1
|
Sun P, Hua Q, Fu H, Yao L, Yuan X, Li Q, Li Y, Jia M, Xia R, Yao X. Epithelial FETUB-mediated the inhibition of NEP activity aggravates asthma. Int Immunopharmacol 2025; 152:114397. [PMID: 40064057 DOI: 10.1016/j.intimp.2025.114397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/27/2025] [Accepted: 02/27/2025] [Indexed: 03/24/2025]
Abstract
BACKGROUND Neuropeptide accumulation exacerbates asthma, with reduced neprilysin (NEP) activity implicated. However, this regulatory mechanism remains unexplored. OBJECTIVE To identify and characterize epithelial-derived modulators of NEP activity and their role in asthma pathogenesis. METHODS Bioinformatics and molecular docking identified fetuin B (FETUB) as a NEP inhibitor. FETUB expression in human lung tissue was assessed by immunohistochemistry, and its levels in exhaled breath condensate (EBC) and serum were quantified by ELISA. Functional assays and a lung-specific FETUB knockdown mouse model using Adeno-associated virus (AAV) vector confirmed its role in NEP inhibition and asthma pathogenesis. RESULTS Bioinformatic analysis, protein binding assays, and fluorescence substrate degradation experiments confirmed that FETUB is an inhibitor of NEP. Serum FETUB levels were elevated in asthmatics and positively correlated with serum IgE, eosinophil counts. Similarly, in asthmatic EBC, FETUB levels were significantly higher than in healthy controls and negatively correlated with asthma control test, FEV1 and FEV1%pred. The expression of FETUB was elevated in asthma lung tissue and primarily localized to airway epithelial cells. Combined bioinformatics and experimental data indicated that IL-13 as a key inducer of epithelial FETUB expression. Lung-specific FETUB knockdown restored NEP activity, reduced neuropeptides CGRP and SP, and improved airway inflammation and hyperresponsiveness in asthma. CONCLUSION The findings suggest that epithelial-derived FETUB exacerbates airway inflammation and hyperresponsiveness in asthma through the inhibition of NEP activity and the resultant accumulation of CGRP and SP.
Collapse
Affiliation(s)
- Peng Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing 210029, China
| | - Qi Hua
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing 210029, China; Department of Respiratory and Critical Care Medicine, Dongtai People's Hospital, NO.2 West Kangfu Road, Yancheng 224200, China
| | - Heng Fu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing 210029, China
| | - Lei Yao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing 210029, China
| | - Xijing Yuan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing 210029, China
| | - Qian Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing 210029, China; Department of Respiratory and Critical Care Medicine, Nanjing First Hospital Nanjing Medical University, NO.68 Changle Road Nanjing, 210006, China
| | - Yuebei Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing 210029, China
| | - Man Jia
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing 210029, China
| | - Rong Xia
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing 210029, China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, NO.101 Longmian Road, Nanjing 211166, China
| | - Xin Yao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing 210029, China.
| |
Collapse
|
2
|
Silva BA, Leal MC, Farias MI, Nava A, Galván DI, Fernandez E, Pitossi FJ, Ferrari CC. Proteomic analysis reveals candidate molecules to mediate cortical pathology and identify possible biomarkers in an animal model of multiple sclerosis. Front Immunol 2025; 16:1505459. [PMID: 40018028 PMCID: PMC11864942 DOI: 10.3389/fimmu.2025.1505459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/15/2025] [Indexed: 03/01/2025] Open
Abstract
Introduction Multiple Sclerosis (MS) is a complex neurodegenerative disease marked by recurring inflammatory episodes, demyelination, axonal damage, and subsequent loss of function. MS presents a wide range of clinical courses, with the progressive forms leading to irreversible neurological disability. Cortical demyelinating lesions are central to the pathology of these progressive forms, gaining critical importance in recent decades due to their strong correlation with physical disability and cognitive decline. Despite this, the underlying mechanisms driving cortical lesion formation remain poorly understood, and no specific treatments are currently available. A significant challenge lies in the lack of animal models that accurately mirror the key characteristics of these lesions. Methods We developed a focal cortical animal model that replicates many features of cortical lesions, including cognitive impairment. This study focuses on conducting proteomic analyses of both the cortical lesions and cerebrospinal fluid (CSF) from these animals, aiming to identify key proteins and biomarkers that could be validated in MS patients. Results Proteomic differences between frontal cortex tissue and CSF were observed when comparing experimental animals with controls. Among the identified proteins, some have been previously described in MS patients and animal models, while others represent novel discoveries. Notably, we identified two proteins, S100A8 and orosomucoid-1, that were highly expressed in both regions. Conclusions These findings suggest that the prognostic molecules identified in this model could facilitate the discovery of new biomarkers or key molecules relevant to MS, particularly in the cortical lesion that mainly characterized the progressive forms of the disease.
