1
|
Šola I, Poljuha D, Pavičić I, Jurinjak Tušek A, Šamec D. Climate Change and Plant Foods: The Influence of Environmental Stressors on Plant Metabolites and Future Food Sources. Foods 2025; 14:416. [PMID: 39942008 PMCID: PMC11817548 DOI: 10.3390/foods14030416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Climate change is reshaping global agriculture by altering temperature regimes and other environmental conditions, with profound implications for food security and agricultural productivity. This review examines how key environmental stressors-such as extreme temperatures, water scarcity, increased salinity, UV-B radiation, and elevated concentrations of ozone and CO2-impact the nutritional quality and bioactive compounds in plant-based foods. These stressors can modify the composition of essential nutrients, particularly phytochemicals, which directly affect the viability of specific crops in certain regions and subsequently influence human dietary patterns by shifting the availability of key food resources. To address these challenges, there is growing interest in resilient plant species, including those with natural tolerance to stress and genetically modified variants, as well as in alternative protein sources derived from plants. Additionally, unconventional food sources, such as invasive plant species and algae, are being explored as sustainable solutions for future nutrition.
Collapse
Affiliation(s)
- Ivana Šola
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia;
| | - Danijela Poljuha
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (D.P.); (I.P.)
| | - Ivana Pavičić
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (D.P.); (I.P.)
| | - Ana Jurinjak Tušek
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia;
| | - Dunja Šamec
- Department of Food Technology, University North, Trg Dr. Žarka Dolinara 1, 48000 Koprivnica, Croatia
| |
Collapse
|
2
|
Deryabin A, Zhukova K, Naraikina N, Venzhik Y. Effect of Low Temperature on Content of Primary Metabolites in Two Wheat Genotypes Differing in Cold Tolerance. Metabolites 2024; 14:199. [PMID: 38668327 PMCID: PMC11052526 DOI: 10.3390/metabo14040199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/11/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
The study of cold-tolerance mechanisms of wheat as a leading cereal crop is very relevant to science. Primary metabolites play an important role in the formation of increased cold tolerance. The aim of this research is to define changes in the content of primary metabolites (soluble proteins and sugars), growth, and photosynthetic apparatus of freezing-tolerant and cold-sustainable wheat (Triticum aestivum L.) genotypes under optimal conditions and after prolonged (7 days) exposure to low temperature (4 °C). In order to gain a deeper comprehension of the mechanisms behind wheat genotypes' adaptation to cold, we determined the expression levels of photosynthetic genes (RbcS, RbcL) and genes encoding cold-regulated proteins (Wcor726, CBF14). The results indicated different cold-adaptation strategies of freezing-tolerant and cold-sustainable wheat genotypes, with soluble proteins and sugars playing a significant role in this process. In plants of freezing-tolerant genotypes, the strategy of adaptation to low temperature was aimed at increasing the content of soluble proteins and modification of carbohydrate metabolism. The accumulation of sugars was not observed in wheat of cold-sustainable genotypes during chilling, but a high content of soluble proteins was maintained both under optimal conditions and after cold exposure. The adaptation strategies of wheat genotypes differing in cold tolerance were related to the expression of photosynthetic genes and genes encoding cold-regulated proteins. The data improve our knowledge of physiological and biochemical mechanisms of wheat cold adaptation.
Collapse
Affiliation(s)
- Alexander Deryabin
- K. A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow 127276, Russia; (K.Z.); (N.N.); (Y.V.)
| | | | | | | |
Collapse
|
3
|
Gong M, Huang T, Li Y, Li J, Tang L, Su E, Zou G, Bao D. Multi-Omics Analysis of Low-Temperature Fruiting Highlights the Promising Cultivation Application of the Nutrients Accumulation in Hypsizygus marmoreus. J Fungi (Basel) 2022; 8:jof8070695. [PMID: 35887452 PMCID: PMC9315786 DOI: 10.3390/jof8070695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 12/10/2022] Open
Abstract
Hypsizygus marmoreus is a representative edible mushroom with low-temperature fruiting after a long postripening (LFLP). Clarifying the mechanism of LFLP and applying a rigorous low-temperature-limited process will optimize the mushroom cultivation process. This study performed an integrative multi-omics analysis of the molecular mechanism of LFLP in combination with genetic, physiological, and cultivation confirmation. The results showed that the amino acid content was increased during LFLP, mainly arginine. pH analysis showed acidification in the postripening stage and alkalization in the substrates of the reproductive growth stage. An enzyme activity test confirmed the increased enzyme activity of arginase and citrate synthase in the postripening stage. Weighted gene coexpression network analysis of the transcriptome and metabolomics indicated that pH variation is correlated mainly with changes in citrate and arginine. Multi-omics reveals a straightforward way of providing enriched materials for amino acid biosynthesis, namely, synergistically elevating citric acid and arginine through enhanced activity of the arginine synthesis branch pathway in the citrate cycle. Our study confirmed that GCN2 mediated metabolic adaptation by enhancing protein translation, highlighting its regulatory role during LFLP. Exogenously added citric acid and arginine shortened the postripening period by 10 days and increased the fruiting body yield by 10.2~15.5%. This research sheds light on the molecular mechanism of LFLP in H. marmoreus and highlights the promising application of nutrient accumulation in high-efficiency cultivation.
Collapse
Affiliation(s)
- Ming Gong
- National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (M.G.); (Y.L.); (L.T.)
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Tianyu Huang
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China;
| | - Yan Li
- National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (M.G.); (Y.L.); (L.T.)
| | - Jinxin Li
- Research and Development Center, Shanghai Finc Bio-Tech Inc., Shanghai 201401, China;
| | - Lihua Tang
- National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (M.G.); (Y.L.); (L.T.)
| | - Erzheng Su
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Gen Zou
- National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (M.G.); (Y.L.); (L.T.)
- Correspondence: (G.Z.); (D.B.)
| | - Dapeng Bao
- National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (M.G.); (Y.L.); (L.T.)
- Correspondence: (G.Z.); (D.B.)
| |
Collapse
|
4
|
Xu K, Zhao Y, Gu J, Zhou M, Gao L, Sun RX, Wang WW, Zhang SH, Yang XJ. Proteomic analysis reveals the molecular mechanism underlying the cold acclimation and freezing tolerance of wheat (Triticum aestivum L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 318:111242. [PMID: 35351310 DOI: 10.1016/j.plantsci.2022.111242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/18/2022] [Accepted: 02/28/2022] [Indexed: 05/27/2023]
Abstract
Cold acclimation (CA) is an important evolutionary adaptive mechanism for wheat freezing resistence. To clarify the molecular basis of wheat CA and freezing tolerance, the effects of CA (4 °C) and non-CA (20 °C) treatments and freezing stress (-5 °C) on the proteins in the wheat crown were characterized via an iTRAQ-based proteomic analysis. A total of 669 differentially accumulated proteins (DAPs) were identified after the CA, of which seven were also DAPs in the CA plants exposed to freezing stress. Additionally, the 15 DAPs in the CA group and the 23 DAPs in the non-CA group after the freezing treatment differed substantially. Functional analyses indicated that CA enhanced freezing tolerance by regulating proteins involved in signal transduction, carbohydrate metabolism, stress and defense responses, and phenylpropanoid biosynthesis. An integrated transcriptomic, proteomic, and metabolomic analysis revealed significant changes in various components of the glutathione metabolic pathway. The overexpression and silencing of Wdhn13 in Arabidopsis and wheat resulted in increased tolerance and sensitivity to freezing stress, respectively, suggesting Wdhn13 promotes freezing tolerance. Overall, our study offers insights into the regulatory network underlying the CA and freezing tolerance of wheat, which may be useful for elucidating wheat freezing resistance.
