1
|
Duan Y, Shim M. Kinetics of Concurrent Seed Growth and Cation Exchange in Transforming Cu 2-xS Nanocrystals to CuGaS 2 Nanorods. J Am Chem Soc 2025; 147:9566-9575. [PMID: 40035561 DOI: 10.1021/jacs.4c17582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Cation exchange can convert nanocrystals that have already been achieved with a well-controlled size, size distribution, and shape to a broad range of compositions. However, cation exchange can often be accompanied by changes in the nanocrystal morphology/shape as exemplified by the synthesis of I-III-VI2 nanocrystals. We examine the temperature-dependent kinetics of concurrently occurring seed epitaxial growth and cation exchange that convert nearly spherical Cu2-xS seeds into CuGaS2 nanorods with varying lengths and degrees of tapering. A simple model is developed to quantify and explain experimentally observed reaction kinetics. Direct epitaxial growth of Cu2-xS seeds occurs with an activation energy of 96 kJ/mol, while cation exchange to convert the growing seed to CuGaS2 requires overcoming a 202 kJ/mol energy barrier. Understanding how each reaction rate evolves over time provides insights into the tapering mechanism and a means of predicting when the onset of tapering occurs. The predicted onset is then exploited to synthesize nanorods with a minimized tapering. Our findings provide the basis for developing precise control over the composition and morphology of nanocrystals synthesized through a combination of cation exchange and solution epitaxy.
Collapse
Affiliation(s)
- Yunpei Duan
- Department of Materials Science and Engineering and Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, 1304 W Green St.,Urbana, Illinois 61801, United States
| | - Moonsub Shim
- Department of Materials Science and Engineering and Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, 1304 W Green St.,Urbana, Illinois 61801, United States
| |
Collapse
|
2
|
Bora A, Fu N, Saha A, Prudnikau A, Hübner R, Bahmani Jalali H, Di Stasio F, Gaponik N, Lesnyak V. Triangular-shaped Cu-Zn-In-Se-based nanocrystals with narrow near infrared photoluminescence. NANOSCALE 2025; 17:2577-2588. [PMID: 39844738 DOI: 10.1039/d4nr04499a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Tunable optical properties exhibited by semiconductor nanocrystals (NCs) in the near infrared (NIR) spectral region are of particular interest in various applications, such as telecommunications, bioimaging, photodetection, photovoltaics, etc. While lead and mercury chalcogenide NCs do exhibit exemplary optical properties in the NIR, Cu-In-Se (CISe)-based NCs are a suitable environment-friendly alternative to these toxic materials. Several reports of NIR-emitting (quasi)spherical CISe NCs have been published, but their more complex-shaped counterparts remain rather less explored. The emerging anisotropic nanomaterials have gained significant interest owing to their unique optical properties arising due to their specific shape. While several examples of non-spherical Cu-In-S-based NCs have been reported, examples of CISe-based anisotropic NCs are rather scarce, and those with intensive photoluminescence (PL) are not yet developed. In this work, we present a one-pot approach to synthesize quaternary Cu-Zn-In-Se (CZISe) triangular NCs with intensive PL in the NIR region. The NCs synthesized exhibit tetragonal crystal structure and, depending on the reaction conditions, are single triangular particles or stacks of triangular blocks of varied lateral sizes but rather uniform thickness. The synthesis involves the formation of In2Se3 seeds with subsequent incorporation of copper and growth of triangular CISe NCs, followed by the incorporation of zinc and the growth of a ZnS shell. Importantly, the PL band widths of the final core/shell heterostructured NCs are narrow, down to 102 meV, which is a rarely observed characteristic for this class of materials and can be attributed to their anisotropic shape and the absence of thickness and compositional inhomogeneities of their building blocks. The PL of the CZISe/ZnS NCs can be tuned in the range of 1082-1218 nm reaching a quantum yield of up to 40% by varying their size and composition. To the best of our knowledge, this is the farthest and the narrowest PL achieved for CISe-based NCs so far, which widens application perspectives of this material in NIR LEDs, bioimaging, and photovoltaics.
Collapse
Affiliation(s)
- Ankita Bora
- Physical Chemistry, TU Dresden, Zellescher Weg 19, 01069 Dresden, Germany.
| | - Ningyuan Fu
- Physical Chemistry, TU Dresden, Zellescher Weg 19, 01069 Dresden, Germany.
| | - Avijit Saha
- Physical Chemistry, TU Dresden, Zellescher Weg 19, 01069 Dresden, Germany.
| | - Anatol Prudnikau
- Physical Chemistry, TU Dresden, Zellescher Weg 19, 01069 Dresden, Germany.
| | - René Hübner
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf e.V., Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Houman Bahmani Jalali
- Photonic Nanomaterials, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Francesco Di Stasio
- Photonic Nanomaterials, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Nikolai Gaponik
- Physical Chemistry, TU Dresden, Zellescher Weg 19, 01069 Dresden, Germany.
| | - Vladimir Lesnyak
- Physical Chemistry, TU Dresden, Zellescher Weg 19, 01069 Dresden, Germany.
| |
Collapse
|
3
|
Bellatreccia C, Ziani Z, Germinario A, Engelaar S, Battaglia FP, Gradone A, Villa M, Ceroni P. Dual Luminescent Mn(II)-Doped Cu-In-Zn-S Quantum Dots as Temperature Sensors in Water. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404425. [PMID: 39185802 PMCID: PMC11600701 DOI: 10.1002/smll.202404425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/07/2024] [Indexed: 08/27/2024]
Abstract
CuInS2 quantum dots have emerged in the last years as non-toxic alternative to traditional Pb and Cd based quantum dots, especially for biological applications. In this work, the hydrothermal synthesis of alloyed Cu-In-Zn-S quantum dots (CIZS) doped with manganese(II) is explored, with different metal ratios (Mn-CIZSy). The doped quantum dots show the sensitized emission of Mn2+ (approximately ms lifetime), together with the emission of the CIZS structure (approximately µs lifetime). The relative contribution of Mn2+ emission is highly dependent on the composition of the CIZS hosting structure (In:Cu ratio). In addition to that, it is shown that Mn2+ sensitization requires a threshold energy, which suggests the involvement of an intermediate state in the sensitization mechanism. The long-lived emission intensity decay of Mn2+ shows a stable and reversible temperature response in physiological conditions (25-45 °C, pH = 7.4). Mn-CIZSy quantum dots are thus interesting candidates as biological luminescent temperature probe thanks to their easy synthesis, high colloidal stability, insensitivity to dioxygen quenching and quantitative time-gated detection.
Collapse
Affiliation(s)
- Caterina Bellatreccia
- Dipartimento di Chimica “Giacomo Ciamician”Alma Mater Studiorum – Università di BolognaVia Selmi 2Bologna40126Italy
| | - Zakaria Ziani
- Dipartimento di Chimica “Giacomo Ciamician”Alma Mater Studiorum – Università di BolognaVia Selmi 2Bologna40126Italy
- Present address:
CNRSLaboratoire de Chimie de Coordination (LCC)205 Rte de NarbonneToulouse31400France
| | - Angelica Germinario
- Dipartimento di Chimica “Giacomo Ciamician”Alma Mater Studiorum – Università di BolognaVia Selmi 2Bologna40126Italy
| | - Stijn Engelaar
- Dipartimento di Chimica “Giacomo Ciamician”Alma Mater Studiorum – Università di BolognaVia Selmi 2Bologna40126Italy
| | - Filippo Piero Battaglia
- Dipartimento di Chimica “Giacomo Ciamician”Alma Mater Studiorum – Università di BolognaVia Selmi 2Bologna40126Italy
| | - Alessandro Gradone
- Istituto per la Microelettronica ed i Microsistemi (IMM) ‐ CNR Sede di Bolognavia Gobetti 101Bologna40129Italy
| | - Marco Villa
- Dipartimento di Chimica “Giacomo Ciamician”Alma Mater Studiorum – Università di BolognaVia Selmi 2Bologna40126Italy
| | - Paola Ceroni
- Dipartimento di Chimica “Giacomo Ciamician”Alma Mater Studiorum – Università di BolognaVia Selmi 2Bologna40126Italy
| |
Collapse
|
4
|
Livakas N, Zito J, Ivanov YP, Otero-Martínez C, Divitini G, Infante I, Manna L. Nanocrystal Heterostructures Based on Halide Perovskites and Metal Sulfides. J Am Chem Soc 2024; 146:27571-27582. [PMID: 39344522 PMCID: PMC11467908 DOI: 10.1021/jacs.4c08565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
We report the synthesis of nanocrystal heterostructures composed of CsPbCl3 and PbS domains sharing an epitaxial interface. We were able to promote the growth of a PbS domain (in competition with the more commonly observed Pb4S3Cl2 one) on top of the CsPbCl3 domain by employing Mn2+ ions, the latter most likely acting as scavengers of Cl- ions. Complete suppression of the Pb4S3Cl2 domain growth was then achieved by additionally selecting an appropriate sulfur source (bis(trimethylsilyl)sulfide, which also acted as a scavenger of Cl- ions) and reaction temperature. In the heterostructures, emission from the perovskite domain was quenched, while emission from the PbS domain was observed, pointing to a type-I band alignment, as confirmed by calculations. These heterostructures, in turn, could be exploited to prepare second-generation heterostructures through selective ion exchange on the individual domains (halide ion exchange on CsPbCl3 and cation exchange on PbS). We demonstrate the cases of Cl- → Br- and Pb2+ → Cu+ exchanges, which deliver CsPbBr3-PbS and CsPbCl3-Cu2-xS epitaxial heterostructures, respectively.
Collapse
Affiliation(s)
- Nikolaos Livakas
- Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
- Dipartimento
di Chimica e Chimica Industriale, Università
di Genova, Genova 16146, Italy
| | - Juliette Zito
- Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Yurii P. Ivanov
- Electron
Spectroscopy and Nanoscopy, Istituto Italiano
di Tecnologia, Via Morego
30, Genova 16163, Italy
| | - Clara Otero-Martínez
- Department
of Physical Chemistry, Materials Chemistry and Physics Group, Universidade
de Vigo, Campus Universitario As Lagoas-Marcosende, CINBIO, Vigo 36310, Spain
| | - Giorgio Divitini
- Electron
Spectroscopy and Nanoscopy, Istituto Italiano
di Tecnologia, Via Morego
30, Genova 16163, Italy
| | - Ivan Infante
- UPV/EHU
Science Park, BCMaterials, Basque Center
for Materials, Applications, and Nanostructures, Leioa 48940, Spain
- Ikerbasque
Basque Foundation for Science, Bilbao 48009, Spain
| | - Liberato Manna
- Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| |
Collapse
|
5
|
Adeniyi K, Oyinlola K, Achadu OJ, Menard H, Grillo F, Yang Z, Adegoke O. Molecularly Imprinted Viral Protein Integrated Zn-Cu-In-Se-P Quantum Dots Superlattice for Quantitative Ratiometric Electrochemical Detection of SARS-CoV-2 Spike Protein in Saliva. ACS APPLIED NANO MATERIALS 2024; 7:17630-17647. [PMID: 39144398 PMCID: PMC11320384 DOI: 10.1021/acsanm.4c02882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024]
Abstract
Solution-processable colloidal quantum dots (QDs) are promising materials for the development of rapid and low-cost, next-generation quantum-sensing diagnostic systems. In this study, we report on the synthesis of multinary Zn-Cu-In-Se-P (ZCISeP) QDs and the application of the QDs-modified electrode (QDs/SPCE) as a solid superlattice transducer interface for the ratiometric electrochemical detection of the SARS-CoV-2-S1 protein in saliva. The ZCISeP QDs were synthesized through the formation of In(Zn)PSe QDs from InP QDs, followed by the incorporation of Cu cations into the crystal lattice via cation exchange processes. A viral-protein-imprinted polymer film was deposited onto the QDs/SPCE for the specific binding of SARS-CoV-2. Molecular imprinting of the virus protein was achieved using a surface imprinting electropolymerization strategy to create the MIP@QDs/SPCE nanosensor. Characterization through spectroscopic, microscopic, and electrochemical techniques confirmed the structural properties and electronic-band state of the ZCISeP QDs. Cyclic voltammetry studies of the QDs/SPCE superlattice confirmed efficient electron transport properties and revealed an intraband gap energy state with redox peaks attributed to the Cu1+/2+ defects. Binding of SARS-CoV-2-S1 to the MIP@QDs/SPCE cavities induced a gating effect that modulated the Fe(CN)6 3-/4- and Cu1+/2+ redox processes at the nanosensor interface, producing dual off/on ratiometric electrical current signals. Under optimal assay conditions, the nanosensor exhibited a wide linear detection range (0.001-100 pg/mL) and a low detection limit (0.34 pg/mL, 4.6 fM) for quantitative detection of SARS-CoV-2-S1 in saliva. The MIP@QDs/SPCE nanosensor demonstrated excellent selectivity against nonspecific protein targets, and the integration with a smartphone-based potentiostat confirmed the potential for point-of-care applications.