Collapse
Affiliation(s)
- Berenice Anabel Silva
- Fundación Instituto Leloir (FIL), Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Celeste Leal
- Fundación Instituto Leloir (FIL), Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Isabel Farias
- Fundación Instituto Leloir (FIL), Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Agustín Nava
- Fundación Instituto Leloir (FIL), Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Fundación Huésped, Buenos Aires, Argentina
| | - Daniela Inés Galván
- Fundación Instituto Leloir (FIL), Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Elmer Fernandez
- ScireLab, Fundación para el Progreso de la Medicina, CONICET, Córdoba, Argentina
- Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN), Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Fernando Juan Pitossi
- Fundación Instituto Leloir (FIL), Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Carina Cintia Ferrari
- Fundación Instituto Leloir (FIL), Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
3
|
Perussolo MC, Mogharbel BF, Saçaki CS, da Rosa NN, Irioda AC, de Oliveira NB, Appel JM, Lührs L, Meira LF, Guarita-Souza LC, Nagashima S, de Paula CBV, de Noronha L, Zotarelli-Filho IJ, Abdelwahid E, de Carvalho KAT. Cellular Therapy in Experimental Autoimmune Encephalomyelitis as an Adjuvant Treatment to Translate for Multiple Sclerosis. Int J Mol Sci 2024; 25:6996. [PMID: 39000105 PMCID: PMC11241124 DOI: 10.3390/ijms25136996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
This study aims to evaluate and compare cellular therapy with human Wharton's jelly (WJ) mesenchymal stem cells (MSCs) and neural precursors (NPs) in experimental autoimmune encephalomyelitis (EAE), a preclinical model of Multiple Sclerosis. MSCs were isolated from WJ by an explant technique, differentiated to NPs, and characterized by cytometry and immunocytochemistry analysis after ethical approval. Forty-eight rats were EAE-induced by myelin basic protein and Freund's complete adjuvant. Forty-eight hours later, the animals received intraperitoneal injections of 250 ng/dose of Bordetella pertussis toxin. Fourteen days later, the animals were divided into the following groups: a. non-induced, induced: b. Sham, c. WJ-MSCs, d. NPs, and e. WJ-MSCs plus NPs. 1 × 105. Moreover, the cells were placed in a 10 µL solution and injected via a stereotaxic intracerebral ventricular injection. After ten days, the histopathological analysis for H&E, Luxol, interleukins, and CD4/CD8 was carried out. Statistical analyses demonstrated a higher frequency of clinical manifestation in the Sham group (15.66%) than in the other groups; less demyelination was seen in the treated groups than the Sham group (WJ-MSCs, p = 0.016; NPs, p = 0.010; WJ-MSCs + NPs, p = 0.000), and a lower cellular death rate was seen in the treated groups compared with the Sham group. A CD4/CD8 ratio of <1 showed no association with microglial activation (p = 0.366), astrocytes (p = 0.247), and cell death (p = 0.577) in WJ-MSCs. WJ-MSCs and NPs were immunomodulatory and neuroprotective in cellular therapy, which would be translated as an adjunct in demyelinating diseases.
Collapse
Affiliation(s)
- Maiara Carolina Perussolo
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Curitiba P.O. Box 80240-020, Paraná, Brazil; (M.C.P.); (B.F.M.); (C.S.S.); (N.N.d.R.); (A.C.I.); (N.B.d.O.); (J.M.A.); (L.L.)
| | - Bassam Felipe Mogharbel
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Curitiba P.O. Box 80240-020, Paraná, Brazil; (M.C.P.); (B.F.M.); (C.S.S.); (N.N.d.R.); (A.C.I.); (N.B.d.O.); (J.M.A.); (L.L.)
| | - Cláudia Sayuri Saçaki
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Curitiba P.O. Box 80240-020, Paraná, Brazil; (M.C.P.); (B.F.M.); (C.S.S.); (N.N.d.R.); (A.C.I.); (N.B.d.O.); (J.M.A.); (L.L.)
| | - Nádia Nascimento da Rosa
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Curitiba P.O. Box 80240-020, Paraná, Brazil; (M.C.P.); (B.F.M.); (C.S.S.); (N.N.d.R.); (A.C.I.); (N.B.d.O.); (J.M.A.); (L.L.)
| | - Ana Carolina Irioda
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Curitiba P.O. Box 80240-020, Paraná, Brazil; (M.C.P.); (B.F.M.); (C.S.S.); (N.N.d.R.); (A.C.I.); (N.B.d.O.); (J.M.A.); (L.L.)
| | - Nathalia Barth de Oliveira
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Curitiba P.O. Box 80240-020, Paraná, Brazil; (M.C.P.); (B.F.M.); (C.S.S.); (N.N.d.R.); (A.C.I.); (N.B.d.O.); (J.M.A.); (L.L.)
| | - Julia Maurer Appel
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Curitiba P.O. Box 80240-020, Paraná, Brazil; (M.C.P.); (B.F.M.); (C.S.S.); (N.N.d.R.); (A.C.I.); (N.B.d.O.); (J.M.A.); (L.L.)
| | - Larissa Lührs
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Curitiba P.O. Box 80240-020, Paraná, Brazil; (M.C.P.); (B.F.M.); (C.S.S.); (N.N.d.R.); (A.C.I.); (N.B.d.O.); (J.M.A.); (L.L.)