Collapse
Affiliation(s)
- Ke Xu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071000, Hebei, China
| | - Yong Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071000, Hebei, China.
| | - Jia Gu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071000, Hebei, China
| | - Meng Zhou
- Hebei University, Baoding 071000, Hebei, China
| | - Le Gao
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071000, Hebei, China
| | - Ruo-Xi Sun
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071000, Hebei, China
| | - Wei-Wei Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071000, Hebei, China; Cangzhou Academy of Agriculture and Forestry Sciences, Cangzhou 061001, Hebei, China
| | - Shu-Hua Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071000, Hebei, China
| | - Xue-Ju Yang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071000, Hebei, China.
| |
Collapse
|
5
|
Sepehri M, Ghaffari MR, Khayam Nekoui M, Sarhadi E, Moghadam A, Khatabi B, Hosseini Salekdeh G. Root endophytic fungus Serendipita indica modulates barley leaf blade proteome by increasing the abundance of photosynthetic proteins in response to salinity. J Appl Microbiol 2021; 131:1870-1889. [PMID: 33694234 DOI: 10.1111/jam.15063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 11/28/2022]
Abstract
AIMS The present study aimed at analysing the proteome pattern of the leaf blade of barley (Hordeum vulgare L.) in Serendipita indica-colonised plants to decipher the molecular mechanism of S. indica-mediated salt stress. This work is aligned with our previous research on barley leaf sheath to study proteomic pattern variability in leaf blade and sheath of barley plant in response to salinity and S. indica inoculation. METHODS AND RESULTS The experiment was conducted using a completely randomised factorial design with four replications and two treatments: salinity (0 and 300 mmol l-1 NaCl) and fungus (noninoculated and S. indica-inoculated). The leaf blades of the salt-treated S. indica-colonised and noninoculated plants were harvested after 2 weeks of salt treatment for the physiological and proteomic analyses. After exposure to 300 mmol l-1 NaCl, shoot dry matter production in noninoculated control plants decreased 84% which was about twofold higher than inoculated plants with S. indica. However, the accumulation of sodium in the shoot of S. indica-inoculated plants was significantly lower than the control plants. Analysis of the proteome profile revealed a high number of significantly up-regulated proteins involved in photosynthesis (26 out of 42 identified proteins). CONCLUSIONS The results demonstrated how the enhanced plant growth and salt stress resistance induced by S. indica was positively associated with the up-regulation of several proteins involved in photosynthesis and carbohydrate metabolism. In fact, S. indica improved photosynthesis in order to reach the best possible performance of the host plant under salt stress. SIGNIFICANCE AND IMPACT OF THE STUDY Current research provides new insight into the mechanism applied by S. indica in reducing the negative impacts of salt stress in barley at physiological and molecular levels.
Collapse
Affiliation(s)
- M Sepehri
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - M R Ghaffari
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran
| | - M Khayam Nekoui
- Faculty of Biological Science, Research Center of Biotechnology Development, Tarbiat Modares University, Tehran, Iran
| | - E Sarhadi
- Research Institute of Forests and Rangelands, Tehran, Iran
| | - A Moghadam
- Institute of Biotechnology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - B Khatabi
- Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD, USA
| | - G Hosseini Salekdeh
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran.,Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
6
|
Sobhanian H, Pahlavan S, Meyfour A. How does proteomics target plant environmental stresses in a semi-arid area? Mol Biol Rep 2020; 47:3181-3194. [DOI: 10.1007/s11033-020-05406-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 03/25/2020] [Indexed: 12/30/2022]
|
7
|
Koobaz P, Reza Ghaffari M, Heidari M, Mirzaei M, Ghanati F, Amirkhani A, Mortazavi SE, Moradi F, Hajirezaei MR, Salekdeh GH. Proteomic and metabolomic analysis of desiccation tolerance in wheat young seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 146:349-362. [PMID: 31786507 DOI: 10.1016/j.plaphy.2019.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/08/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
Young wheat seedlings are desiccation tolerant and have the capacity to withstand long dehydration period. In this study, we characterized the proteome and metabolome of wheat seedlings during desiccation and after recovery. Functional classification of differentially identified proteins revealed dynamic changes in the number and abundance of proteins observed during stress and recovery. Desiccation resulted in a decline in the abundance of proteins associated with photosynthesis and carbohydrate reserves, along with an increase in the presence of proteins associated with stress and defense response, such as peroxiredoxins and antioxidant enzymes. Following recovery, the abundance of stress-responsive proteins returned either partially or completely to their baseline level, confirming their importance to the seedling's desiccation response. Furthermore, proteins involved in carbohydrate metabolism, as well as fructose-bisphosphate aldolase and fructokinase-2 and phosphorylated metabolites as the substrate or the end-product, showed the inverse pattern during desiccation and after re-watering. This may reflect the fact that plants maintained energy supply during stress to protect seedlings from further damage, and for use in subsequent recovery after rewatering period. This study provides novel insights into the molecular mechanisms underlying the desiccation tolerance of wheat seedlings, and paves the way for more detailed molecular analysis of this remarkable phenomenon.
Collapse
Affiliation(s)
- Parisa Koobaz
- Department of Molecular Physiology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran
| | - Mohammad Reza Ghaffari
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran
| | - Manzar Heidari
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran
| | - Mehdi Mirzaei
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia; Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, Australia
| | - Faezeh Ghanati
- Department of Plant Science, Faculty of Science, Tarbiat Modares University, Tehran, Iran
| | - Ardeshir Amirkhani
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia; Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, Australia
| | - Seyed Elyas Mortazavi
- Department of Plant Tissue and Organ Culture, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran
| | - Foad Moradi
- Department of Molecular Physiology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran
| | - Mohammad Reza Hajirezaei
- Physiology and Cell Biology Department, Molecular Plant Nutrition Group, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Ghasem Hosseini Salekdeh
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran; Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
8
|
Meng X, Zhao Q, Jin Y, Yu J, Yin Z, Chen S, Dai S. Chilling-responsive mechanisms in halophyte Puccinellia tenuiflora seedlings revealed from proteomics analysis. J Proteomics 2016; 143:365-381. [PMID: 27130536 DOI: 10.1016/j.jprot.2016.04.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 04/14/2016] [Accepted: 04/24/2016] [Indexed: 11/28/2022]
Abstract
Alkali grass (Puccinellia tenuiflora), a monocotyledonous perennial halophyte species, is a good pasture with great nutritional value for livestocks. It can thrive under low temperature in the saline-alkali soil of Songnen plain in northeastern China. In the present study, the chilling-responsive mechanism in P. tenuiflora leaves was investigated using physiological and proteomic approaches. After treatment of 10°C for 10 and 20days, photosynthesis, biomass, contents of osmolytes and antioxidants, and activities of reactive oxygen species scavenging enzymes were analyzed in leaves of 20-day-old seedlings. Besides, 89 chilling-responsive proteins were revealed from proteomic analysis. All the results highlighted that the growth of seedlings was inhibited due to chilling-decreased enzymes in photosynthesis, carbohydrate metabolism, and energy supplying. The accumulation of osmolytes (i.e., proline, soluble sugar, and glycine betaine) and enhancement of ascorbate-glutathione cycle and glutathione peroxidase/glutathione S-transferase pathway in leaves could minimize oxidative damage of membrane and other molecules under the chilling conditions. In addition, protein synthesis and turnover in cytoplasm and chloroplast were altered to cope with the chilling stress. This study provides valuable information for understanding the chilling-responsive and cross-tolerant mechanisms in monocotyledonous halophyte plant species.