Collapse
Affiliation(s)
- Kayode
Omotayo Adeniyi
- Leverhulme
Research Centre for Forensic Science, School of Science & Engineering, University of Dundee, Dundee DD1 4GH, U.K.
| | - Kayode Oyinlola
- Leverhulme
Research Centre for Forensic Science, School of Science & Engineering, University of Dundee, Dundee DD1 4GH, U.K.
| | - Ojodomo J. Achadu
- School
of Health and Life Sciences, and National Horizon Centre, Teesside University, Middlesbrough TS1 3BA, U.K.
| | - Herve Menard
- Leverhulme
Research Centre for Forensic Science, School of Science & Engineering, University of Dundee, Dundee DD1 4GH, U.K.
| | - Federico Grillo
- School
of Chemistry, University of St Andrews, St Andrews KY16 9ST, U.K.
| | - Zhugen Yang
- School
of Water, Energy and Environment, Cranfield
University, Cranfield MK43 0AL, U.K.
| | - Oluwasesan Adegoke
- Leverhulme
Research Centre for Forensic Science, School of Science & Engineering, University of Dundee, Dundee DD1 4GH, U.K.
| |
Collapse
|
6
|
Jin L, Selopal GS, Tong X, Perepichka DF, Wang ZM, Rosei F. Heavy-Metal-Free Colloidal Quantum Dots: Progress and Opportunities in Solar Technologies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402912. [PMID: 38923167 DOI: 10.1002/adma.202402912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Colloidal quantum dots (QDs) hold great promise as building blocks in solar technologies owing to their remarkable photostability and adjustable properties through the rationale involving size, atomic composition of core and shell, shapes, and surface states. However, most high-performing QDs in solar conversion contain hazardous metal elements, including Cd and Pb, posing significant environmental risks. Here, a comprehensive review of heavy-metal-free colloidal QDs for solar technologies, including photovoltaic (PV) devices, solar-to-chemical fuel conversion, and luminescent solar concentrators (LSCs), is presented. Emerging synthetic strategies to optimize the optical properties by tuning the energy band structure and manipulating charge dynamics within the QDs and at the QDs/charge acceptors interfaces, are analyzed. A comparative analysis of different synthetic methods is provided, structure-property relationships in these materials are discussed, and they are correlated with the performance of solar devices. This work is concluded with an outlook on challenges and opportunities for future work, including machine learning-based design, sustainable synthesis, and new surface/interface engineering.
Collapse
Affiliation(s)
- Lei Jin
- Centre for Energy, Materials and Telecommunications, National Institute of Scientific Research, 1650 Boul. Lionel-Boulet, Varennes, QC, J3X1P7, Canada
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Gurpreet Singh Selopal
- Department of Engineering, Faculty of Agriculture, Dalhousie University, 39 Cox Rd, Banting Building, Truro, NS, B2N 5E3, Canada
| | - Xin Tong
- Shimmer Center, Tianfu Jiangxi Laboratory, Chengdu, 641419, P. R. China
| | - Dmytro F Perepichka
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Zhiming M Wang
- Shimmer Center, Tianfu Jiangxi Laboratory, Chengdu, 641419, P. R. China
| | - Federico Rosei
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgeri 1, Trieste, 34127, Italy
| |
Collapse
|
7
|
Liu Z, Hao C, Sun Y, Wang J, Dube L, Chen M, Dang W, Hu J, Li X, Chen O. Rigid CuInS 2/ZnS Core/Shell Quantum Dots for High Performance Infrared Light-Emitting Diodes. NANO LETTERS 2024; 24:5342-5350. [PMID: 38630899 DOI: 10.1021/acs.nanolett.4c01249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
CuInS2 (CIS) quantum dots (QDs) represent an important class of colloidal materials with broad application potential, owing to their low toxicity and unique optical properties. Although coating with a ZnS shell has been identified as a crucial method to enhance optical performance, the occurrence of cation exchange has historically resulted in the unintended formation of Cu-In-Zn-S alloyed QDs, causing detrimental blueshifts in both absorption and photoluminescence (PL) spectral profiles. In this study, we present a facile one-pot synthetic strategy aimed at impeding the cation exchange process and promoting ZnS shell growth on CIS core QDs. The suppression of both electron-phonon interaction and Auger recombination by the rigid ZnS shell results in CIS/ZnS core/shell QDs that exhibit a wide near-infrared (NIR) emission coverage and a remarkable PL quantum yield of 92.1%. This effect boosts the fabrication of high-performance, QD-based NIR light-emitting diodes with the best stability of such materials so far.
Collapse
Affiliation(s)
- Zhenyang Liu
- Hebei Key Laboratory of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Chaoqi Hao
- Hebei Key Laboratory of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Yingying Sun
- Hebei Key Laboratory of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Junyu Wang
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Lacie Dube
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Mingjun Chen
- Hebei Key Laboratory of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Wei Dang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Jinxiao Hu
- Hebei Key Laboratory of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Xu Li
- Hebei Key Laboratory of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Ou Chen
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
8
|
Senina A, Prudnikau A, Wrzesińska-Lashkova A, Vaynzof Y, Paulus F. Cation exchange synthesis of AgBiS 2 quantum dots for highly efficient solar cells. NANOSCALE 2024. [PMID: 38497100 DOI: 10.1039/d3nr06128k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Silver bismuth sulfide (AgBiS2) nanocrystals have emerged as a promising eco-friendly, low-cost solar cell absorber material. Their direct synthesis often relies on the hot-injection method, requiring the application of high temperatures and vacuum for prolonged times. Here, we demonstrate an alternative synthetic approach via a cation exchange reaction. In the first-step, bis(stearoyl)sulfide is used as an air-stable sulfur precursor for the synthesis of small, monodisperse Ag2S nanocrystals at room-temperature. In a second step, bismuth cations are incorporated into the nanocrystal lattice to form ternary AgBiS2 nanocrystals, without altering their size and shape. When implemented into photovoltaic devices, AgBiS2 nanocrystals obtained by cation exchange reach power conversion efficiencies of up to 7.35%, demonstrating the efficacy of the new synthetic approach for the formation of high-quality, ternary semiconducting nanocrystals.
Collapse
Affiliation(s)
- Alina Senina
- Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Helmholtzstraße 20, 01069 Dresden, Germany.
| | - Anatol Prudnikau
- Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Helmholtzstraße 20, 01069 Dresden, Germany.
| | - Angelika Wrzesińska-Lashkova
- Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Helmholtzstraße 20, 01069 Dresden, Germany.
- Chair for Emerging Electronic Technologies, Technische Universität Dresden, Nöthnitzer Str. 61, 01187 Dresden, Germany
| | - Yana Vaynzof
- Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Helmholtzstraße 20, 01069 Dresden, Germany.
- Chair for Emerging Electronic Technologies, Technische Universität Dresden, Nöthnitzer Str. 61, 01187 Dresden, Germany
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Helmholtzstraße 18, 01069 Dresden, Germany
| | - Fabian Paulus
- Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Helmholtzstraße 20, 01069 Dresden, Germany.
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Helmholtzstraße 18, 01069 Dresden, Germany
| |
Collapse
|
9
|
Chen B, Zheng W, Chun F, Xu X, Zhao Q, Wang F. Synthesis and hybridization of CuInS 2 nanocrystals for emerging applications. Chem Soc Rev 2023; 52:8374-8409. [PMID: 37947021 DOI: 10.1039/d3cs00611e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Copper indium sulfide (CuInS2) is a ternary A(I)B(III)X(VI)2-type semiconductor featuring a direct bandgap with a high absorption coefficient. In attempts to explore their practical applications, nanoscale CuInS2 has been synthesized with crystal sizes down to the quantum confinement regime. The merits of CuInS2 nanocrystals (NCs) include wide emission tunability, a large Stokes shift, long decay time, and eco-friendliness, making them promising candidates in photoelectronics and photovoltaics. Over the past two decades, advances in wet-chemistry synthesis have achieved rational control over cation-anion reactivity during the preparation of colloidal CuInS2 NCs and post-synthesis cation exchange. The precise nano-synthesis coupled with a series of hybridization strategies has given birth to a library of CuInS2 NCs with highly customizable photophysical properties. This review article focuses on the recent development of CuInS2 NCs enabled by advanced synthetic and hybridization techniques. We show that the state-of-the-art CuInS2 NCs play significant roles in optoelectronic and biomedical applications.
Collapse
Affiliation(s)
- Bing Chen
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu 210023, China.
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China.
| | - Weilin Zheng
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Fengjun Chun
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Xiuwen Xu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu 210023, China.
| | - Qiang Zhao
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu 210023, China.
- State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu 210023, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
10
|
Zhao S, Wang Q, Liu J, Hao X, Liu X, Shen W, Du Z, Wang Y, Artemyev M, Tang J. Multiple underlying images tuned by Mn-doped Zn-Cu-In-S quantum dots. RSC Adv 2023; 13:34524-34533. [PMID: 38024974 PMCID: PMC10668080 DOI: 10.1039/d3ra06373a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023] Open
Abstract
In this study, ZnS capped Cu-In-S (ZCIS) quantum dots doped with Mn ions are synthesized by a thermal injection method, with luminescence covering almost the entire visible area. The large Stokes shift effectively inhibits the self-absorption effect under luminescence, and the quantum yield of ZCIS quantum dots increased from 38% to 50% after ZnS capping and further to 69% after doping with Mn. First, red-, yellow-, and blue-emitting quantum dots were synthesized and then, polychromatic ensembles were obtained by mixing the trichromatic quantum dots in a different ratio. Using the home-built inkjet printer, multilayered and multicolor mixed patterns were obtained for information pattern storage and multilayer pattern recognition and reading.
