lanzhou 730000 , P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| |
Collapse
|
43
|
A Review of Conductive Metal Nanomaterials as Conductive, Transparent, and Flexible Coatings, Thin Films, and Conductive Fillers: Different Deposition Methods and Applications. COATINGS 2018. [DOI: 10.3390/coatings8080278] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
With ever-increasing demand for lightweight, small, and portable devices, the rate of production of electronic and optoelectronic devices is constantly increasing, and alternatives to the current heavy, voluminous, fragile, conductive and transparent materials will inevitably be needed in the future. Conductive metal nanomaterials (such as silver, gold, copper, zinc oxide, aluminum, and tin) and carbon-based conductive materials (carbon nanotubes and graphene) exhibit great promise as alternatives to conventional conductive materials. Successfully incorporating conductive nanomaterials into thin films would combine their excellent electrical and optical properties with versatile mechanical characteristics superior to those of conventional conductive materials. In this review, the different conductive metal nanomaterials are introduced, and the challenges facing methods of thin film deposition and applications of thin films as conductive coatings are investigated.
Collapse
|
44
|
Layer-by-layer hybrid chemical doping for high transmittance uniformity in graphene-polymer flexible transparent conductive nanocomposite. Sci Rep 2018; 8:10259. [PMID: 29980765 PMCID: PMC6035180 DOI: 10.1038/s41598-018-28658-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/26/2018] [Indexed: 11/23/2022] Open
Abstract
A traditional transparent conducting film (TCF) such as indium tin oxide (ITO) exhibits poor mechanical flexibility and inconsistent transmittance throughout the UV-VIS-NIR spectrum. Recent TCFs like graphene films exhibit high sheet resistance (Rs) due to defect induced carrier scattering. Here we show a unique hybrid chemical doping method that results in high transmittance uniformity in a layered graphene-polymer nanocomposite with suppressed defect-induced carrier scattering. This layer-by-layer hybrid chemical doping results in low Rs (15 Ω/sq at >90% transmittance) and 3.6% transmittance uniformity (300–1000 nm) compared with graphene (17%), polymer (8%) and ITO (46%) films. The weak localization effect in our nanocomposite was reduced to 0.5%, compared with pristine (4.25%) and doped graphene films (1.2%). Furthermore, negligible Rs change (1.2 times compared to 12.6 × 103 times in ITO) and nearly unaltered transmittance spectra were observed up to 24 GPa of applied stress highlighting mechanical flexibility of the nanocomposite film.
Collapse
|
45
|
Sim H, Kim C, Bok S, Kim MK, Oh H, Lim GH, Cho SM, Lim B. Five-minute synthesis of silver nanowires and their roll-to-roll processing for large-area organic light emitting diodes. NANOSCALE 2018; 10:12087-12092. [PMID: 29911713 DOI: 10.1039/c8nr02242a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Silver (Ag) nanowires (NWs) are promising building blocks for flexible transparent electrodes, which are key components in fabricating soft electronic devices such as flexible organic light emitting diodes (OLEDs). Typically, Ag NWs have been synthesized using a polyol method, but it still remains a challenge to produce high-aspect-ratio Ag NWs via a simple and rapid process. In this work, we developed a modified polyol method and newly found that the addition of propylene glycol to ethylene glycol-based polyol synthesis facilitated the growth of Ag NWs, allowing the rapid production of long Ag NWs with high aspect ratios of about 2000 in a high yield (∼90%) within 5 min. Transparent electrodes fabricated with our Ag NWs exhibited performance comparable to that of an indium tin oxide-based electrode. With these Ag NWs, we successfully demonstrated the fabrication of a large-area flexible OLED with dimensions of 30 cm × 15 cm using a roll-to-roll process.