Collapse
Affiliation(s)
- Xuejiao Meng
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, China
| | - Qi Zhao
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, China
| | - Yudan Jin
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, China
| | - Juanjuan Yu
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, China
| | - Zepeng Yin
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, China
| | - Sixue Chen
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA
| | - Shaojun Dai
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, China.
| |
Collapse
|
9
|
Long R, Li M, Zhang T, Kang J, Sun Y, Cong L, Gao Y, Liu F, Yang Q. Comparative Proteomic Analysis Reveals Differential Root Proteins in Medicago sativa and Medicago truncatula in Response to Salt Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:424. [PMID: 27066057 PMCID: PMC4814493 DOI: 10.3389/fpls.2016.00424] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/18/2016] [Indexed: 05/20/2023]
Abstract
Salt stress is an important abiotic stress that causes decreased crop yields. Root growth and plant activities are affected by salt stress through the actions of specific genes that help roots adapt to adverse environmental conditions. For a more comprehensive understanding of proteins affected by salinity, we used two-dimensional gel electrophoresis and mass spectrometry to characterize the proteome-level changes associated with salt stress response in Medicago sativa cv. Zhongmu-1 and Medicago truncatula cv. Jemalong A17 roots. Our physiological and phenotypic observations indicated that Zhongmu-1 was more salt tolerant than Jemalong A17. We identified 93 and 30 proteins whose abundance was significantly affected by salt stress in Zhongmu-1 and Jemalong A17 roots, respectively. The tandem mass spectrometry analysis of the differentially accumulated proteins resulted in the identification of 60 and 26 proteins in Zhongmu-1 and Jemalong A17 roots, respectively. Function analyses indicated molecule binding and catalytic activity were the two primary functional categories. These proteins have known functions in various molecular processes, including defense against oxidative stress, metabolism, photosynthesis, protein synthesis and processing, and signal transduction. The transcript levels of four identified proteins were determined by quantitative reverse transcription polymerase chain reaction. Our results indicate that some of the identified proteins may play key roles in salt stress tolerance.
Collapse
Affiliation(s)
- Ruicai Long
- Institute of Animal Sciences, Chinese Academy of Agricultural SciencesBeijing, China
| | - Mingna Li
- Department of Grass and Forage Science, College of Animal Science and Technology, China Agricultural UniversityBeijing, China
| | - Tiejun Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural SciencesBeijing, China
| | - Junmei Kang
- Institute of Animal Sciences, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yan Sun
- Department of Grass and Forage Science, College of Animal Science and Technology, China Agricultural UniversityBeijing, China
| | - Lili Cong
- Institute of Animal Sciences, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yanli Gao
- Institute of Animal Sciences, Chinese Academy of Agricultural SciencesBeijing, China
| | - Fengqi Liu
- Institute of Pratacultural Science, Heilongjiang Academy of Agricultural SciencesHaerbin, China
| | - Qingchuan Yang
- Institute of Animal Sciences, Chinese Academy of Agricultural SciencesBeijing, China
- *Correspondence: Qingchuan Yang ;
| |
Collapse
|
10
|
Kosová K, Vítámvás P, Urban MO, Klíma M, Roy A, Prášil IT. Biological Networks Underlying Abiotic Stress Tolerance in Temperate Crops--A Proteomic Perspective. Int J Mol Sci 2015; 16:20913-42. [PMID: 26340626 PMCID: PMC4613235 DOI: 10.3390/ijms160920913] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/16/2015] [Accepted: 08/10/2015] [Indexed: 12/26/2022] Open
Abstract
Abiotic stress factors, especially low temperatures, drought, and salinity, represent the major constraints limiting agricultural production in temperate climate. Under the conditions of global climate change, the risk of damaging effects of abiotic stresses on crop production increases. Plant stress response represents an active process aimed at an establishment of novel homeostasis under altered environmental conditions. Proteins play a crucial role in plant stress response since they are directly involved in shaping the final phenotype. In the review, results of proteomic studies focused on stress response of major crops grown in temperate climate including cereals: common wheat (Triticum aestivum), durum wheat (Triticum durum), barley (Hordeum vulgare), maize (Zea mays); leguminous plants: alfalfa (Medicago sativa), soybean (Glycine max), common bean (Phaseolus vulgaris), pea (Pisum sativum); oilseed rape (Brassica napus); potato (Solanum tuberosum); tobacco (Nicotiana tabaccum); tomato (Lycopersicon esculentum); and others, to a wide range of abiotic stresses (cold, drought, salinity, heat, imbalances in mineral nutrition and heavy metals) are summarized. The dynamics of changes in various protein functional groups including signaling and regulatory proteins, transcription factors, proteins involved in protein metabolism, amino acid metabolism, metabolism of several stress-related compounds, proteins with chaperone and protective functions as well as structural proteins (cell wall components, cytoskeleton) are briefly overviewed. Attention is paid to the differences found between differentially tolerant genotypes. In addition, proteomic studies aimed at proteomic investigation of multiple stress factors are discussed. In conclusion, contribution of proteomic studies to understanding the complexity of crop response to abiotic stresses as well as possibilities to identify and utilize protein markers in crop breeding processes are discussed.