Collapse
Affiliation(s)
- Suo Zhao
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Technology Cooperation on Hybrid Materials, Qingdao University 308 Ningxia Road Qingdao 266071 People's Republic of China
| | - Qiao Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Technology Cooperation on Hybrid Materials, Qingdao University 308 Ningxia Road Qingdao 266071 People's Republic of China
| | - Jin Liu
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Technology Cooperation on Hybrid Materials, Qingdao University 308 Ningxia Road Qingdao 266071 People's Republic of China
| | - Xianglong Hao
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Technology Cooperation on Hybrid Materials, Qingdao University 308 Ningxia Road Qingdao 266071 People's Republic of China
| | - Xiao Liu
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Technology Cooperation on Hybrid Materials, Qingdao University 308 Ningxia Road Qingdao 266071 People's Republic of China
| | - Wenfei Shen
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Technology Cooperation on Hybrid Materials, Qingdao University 308 Ningxia Road Qingdao 266071 People's Republic of China
| | - Zhonglin Du
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Technology Cooperation on Hybrid Materials, Qingdao University 308 Ningxia Road Qingdao 266071 People's Republic of China
| | - Yao Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Technology Cooperation on Hybrid Materials, Qingdao University 308 Ningxia Road Qingdao 266071 People's Republic of China
| | - Mikhail Artemyev
- Research Institute for Physical Chemical Problems of the Belarusian State University Minsk 220006 Belarus
| | - Jianguo Tang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Technology Cooperation on Hybrid Materials, Qingdao University 308 Ningxia Road Qingdao 266071 People's Republic of China
| |
Collapse
|
11
|
Kapuria N, Nan B, Adegoke TE, Bangert U, Cabot A, Singh S, Ryan KM. Colloidal Synthesis of Multinary Alkali-Metal Chalcogenides Containing Bi and Sb: An Emerging Class of I-V-VI 2 Nanocrystals with Tunable Composition and Interesting Properties. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:4810-4820. [PMID: 37396682 PMCID: PMC10308588 DOI: 10.1021/acs.chemmater.3c00673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/22/2023] [Indexed: 07/04/2023]
Abstract
The growth mechanism and synthetic controls for colloidal multinary metal chalcogenide nanocrystals (NCs) involving alkali metals and the pnictogen metals Sb and Bi are unknown. Sb and Bi are prone to form metallic nanocrystals that stay as impurities in the final product. Herein, we synthesize colloidal NaBi1-xSbxSe2-ySy NCs using amine-thiol-Se chemistry. We find that ternary NaBiSe2 NCs initiate with Bi0 nuclei and an amorphous intermediate nanoparticle formation that gradually transforms into NaBiSe2 upon Se addition. Furthermore, we extend our methods to substitute Sb in place of Bi and S in place of Se. Our findings show the initial quasi-cubic morphology transforms into a spherical shape upon increased Sb substitution, and the S incorporation promotes elongation along the <111> direction. We further investigate the thermoelectric transport properties of the Sb-substituted material displaying very low thermal conductivity and n-type transport behavior. Notably, the NaBi0.75Sb0.25Se2 material exhibits an ultralow thermal conductivity of 0.25 W·m-1·K-1 at 596 K with an average thermal conductivity of 0.35 W·m-1·K-1 between 358 and 596 K and a ZTmax of 0.24.
Collapse
Affiliation(s)
- Nilotpal Kapuria
- Department
of Chemical Sciences and Bernal Institute, University of Limerick, V94T9PX Limerick, Ireland
| | - Bingfei Nan
- Catalonia
Institute for Energy Research -IREC, 08930 Barcelona, Spain
- ICREA, 08010 Barcelona, Spain
| | - Temilade Esther Adegoke
- Department
of Chemical Sciences and Bernal Institute, University of Limerick, V94T9PX Limerick, Ireland
| | - Ursel Bangert
- Department
of Physics and Energy and Bernal Institute, University of Limerick, V94T9PX Limerick, Ireland
| | - Andreu Cabot
- Catalonia
Institute for Energy Research -IREC, 08930 Barcelona, Spain
- ICREA, 08010 Barcelona, Spain
| | - Shalini Singh
- Department
of Chemical Sciences and Bernal Institute, University of Limerick, V94T9PX Limerick, Ireland
| | - Kevin M. Ryan
- Department
of Chemical Sciences and Bernal Institute, University of Limerick, V94T9PX Limerick, Ireland
| |
Collapse
|
12
|
Yoon SE, Kim Y, Kim H, Kwon HG, Kim U, Lee SY, Park JH, Seo H, Kwak SK, Kim SW, Kim JH. Remarkable Electrical Conductivity Increase and Pure Metallic Properties from Semiconducting Colloidal Nanocrystals by Cation Exchange for Solution-Processable Optoelectronic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207511. [PMID: 36916693 DOI: 10.1002/smll.202207511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/16/2023] [Indexed: 06/08/2023]
Abstract
The authors report a strategic approach to achieve metallic properties from semiconducting CuFeS colloidal nanocrystal (NC) solids through cation exchange method. An unprecedentedly high electrical conductivity is realized by the efficient generation of charge carriers onto a semiconducting CuS NC template via minimal Fe exchange. An electrical conductivity exceeding 10 500 S cm-1 (13 400 S cm-1 at 2 K) and a sheet resistance of 17 Ω/sq at room temperature, which are among the highest values for solution-processable semiconducting NCs, are achieved successfully from bornite-phase CuFeS NC films possessing 10% Fe atom. The temperature dependence of the corresponding films exhibits pure metallic characteristics. Highly conducting NCs are demonstrated for a thermoelectric layer exhibiting a high power factor over 1.2 mW m-1 K-2 at room temperature, electrical wires for switching on light emitting diods (LEDs), and source-drain electrodes for p- and n-type organic field-effect transistors. Ambient stability, eco-friendly composition, and solution-processability further validate their sustainable and practical applicability. The present study provides a simple but very effective method for significantly increasing charge carrier concentrations in semiconducting colloidal NCs to achieve metallic properties, which is applicable to various optoelectronic devices.
Collapse
Affiliation(s)
- Sang Eun Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea
| | - Yongjin Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea
| | - Hyeongjun Kim
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Hyo-Geun Kwon
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea
| | - Unjeong Kim
- Department of Materials Science and Engineering, Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
| | - Sang Yeon Lee
- Department of Materials Science and Engineering, Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
| | - Ju Hyun Park
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Hyungtak Seo
- Department of Materials Science and Engineering, Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
| | - Sang Kyu Kwak
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, South Korea
| | - Sang-Wook Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea
| | - Jong H Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea
| |
Collapse
|
13
|
Singha PK, Kistwal T, Datta A. Single-Particle Dynamics of ZnS Shelling Induced Replenishment of Carrier Diffusion for Individual Emission Centers in CuInS 2 Quantum Dots. J Phys Chem Lett 2023; 14:4289-4296. [PMID: 37126796 DOI: 10.1021/acs.jpclett.3c00467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Insights into blinking and photoactivation of aqueous copper indium sulfide (CIS) quantum dots have been obtained using fluorescence correlation spectroscopy (FCS) and fluorescence lifetime correlation spectroscopy (FLCS). An unusual excitation wavelength-dependence of photoactivation/photocorrosion is manifested in an increase in the initial correlation amplitude G(0) for λex = 532 nm, but a decrease for λex = 405 nm. This has been rationalized in terms of different contributions from surface-assisted recombination in the two cases. Blinking times obtained from the autocorrelation functions (ACFs) of the 100-200 ns lifetime component (core Cu-mediated recombination) are almost unaffected by shelling, but those from the ACF for the 10-30 ns lifetime (surface states) increase significantly. Absence of cross-correlation between the two recombinative states of bare CIS QDs and the emergence of an anticorrelation with the introduction of the ZnS shell are observed, indicating the diffusive nature of the two states for CIS-ZnS. The diffusion is inhibited in bare CIS QDs due to the preponderance of surface states.
Collapse
Affiliation(s)
- Prajit Kumar Singha
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Tanuja Kistwal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Anindya Datta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
14
|
Thiel F, Palencia C, Weller H. Kinetic Analysis of the Cation Exchange in Nanorods from Cu 2-xS to CuInS 2: Influence of Djurleite's Phase Transition Temperature on the Mechanism. ACS NANO 2023; 17:3676-3685. [PMID: 36749683 DOI: 10.1021/acsnano.2c10693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In the syntheses of ternary I-III-VI2 compounds, such as CuInS2, it is often difficult to balance three precursor reactivities to achieve the desired size, shape, and atomic composition of nanocrystals. Cation exchange reactions offer an attractive two-step alternative, by producing a binary compound with the desired morphology and incorporating another atomic species postsynthetically. However, the kinetics of such cation exchange reactions, especially for anisotropic nanocrystals, are still not fully understood. Here, we present the cation exchange reaction from Cu-deficient djurleite Cu2-xS nanorods to wurtzite CuInS2, with size and shape retention. With reaction parameters in a broad temperature range between 40 °C and 160 °C, we were able to obtain various intermediates. Djurleite has a bulk phase transition temperature at 93 °C, which influences the cation exchange considerably. Below the phase transition temperature, indium is only incorporated into the surface of the nanorods, while, at temperatures above the phase transition temperature, we observe a Janus-type exchange mechanism and the formation of CuInS2 bands in the djurleite nanorods. The findings suggest that the diffusion above the phase transition temperature is strongly favored along the copper planes of the copper sulfide nanorods over the diffusion through the sulfur planes. This results in a difference of 37 kJ mol-1 in the activation energy of the cation exchange below and above the phase transition temperature.
Collapse
Affiliation(s)
- Felix Thiel
- Department of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Cristina Palencia
- Department of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Horst Weller
- Department of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- Fraunhofer-CAN, Grindelallee 117, 20146 Hamburg, Germany
| |
Collapse
|
15
|
Shukla A, Shao S, Carter-Searjeant S, Haigh S, Richards D, Green M, Zayats AV. Carrier density tuning in CuS nanoparticles and thin films by Zn doping via ion exchange. NANOSCALE 2023; 15:3730-3736. [PMID: 36734034 DOI: 10.1039/d3nr00139c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Copper sulphide (covellite) nanoplatelets have recently emerged as a plasmonic platform in the near-infrared with ultrafast nonlinear optical properties. Here we demonstrate that the free-carrier density in CuS, which is an order of magnitude lower than in traditional plasmonic metals, can be further tuned by chemical doping. Using ion exchange to replace Cu with an increasing content of Zn in the nanoparticles, the free-hole density can be lowered, resulting in a long-wavelength shift of the localised plasmon resonances from 1250 nm to 1750 nm. The proposed approach provides new opportunities for tuning the plasmonic response of covellite nanocrystals as well as the carrier relaxation time which decreases for lower free-carrier densities.