Collapse
Affiliation(s)
- Hwansu Sim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, South Korea.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Current development of 1D and 2D metallic nanomaterials for the application of transparent conductors in solar cells: Fabrication and modeling. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.nanoso.2017.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
Zhao S, Han F, Li J, Meng X, Huang W, Cao D, Zhang G, Sun R, Wong CP. Advancements in Copper Nanowires: Synthesis, Purification, Assemblies, Surface Modification, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800047. [PMID: 29707894 DOI: 10.1002/smll.201800047] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/08/2018] [Indexed: 06/08/2023]
Abstract
Copper nanowires (CuNWs) are attracting a myriad of attention due to their preponderant electric conductivity, optoelectronic and mechanical properties, high electrocatalytic efficiency, and large abundance. Recently, great endeavors are undertaken to develop controllable and facile approaches to synthesize CuNWs with high dispersibility, oxidation resistance, and zero defects for future large-scale nano-enabled materials. Herein, this work provides a comprehensive review of current remarkable advancements in CuNWs. The Review starts with a thorough overview of recently developed synthetic strategies and growth mechanisms to achieve single-crystalline CuNWs and fivefold twinned CuNWs by the reduction of Cu(I) and Cu(II) ions, respectively. Following is a discussion of CuNW purification and multidimensional assemblies comprising films, aerogels, and arrays. Next, several effective approaches to protect CuNWs from oxidation are highlighted. The emerging applications of CuNWs in diverse fields are then focused on, with particular emphasis on optoelectronics, energy storage/conversion, catalysis, wearable electronics, and thermal management, followed by a brief comment on the current challenges and future research directions. The central theme of the Review is to provide an intimate correlation among the synthesis, structure, properties, and applications of CuNWs.
Collapse
Affiliation(s)
- Songfang Zhao
- School of Material Science and Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Fei Han
- Guangdong Provincial Key Laboratory of Materials for High Density Electronic Packaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Department of Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Jinhui Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Xiangying Meng
- School of Material Science and Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Wangping Huang
- Guangdong Provincial Key Laboratory of Materials for High Density Electronic Packaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Department of Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Duxia Cao
- School of Material Science and Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Guoping Zhang
- Guangdong Provincial Key Laboratory of Materials for High Density Electronic Packaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Rong Sun
- Guangdong Provincial Key Laboratory of Materials for High Density Electronic Packaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ching-Ping Wong
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, GA, 30332, USA
| |
Collapse
|
48
|
Kang H, Song SJ, Sul YE, An BS, Yin Z, Choi Y, Pu L, Yang CW, Kim YS, Cho SM, Kim JG, Cho JH. Epitaxial-Growth-Induced Junction Welding of Silver Nanowire Network Electrodes. ACS NANO 2018; 12:4894-4902. [PMID: 29709175 DOI: 10.1021/acsnano.8b01900] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this study, we developed a roll-to-roll Ag electroplating process for metallic nanowire electrodes using a galvanostatic mode. Electroplating is a low-cost and facile method for deposition of metal onto a target surface with precise control of both the composition and the thickness. Metallic nanowire networks [silver nanowires (AgNWs) and copper nanowires (CuNWs)] coated onto a polyethylene terephthalate (PET) film were immersed directly in an electroplating bath containing AgNO3. Solvated silver ions (Ag+ ions) were deposited onto the nanowire surface through application of a constant current via an external circuit between the nanowire networks (cathode) and a Ag plate (anode). The amount of electroplated Ag was systematically controlled by changing both the applied current density and the electroplating time, which enabled precise control of the sheet resistance and optical transmittance of the metallic nanowire networks. The optimized Ag-electroplated AgNW (Ag-AgNW) films exhibited a sheet resistance of ∼19 Ω/sq at an optical transmittance of 90% (550 nm). A transmission electron microscopy study confirmed that Ag grew epitaxially on the AgNW surface, but a polycrystalline Ag structure was formed on the CuNW surface. The Ag-electroplated metallic nanowire electrodes were successfully applied to various electronic devices such as organic light-emitting diodes, triboelectric nanogenerators, and a resistive touch panel. The proposed roll-to-roll Ag electroplating process provides a simple, low-cost, and scalable method for the fabrication of enhanced transparent conductive electrode materials for next-generation electronic devices.