Collapse
Affiliation(s)
- Klára Kosová
- Laboratory of Plant Stress Biology and Biotechnology, Division of Crop Genetics and Breeding, Crop Research Institute, Drnovská 507/73, 16106 Prague, Czech Republic.
| | - Pavel Vítámvás
- Laboratory of Plant Stress Biology and Biotechnology, Division of Crop Genetics and Breeding, Crop Research Institute, Drnovská 507/73, 16106 Prague, Czech Republic.
| | - Milan Oldřich Urban
- Laboratory of Plant Stress Biology and Biotechnology, Division of Crop Genetics and Breeding, Crop Research Institute, Drnovská 507/73, 16106 Prague, Czech Republic.
| | - Miroslav Klíma
- Laboratory of Plant Stress Biology and Biotechnology, Division of Crop Genetics and Breeding, Crop Research Institute, Drnovská 507/73, 16106 Prague, Czech Republic.
| | - Amitava Roy
- Research Institute of Agricultural Engineering, Drnovská 507, 16106 Prague, Czech Republic.
| | - Ilja Tom Prášil
- Laboratory of Plant Stress Biology and Biotechnology, Division of Crop Genetics and Breeding, Crop Research Institute, Drnovská 507/73, 16106 Prague, Czech Republic.
| |
Collapse
|
11
|
Janmohammadi M, Zolla L, Rinalducci S. Low temperature tolerance in plants: Changes at the protein level. PHYTOCHEMISTRY 2015; 117:76-89. [PMID: 26068669 DOI: 10.1016/j.phytochem.2015.06.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 05/29/2015] [Accepted: 06/02/2015] [Indexed: 05/19/2023]
Abstract
Low temperature (LT) is one of several important environmental stresses influencing plant performance and distribution. Adaptation to LT is a highly dynamic stress-response phenomenon and involves complex cross-talk between different regulatory levels. Although plants differ in their sensitivity to LT, in temperate species low nonfreezing temperatures cause noticeable alterations in various biochemical and physiological processes that can potentially improve freezing tolerance. This adaptation is associated with changes in the expression pattern of genes and their protein products. Proteins are the major players in most cellular events and are directly involved in plant LT responses, thereby proteome analysis could help uncover additional novel proteins associated with LT tolerance. Proteomics is recommended as an appropriate strategy for complementing transcriptome level changes and characterizing translational and post-translational regulations. In this review, we considered alterations in the expression and accumulation of proteins in response to LT stress in the three major cereal crops produced worldwide (wheat, barley, and rice). LT stress down-regulates many photosynthesis-related proteins. On the contrary, pathways/protein sets that are up-regulated by LT include carbohydrate metabolism (ATP formation), ROS scavenging, redox adjustment, cell wall remodelling, cytoskeletal rearrangements, cryoprotection, defence/detoxification. These modifications are common adaptation reactions also observed in the plant model Arabidopsis, thus representing key potential biomarkers and critical intervention points for improving LT tolerance of crop plants in cold regions with short summers. We believe that an assessment of the proteome within a broad time frame and during the different phenological stages may disclose the molecular mechanisms related to the developmental regulation of LT tolerance and facilitate the progress of genetically engineered stress-resistant plant varieties.
Collapse
Affiliation(s)
- Mohsen Janmohammadi
- Department of Agronomy and Plant Breeding, Agriculture College, University of Maragheh, Iran
| | - Lello Zolla
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy
| | - Sara Rinalducci
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy.
| |
Collapse
|
12
|
Chakraborty S, Salekdeh GH, Yang P, Woo SH, Chin CF, Gehring C, Haynes PA, Mirzaei M, Komatsu S. Proteomics of Important Food Crops in the Asia Oceania Region: Current Status and Future Perspectives. J Proteome Res 2015; 14:2723-44. [DOI: 10.1021/acs.jproteome.5b00211] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | | | - Pingfang Yang
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Sun Hee Woo
- Chungbuk National University, Cheongju 362-763, Korea
| | - Chiew Foan Chin
- University of Nottingham Malaysia Campus, 43500 Semenyih, Selangor, Malaysia
| | - Chris Gehring
- King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | | | | | - Setsuko Komatsu
- National Institute of Crop Science, Tsukuba, Ibaraki 305-8518, Japan
| |
Collapse
|
13
|
Vítámvás P, Urban MO, Škodáček Z, Kosová K, Pitelková I, Vítámvás J, Renaut J, Prášil IT. Quantitative analysis of proteome extracted from barley crowns grown under different drought conditions. FRONTIERS IN PLANT SCIENCE 2015; 6:479. [PMID: 26175745 PMCID: PMC4485253 DOI: 10.3389/fpls.2015.00479] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/15/2015] [Indexed: 05/21/2023]
Abstract
Barley cultivar Amulet was used to study the quantitative proteome changes through different drought conditions utilizing two-dimensional difference gel electrophoresis (2D-DIGE). Plants were cultivated for 10 days under different drought conditions. To obtain control and differentially drought-treated plants, the soil water content was kept at 65, 35, and 30% of soil water capacity (SWC), respectively. Osmotic potential, water saturation deficit, (13)C discrimination, and dehydrin accumulation were monitored during sampling of the crowns for proteome analysis. Analysis of the 2D-DIGE gels revealed 105 differentially abundant spots; most were differentially abundant between the controls and drought-treated plants, and 25 spots displayed changes between both drought conditions. Seventy-six protein spots were successfully identified by tandem mass spectrometry. The most frequent functional categories of the identified proteins can be put into the groups of: stress-associated proteins, amino acid metabolism, carbohydrate metabolism, as well as DNA and RNA regulation and processing. Their possible role in the response of barley to drought stress is discussed. Our study has shown that under drought conditions barley cv. Amulet decreased its growth and developmental rates, displayed a shift from aerobic to anaerobic metabolism, and exhibited increased levels of several protective proteins. Comparison of the two drought treatments revealed plant acclimation to milder drought (35% SWC); but plant damage under more severe drought treatment (30% SWC). The results obtained revealed that cv. Amulet is sensitive to drought stress. Additionally, four spots revealing a continuous and significant increase with decreasing SWC (UDP-glucose 6-dehydrogenase, glutathione peroxidase, and two non-identified) could be good candidates for testing of their protein phenotyping capacity together with proteins that were significantly distinguished in both drought treatments.
Collapse
Affiliation(s)
- Pavel Vítámvás
- Division of Crop Genetics and Breeding, Plant Stress Biology and Biotechnology, Crop Research InstitutePrague, Czech Republic
- *Correspondence: Pavel Vítámvás, Division of Crop Genetics and Breeding, Plant Stress Biology and Biotechnology, Crop Research Institute, Drnovská 507/73, 161 06 Prague 6, Czech Republic
| | - Milan O. Urban
- Division of Crop Genetics and Breeding, Plant Stress Biology and Biotechnology, Crop Research InstitutePrague, Czech Republic
| | - Zbynek Škodáček
- Division of Crop Genetics and Breeding, Plant Stress Biology and Biotechnology, Crop Research InstitutePrague, Czech Republic
| | - Klára Kosová
- Division of Crop Genetics and Breeding, Plant Stress Biology and Biotechnology, Crop Research InstitutePrague, Czech Republic
| | - Iva Pitelková
- Division of Crop Genetics and Breeding, Plant Stress Biology and Biotechnology, Crop Research InstitutePrague, Czech Republic
| | - Jan Vítámvás
- Division of Crop Genetics and Breeding, Plant Stress Biology and Biotechnology, Crop Research InstitutePrague, Czech Republic
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences PraguePrague, Czech Republic
| | - Jenny Renaut
- Department of Environmental Research and Innovation, Luxembourg Institute of Science and TechnologyBelvaux, Luxembourg
| | - Ilja T. Prášil
- Division of Crop Genetics and Breeding, Plant Stress Biology and Biotechnology, Crop Research InstitutePrague, Czech Republic
| |
Collapse
|
14
|
Kosová K, Vítámvás P, Prášil IT. Proteomics of stress responses in wheat and barley-search for potential protein markers of stress tolerance. FRONTIERS IN PLANT SCIENCE 2014; 5:711. [PMID: 25566285 PMCID: PMC4263075 DOI: 10.3389/fpls.2014.00711] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 11/26/2014] [Indexed: 05/18/2023]
Abstract
Wheat (Triticum aestivum; T. durum) and barley (Hordeum vulgare) agricultural production is severely limited by various abiotic and biotic stress factors. Proteins are directly involved in plant stress response so it is important to study proteome changes under various stress conditions. Generally, both abiotic and biotic stress factors induce profound alterations in protein network covering signaling, energy metabolism (glycolysis, Krebs cycle, ATP biosynthesis, photosynthesis), storage proteins, protein metabolism, several other biosynthetic pathways (e.g., S-adenosylmethionine metabolism, lignin metabolism), transport proteins, proteins involved in protein folding and chaperone activities, other protective proteins (LEA, PR proteins), ROS scavenging enzymes as well as proteins affecting regulation of plant growth and development. Proteins which have been reported to reveal significant differences in their relative abundance or posttranslational modifications between wheat, barley or related species genotypes under stress conditions are listed and their potential role in underlying the differential stress response is discussed. In conclusion, potential future roles of the results of proteomic studies in practical applications such as breeding for an enhanced stress tolerance and the possibilities to test and use protein markers in the breeding are suggested.