Collapse
Affiliation(s)
- Amaresh Shukla
- Department of Physics and London Centre for Nanotechnology, King's College London, Strand, London WC2R 2LS, UK.
| | - Shouqi Shao
- Department of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Sadie Carter-Searjeant
- Department of Physics and London Centre for Nanotechnology, King's College London, Strand, London WC2R 2LS, UK.
| | - Sarah Haigh
- Department of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - David Richards
- Department of Physics and London Centre for Nanotechnology, King's College London, Strand, London WC2R 2LS, UK.
| | - Mark Green
- Department of Physics and London Centre for Nanotechnology, King's College London, Strand, London WC2R 2LS, UK.
| | - Anatoly V Zayats
- Department of Physics and London Centre for Nanotechnology, King's College London, Strand, London WC2R 2LS, UK.
| |
Collapse
|
16
|
Imran M, Ashraf W, Hafiz AK, Khanuja M. Synthesis and Performance Analysis of Photocatalytic Activity of ZnIn 2S 4 Microspheres Synthesized Using a Low-Temperature Method. ACS OMEGA 2022; 7:22987-22996. [PMID: 35847261 PMCID: PMC9280934 DOI: 10.1021/acsomega.2c00945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In this paper, we report the synthesis of zinc indium sulfide (ZnIn2S4) microspheres synthesized via a low-temperature route, and the as-synthesized material was used for photocatalytic degradation of malachite green (MG), methyl orange (MO), and Direct Red 80 (DR-80) dyes. The as-synthesized material was characterized by powder X-ray diffraction and field-emission scanning electron microscopy for studying the crystal structure and surface morphology, respectively. Fourier transform infrared spectroscopy was performed to determine the functional groups attached. UV-Visible absorption spectrometry was done for light absorbance and band gap analysis, and Mott-Schottky analysis was performed to determine the nature and flat band potential of the material. A scavenger study was performed to analyze the active species taking part in the degradation process. The reusability of the material was tested up to four cycles to check the reduction in efficiency after each cycle. A time-correlated single-photon counting study was performed to observe the average lifetime of generated excitons during photocatalysis. It was found that the as-synthesized porous sample is more efficient in degrading the cationic dye than anionic dyes, which is further explained in the article.
Collapse
|
17
|
Photoluminescent, "ice-cream cone" like Cu-In-(Zn)-S/ZnS nanoheterostructures. Sci Rep 2022; 12:5787. [PMID: 35388059 PMCID: PMC8987046 DOI: 10.1038/s41598-022-09646-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/21/2022] [Indexed: 11/08/2022] Open
Abstract
Copper based ternary and quaternary quantum confined nanostructures have attracted huge attention over recent years due to their potential applications in photonics, photovoltaics, imaging, sensing and other areas. However, anisotropic nanoheterostructures of this type are still poorly explored to date, despite numerous predictions of the distinctive optical properties of these highly fluorescent heavy metal free nanostructures. Here, we report new fluorescent multicomponent Cu-In-(Zn)-S/ZnS nanoheterostructures with a unique anisotropic "ice-cream cone" like morphology. These nanostructures have been prepared with a seeded growth technique and exhibit distinct photophysical properties with maximum emission in the visible range (≈ 640 nm) and long photoluminescence lifetimes (τaverage ≥ 300 ns). In depth time interval studies have been carried out to better understand the step by step growth mechanism of this distinct "ice-cream cone" like geometry. We have demonstrated that the crystal structure evolution from the zinc blende Cu-In-S core to the wurtzite "ice cream cone" like Cu-In-(Zn)-S/ZnS nanocrystals plays a key role in the origin of this morphology. This research opens new possibilities to produce unique fluorescent Cu-based multicomponent anisotropic heteronanostructures, while also offering a distinctive insight into the design of bespoke nanostructures, which could find a range of potential applications.
Collapse
|
18
|
Chen L, Kong Z, Tao H, Hu H, Gao J, Li G. Crystal structure dependent cation exchange reactions in Cu 2-xS nanoparticles. NANOSCALE 2022; 14:3907-3916. [PMID: 35224594 DOI: 10.1039/d1nr08077f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Because of high mobility of Cu+ in crystal lattice, Cu2-xS nanoparticles (NPs) utilized as cation exchange (CE) templates to produce complicated nanomaterials has been extensively investigated. Nevertheless, the structural similarity of commonly used Cu2-xS somewhat limits the exploration of crystal structure dependent CE reactions, since it may dramatically affect the reaction dynamics and pathways. Herein, we select djurleite Cu1.94S and covellite CuS nanodisks (NDs) as starting templates and show that the crystal structure has a strong effect on their CE reactions. In the case of djurleite Cu1.94S NDs, the Cu+ was immediately substituted by Cd2+ and solid wurtzite CdS NDs were produced. At a lower reaction temperature, these NDs were partially substituted, giving rise to the formation of Janus-type Cu1.94S/CdS NDs, and this process is kinetically and thermodynamically favorable. For covellite CuS NDs, they were transformed into hollow CdS NDs under a more aggressive reaction condition due to the unique disulfide covalent bonds. These disulfide bonds distributed along [0 0 1] direction were gradually ruptured/reduced and CuS@CdS core-shell NDs could be obtained. Our findings suggest that not only the CE reaction kinetics and thermodynamics, but also the intermediates and final products are intimately correlated to the crystal structure of the host material.
Collapse
Affiliation(s)
- Lihui Chen
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, No. 1, Haida South Road, Lincheng Changzhi Island, Zhoushan 316022, China.
| | - Zhenzhen Kong
- College of Chemical Engineering, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou 310014, China.
| | - Hengcong Tao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, No. 1, Haida South Road, Lincheng Changzhi Island, Zhoushan 316022, China.
| | - Haifeng Hu
- College of Chemical Engineering, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou 310014, China.
| | - Jing Gao
- College of Chemical Engineering, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou 310014, China.
| | - Guohua Li
- College of Chemical Engineering, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou 310014, China.
| |
Collapse
|
19
|
Maji SK. Luminescence-Tunable ZnS-AgInS 2 Nanocrystals for Cancer Cell Imaging and Photodynamic Therapy. ACS APPLIED BIO MATERIALS 2022; 5:1230-1238. [PMID: 35176849 DOI: 10.1021/acsabm.1c01247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A highly luminescent I-III-VI group of semiconductor nanocrystals (NCs) has attracted considerable attention for applications in biomedical engineering and design of novel optoelectronic devices. In this work, high quality ZnS-AgInS2 (ZAIS) solid solution NCs were synthesized by thermal decomposition of a organometallic diethyldithiocarbamate precursor complex of (AgIn)xZn2(1-x) (S2CN(C2H5)2)4 in the presence of specific stabilizing and structure directing agents. By changing the composition of the precursor complex (value of x), the structure and optical property could easily be adjustable, thus leading to the formation of nanowire, nanorod, and tetrapod-like NCs and highly luminescent green to yellow to red color tunable NCs. The ZAIS NCs were further transferred to aqueous medium by 3-mercaptopropionic acid (MPA) capping without losing any optical properties. The color-tunable, water-soluble, and biocompatible ZAIS NCs were utilized for the in vitro cellular imaging of human cervical cancer cells (HeLa cells) and showed intense localization in the cell cytoplasm after 6 h of incubation. In addition, the inherent photocatalytic property of ZAIS NCs under light illumination showed promising photodynamic therapy of cancer cells, and thus, ZAIS NCs could be a promising candidate for future biomedical applications.
Collapse
Affiliation(s)
- Swarup Kumar Maji
- Department of Chemistry, Khatra Adibasi Mahavidyalaya, Khatra 722140 West Bengal, India
| |
Collapse
|
20
|
Yarur Villanueva F, Green PB, Qiu C, Ullah SR, Buenviaje K, Howe JY, Majewski MB, Wilson MWB. Binary Cu 2-xS Templates Direct the Formation of Quaternary Cu 2ZnSnS 4 (Kesterite, Wurtzite) Nanocrystals. ACS NANO 2021; 15:18085-18099. [PMID: 34705409 DOI: 10.1021/acsnano.1c06730] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Kesterite Cu2ZnSnS4 (k-CZTS) nanocrystals have received attention for their tunable optoelectronic properties, as well as the earth abundance of their constituent atoms. However, the phase-pure synthesis of these quaternary NCs is challenging due to their polymorphism, as well as the undesired formation of related binary and ternary impurities. A general synthetic route to tackle this complexity is to pass through intermediate template nanocrystals that direct subsequent cation exchange toward the desired quaternary crystalline phase, particularly those that are thermodynamically disfavored or otherwise synthetically challenging. Here, working within this model multinary system, we achieve control over the formation of three binary copper sulfide polymorphs, cubic digenite (Cu1.8S), hexagonal covellite (CuS), and monoclinic djurleite (Cu1.94S). Controlled experiments with Cu0 seeds show that selected binary phases can be favored by the identity and stoichiometry of the sulfur precursor alone under otherwise comparable reaction conditions. We then demonstrate that the nature of the Cu2-xS template dictates the final polymorph of the CZTS nanocrystal products. Through digenite, the cation exchange reaction readily yields the k-CZTS phase due to its highly similar anion sublattice. Covellite nanocrystals template the k-CZTS phase but via major structural rearrangement to digenite that requires elevated temperatures in the absence of a strong reducing agent. In contrast, we show that independently synthesized djurleite nanorods template the formation of the wurtzite polymorph (w-CZTS) but with prominent stacking faults in the final product. Applying this refined understanding to the standard one-pot syntheses of k- and w-CZTS nanocrystals, we identify that these reactions are each effectively templated by binary intermediates formed in situ, harnessing their properties to guide the overall synthesis of phase-pure quaternary materials. Our results provide tools for the careful development of tailored nanocrystal syntheses in complex polymorphic systems.
Collapse
Affiliation(s)
- Francisco Yarur Villanueva
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Philippe B Green
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Chenyue Qiu
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada
| | - Shahnaj R Ullah
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Kirstin Buenviaje
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Jane Y Howe
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada
| | - Marek B Majewski
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Mark W B Wilson
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
21
|
Syed A, Elgorban AM, Bahkali AH. Improved visible-light driven photocatalysis of a novel heterostructure by the decoration of CuS on Ag2MoO4 nanorod: Synthesis, characterization, elucidation of photocatalytic mechanism and anti-microbial application. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Zheng X, Gou Y, Peng H, Mao Y, Wen J. Nonthermal plasma sulfurized CuInS2/S-doped MgO nanosheets for efficient solar-light photocatalytic degradation of tetracycline. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
23
|
Morselli G, Villa M, Fermi A, Critchley K, Ceroni P. Luminescent copper indium sulfide (CIS) quantum dots for bioimaging applications. NANOSCALE HORIZONS 2021; 6:676-695. [PMID: 34264247 DOI: 10.1039/d1nh00260k] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Copper indium sulfide (CIS) quantum dots are ideal for bioimaging applications, by being characterized by high molar absorption coefficients throughout the entire visible spectrum, high photoluminescence quantum yield, high tolerance to the presence of lattice defects, emission tunability from the red to the near-infrared spectral region by changing their dimensions and composition, and long lifetimes (hundreds of nanoseconds) enabling time-gated detection to increase signal-to-noise ratio. The present review collects: (i) the most common procedures used to synthesize stable CIS QDs and the possible strategies to enhance their colloidal stability in aqueous environment, a property needed for bioimaging applications; (ii) their photophysical properties and parameters that affect the energy and brightness of their photoluminescence; (iii) toxicity and bioimaging applications of CIS QDs, including tumor targeting, time-gated detection and multimodal imaging, as well as theranostics. Future perspectives are analyzed in view of advantages and potential limitations of CIS QDs compared to most traditional QDs.