| | - Leanderson Franco Meira
- Experimental Laboratory of the Institute of Biology and Health Sciences, Pontifical Catholic University of Paraná, Curitiba P.O. Box 80215-901, Paraná, Brazil; (L.F.M.); (L.C.G.-S.)
| | - Luiz Cesar Guarita-Souza
- Experimental Laboratory of the Institute of Biology and Health Sciences, Pontifical Catholic University of Paraná, Curitiba P.O. Box 80215-901, Paraná, Brazil; (L.F.M.); (L.C.G.-S.)
| | - Seigo Nagashima
- Laboratory of Experimental Pathology, Graduate Program of Health Sciences, School of Medicine, Pontifical Catholic University of Paraná (PUCPR), Curitiba P.O. Box 80215-901, Paraná, Brazil; (S.N.); (C.B.V.d.P.); (L.d.N.)
| | - Caroline Busatta Vaz de Paula
- Laboratory of Experimental Pathology, Graduate Program of Health Sciences, School of Medicine, Pontifical Catholic University of Paraná (PUCPR), Curitiba P.O. Box 80215-901, Paraná, Brazil; (S.N.); (C.B.V.d.P.); (L.d.N.)
| | - Lucia de Noronha
- Laboratory of Experimental Pathology, Graduate Program of Health Sciences, School of Medicine, Pontifical Catholic University of Paraná (PUCPR), Curitiba P.O. Box 80215-901, Paraná, Brazil; (S.N.); (C.B.V.d.P.); (L.d.N.)
| | - Idiberto José Zotarelli-Filho
- Postgraduate Program in Food, Nutrition and Food Engineering, Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São Paulo State University (UNESP), São José do Rio Preto P.O. Box 15054-000, São Paulo, Brazil;
| | - Eltyeb Abdelwahid
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Katherine Athayde Teixeira de Carvalho
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Curitiba P.O. Box 80240-020, Paraná, Brazil; (M.C.P.); (B.F.M.); (C.S.S.); (N.N.d.R.); (A.C.I.); (N.B.d.O.); (J.M.A.); (L.L.)
| |
Collapse
|
4
|
Barriola S, Delgado-García LM, Cartas-Cejudo P, Iñigo-Marco I, Fernández-Irigoyen J, Santamaría E, López-Mascaraque L. Orosomucoid-1 Arises as a Shared Altered Protein in Two Models of Multiple Sclerosis. Neuroscience 2023; 535:203-217. [PMID: 37949310 DOI: 10.1016/j.neuroscience.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023]
Abstract
Multiple sclerosis (MS) is a complex autoimmune and neurodegenerative disorder that affects the central nervous system (CNS). It is characterized by a heterogeneous disease course involving demyelination and inflammation. In this study, we utilized two distinct animal models, cuprizone (CPZ)-induced demyelination and experimental autoimmune encephalomyelitis (EAE), to replicate various aspects of the disease. We aimed to investigate the differential CNS responses by examining the proteomic profiles of EAE mice during the peak disease (15 days post-induction) and cuprizone-fed mice during the acute phase (38 days). Specifically, we focused on two different regions of the CNS: the dorsal cortex (Cx) and the entire spinal cord (SC). Our findings revealed varied glial, synaptic, dendritic, mitochondrial, and inflammatory responses within these regions for each model. Notably, we identified a single protein, Orosomucoid-1 (Orm1), also known as Alpha-1-acid glycoprotein 1 (AGP1), that consistently exhibited alterations in both models and regions. This study provides insights into the similarities and differences in the responses of these regions in two distinct demyelinating models.
Collapse
Affiliation(s)
- Sonsoles Barriola
- Department of Molecular, Cellular and Developmental Neurobiology, Instituto Cajal, Consejo Superior de Investigaciones Científicas-CSIC, Madrid 28002, Spain; Ph.D. Program in Neuroscience, Autónoma de Madrid University-Cajal Institute, Madrid 28029, Spain
| | - Lina María Delgado-García
- Department of Molecular, Cellular and Developmental Neurobiology, Instituto Cajal, Consejo Superior de Investigaciones Científicas-CSIC, Madrid 28002, Spain; Laboratory of Molecular Neurobiology, Department of Biochemistry, Universidade Federal de São Paulo UNIFESP, São Paulo 04039032, Brazil
| | - Paz Cartas-Cejudo
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IDISNA, Pamplona 31008, Spain
| | - Ignacio Iñigo-Marco
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IDISNA, Pamplona 31008, Spain
| | - Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IDISNA, Pamplona 31008, Spain
| | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IDISNA, Pamplona 31008, Spain
| | - Laura López-Mascaraque
- Department of Molecular, Cellular and Developmental Neurobiology, Instituto Cajal, Consejo Superior de Investigaciones Científicas-CSIC, Madrid 28002, Spain.