Collapse
Affiliation(s)
- Klára Kosová
- Laboratory of Plant Stress Biology and Biotechnology, Division of Crop Genetics and Breeding, Department of Plant Genetics, Breeding and Product Quality, Crop Research InstitutePrague, Czech Republic
| | | | | |
Collapse
|
15
|
Gharechahi J, Alizadeh H, Naghavi MR, Sharifi G. A proteomic analysis to identify cold acclimation associated proteins in wild wheat (Triticum urartu L.). Mol Biol Rep 2014; 41:3897-905. [PMID: 24535272 DOI: 10.1007/s11033-014-3257-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 02/08/2014] [Indexed: 01/19/2023]
Abstract
To gain a better understanding of cold acclimation process in wheat, we applied a 2-DE based proteomic approach to discover changes in proteome profile of a diploid wild wheat (Triticum urartu L.) during prolonged cold stress treatment. To this end, plants were grown in pots and the growing seedlings (4-leaf stage) were exposed to cold stress. After 4 weeks of cold acclimation (4-6 °C) and subsequent treatment for 12 h at -2 °C, samples were collected from control and stressed plants and were subjected to proteome pattern analysis. Among approximately 450 reproducible protein spots displayed in each given 2-DE gels, 34 proteins changed significantly in abundance in response to cold stress. Among them, 25 and 9 proteins were up and down-regulated under stress condition, respectively. Analysis by matrix-assisted laser desorption ionization time of flight/time of flight mass spectrometry coupled with non-redundant protein database search allowed the identification of 20 cold-induced proteins. Integrated proteomic and database survey resulted in identification of several cold stress related proteins such as pathogenesis related protein, cold regulated protein, cold-responsive LEA/RAB-related COR protein, oxygen-evolving enhancer protein and oxalate oxidase. The presumed functions of the identified proteins were mostly related to cold acclimation, oxidative stress and photosynthesis. The possible implications of differentially accumulated proteins in acquiring systemic tolerance to freezing stress following exposure to prolonged low temperature will be discussed.
Collapse
Affiliation(s)
- Javad Gharechahi
- Chemical Injures Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran,
| | | | | | | |
Collapse
|
16
|
Cold acclimation induces freezing tolerance via antioxidative enzymes, proline metabolism and gene expression changes in two chrysanthemum species. Mol Biol Rep 2014; 41:815-22. [DOI: 10.1007/s11033-013-2921-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 12/18/2013] [Indexed: 11/26/2022]
|
17
|
Ghaffari A, Gharechahi J, Nakhoda B, Salekdeh GH. Physiology and proteome responses of two contrasting rice mutants and their wild type parent under salt stress conditions at the vegetative stage. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:31-44. [PMID: 24094368 DOI: 10.1016/j.jplph.2013.07.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/13/2013] [Accepted: 07/22/2013] [Indexed: 05/21/2023]
Abstract
Salinity is one of the major environmental limiting factors that affects growth and productivity of rice (Oryza sativa L.) worldwide. Rice is among the most sensitive crops to salinity, especially at early vegetative stages. In order to get a better understanding of molecular pathways affected in rice mutants showing contrasting responses to salinity, we exploited the power of 2-DE based proteomics to explore the proteome changes associated with salt stress response. Our physiological observations showed that standard evaluation system (SES) scores, Na+ and K+ concentrations in shoots and Na+/K+ ratio were significantly different in contrasting mutants under salt stress condition. Proteomics analysis showed that, out of 854 protein spots which were reproducibly detected, 67 protein spots showed significant responses to salt stress. The tandem mass spectrometry analysis of these significantly differentially accumulated proteins resulted in identification of 34 unique proteins. These proteins are involved in various molecular processes including defense to oxidative stresses, metabolisms, photosynthesis, protein synthesis and processing, signal transduction. Several of the identified proteins were emerged as key participants in salt stress tolerance. The possible implication of salt responsive proteins in plant adaptation to salt stress is discussed.