Collapse
Affiliation(s)
- Giacomo Morselli
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Bologna, 40126, Italy.
| | | | | | | | | |
Collapse
|
24
|
Yuan Z, Yang L, Han D, Sun G, Zhu C, Wang Y, Wang Q, Artemyev M, Tang J. Synthesis and Optical Properties of In 2S 3-Hosted Colloidal Zn-Cu-In-S Nanoplatelets. ACS OMEGA 2021; 6:18939-18947. [PMID: 34337233 PMCID: PMC8320147 DOI: 10.1021/acsomega.1c02180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
High-efficiency photoluminescence quaternary hexagon Zn-Cu-In-S (ZCIS) nanoplatelets (NPls) have been synthesized by a two-step cation exchange method, which starts with the In2S3 NPls followed by the addition of Cu and Zn. It is the first time that In2S3 NPls are used as templates to synthesize ZCIS NPls. In this paper, the reaction temperature of In2S3 is essential for the formation of NPls. The photoluminescence wavelength of NPls can be tuned by adjusting the temperature of Cu addition. To enhance the stability of the resulting NPls and to improve their optical properties, we introduced Zn2+ and obtained ZCIS NPls by cation exchange on the surface. It is worth noting that the obtained ZCIS NPls show a shorter fluorescence lifetime than other ternary copper sulfide-based NPls. This work provides a new way to synthesize high-efficiency, nontoxic, and no byproduct ZCIS NPls.
Collapse
Affiliation(s)
- Ze Yuan
- Institute
of Hybrid Materials, National Center of International Joint Research
for Hybrid Materials Technology, National Base of International Science
& Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, People’s Republic of China
| | - Lanlan Yang
- Institute
of Hybrid Materials, National Center of International Joint Research
for Hybrid Materials Technology, National Base of International Science
& Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, People’s Republic of China
| | - Dongni Han
- Institute
of Hybrid Materials, National Center of International Joint Research
for Hybrid Materials Technology, National Base of International Science
& Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, People’s Republic of China
| | - Guorong Sun
- Institute
of Hybrid Materials, National Center of International Joint Research
for Hybrid Materials Technology, National Base of International Science
& Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, People’s Republic of China
| | - Chenyu Zhu
- Institute
of Hybrid Materials, National Center of International Joint Research
for Hybrid Materials Technology, National Base of International Science
& Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, People’s Republic of China
| | - Yao Wang
- Institute
of Hybrid Materials, National Center of International Joint Research
for Hybrid Materials Technology, National Base of International Science
& Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, People’s Republic of China
| | - Qiao Wang
- Institute
of Hybrid Materials, National Center of International Joint Research
for Hybrid Materials Technology, National Base of International Science
& Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, People’s Republic of China
| | - Mikhail Artemyev
- Research
Institute for Physical Chemical Problems of the Belarusian State University, Minsk 220006, Belarus
| | - Jianguo Tang
- Institute
of Hybrid Materials, National Center of International Joint Research
for Hybrid Materials Technology, National Base of International Science
& Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, People’s Republic of China
| |
Collapse
|
25
|
Li H, Cai Q, Yan X, Jie G. Target-switchable DNA hydrogels coupled with a Bi 2Sn 2O 7/Bi 2S 3 heterojunction based on in situ anion exchange for the "signal-on" photoelectrochemical detection of DNA. NANOSCALE 2021; 13:7678-7684. [PMID: 33928980 DOI: 10.1039/d1nr00573a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this paper, a novel photoelectrochemical (PEC) "signal-on" biosensor based on a Bi2Sn2O7/Bi2S3 heterojunctioncoupled with target-switchable DNA hydrogels is reported for the ultrasensitive detection of P53 gene DNA. For the first time, sulfide ions are discovered to display an excellent PEC sensitization effect on Bi2Sn2O7 material by forming the Bi2Sn2O7/Bi2S3 heterojunction. The sensitization amplitude increased by 63 times, and the photocurrent polarity switched from cathodic to anodic. When the target DNA-induced-cycling amplification process produced a mass of product chains (PD), PD was introduced into the target-switchable DNA hydrogels to quantitatively release sulfide ions, which were further introduced to the Bi2Sn2O7-modified PEC platform and resulted in an enormous enhancement of the PEC signal due to the significant sensitization effect of sulfide ions on Bi2Sn2O7via an anion-exchange reaction. The corresponding PEC signal change of the Bi2Sn2O7/Bi2S3 platform was used for the detection of target DNA. This biosensing strategy opens up a novel sulfide ion-sensitized PEC platform and exhibits excellent analytical performance with a wide linear range (100 fM-10 nM), which has broad application prospects in bioanalysis and clinical diagnosis.
Collapse
Affiliation(s)
- Hongkun Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Qianqian Cai
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Xiaoshi Yan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Guifen Jie
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
26
|
Yun B, Zhu H, Yuan J, Sun Q, Li Z. Synthesis, modification and bioapplications of nanoscale copper chalcogenides. J Mater Chem B 2021; 8:4778-4812. [PMID: 32226981 DOI: 10.1039/d0tb00182a] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Copper chalcogenides have a simple general formula, variable atomic ratios, and complicated crystal structures, which lead to their wealth of optical, electrical, and magnetic properties with great potential for wide applications ranging from energy conversion to the biomedical field. Herein, we summarize the recent advances in (1) the synthesis of size- and morphology tunable nanostructures by different methods; (2) surface modification and functionalization for different purposes; and (3) bioapplications for diagnosis and treatment of tumors by different imaging and therapy methods, as well as antibacterial applications. We also briefly discuss the future directions and challenges of copper chalcogenide nanoparticles in the biomedical field.
Collapse
Affiliation(s)
- Baofeng Yun
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, P. R. China.
| | - Hongqin Zhu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, P. R. China.
| | - Jiaxin Yuan
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, P. R. China.
| | - Qiao Sun
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, P. R. China.
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, P. R. China.
| |
Collapse
|
27
|
McCormick CR, Schaak RE. Simultaneous Multication Exchange Pathway to High-Entropy Metal Sulfide Nanoparticles. J Am Chem Soc 2021; 143:1017-1023. [PMID: 33405919 DOI: 10.1021/jacs.0c11384] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
High entropy materials, which contain a large number of randomly distributed elements, have unique catalytic, electrochemical, and mechanical properties. The high configurational entropy of the randomized elements drives the formation of high entropy materials; therefore, high temperatures and quenching are typically required to stabilize them. Because of this, colloidal nanoparticles of high entropy materials are difficult to synthesize and remain rare, despite their desirable high surface areas and solution dispersibilities. Here, we introduce simultaneous multication exchange as an alternative low-temperature pathway to colloidal nanoparticles of high entropy materials. Roxbyite Cu1.8S nanoparticles react with a substoichiometric mixture of Zn2+, Co2+, In3+, and Ga3+ to produce nanoparticles of the high entropy metal sulfide Zn0.25Co0.22Cu0.28In0.16Ga0.11S. The Zn0.25Co0.22Cu0.28In0.16Ga0.11S nanoparticles are thermally stable, and exchange reactions using fewer cations do not produce the high entropy phase. The use of colloidal nanoparticle cation exchange as a synthetic platform provides both entropic and enthalpic driving forces that, in addition to configurational entropy, enable the formation of high entropy phases at solution-accessible temperatures.
Collapse
|
28
|
Bai X, Purcell-Milton F, Gun'ko YK. Controlled synthesis of luminescent CIZS/ZnS/ZnS core/shell/shell nanoheterostructures. CrystEngComm 2021. [DOI: 10.1039/d1ce00631b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We report a systematic investigation of the influence of reaction temperatures and times on the morphologies and optical properties of resulting CIZS/ZnS/ZnS quantum nanoheterostructures with “giant” ZnS shell (size >10 nm).
Collapse
Affiliation(s)
- Xue Bai
- School of Chemistry and CRANN institute, Trinity College Dublin, Dublin 2, Dublin, Ireland
| | - Finn Purcell-Milton
- School of Chemistry and CRANN institute, Trinity College Dublin, Dublin 2, Dublin, Ireland
| | - Yurii K. Gun'ko
- School of Chemistry and CRANN institute, Trinity College Dublin, Dublin 2, Dublin, Ireland
| |
Collapse
|
29
|
Marin R, Jaque D. Doping Lanthanide Ions in Colloidal Semiconductor Nanocrystals for Brighter Photoluminescence. Chem Rev 2020; 121:1425-1462. [DOI: 10.1021/acs.chemrev.0c00692] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Riccardo Marin
- Fluorescence Imaging Group (FIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain
| | - Daniel Jaque
- Fluorescence Imaging Group (FIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain
- Nanobiology Group, Instituto Ramón y Cajal de Investigación, Sanitaria Hospital Ramón y Cajal, Ctra. De Colmenar Viejo, Km. 9100, 28034 Madrid, Spain
| |
Collapse
|
30
|
Unique Cation Exchange in Nanocrystal Matrix via Surface Vacancy Engineering Overcoming Chemical Kinetic Energy Barriers. Chem 2020. [DOI: 10.1016/j.chempr.2020.08.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
31
|
Casu A, Dalmases M, Lin M, Wang Y, Homs N, Ramírez de la Piscina P, Llorca J, Figuerola A, Falqui A. Monitoring the insertion of Pt into Cu 2-xSe nanocrystals: a combined structural and chemical approach for the analysis of new ternary phases. NANOSCALE 2020; 12:16627-16638. [PMID: 32756695 DOI: 10.1039/d0nr02726j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The tuning of the chemical composition in nanostructures is a key aspect to control for the preparation of new multifunctional and highly performing materials. The modification of Cu2-xSe nanocrystals with Pt could provide a good way to tune both optical and catalytic properties of the structure. Although the heterogeneous nucleation of metallic Pt domains on semiconductor chalcogenides has been frequently reported, the insertion of Pt into chalcogenide materials has not been conceived so far. In this work we have explored the experimental conditions to facilitate and enhance the insertion of Pt into the Cu2-xSe nanocrystalline lattice, forming novel ternary phases that show a high degree of miscibility and compositional variability. Our results show that Pt is mainly found as a pure metal or a CuPt alloy at high Pt loads (Pt : Cu atomic ratio in reaction medium >1). However, two main ternary CuPtSe phases with cubic and monoclinic symmetry can be identified when working at lower Pt : Cu atomic ratios. Their structure and chemical composition have been studied by local STEM-EDS and HRTEM analyses. The samples containing ternary domains have been loaded on graphite-like C3N4 (g-C3N4) semiconductor layers, and the resulting nanocomposite materials have been tested as promising photocatalysts for the production of H2 from aqueous ethanolic solutions.
Collapse
Affiliation(s)
- Alberto Casu
- Nabla Lab, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Mariona Dalmases
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain. and Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Mengxi Lin
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain. and Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Yan Wang
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain. and Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Narcís Homs
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain. and Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain and Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, 08930 Barcelona, Spain
| | - Pilar Ramírez de la Piscina
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain. and Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Jordi Llorca
- Institute of Energy Technologies, Department of Chemical Engineering and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, EEBE, Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Albert Figuerola
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain. and Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Andrea Falqui
- Nabla Lab, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
32
|
Steimle BC, Lord RW, Schaak RE. Phosphine-Induced Phase Transition in Copper Sulfide Nanoparticles Prior to Initiation of a Cation Exchange Reaction. J Am Chem Soc 2020; 142:13345-13349. [PMID: 32700901 DOI: 10.1021/jacs.0c06602] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cation exchange reactions of colloidal copper sulfide nanoparticles are widely used to produce derivative nanoparticles having unique compositions, metastable crystal structures, and complex heterostructures. The copper sulfide crystal structure plays a key role in the mechanism by which cation exchange occurs and the product that forms. Here, we show that digenite copper sulfide nanoparticles undergo a spontaneous phase transition to tetragonal chalcocite in situ, prior to the onset of cation exchange. Room-temperature sonication of digenite (Cu1.8S) in trioctylphosphine, a Lewis base that drives cation exchange, extracts sulfur to produce tetragonal chalcocite (Cu2S). The subtle structural differences between digenite and tetragonal chalcocite are believed to influence the accessibility of cation diffusion channels and concomitantly the mechanism of cation exchange. Structural relationships in nanocrystal cation exchange are therefore dynamic, and intermediates generated in situ must be considered.