| |
Collapse
|
5
|
Zhao M, Zhang Y, Wu J, Li X, Gao Y. Early urinary candidate biomarkers and clinical outcomes of intervention in a rat model of experimental autoimmune encephalomyelitis. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230118. [PMID: 37621667 PMCID: PMC10445012 DOI: 10.1098/rsos.230118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023]
Abstract
Multiple sclerosis is a chronic autoimmune demyelinating disease of the central nervous system and is difficult to diagnose in early stages. Without homeostatic control, urine was reported to have the ability to accumulate early changes in the body. We expect that urinary proteome can reflect early changes in the nervous system. The early urinary proteome changes in a most employed multiple sclerosis rat model (experimental autoimmune encephalomyelitis) were analysed to explore early urinary candidate biomarkers, and early treatment of methylprednisolone was used to evaluate the therapeutic effect. Twenty-five urinary proteins were altered at day 7 when there were no clinical symptoms and obvious histological changes. Fourteen were reported to be differently expressed in the serum/cerebrospinal fluid/brain tissues of multiple sclerosis patients or animals such as angiotensinogen and matrix metallopeptidase 8. Functional analysis showed that the dysregulated proteins were associated with asparagine degradation, neuroinflammation and lipid metabolism. After the early treatment of methylprednisolone, the incidence of encephalomyelitis in the intervention group was only 1/13. This study demonstrates that urine may be a good source of biomarkers for the early detection of multiple sclerosis. These findings may provide important information for early diagnosis and intervention of multiple sclerosis in the future.
Collapse
Affiliation(s)
- Mindi Zhao
- Department of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Yameng Zhang
- Gene Engineering Drug and Biotechnology Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing 100875, People's Republic of China
- Department of Pathology, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Jianqiang Wu
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Xundou Li
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, People's Republic of China
| | - Youhe Gao
- Gene Engineering Drug and Biotechnology Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
6
|
Saez-Calveras N, Brewster AL, Stuve O. The validity of animal models to explore the pathogenic role of the complement system in multiple sclerosis: A review. Front Mol Neurosci 2022; 15:1017484. [PMID: 36311030 PMCID: PMC9606595 DOI: 10.3389/fnmol.2022.1017484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2022] Open
Abstract
Animal models of multiple sclerosis (MS) have been extensively used to characterize the disease mechanisms in MS, as well as to identify potential pharmacologic targets for this condition. In recent years, the immune complement system has gained increased attention as an important effector in the pathogenesis of MS. Evidence from histological, serum, and CSF studies of patients supports an involvement of complement in both relapsing-remitting and progressive MS. In this review, we discuss the history and advances made on the use of MS animal models to profile the effects of the complement system in this condition. The first studies that explored the complement system in the context of MS used cobra venom factor (CVF) as a complement depleting agent in experimental autoimmune encephalomyelitis (EAE) Lewis rats. Since then, multiple mice and rat models of MS have revealed a role of C3 and the alternative complement cascade in the opsonization and phagocytosis of myelin by microglia and myeloid cells. Studies using viral vectors, genetic knockouts and pharmacologic complement inhibitors have also shown an effect of complement in synaptic loss. Antibody-mediated EAE models have revealed an involvement of the C1 complex and the classical complement as an effector of the humoral response in this disease. C1q itself may also be involved in modulating microglia activation and oligodendrocyte differentiation in these animals. In addition, animal and in vitro models have revealed that multiple complement factors may act as modulators of both the innate and adaptive immune responses. Finally, evidence gathered from mice models suggests that the membrane attack complex (MAC) may even exert protective roles in the chronic stages of EAE. Overall, this review summarizes the importance of MS animal models to better characterize the role of the complement system and guide future therapeutic approaches in this condition.
Collapse
Affiliation(s)
- Nil Saez-Calveras
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Neurology Section, Parkland Hospital, Dallas, TX, United States
| | - Amy L. Brewster
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, United States
| | - Olaf Stuve
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Neurology Section, VA North Texas Health Care System, Dallas, TX, United States
- Peter O’Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
- *Correspondence: Olaf Stuve,
| |
Collapse
|
7
|
Upadhayay S, Mehan S, Prajapati A, Sethi P, Suri M, Zawawi A, Almashjary MN, Tabrez S. Nrf2/HO-1 Signaling Stimulation through Acetyl-11-Keto-Beta-Boswellic Acid (AKBA) Provides Neuroprotection in Ethidium Bromide-Induced Experimental Model of Multiple Sclerosis. Genes (Basel) 2022; 13:genes13081324. [PMID: 35893061 PMCID: PMC9331916 DOI: 10.3390/genes13081324] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/16/2022] Open
Abstract
Multiple sclerosis (MS) is a severe immune-mediated neurological disease characterized by neuroinflammation, demyelination, and axonal degeneration in the central nervous system (CNS). This is frequently linked to motor abnormalities and cognitive impairments. The pathophysiological hallmarks of MS include inflammatory demyelination, axonal injury, white matter degeneration, and the development of CNS lesions that result in severe neuronal degeneration. Several studies suggested downregulation of nuclear factor erythroid-2-related factor-2 (Nrf2)/Heme oxygenase-1 (HO-1) signaling is a causative factor for MS pathogenesis. Acetyl-11-keto-β-boswellic acid (AKBA) is an active pentacyclictriterpenoid obtained from Boswellia serrata, possessing antioxidant and anti-inflammatory properties. The present study explores the protective potential of AKBA on behavioral, molecular, neurochemical, and gross pathological abnormalitiesandhistopathological alterations by H&E and LFB staining techniques in an experimental model of multiple sclerosis, emphasizing the increase inNrf2/HO-1 levels in the brain. Moreover, we also examine the effect of AKBA on the intensity of myelin basic protein (MBP) in CSF and rat brain homogenate. Specific apoptotic markers (Bcl-2, Bax, andcaspase-3) were also estimated in rat brain homogenate. Neuro behavioralabnormalities in rats were examined using an actophotometer, rotarod test, beam crossing task (BCT),and Morris water maze (MWM). AKBA 50 mg/kg and 100 mg/kg were given orally from day 8 to 35 to alleviate MS symptoms in the EB-injected rats. Furthermore, cellular, molecular, neurotransmitter, neuroinflammatory cytokine, and oxidative stress markers in rat whole brain homogenate, blood plasma, and cerebral spinal fluid were investigated. This study shows that AKBA upregulates the level of antioxidant proteins such as Nrf2 and HO-1 in the rat brain. AKBA restores altered neurochemical levels, potentially preventing gross pathological abnormalities during MS progression.
