1
|
He F, Sun Y, Zhang W, Wu Q, Xu D, Bai Z, Hao Z, Feng W, Zhang K, Liu J, Dong M, Liu G, Li G. Safety and efficacy of generic nab-paclitaxel-based therapy in Chinese patients with malignant tumors in a real-world setting: a multicenter prospective observational study. Discov Oncol 2024; 15:712. [PMID: 39589666 PMCID: PMC11599493 DOI: 10.1007/s12672-024-01609-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/19/2024] [Indexed: 11/27/2024] Open
Abstract
OBJECTIVE This study aimed to assess the safety and efficacy of generic nab-paclitaxel in the Chinese population in a real-world setting. METHODS This prospective, multicenter, observational study enrolled patients with malignancies who received any generic nab-paclitaxel-based regimens in China. The primary endpoint was safety, and secondary endpoint was objective response rate (ORR). Logistic regression was used to explore risk factors for adverse events (AEs) of special interest (AESIs). RESULTS Between September 2019 and April 2023, 1168 patients were enrolled and evaluated for safety, and 602 were assessed for tumor response. Of 1168 patients, 169 (14.5%) received generic nab-paclitaxel monotherapy, and 999 (85.5%) received generic nab-paclitaxel-based combination therapy. Grade 3-4 AEs occurred in 19.3% (225/1168) patients, most commonly including neutrophil count decreased (7.6%), anemia (5.8%), and white blood cell decreased (5.7%). In subgroup analysis, peripheral sensory neuropathy was observed frequently in breast cancer (45.6%). Multivariate analysis showed that patients receiving combination therapy and ≥ 4 treatment cycles (OR, 1.925; 95% CI 1.363-2.719; p < 0.001) were more susceptible to the AESIs. CONCLUSIONS This study demonstrates a promising safety and efficacy of generic nab-paclitaxel-based regimens for Chinese patients with malignancies in a real-world setting, providing valuable insights for clinical decision-making. CLINICAL TRIALS gov NCT04060290.
Collapse
Affiliation(s)
- Fei He
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang, Beijing, 100021, China
| | - Yancai Sun
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 107 East Huanhu Road, Hefei, Anhui, 230031, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University, No. 127 Dongming Road, Zhengzhou, Henan, 450008, China.
| | - Qiongshi Wu
- Faculty of Pharmacy, Hainan Provincial People's Hospital, No. 19, Xiuhua Road, Haikou, Hainan, 570311, China
| | - Donghang Xu
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, Zhejiang, 310009, China
| | - Zaixian Bai
- Department of Pharmacy, Inner Mongolia Medical University Cancer Hospital, No. 42 Zhaowuda Road, Hohhot, Inner Mongolia, 010030, China
| | - Zhiying Hao
- Department of Pharmacy, Shanxi Province Cancer Hospital/Shanxi Hospital Affliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affliated to Shanxi Medical University, No.3 Workers' New Street, Taiyuan, Shanxi, 030002, China
| | - Weiyi Feng
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiao Tong University, No. 277 Yanta West Road, Xi'An, Shanxi, 710004, China
| | - Kanghuai Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Xi'an Jiao Tong University, No. 157 West Fifth Road, Xi'An, Shanxi, 710004, China
| | - Jiang Liu
- Department of Pharmacy, The Fourth Hospital of Hebei Medical University, No.12 JianKang Road, Shijiazhuang, Hebei, 050010, China
| | - Mei Dong
- Department of Pharmacy, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Harbin, 150086, Heilongjiang, China.
| | - Guangxuan Liu
- Department of Pharmacy, Liaoning Cancer Hospital & Institute, No. 44 Xiaoheyan Road, Shenyang, Liaoning, 110042, China
| | - Guohui Li
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang, Beijing, 100021, China.
| |
Collapse
|
2
|
Moon DO. Interplay between paclitaxel, gap junctions, and kinases: unraveling mechanisms of action and resistance in cancer therapy. Mol Biol Rep 2024; 51:472. [PMID: 38551726 DOI: 10.1007/s11033-024-09411-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/01/2024] [Indexed: 04/02/2024]
Abstract
This comprehensive review elucidates the multifaceted roles of paclitaxel, a key chemotherapeutic agent, in cancer therapy, with a focus on its interactions with gap junctions and related kinases. Paclitaxel, with its complex diterpene structure, mediates its anticancer effects predominantly through specific interactions with β-tubulin, instigating cell cycle arrest and triggering various cell death pathways, including apoptosis, pyroptosis, ferroptosis, and necroptosis. The paper systematically delineates the chemical attributes and action mechanisms of paclitaxel and its analogs, underscoring their capacity to disrupt microtubule dynamics, thereby leading to mitotic arrest and subsequent cell death induction. It also scrutinizes the pivotal role of gap junctions, composed of connexin proteins, in the modulation of cancer cell behavior and chemoresistance, especially in the milieu of paclitaxel administration. The review articulates how gap junctions can either suppress tumors or contribute to cancer progression, thereby influencing chemotherapy outcomes. Furthermore, the paper provides an in-depth analysis of how paclitaxel modulates gap junction-associated kinases via phosphorylation, influencing the drug's therapeutic efficacy and resistance profiles. By integrating insights from numerous key studies, the review offers a comprehensive understanding of the interplay between paclitaxel, gap junctions, and kinases, shedding light on potential approaches to augment paclitaxel's anti-tumor effectiveness and counteract chemoresistance in cancer treatment.
Collapse
Affiliation(s)
- Dong-Oh Moon
- Department of Biology Education, Daegu University, 201, Daegudae-ro, Gyeongsan-si, Gyeongsangbuk-do, 38453, Republic of Korea.
| |
Collapse
|
3
|
Guo X, Ren W, Lv Z, Li G, Li H, Sun M, Li X, Chen G, Zhang Z, Zhang W, Bu M. Synthesis and Anticancer Activity of Ergosterol Peroxide Hybrids With Paclitaxel Side Chain Inducing Apoptosis in Human Hepatoma Carcinoma Cells. Nat Prod Commun 2023. [DOI: 10.1177/1934578x231166778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
The antitumor activities of natural paclitaxel (PTX), semisynthetic docetaxel, and cabazitaxel are highly dependent on their C-13 side chains. Therefore, using natural ergosterol peroxide (EP, 1) as the lead compound, two EP-PTX hybrids (EP-A2 and EP-B2) were prepared and their antitumor activities were evaluated against 4 kinds of human MCF-7, HepG2, HCT-116, and A549 cell lines in vitro. The results showed that both EP-A2 and EP-B2 inhibited the growth of all four kinds of tested tumor cell lines. For paclitaxel-resistant MCF-7 cells, both EP-A2 and EP-B2 showed significant inhibitory activity with relatively low IC50 values (9.39 μM and 8.60 μM, respectively). In addition, EP-B2 inhibited the growth of the HepG2 cells (IC50 = 7.82 μM) more successfully than EP. Preliminary studies of the mechanism suggest that EP-B2 could arrest the G1 phase transition in HepG2 cells. In addition, EP-B2 showed an obvious apoptosis-inducing effect in HepG2 cells, as detected by the Annexin V/PI binding assay and the Western blot assay. Hybrid EP-B2 has the potential to become a novel antitumor drug through further study of the mechanism of action and its structural modifications.
Collapse
Affiliation(s)
- Xiaoshan Guo
- College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Wenkang Ren
- College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Zhen Lv
- College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Gang Li
- Research Institute of Medicine & Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Hongling Li
- College of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Mingrui Sun
- College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Xiaoming Li
- Research Institute of Medicine & Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Gang Chen
- Research Institute of Medicine & Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Zhiguo Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Wenting Zhang
- Department of Pharmacy, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Ming Bu
- College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
4
|
Drugs That Changed Society: Microtubule-Targeting Agents Belonging to Taxanoids, Macrolides and Non-Ribosomal Peptides. Molecules 2022; 27:molecules27175648. [PMID: 36080414 PMCID: PMC9457747 DOI: 10.3390/molecules27175648] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 02/05/2023] Open
Abstract
During a screening performed by the National Cancer Institute in the 1960s, the terpenoid paclitaxel was discovered. Paclitaxel expanded the treatment options for breast, lung, prostate and ovarian cancer. Paclitaxel is only present in minute amounts in the bark of Taxia brevifolia. A sustainable supply was ensured with a culture developed from Taxus chinensis, or with semi-synthesis from other taxanes. Paclitaxel is marketed under the name Taxol. An intermediate from the semi-synthesis docetaxel is also used as a drug and marketed as Taxotere. O-Methylated docetaxel is used for treatment of some paclitaxel-resistant cancer forms as cabazitaxel. The solubility problems of paclitaxel have been overcome by formulation of a nanoparticle albumin-bound paclitaxel (NAB-paclitaxel, Abraxane). The mechanism of action is affinity towards microtubules, which prevents proliferation and consequently the drug would be expected primarily to be active towards cancer cells proliferating faster than benign cells. The activity against slowly growing tumors such as solid tumors suggests that other effects such as oncogenic signaling or cellular trafficking are involved. In addition to terpenoids, recently discovered microtubule-targeting polyketide macrolides and non-ribosomal peptides have been discovered and marketed as drugs. The revolutionary improvements for treatment of cancer diseases targeting microtubules have led to an intensive search for other compounds with the same target. Several polyketide macrolides, terpenoids and non-ribosomal peptides have been investigated and a few marketed.