Collapse
|
33
|
Jose Varghese R, Parani S, Remya VR, Maluleke R, Thomas S, Oluwafemi OS. Sodium alginate passivated CuInS 2/ZnS QDs encapsulated in the mesoporous channels of amine modified SBA 15 with excellent photostability and biocompatibility. Int J Biol Macromol 2020; 161:1470-1476. [PMID: 32745549 DOI: 10.1016/j.ijbiomac.2020.07.240] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 01/09/2023]
Abstract
We herein report the synthesis of CuInS2/ZnS (CIS/ZnS) quantum dots (QDs) via a greener method followed by sodium alginate (SA) passivation and encapsulation into mesoporous channels of amine modified silica (SBA15-NH2) for improved photostability and biocompatibility. The as-synthesized CIS/ZnS QDs exhibited near infrared emission even after SA passivation and silica encapsulation. Transmission electron microscopy (TEM) and Small angle X-ray diffraction (XRD) revealed the mesoporous nature of the SBA-15 remained stable after loading with the SA-CIS/ZnS QDs. The effective encapsulation of SA-CIS/ZnS QDs inside the pores of SBA15-NH2 matrix was confirmed by Brunauer-Emmett-Teller (BET) pore volume analysis while the interaction between the QDs and SBA15-NH2 was confirmed using Fourier transform infrared (FTIR) spectroscopy. The photostability of the QDs was greatly enhanced after these modifications. The resultant SA-CIS/ZnS-SBA15-NH2 (QDs-silica) composite possessed remarkable biocompatibility towards lung cancer (A549) and kidney (HEK 293) cell lines making it a versatile material for theranostic applications.
Collapse
Affiliation(s)
- R Jose Varghese
- Department of Chemical Sciences (formerly Applied Chemistry), University of Johannesburg, P.O. Box 17011, Doornfontein 2028, Johannesburg, South Africa; Centre for Nanomaterials Science Research, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, Johannesburg, South Africa
| | - Sundararajan Parani
- Department of Chemical Sciences (formerly Applied Chemistry), University of Johannesburg, P.O. Box 17011, Doornfontein 2028, Johannesburg, South Africa; Centre for Nanomaterials Science Research, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, Johannesburg, South Africa
| | - V R Remya
- Department of Chemical Sciences (formerly Applied Chemistry), University of Johannesburg, P.O. Box 17011, Doornfontein 2028, Johannesburg, South Africa; Centre for Nanomaterials Science Research, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, Johannesburg, South Africa
| | - Rodney Maluleke
- Department of Chemical Sciences (formerly Applied Chemistry), University of Johannesburg, P.O. Box 17011, Doornfontein 2028, Johannesburg, South Africa; Centre for Nanomaterials Science Research, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, Johannesburg, South Africa
| | - Sabu Thomas
- International and Inter University Center for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kerala, India
| | - Oluwatobi S Oluwafemi
- Department of Chemical Sciences (formerly Applied Chemistry), University of Johannesburg, P.O. Box 17011, Doornfontein 2028, Johannesburg, South Africa; Centre for Nanomaterials Science Research, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, Johannesburg, South Africa.
| |
Collapse
|
34
|
Xu S, Zhang R, Wu H, Cui Y, Wang C, Shao H. Synthesis of Mn-doped CsPbCl xBr 3−x perovskite nanocrystals using ultrasonic irradiation-promoted with decrease of reaction order. NANO EXPRESS 2020. [DOI: 10.1088/2632-959x/ab9b30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
The incorporation of impurity cation as a way of introducing various novel functionalities provides an additional level of control over the electronic and optical properties of perovskite nanocrystals (NCs). However, the conventional post-synthetic cation exchange approaches suffer from large time and energy consumption. In this work, we developed a novel one-pot method to synthesize Mn-doped CsPbClxBr3−x NCs by merit of sonochemical technique, achieving dramatically rapid reduce of time and energy consumption. The localized hot spots with high transient temperature, pressure, and cooling rate, as well as an excellent stirring action of ultrasonic preparation facilitate the diffusion of Mn2+ in perovskite lattice. Besides, further reaction kinetics investigation reveals an apparent decrease of reaction order from original method (2.4) to our ultrasound-assisted method (1.0).
Collapse
|
35
|
Peng XX, Zhu XF, Zhang JL. Near Infrared (NIR) imaging: Exploring biologically relevant chemical space for lanthanide complexes. J Inorg Biochem 2020; 209:111118. [PMID: 32502875 DOI: 10.1016/j.jinorgbio.2020.111118] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/13/2020] [Accepted: 05/17/2020] [Indexed: 02/08/2023]
Abstract
Near Infrared (NIR) imaging agents are extensively used in the biological or preclinical treatment and diagnosis of a wide range of diseases including cancers and tumors. The current arsenal of NIR compounds are most constituted by organic dyes, polymers, inorganic nanomaterials, whereas Ln molecular complexes explore an alternative approach to design NIR probes that are potentially bring new molecular toolkits into the biomedicine. In this review, NIR imaging agents are categorized according to their molecular sizes, constitution and the key properties and features of each class of compounds are briefly defined wherever possible. To better elucidate the features of Ln complexes, we provide a succinct understanding of sensitization process and molecular Ln luminescence at a mechanistic level, which may help to deliver new insights to design NIR imaging probes. Finally, we used our work on NIR ytterbium (Yb3+) probes as an example to raise awareness of exploring biologically relevant chemical space for lanthanide complexes as chemical entities for biological activity.
Collapse
Affiliation(s)
- Xin-Xin Peng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Xiao-Fei Zhu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, PR China
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China.
| |
Collapse
|
36
|
Li D, Huang S, Zhang X, Nazir Z, Li Y, Zhang J, Chen Y, Zhong H. Colloidal Cd xM 1-xTe Nanowires from the Visible to the Near Infrared Region: N, N-Dimethylformamide-Mediated Precise Cation Exchange. J Phys Chem Lett 2020; 11:7-13. [PMID: 31821758 DOI: 10.1021/acs.jpclett.9b03122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cation exchange has been a successful methodology for tuning the bandgaps of nanomaterials, while the most popular protocol in the toluene/methanol system lacks precise compositional control due to its inherent poor solvent compatibility. We herein report an alternative cation exchange route in N,N-dimethylformamide (DMF) solvent for converting preformed colloidal CdTe nanowires into CdxM1-xTe (M = Pb2+, Zn2+, Ag+, Hg2+) nanowires with good batch-to-batch reproducibility. The resulting CdxM1-xTe nanowires show a tunable bandgap from 2.26 to 0.63 eV, and the energy levels of these nanowires can be finely tuned. Furthermore, a comparative study for the cation exchange of CdTe nanowires with Pb2+ ions in toluene/methanol and DMF illustrated that the reduction of Cd2+ extraction and the Pb2+ introduction barrier accounts for precise compositional control. The cation exchange reaction in the DMF phase provides an efficient way to obtain nanomaterials with precise composition control. Moreover, these available high-quality colloidal semiconductor nanowires also pave the way for near-infrared device exploration.
Collapse
Affiliation(s)
- Dong Li
- MIIT Key Laboratory for Low-dimensional Quantum Structure and Devices, School of Materials Science & Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Sheng Huang
- MIIT Key Laboratory for Low-dimensional Quantum Structure and Devices, School of Materials Science & Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Xiaoli Zhang
- MIIT Key Laboratory for Low-dimensional Quantum Structure and Devices, School of Materials Science & Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Zahid Nazir
- MIIT Key Laboratory for Low-dimensional Quantum Structure and Devices, School of Materials Science & Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Yunchao Li
- College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Jiatao Zhang
- MIIT Key Laboratory for Low-dimensional Quantum Structure and Devices, School of Materials Science & Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Yu Chen
- MIIT Key Laboratory for Low-dimensional Quantum Structure and Devices, School of Materials Science & Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Haizheng Zhong
- MIIT Key Laboratory for Low-dimensional Quantum Structure and Devices, School of Materials Science & Engineering , Beijing Institute of Technology , Beijing 100081 , China
| |
Collapse
|
37
|
Sonntag L, Shamraienko V, Fan X, Samadi Khoshkhoo M, Kneppe D, Koitzsch A, Gemming T, Hiekel K, Leo K, Lesnyak V, Eychmüller A. Colloidal PbS nanoplatelets synthesized via cation exchange for electronic applications. NANOSCALE 2019; 11:19370-19379. [PMID: 31173035 DOI: 10.1039/c9nr02437a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, we present a new synthetic approach to colloidal PbS nanoplatelets (NPLs) utilizing a cation exchange (CE) strategy starting from CuS NPLs synthesized via the hot-injection method. Whereas the thickness of the resulting CuS NPLs was fixed at approx. 5 nm, the lateral size could be tuned by varying the reaction conditions, such as time from 6 to 16 h, the reaction temperature (120 °C, 140 °C), and the amount of copper precursor. In a second step, Cu+ cations were replaced with Pb2+ ions within the crystal lattice via CE. While the shape and the size of parental CuS platelets were preserved, the crystal structure was rearranged from hexagonal covellite to PbS galena, accompanied by the fragmentation of the monocrystalline phase into polycrystalline one. Afterwards a halide mediated ligand exchange (LE) was carried out in order to remove insulating oleic acid residues from the PbS NPL surface and to form stable dispersions in polar organic solvents enabling thin-film fabrication. Both CE and LE processes were monitored by several characterization techniques. Furthermore, we measured the electrical conductivity of the resulting PbS NPL-based films before and after LE and compared the processing in ambient to inert atmosphere. Finally, we fabricated field-effect transistors with an on/off ratio of up to 60 and linear charge carrier mobility for holes of 0.02 cm2 V-1 s-1.
Collapse
Affiliation(s)
- Luisa Sonntag
- Physical Chemistry, TU Dresden, Bergstr. 66b, 01062 Dresden, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Wang J, Li L, Yu H, Guan F, Wang D. Binary–Ternary Bi2S3–AgBiS2 Rod-to-Rod Transformation via Anisotropic Partial Cation Exchange Reaction. Inorg Chem 2019; 58:12998-13006. [DOI: 10.1021/acs.inorgchem.9b01917] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Lee S, Yoon DE, Kim D, Shin DJ, Jeong BG, Lee D, Lim J, Bae WK, Lim HK, Lee DC. Direct cation exchange of CdSe nanocrystals into ZnSe enabled by controlled binding between guest cations and organic ligands. NANOSCALE 2019; 11:15072-15082. [PMID: 31372629 DOI: 10.1039/c9nr05195c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Zn chalcogenides are suitable candidates for blue-emitting fluorophores in light-emitting devices. In particular, the efforts to grow ZnSe nanocrystals (NCs) with fine control over size and shape via bottom-up approaches have faced challenges because of the slow decomposition of Zn precursors. In this study, we report direct cation exchange from CdSe NCs to ZnSe. Absorption spectroscopy and density functional theory (DFT) analysis reveal that the reactivity of cation exchange depends on the degree of complexation between organic ligands and Zn halides. We controlled the binding strength of Zn complexes by changing the organic ligands and halogen species that bind with Zn. Appropriate binding strength allows for the release of Zn ions and their facile incorporation into CdSe seed NCs. Under our experimental conditions, trioctylphosphine oxide (TOPO)-ZnI2 drives the efficient cation exchange reaction whereas TOPO-ZnCl2 induces no cation exchange of CdSe NCs. In addition, functional groups vary the binding strength between Zn and ligands. Oleylamine (OLAm)-ZnI2, which has a weaker ligand-ZnI2 binding than TOPO-ZnI2, breaks down the original morphologies of host CdSe NCs due to the very fast exchange rate. On the other hand, the TOPO-ZnI2 complex induces a mild exchange rate, leading to transformation into various morphologies such as CdSe nanorods (NRs) and nanoplatelets (NPLs) into CdSe/ZnSe heterostructures inaccessible via other synthesis methods. The incorporation of Zn into various morphologies of CdSe results in tunable optical transitions in blue-UV regions. The synthesis of heterostructured NCs in an elongated morphology is possible, opening opportunities in photocatalysis, light emitting diodes, and luminescent solar concentrators.