Collapse
Affiliation(s)
- Shubham Upadhayay
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India; (S.U.); (A.P.); (P.S.); (M.S.)
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India; (S.U.); (A.P.); (P.S.); (M.S.)
- Correspondence: (S.M.); (S.T.)
| | - Aradhana Prajapati
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India; (S.U.); (A.P.); (P.S.); (M.S.)
| | - Pranshul Sethi
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India; (S.U.); (A.P.); (P.S.); (M.S.)
| | - Manisha Suri
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India; (S.U.); (A.P.); (P.S.); (M.S.)
| | - Ayat Zawawi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.Z.); (M.N.A.)
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Majed N. Almashjary
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.Z.); (M.N.A.)
- Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Animal House Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shams Tabrez
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.Z.); (M.N.A.)
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (S.M.); (S.T.)
| |
Collapse
|
8
|
Demyelination Lesions Do Not Correlate with Clinical Manifestations by Bordetella pertussis Toxin Concentrations. LIFE (BASEL, SWITZERLAND) 2022; 12:life12070962. [PMID: 35888052 PMCID: PMC9316486 DOI: 10.3390/life12070962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/21/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system, characterized as an inflammatory demyelinating disease. Given the need for improvements in MS treatment, many studies are mainly conducted through preclinical models such as experimental allergic encephalomyelitis (EAE). This study analyzes the relationships between histopathological and clinical score findings at EAE. Twenty-three female Rattus norvegicus Lewis rats from 6 to 8 weeks were induced to EAE. Nineteen rats underwent EAE induction distributed in six groups to establish the evolution of clinical signs, and four animals were in the control group. Bordetella pertussis toxin (PTX) doses were 200, 250, 300, 350 and 400 ng. The clinical scores of the animals were analyzed daily, from seven to 24 days after induction. The brains and spinal cords were collected for histopathological analyses. The results demonstrated that the dose of 250 ng of PTX induced a higher clinical score and reduction in weight. All induced groups demonstrated leukocyte infiltration, activation of microglia and astrocytes, and demyelinated plaques in the brains in histopathology. It was concluded that the dose of 250 ng and 350 ng of PTX were the best choices to trigger the brain and spinal cord demyelination lesions and did not correlate with clinical scores.
Collapse
|
9
|
Liu H, Wang Z, Li H, Li M, Han B, Qi Y, Wang H, Gao J. Label-free Quantitative Proteomic Analysis of Cerebrospinal Fluid and Serum in Patients With Relapse-Remitting Multiple Sclerosis. Front Genet 2022; 13:892491. [PMID: 35571066 PMCID: PMC9092947 DOI: 10.3389/fgene.2022.892491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The lack of effective serum and cerebrospinal fluid (CSF) biomarkers remains a barrier to early diagnosis and treatment of multiple sclerosis (MS). The study is to identify the diagnostic biomarkers of serum and CSF in patients who suffered MS. Methods: At first, we performed differential analysis of CSF and serum proteomics on control and relapse-remitting multiple sclerosis (RRMS) patients. Secondly, CSF and serum’s differential proteins were compared, in order to identify the significative proteins. Finally, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analysis were performed on the differential proteins in serum and CSF respectively to clarify their common biological functions and pathways. Results: At the first step, in CSF, 73 proteins were significantly differentially expressed in the RRMS set compared with the controls. In serum, 22 proteins were differentially expressed. Secondly, we found MMP2 C8G and CFH were the same high expression trend in CSF and serum. Finally, we found the differential proteins in serum and CSF are mostly participated in biological processes: immuno-inflammatory response, neuronal development, cell adhesion and signaling. Conclusion: MMP2, C8G and CFH may participate in the pathogenesis of RRMS, which are the potential diagnostic biomarkers of the disease.