Collapse
|
5
|
Nguyen A, Chao PH, Ong CY, Rouhollahi E, Fayez NAL, Lin L, Brown JI, Böttger R, Page B, Wong H, Li SD. Chemically engineering the drug release rate of a PEG-paclitaxel conjugate using click and steric hindrance chemistries for optimal efficacy. Biomaterials 2022; 289:121735. [DOI: 10.1016/j.biomaterials.2022.121735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 07/27/2022] [Accepted: 08/06/2022] [Indexed: 11/29/2022]
|
6
|
Wang M, Wang C, Feng C, Guo W, Chen H, Liu B, Li E, Liu W, Taouil A, Ojima I, Hou P. Potent antitumor activity of novel taxoids in anaplastic thyroid cancer. Endocrine 2022; 75:465-477. [PMID: 34591230 DOI: 10.1007/s12020-021-02880-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/14/2021] [Indexed: 12/29/2022]
Abstract
PURPOSE Anaplastic thyroid cancer (ATC) is the most aggressive form of thyroid cancers and it is rapidly fatal without any effective therapeutic regimens. There are some clinical trials showing that paclitaxel-based chemotherapy for ATC can achieve a relatively high response rate and low incidence of adverse reaction. The aim of this study was to evaluate potential therapeutic activity of novel taxoids in ATC cells. METHODS We evaluated antitumor activity of five novel 3'-difluorovinyltaxoids (DFV-taxoids) in anaplastic thyroid cancer cells by a series of in vitro and in vivo experiments. Besides, we also explored the potential mechanism underlying the difference among the taxoids and paclitaxel by molecular docking and tubulin polymerization assays. RESULTS Our data showed that these novel DFV-taxoids were more effective than paclitaxel in ATC cell lines and xenografts, as reflected by the inhibition of cell proliferation, colony formation and tumorigenic potential in nude mice, and the induction of G2/M phase arrest and cell apoptosis. Using tubulin polymerization assays and molecular docking analysis, we found that these DFV-taxoids promoted more rapid polymerization of β-tubulin than paclitaxel. CONCLUSIONS Our data demonstrate that these novel taxoids exhibit stronger antitumor activity in ATC cells than paclitaxel, thereby providing a promising therapeutic strategy for the patients with ATC.
Collapse
Affiliation(s)
- Meichen Wang
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Changwei Wang
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, 11794-3400, USA
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China
| | - Chao Feng
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, China
| | - Wanrong Guo
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China
| | - Huan Chen
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, China
| | - Bing Liu
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, China
| | - Enxiao Li
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wei Liu
- Ultrasound Diagnosis Center, Shaanxi Provincial People's Hospital, 710068, Xi'an, China
| | - Adam Taouil
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794-3400, USA
| | - Iwao Ojima
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, 11794-3400, USA.
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794-3400, USA.
| | - Peng Hou
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, China.
| |
Collapse
|
7
|
Fidan O, Zhan J, Ren J. Engineered production of bioactive natural products from medicinal plants. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/wjtcm.wjtcm_66_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
8
|
Fidan O, Zhan J, Ren J. Engineered production of bioactive natural products from medicinal plants. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/2311-8571.336839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
9
|
Machulkin AE, Uspenskaya AA, Zyk NY, Nimenko EA, Ber AP, Petrov SA, Shafikov RR, Skvortsov DA, Smirnova GB, Borisova YA, Pokrovsky VS, Kolmogorov VS, Vaneev AN, Ivanenkov YA, Khudyakov AD, Kovalev SV, Erofeev AS, Gorelkin PV, Beloglazkina EK, Zyk NV, Khazanova ES, Majouga AG. PSMA-targeted small-molecule docetaxel conjugate: Synthesis and preclinical evaluation. Eur J Med Chem 2021; 227:113936. [PMID: 34717125 DOI: 10.1016/j.ejmech.2021.113936] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022]
Abstract
Prostate cancer is one of the most commonly diagnosed men's cancers and remains one of the leading causes of cancer death. The development of approaches to the treatment of this oncological disease is an ongoing process. In this work, we have carried out the selection of ligands for the creation of conjugates based on the drug docetaxel and synthesized a series of three docetaxel conjugates. In vitro cytotoxicity of these molecules was evaluated using the MTT assay. Based on the assay results, we selected the conjugate which showed cytotoxic potential close to unmodified docetaxel. At the same time, the molar solubility of the resulting compound increased up to 20 times in comparison with the drug itself. In vivo evaluation on 22Rv1 (PSMA+) xenograft model demonstrated a good potency of the synthesized conjugate to inhibit tumor growth: the inhibition turned out to be more than 80% at a dose of 30 mg/kg. Pharmacokinetic parameters of conjugate distribution were analyzed. Also, it was found that PSMA-targeted docetaxel conjugate is less toxic than docetaxel itself, the decrease of molar acute toxicity in comparison with free docetaxel was up to 20%. Obtained conjugate PSMA-DOC is a good candidate for further expanded preclinical trials because of high antitumor activity, fewer side toxic effects and better solubility.
Collapse
Affiliation(s)
- Aleksei E Machulkin
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation.
| | - Anastasia A Uspenskaya
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation
| | - Nikolay Y Zyk
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation
| | - Ekaterina A Nimenko
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation
| | - Anton P Ber
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation
| | - Stanislav A Petrov
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation
| | - Radik R Shafikov
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation; Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, GSP-7, Ulitsa Miklukho-Maklaya, 16/10, Moscow, 117997, Russian Federation
| | - Dmitry A Skvortsov
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation; Faculty of Biology and Biotechnologies, Higher School of Economics, Myasnitskaya 13, Moscow, 101000, Russia
| | - Galina B Smirnova
- N.N. Blokhin Cancer Research Center, 24 Kashirskoye Sh., Moscow, 115478, Russia
| | - Yulia A Borisova
- N.N. Blokhin Cancer Research Center, 24 Kashirskoye Sh., Moscow, 115478, Russia
| | - Vadim S Pokrovsky
- N.N. Blokhin Cancer Research Center, 24 Kashirskoye Sh., Moscow, 115478, Russia; RUDN University, Miklukho-Maklaya Str.6, Moscow, 117198, Russian Federation
| | - Vasilii S Kolmogorov
- National University of Science and Technology MISiS, 9 Leninskiy Pr, Moscow, 119049, Russian Federation
| | - Alexander N Vaneev
- National University of Science and Technology MISiS, 9 Leninskiy Pr, Moscow, 119049, Russian Federation
| | - Yan A Ivanenkov
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation; Moscow Institute of Physics and Technology (State University), 9 Institutskiy Lane, Dolgoprudny City, Moscow Region, 141700, Russian Federation; National University of Science and Technology MISiS, 9 Leninskiy Pr, Moscow, 119049, Russian Federation; The Federal State Unitary Enterprise Dukhov Automatics Research Institute, Moscow, 127055, Russia; Institute of Biochemistry and Genetics Ufa Science Centre Russian Academy of Sciences (IBG RAS), Oktyabrya Prospekt 71, Ufa, 450054, Russian Federation
| | - Alexander D Khudyakov
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation
| | - Sergei V Kovalev
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation
| | - Alexander S Erofeev
- National University of Science and Technology MISiS, 9 Leninskiy Pr, Moscow, 119049, Russian Federation
| | - Petr V Gorelkin
- National University of Science and Technology MISiS, 9 Leninskiy Pr, Moscow, 119049, Russian Federation
| | - Elena K Beloglazkina
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation
| | - Nikolay V Zyk
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation
| | - Elena S Khazanova
- LLC Izvarino-Pharma, V. Vnukovskoe, Vnukovskoe Sh., 5th Km., Building 1, Moscow, 108817, Russian Federation
| | - Alexander G Majouga
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation; National University of Science and Technology MISiS, 9 Leninskiy Pr, Moscow, 119049, Russian Federation; Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, Moscow, 125047, Russian Federation
| |
Collapse
|
10
|
Sharifi-Rad J, Quispe C, Patra JK, Singh YD, Panda MK, Das G, Adetunji CO, Michael OS, Sytar O, Polito L, Živković J, Cruz-Martins N, Klimek-Szczykutowicz M, Ekiert H, Choudhary MI, Ayatollahi SA, Tynybekov B, Kobarfard F, Muntean AC, Grozea I, Daştan SD, Butnariu M, Szopa A, Calina D. Paclitaxel: Application in Modern Oncology and Nanomedicine-Based Cancer Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3687700. [PMID: 34707776 PMCID: PMC8545549 DOI: 10.1155/2021/3687700] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022]
Abstract
Paclitaxel is a broad-spectrum anticancer compound, which was derived mainly from a medicinal plant, in particular, from the bark of the yew tree Taxus brevifolia Nutt. It is a representative of a class of diterpene taxanes, which are nowadays used as the most common chemotherapeutic agent against many forms of cancer. It possesses scientifically proven anticancer activity against, e.g., ovarian, lung, and breast cancers. The application of this compound is difficult because of limited solubility, recrystalization upon dilution, and cosolvent-induced toxicity. In these cases, nanotechnology and nanoparticles provide certain advantages such as increased drug half-life, lowered toxicity, and specific and selective delivery over free drugs. Nanodrugs possess the capability to buildup in the tissue which might be linked to enhanced permeability and retention as well as enhanced antitumour influence possessing minimal toxicity in normal tissues. This article presents information about paclitaxel, its chemical structure, formulations, mechanism of action, and toxicity. Attention is drawn on nanotechnology, the usefulness of nanoparticles containing paclitaxel, its opportunities, and also future perspective. This review article is aimed at summarizing the current state of continuous pharmaceutical development and employment of nanotechnology in the enhancement of the pharmacokinetic and pharmacodynamic features of paclitaxel as a chemotherapeutic agent.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University, Goyangsi, Republic of Korea
| | - Yengkhom Disco Singh
- Department of Post-Harvest Technology, College of Horticulture and Forestry, Central Agricultural University, Pasighat, 791102 Arunachal Pradesh, India
| | - Manasa Kumar Panda
- Environment and Sustainability Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013 Odisha, India
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University, Goyangsi, Republic of Korea
| | - Charles Oluwaseun Adetunji
- Applied Microbiology, Biotechnology and Nanotechnology Laboratory, Department of Microbiology, Edo University Iyamho, PMB 04, Auchi, Edo State, Nigeria
| | - Olugbenga Samuel Michael
- Cardiometabolic Research Unit, Department of Physiology, College of Health Sciences, Bowen University, Iwo, Osun State, Nigeria
| | - Oksana Sytar
- Department of Plant Biology Department, Institute of Biology, Taras Shevchenko National University of Kyiv, Kyiv 01033, Ukraine
- Department of Plant Physiology, Slovak University of Agriculture, Nitra 94976, Slovakia
| | - Letizia Polito
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy
| | - Jelena Živković
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, PRD, Portugal
| | - Marta Klimek-Szczykutowicz
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Halina Ekiert
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Muhammad Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Department of Pharmacognosy and Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bekzat Tynybekov
- Department of Biodiversity of Bioresources, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Farzad Kobarfard
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ana Covilca Muntean
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timisoara, Romania
| | - Ioana Grozea
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timisoara, Romania
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey
- Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timisoara, Romania
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
11
|
Rong D, Wang C, Zhang X, Wei Y, Zhang M, Liu D, Farhan H, Momen Ali SA, Liu Y, Taouil A, Guo W, Wang Y, Ojima I, Yang S, Wang H. A novel taxane, difluorovinyl-ortataxel, effectively overcomes paclitaxel-resistance in breast cancer cells. Cancer Lett 2020; 491:36-49. [PMID: 32730778 DOI: 10.1016/j.canlet.2020.06.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/20/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023]
Abstract
Paclitaxel (PTX) is widely used to treat breast and ovarian cancers, but innate and acquired resistance often compromises its applications. The objective of this study was to screen new-generation taxanes for their efficiency against both PTX-sensitive and PTX-resistant breast cancer cells. From twelve compounds, difluorovinyl-ortataxel (DFV-OTX) displayed potent cytotoxic activities against both PTX-sensitive and PTX-resistant breast cancer cells. Moreover, DFV-OTX effectively induced tubulin/microtubule polymerization and G2/M phase arrest, leading to apoptosis in both PTX-sensitive and PTX-resistant cancer cells. Molecular docking analysis showed that DFV-OTX possesses unique hydrogen-bonding and van der Waals interactions with β-tubulin. LC-MS/MS analysis also demonstrated that the intracellular drug amount of DFV-OTX was lower than that of PTX, which would be critical to overcome PTX-resistance. Furthermore, DFV-OTX exhibited clear efficacy in the MCF-7R and MDA-MB-231R tumor xenografts in mouse models. Taken together, our results demonstrate that the novel taxane, DFV-OTX, can effectively overcome PTX-resistance in MDA-MB-231R cells, wherein the drug resistance was attributed to ABCB1/ABCG2 upregulation and a distinct mode of action in MCF-7R cells. Our results strongly indicate that DFV-OTX is a promising chemotherapeutic agent for the treatment of PTX-resistant cancers.