Collapse
Affiliation(s)
- Akram Ghaffari
- Department of Molecular Physiology, Agricultural Biotechnology Research Institute of Iran, Karaj, Iran
| | | | | | | |
Collapse
|
18
|
Mirzaei M, Soltani N, Sarhadi E, George IS, Neilson KA, Pascovici D, Shahbazian S, Haynes PA, Atwell BJ, Salekdeh GH. Manipulating Root Water Supply Elicits Major Shifts in the Shoot Proteome. J Proteome Res 2013; 13:517-26. [DOI: 10.1021/pr400696u] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mehdi Mirzaei
- Australian
School of Advanced Medicine, Faculty of Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Neda Soltani
- Agricultural Biotechnology Research Institute of Iran, Karaj, Tehran, Iran
| | - Elham Sarhadi
- Agricultural Biotechnology Research Institute of Iran, Karaj, Tehran, Iran
| | - Iniga S. George
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Karlie A. Neilson
- Australian
Proteome Analysis Facility (APAF), Department of Chemistry and Biomolecular
Sciences, Macquarie University, Sydney, Australia
| | - Dana Pascovici
- Australian
Proteome Analysis Facility (APAF), Department of Chemistry and Biomolecular
Sciences, Macquarie University, Sydney, Australia
| | - Shila Shahbazian
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Paul A. Haynes
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Brian J. Atwell
- Department
of Biological Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Ghasem Hosseini Salekdeh
- Agricultural Biotechnology Research Institute of Iran, Karaj, Tehran, Iran
- Department
of Molecular Systems Biology at Cell Science Research Center, Royan
Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
19
|
Proteomics study reveals the molecular mechanisms underlying water stress tolerance induced by Piriformospora indica in barley. J Proteomics 2013; 94:289-301. [DOI: 10.1016/j.jprot.2013.09.017] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/26/2013] [Accepted: 09/30/2013] [Indexed: 11/24/2022]
|
20
|
Kosová K, Vítámvás P, Planchon S, Renaut J, Vanková R, Prášil IT. Proteome Analysis of Cold Response in Spring and Winter Wheat (Triticum aestivum) Crowns Reveals Similarities in Stress Adaptation and Differences in Regulatory Processes between the Growth Habits. J Proteome Res 2013; 12:4830-45. [DOI: 10.1021/pr400600g] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Klára Kosová
- Department
of Genetics and Plant Breeding, Crop Research Institute, Drnovská
507, 16106 Prague
6, The Czech Republic
| | - Pavel Vítámvás
- Department
of Genetics and Plant Breeding, Crop Research Institute, Drnovská
507, 16106 Prague
6, The Czech Republic
| | - Sébastien Planchon
- Centre de Recherche Public, Gabriel Lippmann, 41 Rue du Brill, 4422 Belvaux, Luxembourg
| | - Jenny Renaut
- Centre de Recherche Public, Gabriel Lippmann, 41 Rue du Brill, 4422 Belvaux, Luxembourg
| | - Radomíra Vanková
- Institute
of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 16502 Prague 6, The Czech Republic
| | - Ilja Tom Prášil
- Department
of Genetics and Plant Breeding, Crop Research Institute, Drnovská
507, 16106 Prague
6, The Czech Republic
| |
Collapse
|
21
|
Sehrawat A, Gupta R, Deswal R. Nitric oxide-cold stress signalling cross-talk, evolution of a novel regulatory mechanism. Proteomics 2013; 13:1816-35. [PMID: 23580434 DOI: 10.1002/pmic.201200445] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 01/15/2013] [Accepted: 01/31/2013] [Indexed: 12/20/2022]
Abstract
Plants enhance their cold stress tolerance by cold acclimation, a process which results in vast reprogramming of transcriptome, proteome and metabolome. Evidence suggests nitric oxide (NO) production during cold stress which regulates genes (especially the C-repeat binding factor (CBF) cold stress signalling pathway), diverse proteins including transcription factors (TFs) and phosphosphingolipids. About 59% (redox), 50% (defence/stress) and 30% (signalling) cold responsive proteins are modulated by NO-based post translational modifications (PTMs) namely S-nitrosylation, tyrosine nitration and S-glutathionylation, suggesting a cross-talk between NO and cold. Analysis of cold stress responsive deep proteome in apoplast, mitochondria, chloroplast and nucleus suggested continuation of this cross-talk in sub-cellular systems. Modulation of cold responsive proteins by these PTMs right from cytoskeletal elements in plasma membrane to TFs in nucleus suggests a novel regulation of cold stress signalling. NO-mediated altered protein transport in nucleus seems an important stress regulatory mechanism. This review addresses the NO and cold stress signalling cross-talk to present the overview of this novel regulatory mechanism.
Collapse
Affiliation(s)
- Ankita Sehrawat
- Molecular Plant Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, Delhi, India
| | | | | |
Collapse
|
22
|
Hlaváčková I, Vítámvás P, Šantrůček J, Kosová K, Zelenková S, Prášil IT, Ovesná J, Hynek R, Kodíček M. Proteins involved in distinct phases of cold hardening process in frost resistant winter barley (Hordeum vulgare L.) cv Luxor. Int J Mol Sci 2013; 14:8000-24. [PMID: 23584021 PMCID: PMC3645728 DOI: 10.3390/ijms14048000] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/28/2013] [Accepted: 03/29/2013] [Indexed: 11/16/2022] Open
Abstract
Winter barley is an economically important cereal crop grown in higher latitudes and altitudes where low temperatures represent an important environmental constraint limiting crop productivity. In this study changes in proteome of leaves and crowns in a frost tolerant winter barley cv. Luxor in relation to short and long term periods of cold followed by a brief frost treatment were studied in order to disclose proteins responsible for the cold hardening process in distinct plant tissues. The mentioned changes have been monitored using two dimensional difference gel electrophoresis (2D-DIGE) with subsequent peptide-mapping protein identification. Regarding approximately 600–700 distinct protein spots detected on 2D gels, there has been found at least a two-fold change after exposure to low temperatures in about 10% of proteins in leaves and 13% of proteins in crowns. Protein and nitrogen metabolic processes have been influenced by low temperature to a similar extent in both tissues while catabolism, carbohydrate metabolism and proteins involved in stress response have been more affected in crowns than in leaves. The range of changes in protein abundance was generally higher in leaves and chloroplast proteins were frequently affected which suggests a priority to protect photosynthetic apparatus. Overall, our data proved existence of slightly different response strategies to low temperature stress in crowns and leaves, i.e., tissues with different biological role. Moreover, there have been found several proteins with large increase in accumulation, e.g., 33 kDa oxygen evolving protein of photosystem II in leaves and “enhanced disease susceptibility 1” in crowns; these proteins might have potential to indicate an enhanced level of frost tolerance in barley.
Collapse
Affiliation(s)
- Iva Hlaváčková
- Department of Biochemistry and Microbiology, Institute of Chemical Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic; E-Mails: (J.Š.); (R.H.); (M.K.)
- Department of Genetics and Plant Breeding, Crop Research Institute, Drnovská 507/73, 161 06 Prague 6, Czech Republic; E-Mails: (P.V.); (K.K.); (I.T.P.); (J.O.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +420-220-444-384; Fax: +420-220-445-167
| | - Pavel Vítámvás
- Department of Genetics and Plant Breeding, Crop Research Institute, Drnovská 507/73, 161 06 Prague 6, Czech Republic; E-Mails: (P.V.); (K.K.); (I.T.P.); (J.O.)
| | - Jiří Šantrůček
- Department of Biochemistry and Microbiology, Institute of Chemical Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic; E-Mails: (J.Š.); (R.H.); (M.K.)
| | - Klára Kosová
- Department of Genetics and Plant Breeding, Crop Research Institute, Drnovská 507/73, 161 06 Prague 6, Czech Republic; E-Mails: (P.V.); (K.K.); (I.T.P.); (J.O.)
| | - Sylva Zelenková
- Department of Plant Experimental Biology, Charles University in Prague, Albertov 6, 128 43 Prague 2, Czech Republic; E-Mail:
| | - Ilja Tom Prášil
- Department of Genetics and Plant Breeding, Crop Research Institute, Drnovská 507/73, 161 06 Prague 6, Czech Republic; E-Mails: (P.V.); (K.K.); (I.T.P.); (J.O.)
| | - Jaroslava Ovesná
- Department of Genetics and Plant Breeding, Crop Research Institute, Drnovská 507/73, 161 06 Prague 6, Czech Republic; E-Mails: (P.V.); (K.K.); (I.T.P.); (J.O.)
| | - Radovan Hynek
- Department of Biochemistry and Microbiology, Institute of Chemical Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic; E-Mails: (J.Š.); (R.H.); (M.K.)
| | - Milan Kodíček
- Department of Biochemistry and Microbiology, Institute of Chemical Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic; E-Mails: (J.Š.); (R.H.); (M.K.)