Collapse
Affiliation(s)
- Haijie Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ziwen Wang
- Department of Neurology, Baoding No. 1 Central Hospital, Baoding, China
| | - He Li
- Department of Automation, College of Information Science and Engineering, Tianjin Tianshi College, Tianjin, China
| | - Meijie Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Bo Han
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuan Qi
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Huailu Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Juan Gao
- Department of Neurology, Baoding No. 1 Central Hospital, Baoding, China
| |
Collapse
|
10
|
Proteomics in Multiple Sclerosis: The Perspective of the Clinician. Int J Mol Sci 2022; 23:ijms23095162. [PMID: 35563559 PMCID: PMC9100097 DOI: 10.3390/ijms23095162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 02/08/2023] Open
Abstract
Multiple sclerosis (MS) is the inflammatory demyelinating and neurodegenerative disease of the central nervous system (CNS) that affects approximately 2.8 million people worldwide. In the last decade, a new era was heralded in by a new phenotypic classification, a new diagnostic protocol and the first ever therapeutic guideline, making personalized medicine the aim of MS management. However, despite this great evolution, there are still many aspects of the disease that are unknown and need to be further researched. A hallmark of these research are molecular biomarkers that could help in the diagnosis, differential diagnosis, therapy and prognosis of the disease. Proteomics, a rapidly evolving discipline of molecular biology may fulfill this dire need for the discovery of molecular biomarkers. In this review, we aimed to give a comprehensive summary on the utility of proteomics in the field of MS research. We reviewed the published results of the method in case of the pathogenesis of the disease and for biomarkers of diagnosis, differential diagnosis, conversion of disease courses, disease activity, progression and immunological therapy. We found proteomics to be a highly effective emerging tool that has been providing important findings in the research of MS.
Collapse
|
11
|
Kumar N, Singh A, Gulati HK, Bhagat K, Kaur K, Kaur J, Dudhal S, Duggal A, Gulati P, Singh H, Singh JV, Bedi PMS. Phytoconstituents from ten natural herbs as potent inhibitors of main protease enzyme of SARS-COV-2: In silico study. PHYTOMEDICINE PLUS : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021. [PMID: 35403086 DOI: 10.1016/j.phyplu.2021.100139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
BACKGROUND Lack of treatment of novel Coronavirus disease led to the search of specific antivirals that are capable to inhibit the replication of the virus. The plant kingdom has demonstrated to be an important source of new molecules with antiviral potential. PURPOSE The present study aims to utilize various computational tools to identify the most eligible drug candidate that have capabilities to halt the replication of SARS-COV-2 virus by inhibiting Main protease (Mpro) enzyme. METHODS We have selected plants whose extracts have inhibitory potential against previously discovered coronaviruses. Their phytoconstituents were surveyed and a library of 100 molecules was prepared. Then, computational tools such as molecular docking, ADMET and molecular dynamic simulations were utilized to screen the compounds and evaluate them against Mpro enzyme. RESULTS All the phytoconstituents showed good binding affinities towards Mpro enzyme. Among them laurolitsine possesses the highest binding affinity i.e. -294.1533 kcal/mol. On ADMET analysis of best three ligands were simulated for 1.2 ns, then the stable ligand among them was further simulated for 20 ns. Results revealed that no conformational changes were observed in the laurolitsine w.r.t. protein residues and low RMSD value suggested that the Laurolitsine-protein complex was stable for 20 ns. CONCLUSION Laurolitsine, an active constituent of roots of Lindera aggregata, was found to be having good ADMET profile and have capabilities to halt the activity of the enzyme. Therefore, this makes laurolitsine a good drug candidate for the treatment of COVID-19.
Collapse
Key Words
- ACE-2, Angiotensin converting enzyme- 2
- ADMET
- ADMET, absorption, Distribution, metabolism, excretion and toxicity
- Ala, Alanine
- Approx., approximately
- Arg, arginine
- Asn, Asparagine
- Asp, Aspartic acid
- CADD, Computer Aided Drug Design
- CHARMM, Chemistry at Harvard Macromolecular Mechanics
- COV, coronavirus
- COVID, Novel corona-virus disease
- Covid-19
- Cys, cysteine
- DSBDS, Dassault's Systems Biovia's Discovery studio
- Gln, Glutamine
- Glu, glutamate
- Gly, Glycine
- His, histidine
- Ile, isoleucine
- K, Kelvin
- Kcal/mol, kilo calories per mol
- Leu, Leucine
- Leu, leucine
- Lys, Lysine
- MD, Molecular Dynamics
- Met, Methionine
- MoISA, Molecular Surface Area
- Molecular dynamic simulations
- Mpro protein
- Mpro, Main protease enzyme
- N protein, nucleocapsid protein
- NI, N-(4-methylpyridin-3-yl) acetamide inhibitor
- NPT, amount of substance (N), pressure (P) and temperature (T)
- NVT, amount of substance (N), volume (V) and temperature (T)
- Natural Antiviral herbs
- PDB, protein data bank
- PPB, plasma protein binding
- PSA, Polar Surface Area
- Phi, Phenylalanine
- Pro, Proline
- RCSB, Research Collaboratory for Structural Bioinformatics
- RMS, Root Mean Square
- RMSD, Root Mean Square Deviation
- RMSF, root mean square fluctuations
- RNA, Ribonucleic acid
- SAR-COV-2, severe acute respiratory syndrome coronavirus 2
- SDF, structure data format
- Ser, serine
- T, Temperature
- Thr, Threonine
- Trp, Tryptophan
- Tyr, Tyrosine
- Val, Valine
- kDa, kilo Dalton
- nCOV-19, Novel Coronavirus 2019
- ns/nsec, nano seconds
- ps, pentoseconds
- rGyr, Radius of gyration
- w.r.t., with respect to
- Å, angstrom
- α, alpha
- β, beta
Collapse
Affiliation(s)
- Nitish Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
- Drug and Pollution testing Lab, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
| | - Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
| | - Harmandeep Kaur Gulati