Collapse
Affiliation(s)
- Dade Rong
- Centre for Translational Medicine, The First Affiliated Hospital, SUN Yat-sen University, 58 Second Zhongshan Road, Guangzhou, 510080, China; Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Changwei Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, 11794-3400, USA
| | - Xiaomei Zhang
- Centre for Translational Medicine, The First Affiliated Hospital, SUN Yat-sen University, 58 Second Zhongshan Road, Guangzhou, 510080, China; Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Yanli Wei
- Centre for Translational Medicine, The First Affiliated Hospital, SUN Yat-sen University, 58 Second Zhongshan Road, Guangzhou, 510080, China
| | - Mingming Zhang
- Centre for Translational Medicine, The First Affiliated Hospital, SUN Yat-sen University, 58 Second Zhongshan Road, Guangzhou, 510080, China; Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Daiyuan Liu
- Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Haider Farhan
- Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Saleh Abdul Momen Ali
- Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Yanbin Liu
- Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Adam Taouil
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, 11794-3400, USA
| | - Wanrong Guo
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yican Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Iwao Ojima
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, 11794-3400, USA.
| | - Shulan Yang
- Centre for Translational Medicine, The First Affiliated Hospital, SUN Yat-sen University, 58 Second Zhongshan Road, Guangzhou, 510080, China.
| | - Haihe Wang
- Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China.
| |
Collapse
|
12
|
Kargozar S, Baino F, Hamzehlou S, Hamblin MR, Mozafari M. Nanotechnology for angiogenesis: opportunities and challenges. Chem Soc Rev 2020; 49:5008-5057. [PMID: 32538379 PMCID: PMC7418030 DOI: 10.1039/c8cs01021h] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Angiogenesis plays a critical role within the human body, from the early stages of life (i.e., embryonic development) to life-threatening diseases (e.g., cancer, heart attack, stroke, wound healing). Many pharmaceutical companies have expended huge efforts on both stimulation and inhibition of angiogenesis. During the last decade, the nanotechnology revolution has made a great impact in medicine, and regulatory approvals are starting to be achieved for nanomedicines to treat a wide range of diseases. Angiogenesis therapies involve the inhibition of angiogenesis in oncology and ophthalmology, and stimulation of angiogenesis in wound healing and tissue engineering. This review aims to summarize nanotechnology-based strategies that have been explored in the broad area of angiogenesis. Lipid-based, carbon-based and polymeric nanoparticles, and a wide range of inorganic and metallic nanoparticles are covered in detail. Theranostic and imaging approaches can be facilitated by nanoparticles. Many preparations have been reported to have a bimodal effect where they stimulate angiogenesis at low dose and inhibit it at higher doses.
Collapse
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, 917794-8564 Mashhad, Iran
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 101 29 Torino, Italy
| | - Sepideh Hamzehlou
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Masoud Mozafari
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Sabzehzari M, Zeinali M, Naghavi MR. Alternative sources and metabolic engineering of Taxol: Advances and future perspectives. Biotechnol Adv 2020; 43:107569. [PMID: 32446923 DOI: 10.1016/j.biotechadv.2020.107569] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/04/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023]
Abstract
Paclitaxel is one of the strong plant-derived anti-cancer drugs that was first isolated from the Pacific yew. Despite many paclitaxel's clinical successes, the limited accessibility of paclitaxel for clinical trials is recognized as the most important challenge. Thus, researchers are continuously trying to find the innovative ways to meet the community's need for this medicine. In the first step, the alternative sources for Taxol supply were recognized, such as Taxus genus, other plant genera, and endophytic fungi. In the next step, the biosynthetic pathways of Taxol or related metabolites were manipulated in the original organisms, or introduced to heterologous systems and then were manipulated in them. Here, a range of metabolic manipulating approaches have been successfully developed to redirect the metabolic flux toward Taxol, including promoter engineering, enzyme engineering, overexpressing the bottleneck enzymes, over- or down-regulation of transcription factors, activation of the cryptic genes, removing/minimizing the flux for competing pathways, tunable regulation of the metabolic pathway, and increasing the supplies of precursors. In this review, we discuss research progress on the alternative Taxol sources and its metabolic manipulating, and we suggest recent challenges and future perspectives.
Collapse
Affiliation(s)
- Mohammad Sabzehzari
- Division of Plant Molecular Genetics, Department of Agronomy and Plant Breeding, Agricultural and Natural Resources College, University of Tehran, Karaj, Iran.
| | - Masoumeh Zeinali
- Department of Agronomy and Plant Breeding, Faculty of Agricultural, University of Mohaghegh Ardabili, Iran
| | - Mohammad Reza Naghavi
- Division of Plant Molecular Genetics, Department of Agronomy and Plant Breeding, Agricultural and Natural Resources College, University of Tehran, Karaj, Iran.
| |
Collapse
|
14
|
Lou SJ, Li XH, Zhou XL, Fang DM, Gao F. Palladium-Catalyzed Synthesis and Anticancer Activity of Paclitaxel-Dehydroepiandrosterone Hybrids. ACS OMEGA 2020; 5:5589-5600. [PMID: 32201853 PMCID: PMC7081646 DOI: 10.1021/acsomega.0c00558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/26/2020] [Indexed: 05/28/2023]
Abstract
According to the activity-structure relationship of the C-13 side chain in paclitaxel or docetaxel, eighteen novel paclitaxel-dehydroepiandrosterone (DHEA) hybrids were designed and synthesized by Pd(II)-catalyzed Suzuki-Miyaura cross-coupling of 17-trifluoromethanesulfonic enolate-DHEA with different aryl boronic acids. The in vitro anticancer activity of the hybrids against a human liver cancer cell line (HepG-2) was evaluated by MTT assay, showing that most of these hybrids possessed moderate antiproliferative activity against the HepG-2 cancer cell line. Among these hybrids, three ones (7b, 7g, and 7i) with ortho-substituents in the phenyl group of the D-ring of DHEA analogues exhibited moderate anticancer activity. The optimal compound 7i showed superior anticancer activity against the HepG-2 cell line with an IC50 value of 26.39 μM.
Collapse
Affiliation(s)
- Sheng-Jie Lou
- School
of Life Science and Engineering, Southwest
Jiaotong University, No. 111, Erhuan Road, Chengdu 610031, PR China
| | - Xiao-Huan Li
- School
of Life Science and Engineering, Southwest
Jiaotong University, No. 111, Erhuan Road, Chengdu 610031, PR China
| | - Xian-Li Zhou
- School
of Life Science and Engineering, Southwest
Jiaotong University, No. 111, Erhuan Road, Chengdu 610031, PR China
| | - Dong-Mei Fang
- Chengdu
Institute of Biology, Chinese Academy of
Sciences, No. 9, Section
4, South Renmin Road, Chengdu 610041, PR China
| | - Feng Gao
- School
of Life Science and Engineering, Southwest
Jiaotong University, No. 111, Erhuan Road, Chengdu 610031, PR China
| |
Collapse
|
15
|
Zhang Q, Catti L, Syntrivanis LD, Tiefenbacher K. En route to terpene natural products utilizing supramolecular cyclase mimetics. Nat Prod Rep 2019; 36:1619-1627. [PMID: 31021352 DOI: 10.1039/c9np00003h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: literature up to 2018 Terpenes are a class of natural products characterized by remarkable structural diversity. Much of this diversity arises biosynthetically from a handful of linear precursors through the so-called tail-to-head terpene cyclization reaction. This reaction is one of the most complex observed in nature, and historically attempts to replicate it with non-enzymatic means have met with little success. In recent years, however, the development of manmade binding pockets that allow such reactions to take place has been reported. This Highlight provides an overview of this nascent field, and outlines the challenges that need to be overcome moving forward.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, China
| | | | | | | |
Collapse
|
16
|
Thirupathi A, Shanmugavadivelu CM, Natarajan S. Fastidious Anatomization of Biota Procured Compounds on Cancer Drug Discovery. Curr Pharm Biotechnol 2019; 21:354-363. [PMID: 31778106 DOI: 10.2174/1389201020666191128145015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Natural products are the rootstock for identifying new drugs since ancient times. In comparison with synthetic drugs, they have abounding beneficial effects in bestowing protection against many diseases, including cancer. Cancer has been observed as a major threat in recent decades, and its prevalence is expected to increase over the next decades. Also, current treatment methods in cancer therapy such as radiation therapy and chemotherapy cause severe adverse side effects among the cancer population. Therefore, it is exigent to find a remedy without any side effects. METHODS In recent years, research has focused on obtaining naturally derived products to encounter this complication. The current pace of investigations, such as gene identification and advancement in combinatorial chemistry, leads to the aberrant access to a wide range of new synthetic drugs. In fact, natural products act as templates in structure predictions and synthesis of new compounds with enhanced biological activities. RESULTS Recent developments in genomics have established the importance of polymorphism, which implies that patients require different drugs for their treatment. This demands the discovery of a large number of drugs, but limited sources restrict the pharmaceutical industry to overcome these major obstacles. The use of natural products and their semisynthetic and synthetic analogues could alleviate these problems. However, the lack of standardization in terms of developing methods for evaluating the chemical composition, efficacy, isolation and international approval is still a major limitation in this field. In the past few years, several drug-approval authorities, including the FDA and WHO have allowed using these naturally derived compounds in humans. CONCLUSION In this review, we described the use of some natural products from plant and marine sources in cancer treatment and shed some light on semi-synthetic and synthetic compounds derived from natural sources used in cancer therapy.