Collapse
Affiliation(s)
| | | | | | | | - Zhenxing Yin
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology , Seoul National University , Seoul 08826 , Republic of Korea
| | | | | | | | - Youn Sang Kim
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology , Seoul National University , Seoul 08826 , Republic of Korea
| | | | | | | |
Collapse
|
49
|
Yoo YZ, Na JY, Choi YS, Lim YJ, Kim JH, Kim YB, Kim JH, Kim SK, Seong TY. An Optically Flat Conductive Outcoupler Using Core/Shell Ag/ZnO Nanochurros. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800056. [PMID: 29635814 DOI: 10.1002/smll.201800056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/09/2018] [Indexed: 06/08/2023]
Abstract
Transparent conductive electrodes (TCEs) featuring a smooth surface are indispensable for preserving pristine electrical characteristics in optoelectronic and transparent electronic devices. For high-efficiency organic light emitting diodes (OLEDs), a high outcoupling efficiency, which is crucial, is only achieved by incorporating a wavelength-scale undulating surface into a TCE layer, but this inevitably degrades device performance. Here, an optically flat, high-conductivity TCE composed of core/shell Ag/ZnO nanochurros (NCs) is reported embedded within a resin film on a polyethylene terephthalate substrate, simultaneously serving as an efficient outcoupler and a flexible substrate. The ZnO NCs are epitaxially grown on the {100} planes of a pentagonal Ag core and the length of ZnO shells is precisely controlled by the exposure time of Xe lamp. Unlike Ag nanowires films, the Ag/ZnO NCs films markedly boost the optical tunneling of light. Green-emitting OLEDs (2.78 × 3.5 mm2 ) fabricated with the Ag/ZnO TCE exhibit an 86% higher power efficiency at 1000 cd m-2 than ones with an Sn-doped indium oxide TCE. A full-vectorial electromagnetic simulation suggests the suppression of plasmonic absorption losses within their Ag cores. These results provide a feasibility of multifunctional TCEs with synthetically controlled core/shell nanomaterials toward the development of high-efficiency LED and solar cell devices.
Collapse
Affiliation(s)
- Young Zo Yoo
- R&D Center, DUKSAN Hi-Metal Co. Ltd, Ulsan, 44252, Republic of Korea
| | - Jin-Young Na
- Department of Applied Physics, Kyung Hee University, Gyeonggi-do, 17104, Republic of Korea
| | - Yoon Soo Choi
- R&D Center, DUKSAN Hi-Metal Co. Ltd, Ulsan, 44252, Republic of Korea
| | - Yeong Jin Lim
- R&D Center, DUKSAN Hi-Metal Co. Ltd, Ulsan, 44252, Republic of Korea
| | - Ji-Hyun Kim
- Department of Applied Physics, Kyung Hee University, Gyeonggi-do, 17104, Republic of Korea
| | - Young-Bin Kim
- Department of Applied Physics, Kyung Hee University, Gyeonggi-do, 17104, Republic of Korea
| | - Jae-Ho Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Sun-Kyung Kim
- Department of Applied Physics, Kyung Hee University, Gyeonggi-do, 17104, Republic of Korea
| | - Tae-Yeon Seong
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
50
|
Zheng Y, Chen N, Wang C, Zhang X, Liu Z. Oleylamine-Mediated Hydrothermal Growth of Millimeter-Long Cu Nanowires and Their Electrocatalytic Activity for Reduction of Nitrate. NANOMATERIALS 2018; 8:nano8040192. [PMID: 29584646 PMCID: PMC5923522 DOI: 10.3390/nano8040192] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/19/2018] [Accepted: 03/21/2018] [Indexed: 11/23/2022]
Abstract
While high-aspect-ratio metal nanowires are essential for producing nanowire-based electrodes of good performance used in electronics and electrocatalysis, the synthesis of millimeter-long Cu nanowires remains a challenge. This work demonstrates an oleylamine-mediated hydrothermal method for synthesis of Cu nanowires with an average diameter of ~80 nm and a length up to several millimeters. An investigation on the role of oleylamine in nanowire formation by mass spectroscopy, small angle X-ray diffraction and transmission electron microscopy reveals that oleylamine serves as a mild reducing agent for slow reduction of Cu(II) to Cu, a complexing agent to form Cu(II)-oleylamine complex for guiding the nanowire growth, as well as a surfactant to generate lamellar phase structure for the formation of nanowire bundles. The growth mechanism of these millimeter-long Cu nanowire bundles is proposed based on the experimental observations. Electrochemical measurements by linear sweep voltammetry indicate that the self-supported nanowire electrode prepared from as-formed Cu nanowire bundles shows high catalytic activity for electroreduction of nitrate in water.
Collapse
Affiliation(s)
- Yifan Zheng
- Institute of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 300014, China.
| | - Nana Chen
- Institute of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 300014, China.
| | - Chunxiao Wang
- Institute of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 300014, China.
| | - Xiaoping Zhang
- Institute of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 300014, China.
| | - Zongjian Liu
- Institute of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 300014, China.
| |
Collapse
|