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
| | - Kavita Bhagat
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
| | - Komalpreet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
| | - Jaspreet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
| | - Shilpa Dudhal
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
| | - Amit Duggal
- Drugs Control Wing, Sector 16, Chandigarh, India, 160015
| | - Puja Gulati
- School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh, Punjab, India, 147301
| | - Harbinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
| | - Jatinder Vir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
| | | |
Collapse
|
12
|
Jafari A, Babajani A, Rezaei-Tavirani M. Multiple Sclerosis Biomarker Discoveries by Proteomics and Metabolomics Approaches. Biomark Insights 2021; 16:11772719211013352. [PMID: 34017167 PMCID: PMC8114757 DOI: 10.1177/11772719211013352] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 04/05/2021] [Indexed: 12/22/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune inflammatory disorder of the central nervous system (CNS) resulting in demyelination and axonal loss in the brain and spinal cord. The precise pathogenesis and etiology of this complex disease are still a mystery. Despite many studies that have been aimed to identify biomarkers, no protein marker has yet been approved for MS. There is urgently needed for biomarkers, which could clarify pathology, monitor disease progression, response to treatment, and prognosis in MS. Proteomics and metabolomics analysis are powerful tools to identify putative and novel candidate biomarkers. Different human compartments analysis using proteomics, metabolomics, and bioinformatics approaches has generated new information for further clarification of MS pathology, elucidating the mechanisms of the disease, finding new targets, and monitoring treatment response. Overall, omics approaches can develop different therapeutic and diagnostic aspects of complex disorders such as multiple sclerosis, from biomarker discovery to personalized medicine.
Collapse
Affiliation(s)
- Ameneh Jafari
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
13
|
Oveland E, Ahmad I, Lereim RR, Kroksveen AC, Barsnes H, Guldbrandsen A, Myhr KM, Bø L, Berven FS, Wergeland S. Cuprizone and EAE mouse frontal cortex proteomics revealed proteins altered in multiple sclerosis. Sci Rep 2021; 11:7174. [PMID: 33785790 PMCID: PMC8010076 DOI: 10.1038/s41598-021-86191-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/19/2021] [Indexed: 02/06/2023] Open
Abstract
Two pathophysiological different experimental models for multiple sclerosis were analyzed in parallel using quantitative proteomics in attempts to discover protein alterations applicable as diagnostic-, prognostic-, or treatment targets in human disease. The cuprizone model reflects de- and remyelination in multiple sclerosis, and the experimental autoimmune encephalomyelitis (EAE, MOG1-125) immune-mediated events. The frontal cortex, peripheral to severely inflicted areas in the CNS, was dissected and analyzed. The frontal cortex had previously not been characterized by proteomics at different disease stages, and novel protein alterations involved in protecting healthy tissue and assisting repair of inflicted areas might be discovered. Using TMT-labelling and mass spectrometry, 1871 of the proteins quantified overlapped between the two experimental models, and the fold change compared to controls was verified using label-free proteomics. Few similarities in frontal cortex between the two disease models were observed when regulated proteins and signaling pathways were compared. Legumain and C1Q complement proteins were among the most upregulated proteins in cuprizone and hemopexin in the EAE model. Immunohistochemistry showed that legumain expression in post-mortem multiple sclerosis brain tissue (n = 19) was significantly higher in the center and at the edge of white matter active and chronic active lesions. Legumain was associated with increased lesion activity and might be valuable as a drug target using specific inhibitors as already suggested for Parkinson's and Alzheimer's disease. Cerebrospinal fluid levels of legumain, C1q and hemopexin were not significantly different between multiple sclerosis patients, other neurological diseases, or healthy controls.
Collapse
Affiliation(s)
- Eystein Oveland
- Proteomics Unit, Department of Biomedicine, University of Bergen (PROBE), Bergen, Norway
| | - Intakhar Ahmad
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Neurology, Norwegian Multiple Sclerosis Competence Centre, Haukeland University Hospital, Jonas Lies vei 65, 5021, Bergen, Norway
| | - Ragnhild Reehorst Lereim
- Proteomics Unit, Department of Biomedicine, University of Bergen (PROBE), Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Ann Cathrine Kroksveen
- Proteomics Unit, Department of Biomedicine, University of Bergen (PROBE), Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Harald Barsnes
- Proteomics Unit, Department of Biomedicine, University of Bergen (PROBE), Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Astrid Guldbrandsen
- Proteomics Unit, Department of Biomedicine, University of Bergen (PROBE), Bergen, Norway
- Department of Neurology, Norwegian Multiple Sclerosis Competence Centre, Haukeland University Hospital, Jonas Lies vei 65, 5021, Bergen, Norway
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Kjell-Morten Myhr
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Lars Bø
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Neurology, Norwegian Multiple Sclerosis Competence Centre, Haukeland University Hospital, Jonas Lies vei 65, 5021, Bergen, Norway
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Frode S Berven
- Proteomics Unit, Department of Biomedicine, University of Bergen (PROBE), Bergen, Norway
- Department of Neurology, Norwegian Multiple Sclerosis Competence Centre, Haukeland University Hospital, Jonas Lies vei 65, 5021, Bergen, Norway
| | - Stig Wergeland
- Department of Neurology, Norwegian Multiple Sclerosis Competence Centre, Haukeland University Hospital, Jonas Lies vei 65, 5021, Bergen, Norway.