Collapse
Affiliation(s)
- Anand Thirupathi
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei Province, China
| | | | - Sampathkumar Natarajan
- Department of Chemistry, SSM Institute of Engineering and Technology, Dindigul, Tamil Nadu, India
| |
Collapse
|
17
|
Pahima E, Zhang Q, Tiefenbacher K, Major DT. Discovering Monoterpene Catalysis Inside Nanocapsules with Multiscale Modeling and Experiments. J Am Chem Soc 2019; 141:6234-6246. [PMID: 30907083 DOI: 10.1021/jacs.8b13411] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Large-scale production of natural products, such as terpenes, presents a significant scientific and technological challenge. One promising approach to tackle this problem is chemical synthesis inside nanocapsules, although enzyme-like control of such chemistry has not yet been achieved. In order to better understand the complex chemistry inside nanocapsules, we design a multiscale nanoreactor simulation approach. The nanoreactor simulation protocol consists of hybrid quantum mechanics-molecular mechanics-based high temperature Langevin molecular dynamics simulations. Using this approach we model the tail-to-head formation of monoterpenes inside a resorcin[4]arene-based capsule (capsule I). We provide a rationale for the experimentally observed kinetics of monoterpene product formation and product distribution using capsule I, and we explain why additional stable monoterpenes, like camphene, are not observed. On the basis of the in-capsule I simulations, and mechanistic insights, we propose that feeding the capsule with pinene can yield camphene, and this proposal is verified experimentally. This suggests that the capsule may direct the dynamic reaction cascades by virtue of π-cation interactions.
Collapse
Affiliation(s)
- Efrat Pahima
- Department of Chemistry , Bar-Ilan University , Ramat-Gan 52900 , Israel
| | - Qi Zhang
- Department of Chemistry , University of Basel , Mattenstrasse 24a , 4058 Basel , Switzerland
| | - Konrad Tiefenbacher
- Department of Chemistry , University of Basel , Mattenstrasse 24a , 4058 Basel , Switzerland.,Department of Biosystems Science and Engineering , ETH Zurich , Mattenstrasse 24 , 4058 Basel , Switzerland
| | - Dan T Major
- Department of Chemistry , Bar-Ilan University , Ramat-Gan 52900 , Israel
| |
Collapse
|
18
|
Mura S, Fattal E, Nicolas J. From poly(alkyl cyanoacrylate) to squalene as core material for the design of nanomedicines. J Drug Target 2019; 27:470-501. [PMID: 30720372 DOI: 10.1080/1061186x.2019.1579822] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review article covers the most important steps of the pioneering work of Patrick Couvreur and tries to shed light on his outstanding career that has been a source of inspiration for many decades. His discovery of biodegradable poly(alkyl cyanoacrylate) (PACA) nanoparticles (NPs) has opened large perspectives in nanomedicine. Indeed, NPs made from various types of alkyl cyanoacrylate monomers have been used in different applications, such as the treatment of intracellular infections or the treatment of multidrug resistant hepatocarcinoma. This latest application led to the Phase III clinical trial of Livatag®, a PACA nanoparticulate formulation of doxorubicin. Despite the success of PACA NPs, the development of a novel type of NP with higher drug loadings and lower burst release was tackled by the discovery of squalene-based nanomedicines where the drug is covalently linked to the lipid derivative and the resulting conjugate is self-assembled into NPs. This pioneering work was accompanied by a wide range of novel applications which mainly dealt with the management of unmet medical needs (e.g. pancreatic cancer, brain ischaemia and spinal cord injury).
Collapse
Affiliation(s)
- Simona Mura
- a Institut Galien Paris-Sud, UMR CNRS 8612, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay , Châtenay-Malabry , France
| | - Elias Fattal
- a Institut Galien Paris-Sud, UMR CNRS 8612, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay , Châtenay-Malabry , France
| | - Julien Nicolas
- a Institut Galien Paris-Sud, UMR CNRS 8612, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay , Châtenay-Malabry , France
| |
Collapse
|
19
|
Ojima I, Wang X, Jing Y, Wang C. Quest for Efficacious Next-Generation Taxoid Anticancer Agents and Their Tumor-Targeted Delivery. JOURNAL OF NATURAL PRODUCTS 2018; 81:703-721. [PMID: 29468872 PMCID: PMC5869464 DOI: 10.1021/acs.jnatprod.7b01012] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Indexed: 05/28/2023]
Abstract
Paclitaxel and docetaxel are among the most widely used chemotherapeutic drugs against various types of cancer. However, these drugs cause undesirable side effects as well as drug resistance. Therefore, it is essential to develop next-generation taxoid anticancer agents with better pharmacological properties and improved activity especially against drug-resistant and metastatic cancers. The SAR studies by the authors have led to the development of numerous highly potent novel second- and third-generation taxoids with systematic modifications at the C-2, C-10, and C-3' positions. The third-generation taxoids showed virtually no difference in potency against drug-resistant and drug-sensitive cell lines. Some of the next-generation taxoids also exhibited excellent potency against cancer stem cells. This account summarizes concisely investigations into taxoids over 25 years based on a strong quest for the discovery and development of efficacious next-generation taxoids. Discussed herein are SAR studies on different types of taxoids, a common pharmacophore proposal for microtubule-stabilizing anticancer agents and its interesting history, the identification of the paclitaxel binding site and its bioactive conformation, characteristics of the next-generation taxoids in cancer cell biology, including new aspects of their mechanism of action, and the highly efficacious tumor-targeted drug delivery of potent next-generation taxoids.
Collapse
Affiliation(s)
- Iwao Ojima
- Department of Chemistry and Institute
of Chemical Biology & Drug Discovery, Stony Brook University−State University of New York, Stony Brook, New York 11794-3400, United States
| | - Xin Wang
- Department of Chemistry and Institute
of Chemical Biology & Drug Discovery, Stony Brook University−State University of New York, Stony Brook, New York 11794-3400, United States
| | - Yunrong Jing
- Department of Chemistry and Institute
of Chemical Biology & Drug Discovery, Stony Brook University−State University of New York, Stony Brook, New York 11794-3400, United States
| | - Changwei Wang
- Department of Chemistry and Institute
of Chemical Biology & Drug Discovery, Stony Brook University−State University of New York, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
20
|
Zhang Q, Catti L, Pleiss J, Tiefenbacher K. Terpene Cyclizations inside a Supramolecular Catalyst: Leaving-Group-Controlled Product Selectivity and Mechanistic Studies. J Am Chem Soc 2017; 139:11482-11492. [DOI: 10.1021/jacs.7b04480] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Qi Zhang
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
| | - Lorenzo Catti
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
| | - Jürgen Pleiss
- Institute
of Technical Biochemistry, University of Stuttgart, Allmandring
31, D-70569 Stuttgart, Germany
| | - Konrad Tiefenbacher
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse
26, CH-4058 Basel, Switzerland
| |
Collapse
|
21
|
|
22
|
Louage B, De Wever O, Hennink WE, De Geest BG. Developments and future clinical outlook of taxane nanomedicines. J Control Release 2017; 253:137-152. [DOI: 10.1016/j.jconrel.2017.03.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/14/2017] [Accepted: 03/16/2017] [Indexed: 02/09/2023]
|
23
|
Dang PH, Nguyen HX, Duong TTT, Tran TKT, Nguyen PT, Vu TKT, Vuong HC, Phan NHT, Nguyen MTT, Nguyen NT, Awale S. α-Glucosidase Inhibitory and Cytotoxic Taxane Diterpenoids from the Stem Bark of Taxus wallichiana. JOURNAL OF NATURAL PRODUCTS 2017; 80:1087-1095. [PMID: 28240909 DOI: 10.1021/acs.jnatprod.7b00006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
From a CH2Cl2 extract of the bark of Taxus wallichiana, six new taxoids, wallitaxanes A-F (1-6), were isolated, together with 29 known compounds. The structures of the new compounds were elucidated on the basis of spectroscopic data interpretation. Wallitaxane D (4) was identified as an opened oxetane-type taxoid having the first naturally occurring C(H)-20 acetal group, while wallitaxanes E (5) and F (6) are representative of the rare abeo-taxoid class. The isolated compounds were evaluated for their α-glucosidase inhibitory activity and for cytotoxicity against the HeLa human cervical cancer cell line. In the present work, taxanes were found to exhibit α-glucosidase inhibitory activity for the first time, and wallitaxane A (1) showed the most potent effect, with an IC50 value of 3.6 μM. In turn, 7-epi-taxol (16) and 7-epi-10-deacetyltaxol (17) showed IC50 values of 0.05 and 0.085 nM, respectively, against HeLa cells.