| |
Collapse
|
23
|
Heidarvand L, Maali-Amiri R. Physio-biochemical and proteome analysis of chickpea in early phases of cold stress. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:459-469. [PMID: 23395538 DOI: 10.1016/j.jplph.2012.11.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 11/16/2012] [Accepted: 11/16/2012] [Indexed: 06/01/2023]
Abstract
Intensive and short-term strategies can aid in more rapid screening with informative and reliable results for long-term investigations under cold stress (CS). The integration of cellular analysis of chickpea during 0, 2, 4, 8, and 12h CS supplied us with novel possible responsive components and the possible interactions embedded inside, still remaining a Maze. Seedlings showed a biphasic pattern of responses over time. The transitory phase happened after 8h, when cells are presumably experiencing a new stage of responses and setting the stage for long-term adjustments. Physio-biochemical analysis confirmed the direct effect of fatty acids composition, lipoxygenase activity and antioxidant systems in cell responses under CS. Also, proteome results using MALDI-TOF-TOF and/or LC-MS/MS were able to differentiate changes in early phases of CS. Two-dimensional gel analysis results showed the possible targets of CS as mitochondria, chloroplast, organelle-nucleus communications, storage resources, stress and defense, protein degradation and signal transduction that confirmed the cell intended to re-establish a new homeostasis, in energy and primary metabolites to adapt to long-term CS. Here we propose a time course dynamic assessing multi-dimensional approaches for CS studies as one of the first studies in short-term treatment to progressively fill in the gaps between physio-biochemical and molecular events and touch the cell architecture for a better comprehension of the nature of plant stress response.
Collapse
Affiliation(s)
- Leila Heidarvand
- Department of Agronomy and Plant Breeding, University College of Agriculture and Natural Resources, University of Tehran, 31587-77871 Karaj, Iran
| | | |
Collapse
|
24
|
Xu J, Li Y, Sun J, Du L, Zhang Y, Yu Q, Liu X. Comparative physiological and proteomic response to abrupt low temperature stress between two winter wheat cultivars differing in low temperature tolerance. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15:292-303. [PMID: 22963252 DOI: 10.1111/j.1438-8677.2012.00639.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Abrupt temperature reduction in winter wheat at either autumn seedling stage prior to vernalisation or early spring crown stage can cause severe crop damage and reduce production. Many studies have reported the physiological and molecular mechanisms underlying cold acclimation in winter wheat by comparing it with spring wheat. However, processes associated with abrupt temperature reduction in autumn seedling stage prior to vernalisation in winter wheat are less understood. In this study, physiological and molecular responses of winter wheat seedlings to abrupt low temperature (LT) stress were characterised in the relatively LT-tolerant winter wheat cultivar Shixin 828 by comparing it with the relatively LT-sensitive cultivar Shiluan 02-1 using a combination of physiological, proteomics and biochemical approaches. Shixin 828 was tolerant to abrupt LT stress, while Shiluan 02-1 exhibited high levels of reactive oxygen species (ROS) and leaf cell death. Significant increases in relative abundance of antioxidant-related proteins were found in Shixin 828 leaves, which correlate with observed higher antioxidant enzyme activity in Shixin 828 compared to Shiluan 02-1. Proteomics analysis also indicated that carbohydrate metabolism-related proteins were more abundant in Shiluan 02-1, correlating with observed accumulation of soluble sugars in Shiluan 02-1 leaves. Amino acid analysis revealed a strong response to LT stress in wheat leaves. A negative effect of exogenous sucrose on LT tolerance was also found. This study indicates that high ROS scavenging capacity and high abundance of photosynthesis-related proteins might play a role in winter wheat response to abrupt LT stress. In contrast, excess accumulation of soluble sugars might be disadvantageous for LT tolerance in the wheat cultivar Shiluan 02-1.
Collapse
Affiliation(s)
- J Xu
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Huaizhong RD 286, Shijiazhuang, China.
| | | | | | | | | | | | | |
Collapse
|
25
|
Alikhani M, Khatabi B, Sepehri M, Nekouei MK, Mardi M, Salekdeh GH. A proteomics approach to study the molecular basis of enhanced salt tolerance in barley (Hordeum vulgare L.) conferred by the root mutualistic fungus Piriformospora indica. MOLECULAR BIOSYSTEMS 2013; 9:1498-510. [DOI: 10.1039/c3mb70069k] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Zhang S, Feng L, Jiang H, Ma W, Korpelainen H, Li C. Biochemical and proteomic analyses reveal that Populus cathayana males and females have different metabolic activities under chilling stress. J Proteome Res 2012; 11:5815-26. [PMID: 23072643 DOI: 10.1021/pr3005953] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Male and female poplars (Populus cathayana Rehd.) respond differently to environmental stresses. However, little is known about sex-dependent responses to chilling at the proteome level. To better understand these differences, a comparative proteomics investigation combined with a biochemical approach was used in the current study. Three-month-old poplar cuttings were treated at 25 or 4 °C for 14 days. Results revealed significant sexual differences in nitrogen metabolic enzymes and free amino acid components in response to chilling. The chilling-treated males showed higher activities of nitrate reductase and glutamine synthetase and higher contents of reduced glutathione, serine, arginine, leucine, glycine, proline and methionine than chilling-treated females. A total of 65 chilling-responsive spots were found, of which 48 showed significant sexual differences. These proteins are involved in photosynthesis, carbon and energy metabolism, metabolic processes of proteins, lipid metabolism, vitamin metabolism, stress defense, and gene expression regulation. The study shows that males have more effective metabolic processes and protective systems to chilling than females.
Collapse
Affiliation(s)
- Sheng Zhang
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | | | | | | | | | | |
Collapse
|
27
|
Sarhadi E, Bazargani MM, Sajise AG, Abdolahi S, Vispo NA, Arceta M, Nejad GM, Singh RK, Salekdeh GH. Proteomic analysis of rice anthers under salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 58:280-7. [PMID: 22868211 DOI: 10.1016/j.plaphy.2012.07.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 07/16/2012] [Indexed: 05/06/2023]
Abstract
Salinity is a major factor that limits rice production worldwide. Rice is considered generally to be sensitive to salt stress during the reproductive stage. To determine the molecular mechanisms of salt tolerance at the reproductive stage, anther proteomic patterns for two contrasting rice genotypes IR64 (salt sensitive) and Cheriviruppu (salt tolerant) under salt stress were compared. Plants were grown in a greenhouse and salt stress (100 mM NaCl) was imposed at the booting stage. Anther samples were collected from control and salt-treated plants at the anthesis stage. The Na(+)/K(+) ratio in IR64 anthers under salt stress was >1.7 times greater than that under control conditions, whereas no significant change was observed in Cheriviruppu. We also observed an 83% reduction in IR64 pollen viability, whereas this reduction was only 23% in Cheriviruppu. Of 454 protein spots detected reproducibly on two-dimensional electrophoresis gels, 38 showed significant changes in at least one genotype in response to stress. Using Mass spectrometry (MALDI TOF/TOF) analysis, we identified 18 protein spots that were involved in several processes that might increase plant adaptation to salt stress, such as carbohydrate/energy metabolism, anther wall remodelling and metabolism, and protein synthesis and assembly. Three isoforms of fructokinase-2 were upregulated only in Cheriviruppu under salt stress. This upregulation might result in increased starch content in pollen, which would support pollen growth and development under salt stress. The results also suggested that anther and pollen wall remodelling/metabolism proteins contribute to the tolerance of rice to salt stress.