Collapse
Affiliation(s)
- Sooho Lee
- Department of Chemical and Biomolecular Engineering (BK21+ Program), KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Sheng P, Zhang Z, Yao L, Geng H, Zhou P, Cao K, Li W. Preciously Determining Energy Levels and Screening Extraction Medium to Design Highly Efficient Carriers Transport Pathways for Zn‐CuInS
2
Quantum Dots Based H
2
Generation Application. ChemistrySelect 2019. [DOI: 10.1002/slct.201803642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Pengtao Sheng
- College of Chemistry and Environmental EngineeringPingdingshan University Pingdingshan China
| | - Zhiwei Zhang
- College of Chemistry and Environmental EngineeringPingdingshan University Pingdingshan China
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou China
| | - Lu Yao
- College of Chemistry and Environmental EngineeringPingdingshan University Pingdingshan China
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou China
| | - Hongchao Geng
- College of Chemistry and Environmental EngineeringPingdingshan University Pingdingshan China
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou China
| | - Panke Zhou
- College of Chemistry and Environmental EngineeringPingdingshan University Pingdingshan China
| | - Kesheng Cao
- Analytical Instrumentation CenterPingdingshan University Pingdingshan China
| | - Weili Li
- College of Chemistry and Environmental EngineeringPingdingshan University Pingdingshan China
| |
Collapse
|
41
|
Tuning infrared plasmon resonances in doped metal-oxide nanocrystals through cation-exchange reactions. Nat Commun 2019; 10:1394. [PMID: 30918244 PMCID: PMC6437201 DOI: 10.1038/s41467-019-09165-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/19/2019] [Indexed: 01/08/2023] Open
Abstract
Metal-oxide nanocrystals doped with aliovalent atoms can exhibit tunable infrared localized surface plasmon resonances (LSPRs). Yet, the range of dopant types and concentrations remains limited for many metal-oxide hosts, largely because of the difficulty in establishing reaction kinetics that favors dopant incorporation by using the co-thermolysis method. Here we develop cation-exchange reactions to introduce p-type dopants (Cu+, Ag+, etc.) into n-type metal-oxide nanocrystals, producing programmable LSPR redshifts due to dopant compensation. We further demonstrate that enhanced n-type doping can be realized via sequential cation-exchange reactions mediated by the Cu+ ions. Cation-exchange transformations add a new dimension to the design of plasmonic nanocrystals, allowing preformed nanocrystals to be used as templates to create compositionally diverse nanocrystals with well-defined LSPR characteristics. The ability to tailor the doping profile postsynthetically opens the door to a multitude of opportunities to deepen our understanding of the relationship between local structure and LSPR properties.
Collapse
|
42
|
Song J, Zhang Y, Dai Y, Hu J, Zhu L, Xu X, Yu Y, Li H, Yao B, Zhou H. Polyelectrolyte-Mediated Nontoxic AgGa xIn 1- xS 2 QDs/Low-Density Lipoprotein Nanoprobe for Selective 3D Fluorescence Imaging of Cancer Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:9884-9892. [PMID: 30779876 DOI: 10.1021/acsami.9b00121] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cancer stem cells, which are a population of cancer cells sharing common properties with normal stem cells, have strong self-renewal ability and multi-lineage differentiation potential to trigger tumor proliferation, metastases, and recurrence. From this, targeted therapy for cancer stem cells may be one of the most promising strategies for comprehensive treatment of tumors in the future. We design a facile approach to establish the colon cancer stem cells-selective fluorescent probe based on the low-density lipoprotein (LDL) and the novel AgGa xIn(1- x)S2 quantum dots (AGIS QDs). The AGIS QDs with a high crystallinity are obtained for the first time via cation-exchange protocol of Ga3+ to In3+ starting from parent AgInS2 QDs. Photoluminescence peak of AGIS QDs can be turned from 502 to 719 nm by regulating the reaction conditions, with the highest quantum yield up to 37%. Subsequently, AGIS QDs-conjugated LDL nanocomposites (NCs) are fabricated, in which a cationic polyelectrolyte was used as a coupling reagent to guarantee the electrostatic self-assembly. The structural integrity and physicochemical properties of the LDL-QDs NCs are found to be maintained in vitro, and the NCs exhibit remarkable biocompatibility. The LDL-QDs can be selectively delivered into cancer stem cells that overexpress LDL receptor, and three-dimensional imaging of cancer stem cells is realized. The results of this study not only demonstrate the versatility of nature-derived lipoprotein nanoparticles, but also confirm the feasibility of electrostatic conjugation using cationic polyelectrolyte, allowing reseachers to design nanoarchitectures for targeted diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Jiangluqi Song
- School of Physics and Optoelectronic Engineering , Xidian University , Xi'an 710071 , China
| | - Yan Zhang
- Central Laboratory , First Affiliated Hospital of Anhui Medical University , Hefei 230022 , China
| | - Yiwen Dai
- Department of General Surgery , The Second Hospital of Anhui Medical University , Hefei 230601 , China
| | - Jinhang Hu
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization , Shaanxi University of Chinese Medicine , Xianyang 712046 , China
| | - Lixin Zhu
- Central Laboratory , First Affiliated Hospital of Anhui Medical University , Hefei 230022 , China
| | - Xiaoliang Xu
- Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, and Department of Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Yue Yu
- School of Physics and Optoelectronic Engineering , Xidian University , Xi'an 710071 , China
| | - Huan Li
- School of Physics and Optoelectronic Engineering , Xidian University , Xi'an 710071 , China
| | - Bo Yao
- School of Physics and Optoelectronic Engineering , Xidian University , Xi'an 710071 , China
| | - Huixin Zhou
- School of Physics and Optoelectronic Engineering , Xidian University , Xi'an 710071 , China
| |
Collapse
|
43
|
Wang H, Butler DJ, Straus DB, Oh N, Wu F, Guo J, Xue K, Lee JD, Murray CB, Kagan CR. Air-Stable CuInSe 2 Nanocrystal Transistors and Circuits via Post-Deposition Cation Exchange. ACS NANO 2019; 13:2324-2333. [PMID: 30707549 DOI: 10.1021/acsnano.8b09055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Colloidal semiconductor nanocrystals (NCs) are a promising materials class for solution-processable, next-generation electronic devices. However, most high-performance devices and circuits have been achieved using NCs containing toxic elements, which may limit their further device development. We fabricate high mobility CuInSe2 NC field-effect transistors (FETs) using a solution-based, post-deposition, sequential cation exchange process that starts with electronically coupled, thiocyanate (SCN)-capped CdSe NC thin films. First Cu+ is substituted for Cd2+ transforming CdSe NCs to Cu-rich Cu2Se NC films. Next, Cu2Se NC films are dipped into a Na2Se solution to Se-enrich the NCs, thus compensating the Cu-rich surface, promoting fusion of the Cu2Se NCs, and providing sites for subsequent In-dopants. The liquid-coordination-complex trioctylphosphine-indium chloride (TOP-InCl3) is used as a source of In3+ to partially exchange and n-dope CuInSe2 NC films. We demonstrate Al2O3-encapsulated, air-stable CuInSe2 NC FETs with linear (saturation) electron mobilities of 8.2 ± 1.8 cm2/(V s) (10.5 ± 2.4 cm2/(V s)) and with current modulation of 105, comparable to that for high-performance Cd-, Pb-, and As-based NC FETs. The CuInSe2 NC FETs are used as building blocks of integrated inverters to demonstrate their promise for low-cost, low-toxicity NC circuits.
Collapse
Affiliation(s)
| | | | | | - Nuri Oh
- Division of Materials Science and Engineering , Hanyang University , Seoul 133-791 , Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
44
|
Yun HJ, Lim J, Fuhr AS, Makarov NS, Keene S, Law M, Pietryga JM, Klimov VI. Charge-Transport Mechanisms in CuInSe xS 2- x Quantum-Dot Films. ACS NANO 2018; 12:12587-12596. [PMID: 30495927 DOI: 10.1021/acsnano.8b07179] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Colloidal quantum dots (QDs) have attracted considerable attention as promising materials for solution-processable electronic and optoelectronic devices. Copper indium selenium sulfide (CuInSe xS2- x or CISeS) QDs are particularly attractive as an environmentally benign alternative to the much more extensively studied QDs containing toxic metals such as Cd and Pb. Carrier transport properties of CISeS-QD films, however, are still poorly understood. Here, we aim to elucidate the factors that control charge conductance in CISeS QD solids and, based on this knowledge, develop practical approaches for controlling the polarity of charge transport and carrier mobilities. To this end, we incorporate CISeS QDs into field-effect transistors (FETs) and perform detailed characterization of these devices as a function of the Se/(Se+S) ratio, surface treatment, thermal annealing, and the identity of source and drain electrodes. We observe that as-synthesized CuInSe xS2- x QDs exhibit degenerate p-type transport, likely due to metal vacancies and CuIn'' anti-site defects (Cu1+ on an In3+ site) that act as acceptor states. Moderate-temperature annealing of the films in the presence of indium source and drain electrodes leads to switching of the transport polarity to nondegenerate n-type, which can be attributed to the formation of In-related defects such as InCu•• (an In3+ cation on a Cu1+ site) or Ini••• (interstitial In3+) acting as donors. We observe that the carrier mobilities increase dramatically (by 3 orders of magnitude) with increasing Se/(Se+S) ratio in both n- and p-type devices. To explain this observation, we propose a two-state conductance model, which invokes a high-mobility intrinsic band-edge state and a low-mobility defect-related intragap state. These states are thermally coupled, and their relative occupancies depend on both QD composition and temperature. Our observations suggest that the increase in the relative fraction of Se moves conduction- and valence band edges closer to low-mobility intragap levels. This results in increased relative occupancy of the intrinsic band-edge states and a corresponding growth of the measured mobility. Further improvement in charge-transport characteristics of the CISeS QD samples as well as their stability is obtained by infilling the QD films with amorphous Al2O3 using atomic layer deposition.