Collapse
Affiliation(s)
- Phu Hoang Dang
- Faculty of Chemistry, VNUHCM-University of Science , 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Vietnam
| | - Hai Xuan Nguyen
- Faculty of Chemistry, VNUHCM-University of Science , 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Vietnam
| | - Truc Thanh Thi Duong
- Faculty of Chemistry, VNUHCM-University of Science , 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Vietnam
| | - Thao Kim Thi Tran
- Faculty of Chemistry, VNUHCM-University of Science , 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Vietnam
| | - Phuc Thi Nguyen
- Faculty of Chemistry, VNUHCM-University of Science , 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Vietnam
| | - Trang Kieu Thi Vu
- Faculty of Chemistry, VNUHCM-University of Science , 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Vietnam
| | - Hung Chi Vuong
- Tay Nguyen Herbals JSC , Tu Tra Ward, Don Duong District, Lam Dong Province Vietnam
| | - Nguyen Huu Trong Phan
- Faculty of Chemistry, VNUHCM-University of Science , 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Vietnam
| | - Mai Thanh Thi Nguyen
- Faculty of Chemistry, VNUHCM-University of Science , 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Vietnam
- Cancer Research Laboratory, Vietnam National University, Ho Chi Minh City , 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Vietnam
| | - Nhan Trung Nguyen
- Faculty of Chemistry, VNUHCM-University of Science , 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Vietnam
- Cancer Research Laboratory, Vietnam National University, Ho Chi Minh City , 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Vietnam
| | - Suresh Awale
- Division of Natural Drug Discovery, Institute of Natural Medicine, University of Toyama , 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
24
|
Reporter nanoparticle that monitors its anticancer efficacy in real time. Proc Natl Acad Sci U S A 2016; 113:E2104-13. [PMID: 27036008 DOI: 10.1073/pnas.1603455113] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The ability to monitor the efficacy of an anticancer treatment in real time can have a critical effect on the outcome. Currently, clinical readouts of efficacy rely on indirect or anatomic measurements, which occur over prolonged time scales postchemotherapy or postimmunotherapy and may not be concordant with the actual effect. Here we describe the biology-inspired engineering of a simple 2-in-1 reporter nanoparticle that not only delivers a cytotoxic or an immunotherapy payload to the tumor but also reports back on the efficacy in real time. The reporter nanoparticles are engineered from a novel two-staged stimuli-responsive polymeric material with an optimal ratio of an enzyme-cleavable drug or immunotherapy (effector elements) and a drug function-activatable reporter element. The spatiotemporally constrained delivery of the effector and the reporter elements in a single nanoparticle produces maximum signal enhancement due to the availability of the reporter element in the same cell as the drug, thereby effectively capturing the temporal apoptosis process. Using chemotherapy-sensitive and chemotherapy-resistant tumors in vivo, we show that the reporter nanoparticles can provide a real-time noninvasive readout of tumor response to chemotherapy. The reporter nanoparticle can also monitor the efficacy of immune checkpoint inhibition in melanoma. The self-reporting capability, for the first time to our knowledge, captures an anticancer nanoparticle in action in vivo.
Collapse
|
25
|
Yanagi M, Ninomiya R, Ueda Y, Furuta T, Yamada T, Sunazuka T, Kawabata T. Organocatalytic Site-Selective Acylation of 10-Deacetylbaccatin III. Chem Pharm Bull (Tokyo) 2016; 64:907-12. [PMID: 26903156 DOI: 10.1248/cpb.c16-00037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Organocatalytic site-selective diversification of 10-deacetylbaccatin III, a key natural product for the semisynthesis of taxol, has been achieved. Various acyl groups were selectively introduced into the C(10)-OH of 10-deacetylbaccatin III. The C(10)-OH selective acylation was also applied to acylative site-selective dimerization of 10-deacetylbaccatin III to provide the structurally defined dimer.
Collapse
|
26
|
Arosio D, Casagrande C. Advancement in integrin facilitated drug delivery. Adv Drug Deliv Rev 2016; 97:111-43. [PMID: 26686830 DOI: 10.1016/j.addr.2015.12.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/27/2015] [Accepted: 12/03/2015] [Indexed: 02/06/2023]
Abstract
The research of integrin-targeted anticancer agents has recorded important advancements in ingenious design of delivery systems, based either on the prodrug approach, or on nanoparticle carriers, but for now, none of these has reached a clinical stage of development. Past work in this area has been extensively reviewed by us and others. Thus, the purpose and scope of the present review is to survey the advancement reported in the last 3years, with focus on innovative delivery systems that appear to afford openings for future developments. These systems exploit the labelling with conventional and novel integrin ligands for targeting the interface of cancer cells and of endothelial cells involved in cancer angiogenesis, with the proteins of the extracellular matrix, in the circulation, in tissues, and in tumour stroma, as the site of progression and metastatic evolution of the disease. Furthermore, these systems implement the expertise in the development of nanomedicines to the purpose of achieving preferential biodistribution and uptake in cancer tissues, internalisation in cancer cells, and release of the transported drugs at intracellular sites. The assessment of the value of controlling these factors, and their combination, for future developments requires support of biological testing in appropriate mechanistic models, but also imperatively demand confirmation in therapeutically relevant in vivo models for biodistribution, efficacy, and lack of off-target effects. Thus, among many studies, we have tried to point out the results supported by relevant in vivo studies, and we have emphasised in specific sections those addressing the medical needs of drug delivery to brain tumours, as well as the delivery of oligonucleotides modulating gene-dependent pathological mechanism. The latter could constitute the basis of a promising third branch in the therapeutic armamentarium against cancer, in addition to antibody-based agents and to cytotoxic agents.
Collapse
Affiliation(s)
- Daniela Arosio
- Istituto di Scienze e Tecnologie Molecolari (ISTM), CNR, Via C. Golgi 19, I-20133 Milan, Italy.
| | - Cesare Casagrande
- Università degli Studi di Milano, Dipartimento di Chimica, Via C. Golgi 19, I-20133 Milan, Italy.
| |
Collapse
|
27
|
Ramírez-Estrada K, Altabella T, Onrubia M, Moyano E, Notredame C, Osuna L, Vanden Bossche R, Goossens A, Cusido RM, Palazon J. Transcript profiling of jasmonate-elicited Taxus cells reveals a β-phenylalanine-CoA ligase. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:85-96. [PMID: 25899320 PMCID: PMC11389183 DOI: 10.1111/pbi.12359] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/28/2015] [Accepted: 02/16/2015] [Indexed: 05/22/2023]
Abstract
Plant cell cultures constitute eco-friendly biotechnological platforms for the production of plant secondary metabolites with pharmacological activities, as well as a suitable system for extending our knowledge of secondary metabolism. Despite the high added value of taxol and the importance of taxanes as anticancer compounds, several aspects of their biosynthesis remain unknown. In this work, a genomewide expression analysis of jasmonate-elicited Taxus baccata cell cultures by complementary DNA-amplified fragment length polymorphism (cDNA-AFLP) indicated a correlation between an extensive elicitor-induced genetic reprogramming and increased taxane production in the targeted cultures. Subsequent in silico analysis allowed us to identify 15 genes with a jasmonate-induced differential expression as putative candidates for genes encoding enzymes involved in five unknown steps of taxane biosynthesis. Among them, the TB768 gene showed a strong homology, including a very similar predicted 3D structure, with other genes previously reported to encode acyl-CoA ligases, thus suggesting a role in the formation of the taxol lateral chain. Functional analysis confirmed that the TB768 gene encodes an acyl-CoA ligase that localizes to the cytoplasm and is able to convert β-phenylalanine, as well as coumaric acid, into their respective derivative CoA esters. β-phenylalanyl-CoA is attached to baccatin III in one of the last steps of the taxol biosynthetic pathway. The identification of this gene will contribute to the establishment of sustainable taxol production systems through metabolic engineering or synthetic biology approaches.
Collapse
Affiliation(s)
- Karla Ramírez-Estrada
- Secció de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Barcelona, Spain
| | - Teresa Altabella
- Secció de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Barcelona, Spain
- Center for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB), Cerdanyola, Barcelona, Spain
| | - Miriam Onrubia
- Departament de Ciències Experimentals i de Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Elisabeth Moyano
- Departament de Ciències Experimentals i de Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Cedric Notredame
- Departament de Ciències Experimentals i de Salut, Universitat Pompeu Fabra, Barcelona, Spain
- Comparative Bioinformatics, Centre for Genomic Regulation (CRG), Barcelona, Spain
| | - Lidia Osuna
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Xochitepec, Mexico
| | - Robin Vanden Bossche
- Department of Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Rosa M Cusido
- Secció de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Barcelona, Spain
| | - Javier Palazon
- Secció de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
28
|
Anticancer efficacy and toxicokinetics of a novel paclitaxel-clofazimine nanoparticulate co-formulation. Drug Deliv Transl Res 2015; 5:257-67. [PMID: 25795051 DOI: 10.1007/s13346-015-0222-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Contemporary chemotherapy is limited by disseminated, resistant cancer. Targeting nanoparticulate drug delivery systems that encapsulate synergistic drug combinations are a rational means to increase the therapeutic index of chemotherapeutics. A lipopolymeric micelle co-encapsulating an in vitro optimized, synergistic fixed-ratio combination of paclitaxel (PTX) and clofazimine (B663) has been developed and called Riminocelles™. The present pre-clinical study investigated the acute toxicity, systemic exposure, repeat dose toxicity and efficacy of Riminocelles in parallel to Taxol® at an equivalent PTX dose of 10 mg/kg. Daily and weekly dosing schedules were evaluated against Pgp-expressing human colon adenocarcinoma (HCT-15) xenografts implanted subcutaneously in athymic mice. Riminocelles produced statistically significant (p < .05) tumor growth delays of 3.2 and 2.7 days for the respective schedules in contrast to Taxol delaying growth by 0.5 and 0.6 days. Using the control tumor doubling time of 4.2 days, tumor-cell-kill values of 0.23 for Riminocelles and 0.04 for Taxol following daily schedules were calculated. A significant weight loss of 5.7% after 14 days (p < 0.05) relative to the control group (n = 8) was observed for the daily Taxol group whereas Riminocelles did not incur significant weight loss neither were blood markers of toxicity elevated after acute administration (n = 3). The safety and efficacy of Riminocelles is statistically superior to Taxol. However, passive tumor targeting was not achieved and the tumor burden progressed quickly. Prior to further animal studies, the in vivo thermodynamic instability of the simple lipopolymeric micellular delivery system requires improvement so as to maintain and selectively deliver the fixed-ratio drug combination.