Collapse
Affiliation(s)
- Elham Sarhadi
- Agricultural Biotechnology Research Institute of Iran, P.O. Box 31535-1897, Karaj, Iran
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Taheri F, Nematzadeh G, Zamharir MG, Nekouei MK, Naghavi M, Mardi M, Salekdeh GH. Proteomic analysis of the Mexican lime tree response to "Candidatus Phytoplasma aurantifolia" infection. MOLECULAR BIOSYSTEMS 2011; 7:3028-35. [PMID: 21853195 DOI: 10.1039/c1mb05268c] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
"Candidatus Phytoplasma aurantifolia" is the causative agent of witches' broom disease in the Mexican lime tree (Citrus aurantifolia L.), and is responsible for major tree losses in Southern Iran and Oman. The pathogen is strictly biotrophic, and, therefore, completely dependent on living host cells for its survival. The molecular basis of compatibility and disease development in this system is poorly understood. We applied a proteomics approach to analyse gene expression in Mexican limes infected with "Ca. Phytoplasma aurantifolia". Leaf samples were collected from healthy and infected plants and were analysed using 2-DE coupled with MS. Among 800 leaf proteins that were detected reproducibly in eight biological replicates of healthy and eight biological replicates of infected plants, 55 showed a significant response to the disease. MS resulted in identification of 39 regulated proteins, which included proteins that were involved in oxidative stress defence, photosynthesis, metabolism, and the stress response. Our results provide the first proteomic view of the molecular basis of the infection process and identify genes that could help inhibit the effects of the pathogen.
Collapse
Affiliation(s)
- Farzan Taheri
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, P.O. Box 31535-1897, Karaj, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
29
|
Ruwe H, Kupsch C, Teubner M, Schmitz-Linneweber C. The RNA-recognition motif in chloroplasts. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1361-71. [PMID: 21330002 DOI: 10.1016/j.jplph.2011.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 01/25/2011] [Accepted: 01/26/2011] [Indexed: 05/10/2023]
Abstract
Chloroplast RNA metabolism is characterized by multiple RNA processing steps that require hundreds of RNA binding proteins. A growing number of RNA binding proteins have been shown to mediate specific RNA processing steps in the chloroplast, but little do we know about their regulatory importance or mode of molecular action. This review summarizes knowledge on chloroplast proteins that contain an RNA recognition motif, a classical RNA binding domain widespread in pro- and eukaryotes. Several members of this family respond to external and internal stimuli by changes in their expression levels and protein modification state. They therefore appear as ideal candidates for regulating chloroplast RNA processing under shifting environmental conditions.
Collapse
Affiliation(s)
- Hannes Ruwe
- Institute of Biology, Humboldt University of Berlin, Chausseestrasse 117, Berlin, Germany
| | | | | | | |
Collapse
|
30
|
Rinalducci S, Egidi MG, Karimzadeh G, Jazii FR, Zolla L. Proteomic analysis of a spring wheat cultivar in response to prolonged cold stress. Electrophoresis 2011; 32:1807-18. [DOI: 10.1002/elps.201000663] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 03/31/2011] [Accepted: 03/31/2011] [Indexed: 11/09/2022]
|
31
|
Long TA. Many needles in a haystack: cell-type specific abiotic stress responses. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:325-31. [PMID: 21550295 DOI: 10.1016/j.pbi.2011.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 04/06/2011] [Accepted: 04/12/2011] [Indexed: 05/08/2023]
Abstract
Plants react to abiotic stress with a number of physiological, biochemical, and developmental alterations. These responses include changes in signaling components, gene transcription, non-coding RNAs, proteins, and metabolites that occur in a cell-type and tissue-specific manner. Recent advances in cell-type specifically isolating protoplasts and nuclei from plants, extracting mRNA from targeted cells, and whole-genome transcriptional profiling have enabled scientists to gain insight into how cells and tissues respond transcriptionally to abiotic stress. Continued technological advances in profiling the proteomes, metabolomes, and other biological components of specific cells will continue to broaden our understanding of plant stress responses.
Collapse
Affiliation(s)
- Terri A Long
- Department of Biological Sciences, University of Illinois at Chicago, IL 60607, United States.
| |
Collapse
|
32
|
Bazargani MM, Sarhadi E, Bushehri AAS, Matros A, Mock HP, Naghavi MR, Hajihoseini V, Mardi M, Hajirezaei MR, Moradi F, Ehdaie B, Salekdeh GH. A proteomics view on the role of drought-induced senescence and oxidative stress defense in enhanced stem reserves remobilization in wheat. J Proteomics 2011; 74:1959-73. [PMID: 21621021 DOI: 10.1016/j.jprot.2011.05.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Revised: 05/06/2011] [Accepted: 05/09/2011] [Indexed: 01/04/2023]
Abstract
Drought is one of the major factors limiting the yield of wheat (Triticum aestivum L.) particularly during grain filling. Under terminal drought condition, remobilization of pre-stored carbohydrates in wheat stem to grain has a major contribution in yield. To determine the molecular mechanism of stem reserve utilization under drought condition, we compared stem proteome patterns of two contrasting wheat landraces (N49 and N14) under a progressive post-anthesis drought stress, during which period N49 peduncle showed remarkably higher stem reserves remobilization efficiency compared to N14. Out of 830 protein spots reproducibly detected and analyzed on two-dimensional electrophoresis gels, 135 spots showed significant changes in at least one landrace. The highest number of differentially expressed proteins was observed in landrace N49 at 20days after anthesis when active remobilization of dry matter was observed, suggesting a possible involvement of these proteins in effective stem reserve remobilization of N49. The identification of 82 of differentially expressed proteins using mass spectrometry revealed a coordinated expression of proteins involved in leaf senescence, oxidative stress defense, signal transduction, metabolisms and photosynthesis which might enable N49 to efficiently remobilized its stem reserves compared to N14. The up-regulation of several senescence-associated proteins and breakdown of photosynthetic proteins in N49 might reflect the fact that N49 increased carbon remobilization from the stem to the grains by enhancing senescence. Furthermore, the up-regulation of several oxidative stress defense proteins in N49 might suggest a more effective protection against oxidative stress during senescence in order to protect stem cells from premature cell death. Our results suggest that wheat plant might response to soil drying by efficiently remobilize assimilates from stem to grain through coordinated gene expression.
Collapse
|
33
|
Rinalducci S, Egidi MG, Mahfoozi S, Jahanbakhsh Godehkahriz S, Zolla L. The influence of temperature on plant development in a vernalization-requiring winter wheat: A 2-DE based proteomic investigation. J Proteomics 2011; 74:643-59. [DOI: 10.1016/j.jprot.2011.02.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Revised: 01/30/2011] [Accepted: 02/02/2011] [Indexed: 12/25/2022]
|
34
|
Shekari F, Taei A, Pan TL, Wang PW, Baharvand H, Salekdeh GH. Identification of cytoplasmic and membrane-associated complexes in human embryonic stem cells using blue native PAGE. MOLECULAR BIOSYSTEMS 2011; 7:2688-701. [DOI: 10.1039/c1mb05135k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|