Collapse
Affiliation(s)
- Hyeong Jin Yun
- Chemistry Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Jaehoon Lim
- Chemistry Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
- Department of Chemical Engineering and Department of Energy System Research , Ajou University , Suwon 16499 , Republic of Korea
| | - Addis S Fuhr
- Chemistry Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
- Department of Chemical and Biomolecular Engineering , University of California , Los Angeles , California 90095 , United States
| | - Nikolay S Makarov
- Chemistry Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
- UbiQD, Inc. , 134 East Gate Drive , Los Alamos , New Mexico 87544 , United States
| | - Sam Keene
- Department of Chemistry and Department of Chemical Engineering and Materials Science , University of California , Irvine , California 92697 , United States
| | - Matt Law
- Department of Chemistry and Department of Chemical Engineering and Materials Science , University of California , Irvine , California 92697 , United States
| | - Jeffrey M Pietryga
- Chemistry Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Victor I Klimov
- Chemistry Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| |
Collapse
|
45
|
Liu Y, Liu M, Yin D, Zhu D, Swihart MT. A general and rapid room-temperature synthesis approach for metal sulphide nanocrystals with tunable properties. NANOSCALE 2018; 11:136-144. [PMID: 30525174 DOI: 10.1039/c8nr07483f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Colloidal metal sulphide (MS) nanocrystals (NCs) have recently attracted considerable attention because of their tunable properties that can be exploited in various physical, chemical and biological applications. In this work, we present a novel and general method for synthesis of monodispersed binary (CuS, Ag2S, CdS, PbS, and SnS), ternary (Ag-In-S, Cu-In-S and Cu-Sn-S) and quaternary (Cu-Zn-Sn-S) MS NCs. The synthesis is conducted at room temperature, with an immediate crystallization process and up to 60 seconds of growth time, enabling rapid synthesis without external heating. For some of the ternary and quaternary NCs produced with relatively low crystallinity, we then carried out a "colloidal annealing" process to improve their crystallinity without changing their composition. Moreover, we show that the morphology and optical properties of the NCs can be tuned by varying the concentration of precursors and reaction time. The shape evolution and photoluminescence of particular MS NCs were also studied. These results not only provide insights into the growth mechanisms of MS NCs, but also yield a generalized, low cost, and potentially scalable method to fabricate them.
Collapse
Affiliation(s)
- Yang Liu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA.
| | | | | | | | | |
Collapse
|
46
|
van der Stam W, de Graaf M, Gudjonsdottir S, Geuchies JJ, Dijkema JJ, Kirkwood N, Evers WH, Longo A, Houtepen AJ. Tuning and Probing the Distribution of Cu + and Cu 2+ Trap States Responsible for Broad-Band Photoluminescence in CuInS 2 Nanocrystals. ACS NANO 2018; 12:11244-11253. [PMID: 30372029 PMCID: PMC6262458 DOI: 10.1021/acsnano.8b05843] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The processes that govern radiative recombination in ternary CuInS2 (CIS) nanocrystals (NCs) have been heavily debated, but recently, several research groups have come to the same conclusion that a photoexcited electron recombines with a localized hole on a Cu-related trap state. Furthermore, it has been observed that single CIS NCs display narrower photoluminescence (PL) line widths than the ensemble, which led to the conclusion that within the ensemble there is a distribution of Cu-related trap states responsible for PL. In this work, we probe this trap-state distribution with in situ photoluminescence spectroelectrochemistry. We find that Cu2+ states result in individual "dark" nanocrystals, whereas Cu+ states result in "bright" NCs. Furthermore, we show that we can tune the PL position, intensity, and line width in a cyclic fashion by injecting or removing electrons from the trap-state distribution, thereby converting a subset of "dark" Cu2+ containing NCs into "bright" Cu+ containing NCs and vice versa. The electrochemical injection of electrons results in brightening, broadening, and a red shift of the PL, in line with the activation of a broad distribution of "dark" NCs (Cu2+ states) into "bright" NCs (Cu+ states) and a rise of the Fermi level within the ensemble trap-state distribution. The opposite trend is observed for electrochemical oxidation of Cu+ states into Cu2+. Our work shows that there is a direct correlation between the line width of the ensemble Cu+/Cu2+ trap-state distribution and the characteristic broad-band PL feature of CIS NCs and between Cu2+ cations in the photoexcited state (bright) and in the electrochemically oxidized ground state (dark).
Collapse
Affiliation(s)
- Ward van der Stam
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
- E-mail:
| | - Max de Graaf
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Solrun Gudjonsdottir
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jaco J. Geuchies
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jurgen J. Dijkema
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Nicholas Kirkwood
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Wiel H. Evers
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Alessandro Longo
- Netherlands
Organization for Scientific Research (NWO), Dutch-Belgian Beamline,
ESRF, The European Synchrotron, CS40220, 38043, 71 Avenue des Martyrs, 38000 Grenoble, France
- Istituto
per lo Studio dei Materiali Nanostrutturati (ISMN)-CNR, UOS Palermo, Via Ugo La Malfa, 153, 90146 Palermo, Italy
| | - Arjan J. Houtepen
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
- E-mail:
| |
Collapse
|
47
|
Hazarika A, Zhao Q, Gaulding EA, Christians JA, Dou B, Marshall AR, Moot T, Berry JJ, Johnson JC, Luther JM. Perovskite Quantum Dot Photovoltaic Materials beyond the Reach of Thin Films: Full-Range Tuning of A-Site Cation Composition. ACS NANO 2018; 12:10327-10337. [PMID: 30251834 DOI: 10.1021/acsnano.8b05555] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We present a cation-exchange approach for tunable A-site alloys of cesium (Cs+) and formamidinium (FA+) lead triiodide perovskite nanocrystals that enables the formation of compositions spanning the complete range of Cs1- xFA xPbI3, unlike thin-film alloys or the direct synthesis of alloyed perovskite nanocrystals. These materials show bright and finely tunable emission in the red and near-infrared range between 650 and 800 nm. The activation energy for the miscibility between Cs+ and FA+ is measured (∼0.65 eV) and is shown to be higher than reported for X-site exchange in lead halide perovskites. We use these alloyed colloidal perovskite quantum dots to fabricate photovoltaic devices. In addition to the expanded compositional range for Cs1- xFA xPbI3 materials, the quantum dot solar cells exhibit high open-circuit voltage ( VOC) with a lower loss than the thin-film perovskite devices of similar compositions.
Collapse
Affiliation(s)
- Abhijit Hazarika
- National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| | - Qian Zhao
- National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
- College of Chemistry , Nankai University , Tianjin 300071 , China
| | - E Ashley Gaulding
- National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| | | | - Benjia Dou
- National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
- Department of Electrical and Computer Engineering , University of Colorado , Boulder , Colorado 80309 , United States
| | - Ashley R Marshall
- National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| | - Taylor Moot
- National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| | - Joseph J Berry
- National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| | - Justin C Johnson
- National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| | - Joseph M Luther
- National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| |
Collapse
|
48
|
Stroyuk O, Raevskaya A, Gaponik N. Solar light harvesting with multinary metal chalcogenide nanocrystals. Chem Soc Rev 2018; 47:5354-5422. [PMID: 29799031 DOI: 10.1039/c8cs00029h] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The paper reviews the state of the art in the synthesis of multinary (ternary, quaternary and more complex) metal chalcogenide nanocrystals (NCs) and their applications as a light absorbing or an auxiliary component of light-harvesting systems. This includes solid-state and liquid-junction solar cells and photocatalytic/photoelectrochemical systems designed for the conversion of solar light into the electric current or the accumulation of solar energy in the form of products of various chemical reactions. The review discusses general aspects of the light absorption and photophysical properties of multinary metal chalcogenide NCs, the modern state of the synthetic strategies applied to produce the multinary metal chalcogenide NCs and related nanoheterostructures, and recent achievements in the metal chalcogenide NC-based solar cells and the photocatalytic/photoelectrochemical systems. The review is concluded by an outlook with a critical discussion of the most promising ways and challenging aspects of further progress in the metal chalcogenide NC-based solar photovoltaics and photochemistry.
Collapse
Affiliation(s)
- Oleksandr Stroyuk
- L.V. Pysarzhevsky Institute of Physical Chemistry, National Academy of Sciences of Ukraine, 03028 Kyiv, Ukraine.
| | | | | |
Collapse
|
49
|
Bera S, Dutta A, Mutyala S, Ghosh D, Pradhan N. Predominated Thermodynamically Controlled Reactions for Suppressing Cross Nucleations in Formation of Multinary Substituted Tetrahedrite Nanocrystals. J Phys Chem Lett 2018; 9:1907-1912. [PMID: 29584942 DOI: 10.1021/acs.jpclett.8b00680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Group I-II-V-VI semiconducting Cu12- xM xSb4S13 (M = ZnII, CdII, MnII and CuII) substituted tetrahedrite nanostructures remain a new class of multinary materials that have not been widely explored yet. Having different ions, the formation process of these nanostructures always has the possibility of formation of cross nucleations. Minimizing the reaction time, herein, a predominantly thermodynamic control approach is reported, which decouples the quaternary nucleations from their possible cross nucleations. As a consequence, possible cross nucleations were prevented and a series of nearly monodisperse intriguing substituted tetrahedrite nanostructures were formed. The possible LaMer plot for the single- and multimaterial nucleations is also proposed. Further, bandgaps of all of these new materials are calculated, and preliminarily, the applicability of these materials is tested for photoelectrochemical water splitting.
Collapse
Affiliation(s)
- Suman Bera
- Department of Materials Science , Indian Association for the Cultivation of Science , Kolkata 700032 , India
| | - Anirban Dutta
- Department of Materials Science , Indian Association for the Cultivation of Science , Kolkata 700032 , India
| | - Sankararao Mutyala
- Department of Materials Science , Indian Association for the Cultivation of Science , Kolkata 700032 , India
| | - Dibyendu Ghosh
- Department of Chemistry , Indian Institute of Science Education and Research , Kolkata 700064 , India
| | - Narayan Pradhan
- Department of Materials Science , Indian Association for the Cultivation of Science , Kolkata 700032 , India
| |
Collapse
|
50
|
Panfil YE, Oded M, Banin U. Colloidal Quantum Nanostructures: Emerging Materials for Display Applications. Angew Chem Int Ed Engl 2018; 57:4274-4295. [PMID: 28975692 PMCID: PMC6001641 DOI: 10.1002/anie.201708510] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Indexed: 11/11/2022]
Abstract
Colloidal semiconductor nanocrystals (SCNCs) or, more broadly, colloidal quantum nanostructures constitute outstanding model systems for investigating size and dimensionality effects. Their nanoscale dimensions lead to quantum confinement effects that enable tuning of their optical and electronic properties. Thus, emission color control with narrow photoluminescence spectra, wide absorbance spectra, and outstanding photostability, combined with their chemical processability through control of their surface chemistry leads to the emergence of SCNCs as outstanding materials for present and next-generation displays. In this Review, we present the fundamental chemical and physical properties of SCNCs, followed by a description of the advantages of different colloidal quantum nanostructures for display applications. The open challenges with respect to their optical activity are addressed. Both photoluminescent and electroluminescent display scenarios utilizing SCNCs are described.
Collapse
Affiliation(s)
- Yossef E. Panfil
- Institute of Chemistry and the Center for Nanoscience and NanotechnologyThe Hebrew University of JerusalemJerusalem9190401Israel
| | - Meirav Oded
- Institute of Chemistry and the Center for Nanoscience and NanotechnologyThe Hebrew University of JerusalemJerusalem9190401Israel
| | - Uri Banin
- Institute of Chemistry and the Center for Nanoscience and NanotechnologyThe Hebrew University of JerusalemJerusalem9190401Israel
| |
Collapse
|