Collapse
|
29
|
Paclitaxel and Its Evolving Role in the Management of Ovarian Cancer. BIOMED RESEARCH INTERNATIONAL 2015. [PMID: 26137480 DOI: 10.1155/2015/413076] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Paclitaxel, a class of taxane with microtubule stabilising ability, has remained with platinum based therapy, the standard care for primary ovarian cancer management. A deeper understanding of the immunological basis and other potential mechanisms of action together with new dosing schedules and/or routes of administration may potentiate its clinical benefit. Newer forms of taxanes, with better safety profiles and higher intratumoural cytotoxicity, have yet to demonstrate clinical superiority over the parent compound.
Collapse
|
30
|
Paclitaxel and Its Evolving Role in the Management of Ovarian Cancer. BIOMED RESEARCH INTERNATIONAL 2015. [PMID: 26137480 DOI: 10.1155/2015/413076]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Paclitaxel, a class of taxane with microtubule stabilising ability, has remained with platinum based therapy, the standard care for primary ovarian cancer management. A deeper understanding of the immunological basis and other potential mechanisms of action together with new dosing schedules and/or routes of administration may potentiate its clinical benefit. Newer forms of taxanes, with better safety profiles and higher intratumoural cytotoxicity, have yet to demonstrate clinical superiority over the parent compound.
Collapse
|
31
|
Kampan NC, Madondo MT, McNally OM, Quinn M, Plebanski M. Paclitaxel and Its Evolving Role in the Management of Ovarian Cancer. BIOMED RESEARCH INTERNATIONAL 2015; 2015:413076. [PMID: 26137480 PMCID: PMC4475536 DOI: 10.1155/2015/413076] [Citation(s) in RCA: 220] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/07/2015] [Indexed: 02/06/2023]
Abstract
Paclitaxel, a class of taxane with microtubule stabilising ability, has remained with platinum based therapy, the standard care for primary ovarian cancer management. A deeper understanding of the immunological basis and other potential mechanisms of action together with new dosing schedules and/or routes of administration may potentiate its clinical benefit. Newer forms of taxanes, with better safety profiles and higher intratumoural cytotoxicity, have yet to demonstrate clinical superiority over the parent compound.
Collapse
Affiliation(s)
- Nirmala Chandralega Kampan
- Department of Immunology, Monash University, Level 6, The Alfred, Commercial Road, Melbourne, VIC 3181, Australia
- Gynaeoncology Unit, Royal Women's Hospital, 20 Flemington Road, Parkville, Melbourne, VIC 3052, Australia
| | - Mutsa Tatenda Madondo
- Department of Immunology, Monash University, Level 6, The Alfred, Commercial Road, Melbourne, VIC 3181, Australia
| | - Orla M. McNally
- Gynaeoncology Unit, Royal Women's Hospital, 20 Flemington Road, Parkville, Melbourne, VIC 3052, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Michael Quinn
- Gynaeoncology Unit, Royal Women's Hospital, 20 Flemington Road, Parkville, Melbourne, VIC 3052, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Magdalena Plebanski
- Department of Immunology, Monash University, Level 6, The Alfred, Commercial Road, Melbourne, VIC 3181, Australia
| |
Collapse
|
32
|
Isolation and cytotoxicity evaluation of taxanes from the barks of Taxus wallichiana var. mairei. Bioorg Med Chem Lett 2015; 25:1240-3. [DOI: 10.1016/j.bmcl.2015.01.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/07/2015] [Accepted: 01/23/2015] [Indexed: 11/23/2022]
|
33
|
Barat R, Legigan T, Tranoy-Opalinski I, Renoux B, Péraudeau E, Clarhaut J, Poinot P, Fernandes AE, Aucagne V, Leigh DA, Papot S. A mechanically interlocked molecular system programmed for the delivery of an anticancer drug. Chem Sci 2015; 6:2608-2613. [PMID: 29308165 PMCID: PMC5649224 DOI: 10.1039/c5sc00648a] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 02/23/2015] [Indexed: 11/21/2022] Open
Abstract
The development of mechanically interlocked molecular systems programmed to operate autonomously in biological environments is an emerging field of research with potential medicinal applications.
The development of mechanically interlocked molecular systems programmed to operate autonomously in biological environments is an emerging field of research with potential medicinal applications. Within this framework, functional rotaxane- and pseudorotaxane-based architectures are starting to attract interest for the delivery of anticancer drugs, with the ultimate goal to improve the efficiency of cancer chemotherapy. Here, we report an enzyme-sensitive [2]-rotaxane designed to release a potent anticancer drug within tumor cells. The molecular device includes a protective ring that prevents the premature liberation of the drug in plasma. However, once located inside cancer cells the [2]-rotaxane leads to the release of the drug through the controlled disassembly of the mechanically interlocked components, in response to a determined sequence of two distinct enzymatic activations. Furthermore, in vitro biological evaluations reveal that this biocompatible functional system exhibits a noticeable level of selectivity for cancer cells overexpressing β-galactosidase.
Collapse
Affiliation(s)
- Romain Barat
- Université de Poitiers , UMR-CNRS 7285 , Institut de Chimie des Milieux et des Matériaux de Poitiers , groupe « Systèmes Moléculaires Programmés » , 4 rue Michel Brunet, TSA 51106 , 86073 Poitiers , France .
| | - Thibaut Legigan
- Université de Poitiers , UMR-CNRS 7285 , Institut de Chimie des Milieux et des Matériaux de Poitiers , groupe « Systèmes Moléculaires Programmés » , 4 rue Michel Brunet, TSA 51106 , 86073 Poitiers , France .
| | - Isabelle Tranoy-Opalinski
- Université de Poitiers , UMR-CNRS 7285 , Institut de Chimie des Milieux et des Matériaux de Poitiers , groupe « Systèmes Moléculaires Programmés » , 4 rue Michel Brunet, TSA 51106 , 86073 Poitiers , France .
| | - Brigitte Renoux
- Université de Poitiers , UMR-CNRS 7285 , Institut de Chimie des Milieux et des Matériaux de Poitiers , groupe « Systèmes Moléculaires Programmés » , 4 rue Michel Brunet, TSA 51106 , 86073 Poitiers , France .
| | - Elodie Péraudeau
- Université de Poitiers , CNRS ERL 7368 , 1 rue Georges Bonnet, TSA 51106 , 86073 Poitiers , France.,CHU de Poitiers , 2 rue de la Milétrie, CS 90577 , 86021 Poitiers , France
| | - Jonathan Clarhaut
- Université de Poitiers , UMR-CNRS 7285 , Institut de Chimie des Milieux et des Matériaux de Poitiers , groupe « Systèmes Moléculaires Programmés » , 4 rue Michel Brunet, TSA 51106 , 86073 Poitiers , France . .,CHU de Poitiers , 2 rue de la Milétrie, CS 90577 , 86021 Poitiers , France
| | - Pauline Poinot
- Université de Poitiers , UMR-CNRS 7285 , Institut de Chimie des Milieux et des Matériaux de Poitiers , Equipe Eau, Géochimie Organique, Santé (EGS) , 4 rue Michel Brunet, TSA 51106 , 86073 Poitiers , France
| | - Antony E Fernandes
- Institute of Condensed Matter and Nanoscience , Université catholique de Louvain , place Croix du Sud , 1348 Louvain-la-Neuve , Belgium
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire , CNRS , rue Charles Sadron , 45071 Orléans Cedex 2 , France
| | - David A Leigh
- School of Chemistry University of Manchester , Oxford road , Manchester MP13 9PL , UK
| | - Sébastien Papot
- Université de Poitiers , UMR-CNRS 7285 , Institut de Chimie des Milieux et des Matériaux de Poitiers , groupe « Systèmes Moléculaires Programmés » , 4 rue Michel Brunet, TSA 51106 , 86073 Poitiers , France .
| |
Collapse
|
34
|
Onyango JO, Chung MS, Eng CH, Klees LM, Langenbacher R, Yao L, An M. Noncanonical amino acids to improve the pH response of pHLIP insertion at tumor acidity. Angew Chem Int Ed Engl 2015; 54:3658-3663. [PMID: 25650762 DOI: 10.1002/anie.201409770] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 11/27/2014] [Indexed: 12/17/2022]
Abstract
The pH low insertion peptide (pHLIP) offers the potential to deliver drugs selectively to the cytoplasm of cancer cells based on tumor acidosis. The WT pHLIP inserts into membranes with a pH50 of 6.1, while most solid tumors have extracellular pH (pH(e)) of 6.5-7.0. To close this gap, a SAR study was carried out to search for pHLIP variants with improved pH response. Replacing Asp25 with α-aminoadipic acid (Aad) adjusts the pH50 to 6.74, matching average tumor acidity, and replacing Asp14 with γ-carboxyglutamic acid (Gla) increases the sharpness of pH response (transition over 0.5 instead of 1 pH unit). These effects are additive: the Asp14Gla/Asp25Aad double variant shows a pH50 of 6.79, with sharper transition than Asp25Aad. Furthermore, the advantage of the double variant over WT pHLIP in terms of cargo delivery was demonstrated in turn-on fluorescence assays and anti-proliferation studies (using paclitaxel as cargo) in A549 lung cancer cells at pH 6.6.
Collapse
Affiliation(s)
- Joab O Onyango
- Department of Chemistry, State University of New York (SUNY), Binghamton University P. O. Box 6000, Binghamton, NY 13902 (USA)
| | - Michael S Chung
- Department of Chemistry, State University of New York (SUNY), Binghamton University P. O. Box 6000, Binghamton, NY 13902 (USA)
| | - Chee-Huat Eng
- Department of Chemistry, State University of New York (SUNY), Binghamton University P. O. Box 6000, Binghamton, NY 13902 (USA)
| | - Lukas M Klees
- Department of Chemistry, State University of New York (SUNY), Binghamton University P. O. Box 6000, Binghamton, NY 13902 (USA)
| | - Rachel Langenbacher
- Department of Chemistry, State University of New York (SUNY), Binghamton University P. O. Box 6000, Binghamton, NY 13902 (USA)
| | - Lan Yao
- Department of Physics, Applied Physics and Astronomy State University of New York (SUNY), Binghamton University P. O. Box 6000, Binghamton, NY 13902 (USA)
| | - Ming An
- Department of Chemistry, State University of New York (SUNY), Binghamton University P. O. Box 6000, Binghamton, NY 13902 (USA)
| |
Collapse
|
35
|
Onyango JO, Chung MS, Eng CH, Klees LM, Langenbacher R, Yao L, An M. Noncanonical Amino Acids to Improve the pH Response of pHLIP Insertion at Tumor Acidity. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201409770] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
36
|
Fridlender M, Kapulnik Y, Koltai H. Plant derived substances with anti-cancer activity: from folklore to practice. FRONTIERS IN PLANT SCIENCE 2015; 6:799. [PMID: 26483815 PMCID: PMC4589652 DOI: 10.3389/fpls.2015.00799] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/14/2015] [Indexed: 05/20/2023]
Abstract
Plants have had an essential role in the folklore of ancient cultures. In addition to the use as food and spices, plants have also been utilized as medicines for over 5000 years. It is estimated that 70-95% of the population in developing countries continues to use traditional medicines even today. A new trend, that involved the isolation of plant active compounds begun during the early nineteenth century. This trend led to the discovery of different active compounds that are derived from plants. In the last decades, more and more new materials derived from plants have been authorized and subscribed as medicines, including those with anti-cancer activity. Cancer is among the leading causes of morbidity and mortality worldwide. The number of new cases is expected to rise by about 70% over the next two decades. Thus, there is a real need for new efficient anti-cancer drugs with reduced side effects, and plants are a promising source for such entities. Here we focus on some plant-derived substances exhibiting anti-cancer and chemoprevention activity, their mode of action and bioavailability. These include paclitaxel, curcumin, and cannabinoids. In addition, development and use of their synthetic analogs, and those of strigolactones, are discussed. Also discussed are commercial considerations and future prospects for development of plant derived substances with anti-cancer activity.
Collapse
Affiliation(s)
| | | | - Hinanit Koltai
- *Correspondence: Hinanit Koltai, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, POB6, Bet Dagan 50250, Israel,
| |
Collapse
|
37
|
Baccatin III, a precursor for the semisynthesis of paclitaxel, inhibits the accumulation and suppressive activity of myeloid-derived suppressor cells in tumor-bearing mice. Int Immunopharmacol 2014; 21:487-93. [DOI: 10.1016/j.intimp.2014.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 06/05/2014] [Accepted: 06/09/2014] [Indexed: 01/04/2023]
|
38
|
Lee ST, Welch KD, Panter KE, Gardner DR, Garrossian M, Chang CWT. Cyclopamine: from cyclops lambs to cancer treatment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:7355-7362. [PMID: 24754790 DOI: 10.1021/jf5005622] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In the late 1960s, the steroidal alkaloid cyclopamine was isolated from the plant Veratrum californicum and identified as the teratogen responsible for craniofacial birth defects including cyclops in the offspring of sheep grazing on mountain ranges in the western United States. Cyclopamine was found to inhibit the hedgehog (Hh) signaling pathway, which plays a critical role in embryonic development. More recently, aberrant Hh signaling has been implicated in several types of cancer. Thus, inhibitors of the Hh signaling pathway, including cyclopamine derivatives, have been targeted as potential treatments for certain cancers and other diseases associated with the Hh signaling pathway. A brief history of cyclopamine and cyclopamine derivatives investigated for the treatment of cancer is presented.
Collapse
Affiliation(s)
- Stephen T Lee
- Poisonous Plant Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, 1150 East 1400 North, Logan, Utah 84341, United States
| | | | | | | | | | | |
Collapse
|
39
|
Vargas JR, Stanzl EG, Teng NNH, Wender PA. Cell-penetrating, guanidinium-rich molecular transporters for overcoming efflux-mediated multidrug resistance. Mol Pharm 2014; 11:2553-65. [PMID: 24798708 PMCID: PMC4123947 DOI: 10.1021/mp500161z] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
Multidrug resistance (MDR) is a major
cause of chemotherapy failure
in the clinic. Drugs that were once effective against naïve
disease subsequently prove ineffective against recurrent disease,
which often exhibits an MDR phenotype. MDR can be attributed to many
factors; often dominating among these is the ability of a cell to
suppress or block drug entry through upregulation of membrane-bound
drug efflux pumps. Efflux pumps exhibit polyspecificity, recognizing
and exporting many different types of drugs, especially those whose
lipophilic nature contributes to residence in the membrane. We have
developed a general strategy to overcome efflux-based resistance.
This strategy involves conjugating a known drug that succumbs to efflux-mediated
resistance to a cell-penetrating molecular transporter, specifically,
the cell-penetrating peptide (CPP), d-octaarginine. The resultant
conjugates are discrete single entities (not particle mixtures) and
highly water-soluble. They rapidly enter cells, are not substrates
for efflux pumps, and release the free drug only after cellular entry
at a rate controlled by linker design and favored by target cell chemistry.
This general strategy can be applied to many classes of drugs and
allows for an exceptionally rapid advance to clinical testing, especially
of drugs that succumb to resistance. The efficacy of this strategy
has been successfully demonstrated with Taxol in cellular and animal
models of resistant cancer and with ex vivo samples from patients
with ovarian cancer. Next generation efforts in this area will involve
the extension of this strategy to other chemotherapeutics and other
MDR-susceptible diseases.
Collapse
Affiliation(s)
- Jessica R Vargas
- Departments of Chemistry and Chemical and Systems Biology, Stanford University , Stanford, California 94305, United States
| | | | | | | |
Collapse
|
40
|
Ojima I, Kamath A, Seitz JD. Taxol, Taxoids, and Related Taxanes. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1002/9783527676545.ch04] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
41
|
Zou J, Zhang F, Zhang S, Pollack SF, Elsabahy M, Fan J, Wooley KL. Poly(ethylene oxide)-block-polyphosphoester-graft-paclitaxel conjugates with acid-labile linkages as a pH-sensitive and functional nanoscopic platform for paclitaxel delivery. Adv Healthc Mater 2014; 3:441-8. [PMID: 23997013 PMCID: PMC3938983 DOI: 10.1002/adhm.201300235] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/31/2013] [Indexed: 11/10/2022]
Abstract
There has been an increasing interest to develop new types of stimuli-responsive drug delivery vehicles with high drug loading and controlled release properties for chemotherapeutics. An acid-labile poly(ethylene oxide)-block-polyphosphoester-graft-PTX drug conjugate (PEO-b-PPE-g-PTX G2) degradable, polymeric paclitaxel (PTX) conjugate containing ultra-high levels of PTX loading is improved significantly, in this second-generation development, which involves connection of each PTX molecule to the polymer backbone via a pH-sensitive β-thiopropionate linkage. The PEO-b-PPE-g-PTX G2 forms well-defined nanoparticles in an aqueous solution, by direct dissolution into water, with a number-averaged hydrodynamic diameter of 114 ± 31 nm, and exhibits a PTX loading capacity as high as 53 wt%, with a maximum PTX concentration of 0.68 mg mL(-1) in water (vs 1.7 μg mL(-1) for free PTX). The PEO-b-PPE-g-PTX G2 shows accelerated drug release under acidic conditions (≈50 wt% PTX released in 8 d) compared with neutral conditions (≈20 wt% PTX released in 8 d). Compared to previously reported polyphosphoester-based PTX drug conjugates, PEO-b-PPE-g-PTX G1 without the β-thiopropionate linker, the PEO-b-PPE-g-PTX G2 shows pH-triggered drug release property and 5- to 8-fold enhanced in vitro cytotoxicity against two cancer cell lines.
Collapse
Affiliation(s)
- Jiong Zou
- Departments of Chemistry and Chemical Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. Box 30012, 3255 TAMU, College Station, TX 77842, USA
| | - Fuwu Zhang
- Departments of Chemistry and Chemical Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. Box 30012, 3255 TAMU, College Station, TX 77842, USA
| | - Shiyi Zhang
- Departments of Chemistry and Chemical Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. Box 30012, 3255 TAMU, College Station, TX 77842, USA
| | - Stephanie F. Pollack
- Departments of Chemistry and Chemical Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. Box 30012, 3255 TAMU, College Station, TX 77842, USA
| | - Mahmoud Elsabahy
- Departments of Chemistry and Chemical Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. Box 30012, 3255 TAMU, College Station, TX 77842, USA
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Jingwei Fan
- Departments of Chemistry and Chemical Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. Box 30012, 3255 TAMU, College Station, TX 77842, USA
| | - Karen L. Wooley
- Departments of Chemistry and Chemical Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. Box 30012, 3255 TAMU, College Station, TX 77842, USA
| |
Collapse
|
42
|
Chen XX, Gao F, Wang Q, Huang X, Wang D. Design, synthesis and biological evaluation of paclitaxel-mimics possessing only the oxetane D-ring and side chain structures. Fitoterapia 2014; 92:111-5. [DOI: 10.1016/j.fitote.2013.10.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/27/2013] [Accepted: 10/29/2013] [Indexed: 11/29/2022]
|
43
|
Mura S, Zouhiri F, Lerondel S, Maksimenko A, Mougin J, Gueutin C, Brambilla D, Caron J, Sliwinski E, Lepape A, Desmaele D, Couvreur P. Novel isoprenoyl nanoassembled prodrug for paclitaxel delivery. Bioconjug Chem 2013; 24:1840-9. [PMID: 24134705 DOI: 10.1021/bc400210x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A new paclitaxel (Ptx) prodrug was designed by coupling a single terpene unit (MIP) to the hydroxyl group in position 2' of the drug molecule. Using a squalene derivative of polyethylene glycol (SQ-PEG) as surface active agent, the resulting bioconjugate (PtxMIP) self-assembled in water leading to the formation of stable nanoparticles (PtxMIP_SQ-PEG NPs) with an impressively high drug loading (82%). In vivo, the anticancer activity of this novel Ptx nanoassembled prodrug was compared to the conventional Cremophor-containing formulation (Taxol) on a murine model of breast cancer lung metastasis induced by intravenous injection of 4T1 tumor cells, genetically modified to stably express firefly luciferase. Cell growth was assessed noninvasively by bioluminescence imaging (BLI) which enabled monitoring tumor metastatic burden in the same animals. PtxMIP_SQ-PEG nanoparticles slowed metastatic spread and were better tolerated than the Cremophor-containing formulation (i.e., free drug), thus demonstrating the potential of terpene-based nanoassembled prodrugs in the improvement of the therapeutic index of Ptx in balb/c mice.
Collapse
Affiliation(s)
- Simona Mura
- Université Paris-Sud , Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry cedex, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Afon’kin AA, Kostrikin LM, Shumeiko AE, Popov AF, Matveev AA, Matvienko VN, Zabudkin AF. Regio- and stereoselective methods for the conversion of (2S,3R)-β-phenylglycidic acid esters to taxoids and other enantiopure (2R,3S)-phenylisoserine esters. Russ Chem Bull 2013. [DOI: 10.1007/s11172-012-0302-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
|
46
|
Dao KL, Hanson RN. Targeting the Estrogen Receptor using Steroid–Therapeutic Drug Conjugates (Hybrids). Bioconjug Chem 2012; 23:2139-58. [DOI: 10.1021/bc300378e] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Kinh-Luan Dao
- Department of Chemistry and Chemical Biology Department, Northeastern University, 360 Huntington Avenue, Boston
Massachusetts 02115-50000
| | - Robert N. Hanson
- Department of Chemistry and Chemical Biology Department, Northeastern University, 360 Huntington Avenue, Boston
Massachusetts 02115-50000
| |
Collapse
|
47
|
Pilkington-Miksa M, Arosio D, Battistini L, Belvisi L, De Matteo M, Vasile F, Burreddu P, Carta P, Rassu G, Perego P, Carenini N, Zunino F, De Cesare M, Castiglioni V, Scanziani E, Scolastico C, Casiraghi G, Zanardi F, Manzoni L. Design, Synthesis, and Biological Evaluation of Novel cRGD–Paclitaxel Conjugates for Integrin-Assisted Drug Delivery. Bioconjug Chem 2012; 23:1610-22. [DOI: 10.1021/bc300164t] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michael Pilkington-Miksa
- Centro Interdipartimentale
Studi Biomolecolari e Applicazioni Industriali, Università degli Studi di Milano, Via Fantoli
16/15, I-20138 Milano, Italy
| | - Daniela Arosio
- Istituto di Scienze
e Tecnologie Molecolari, Consiglio Nazionale delle Ricerche, Via Golgi 19, I-20133 Milano, Italy
| | - Lucia Battistini
- Dipartimento Farmaceutico, Università degli Studi di Parma, Parco Area
delle Scienze 27A, I-43124 Parma, Italy
| | - Laura Belvisi
- Dipartimento di Chimica
Organica e Industriale, Università degli Studi di Milano, Via Venezian 21, I-20133 Milano,
Italy
| | - Marilenia De Matteo
- Centro Interdipartimentale
Studi Biomolecolari e Applicazioni Industriali, Università degli Studi di Milano, Via Fantoli
16/15, I-20138 Milano, Italy
| | - Francesca Vasile
- Centro Interdipartimentale
Studi Biomolecolari e Applicazioni Industriali, Università degli Studi di Milano, Via Fantoli
16/15, I-20138 Milano, Italy
| | - Paola Burreddu
- Istituto
di Chimica
Biomolecolare, Consiglio Nazionale delle Ricerche, Traversa La Crucca 3, I-07100 Li Punti, Sassari,
Italy
| | - Paola Carta
- Porto Conte Ricerche Srl, I-07041 Tramariglio Alghero, Sassari, Italy
| | - Gloria Rassu
- Istituto
di Chimica
Biomolecolare, Consiglio Nazionale delle Ricerche, Traversa La Crucca 3, I-07100 Li Punti, Sassari,
Italy
| | - Paola Perego
- Dipartimento di Oncologia Sperimentale
e Medicina Molecolare, Fondazione IRCCS Istituto Nazionale Tumori, Via Amadeo 42, I-20133 Milano, Italy
| | - Nives Carenini
- Dipartimento di Oncologia Sperimentale
e Medicina Molecolare, Fondazione IRCCS Istituto Nazionale Tumori, Via Amadeo 42, I-20133 Milano, Italy
| | - Franco Zunino
- Dipartimento di Oncologia Sperimentale
e Medicina Molecolare, Fondazione IRCCS Istituto Nazionale Tumori, Via Amadeo 42, I-20133 Milano, Italy
| | - Michelandrea De Cesare
- Dipartimento di Oncologia Sperimentale
e Medicina Molecolare, Fondazione IRCCS Istituto Nazionale Tumori, Via Amadeo 42, I-20133 Milano, Italy
| | - Vittoria Castiglioni
- Dipartimento di
Patologia Animale, Igiene e Sanità Pubblica Veterinaria
(DIPAV), Facoltà di Medicina Veterinaria, Università degli Studi di Milano, Via Celoria 10, I-20133 Milano,
Italy
- Mouse and Animal Pathology
Laboratory, Fondazione Filarete, Viale
Ortles 22/4, I-20139 Milano,
Italy
| | - Eugenio Scanziani
- Dipartimento di
Patologia Animale, Igiene e Sanità Pubblica Veterinaria
(DIPAV), Facoltà di Medicina Veterinaria, Università degli Studi di Milano, Via Celoria 10, I-20133 Milano,
Italy
- Mouse and Animal Pathology
Laboratory, Fondazione Filarete, Viale
Ortles 22/4, I-20139 Milano,
Italy
| | - Carlo Scolastico
- Centro Interdipartimentale
Studi Biomolecolari e Applicazioni Industriali, Università degli Studi di Milano, Via Fantoli
16/15, I-20138 Milano, Italy
| | - Giovanni Casiraghi
- Dipartimento Farmaceutico, Università degli Studi di Parma, Parco Area
delle Scienze 27A, I-43124 Parma, Italy
| | - Franca Zanardi
- Dipartimento Farmaceutico, Università degli Studi di Parma, Parco Area
delle Scienze 27A, I-43124 Parma, Italy
| | - Leonardo Manzoni
- Istituto di Scienze
e Tecnologie Molecolari, Consiglio Nazionale delle Ricerche, Via Golgi 19, I-20133 Milano, Italy
| |
Collapse
|
48
|
Feng L, Mumper RJ. A critical review of lipid-based nanoparticles for taxane delivery. Cancer Lett 2012; 334:157-75. [PMID: 22796606 DOI: 10.1016/j.canlet.2012.07.006] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 07/04/2012] [Indexed: 12/24/2022]
Abstract
Nano-based delivery systems have attracted a great deal of attention in the past two decades as a strategy to overcome the low therapeutic index of conventional anticancer drugs and delivery barriers in solid tumors. Myriads of preclinical studies have been focused on developing nano-based formulations to effectively deliver taxanes, one of the most important and most prescribed anticancer drug types in the clinic. Given the hydrophobic property of taxanes, lipid-based NPs, serve as a viable alternative delivery system. This critical review will provide an overview and perspective of the advancement of lipid-based nanoparticles for taxane delivery. Currently available formulations of taxanes and their drawbacks as well as criteria for idea taxane delivery system will be discussed.
Collapse
Affiliation(s)
- Lan Feng
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
49
|
Analogue-based drug discovery: Contributions to medicinal chemistry principles and drug design strategies. Microtubule stabilizers as a case in point (Special Topic Article). PURE APPL CHEM 2012. [DOI: 10.1351/pac-con-12-02-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The benefits of utilizing marketed drugs as starting points to discover new therapeutic agents have been well documented within the IUPAC series of books that bear the title Analogue-based Drug Discovery (ABDD). Not as clearly demonstrated, however, is that ABDD also contributes to the elaboration of new basic principles and alternative drug design strategies that are useful to the field of medicinal chemistry in general. After reviewing the ABDD programs that have evolved around the area of microtubule-stabilizing chemo-therapeutic agents, the present article delineates the associated research activities that additionally contributed to general strategies that can be useful for prodrug design, identifying pharmacophores, circumventing multidrug resistance (MDR), and achieving targeted drug distribution.
Collapse
|
50
|
Marienhagen J, Bott M. Metabolic engineering of microorganisms for the synthesis of plant natural products. J Biotechnol 2012; 163:166-78. [PMID: 22687248 DOI: 10.1016/j.jbiotec.2012.06.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/29/2012] [Accepted: 06/01/2012] [Indexed: 11/17/2022]
Abstract
Of more than 200,000 plant natural products known to date, many demonstrate important pharmacological activities or are of biotechnological significance. However, isolation from natural sources is usually limited by low abundance and environmental, seasonal as well as regional variation, whereas total chemical synthesis is typically commercially unfeasible considering the complex structures of most plant natural products. With advances in DNA sequencing and recombinant DNA technology many of the biosynthetic pathways responsible for the production of these valuable compounds have been elucidated, offering the opportunity of a functional integration of biosynthetic pathways in suitable microorganisms. This approach offers promise to provide sufficient quantities of the desired plant natural products from inexpensive renewable resources. This review covers recent advancements in the metabolic engineering of microorganisms for the production of plant natural products such as isoprenoids, phenylpropanoids and alkaloids, and highlights general approaches and strategies to gain access to the rich biochemical diversity of plants by employing the biosynthetic power of microorganisms.
Collapse
Affiliation(s)
- Jan Marienhagen
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, D-52425 Jülich, Germany.
| | | |
Collapse
|