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
14
|
Nuñez-Calonge R, Cortes S, Caballero Peregrín P, Gutierrez Gonzalez LM, Kireev R. Seminal Plasma and Serum Afamin Levels Are Associated with Infertility in Men with Oligoasthenoteratozoospermia. Reprod Sci 2021; 28:1498-1506. [PMID: 33409873 DOI: 10.1007/s43032-020-00436-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/13/2020] [Indexed: 10/22/2022]
Abstract
The plasma glycoprotein afamin has been previously identified as an alternative carrier protein for vitamin E in extravascular fluids such as plasma and cerebrospinal, ovarian follicular, and seminal fluids. However, to date, no study has established a relationship between afamin levels and infertility in women or men. The purposes of our study were (i) to assess the level of afamin in serum and seminal fluids in infertile men compared to healthy controls and (ii) to study the association between polymorphisms in afamin genes and male infertility. This observational, prospective study evaluated the afamin levels in serum and seminal fluids from infertile men (n = 39) and compared them to those in healthy controls (n = 30). We studied the association between single-nucleotide polymorphisms (SNPs) in the 5`-untranslated region (5`-UTR) of the afamin gene and infertility and analyzed a total of 1000 base pairs from the untranslated region of the afamin gene. Subjects with low sperm motility and low sperm concentration had higher median seminal afamin (18.9 ± 2.9 ng/mg of proteins) and serum afamin concentrations (24.1 ± 4.0 ng/mg of proteins) than subjects with normal sperm parameters (10.6 ± 1.4 ng/mg of proteins) (p < 0.02) (15.6 ± 1.4 ng/mg of proteins) (p < 0.002). A total of five different polymorphisms were found, including one deletion and four single-nucleotide polymorphisms (SNPs). A new transversion (A/T) (position 4:73481093) was identified in an oligoasthenoteratozoospermic patient and was associated with high levels of afamin in plasma and seminal fluids. The prevalence of this variant in our study in the case homozygous for TT is 0.985 (98.5%), and in the case heterozygous for TA is 0.015 (1.5%). Our results suggest that genetic variations in afamin might be associated with male infertility. These findings could significantly enhance our understanding of the molecular genetic causes of infertility.
Collapse
Affiliation(s)
- Rocio Nuñez-Calonge
- International Assisted Reproduction Unit, Madrid, IERA Foundation, Madrid, Avenida General Perón 20, 28020, Madrid, Spain.
| | | | - Pedro Caballero Peregrín
- International Assisted Reproduction Unit, Madrid, IERA Foundation, Madrid, Avenida General Perón 20, 28020, Madrid, Spain
| | | | - Roman Kireev
- Galicia Sur Health Research Institute, Vigo, Spain
| |
Collapse
|
15
|
Palermo F, Pieroni N, Maugeri L, Provinciali GB, Sanna A, Massimi L, Catalano M, Olbinado MP, Bukreeva I, Fratini M, Uccelli A, Gigli G, Kerlero de Rosbo N, Balducci C, Cedola A. X-ray Phase Contrast Tomography Serves Preclinical Investigation of Neurodegenerative Diseases. Front Neurosci 2020; 14:584161. [PMID: 33240038 PMCID: PMC7680960 DOI: 10.3389/fnins.2020.584161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/09/2020] [Indexed: 12/30/2022] Open
Abstract
We report a qualitative study on central nervous system (CNS) damage that demonstrates the ability of X-ray phase contrast tomography (XPCT) to confirm data obtained with standard 2D methodology and permits the description of additional features that are not detected with 2D or other 3D techniques. In contrast to magnetic resonance or computed tomography, XPCT makes possible the high-resolution 3D imaging of soft tissues classically considered "invisible" to X-rays without the use of additional contrast agents, or without the need for intense processing of the tissue required by 2D techniques. Most importantly for studies of CNS diseases, XPCT enables a concomitant multi-scale 3D biomedical imaging of neuronal and vascular networks ranging from cells through to the CNS as a whole. In the last years, we have used XPCT to investigate neurodegenerative diseases, such as Alzheimer's disease (AD) and multiple sclerosis (MS), to shed light on brain damage and extend the observations obtained with standard techniques. Here, we show the cutting-edge ability of XPCT to highlight in 3D, concomitantly, vascular occlusions and damages, close associations between plaques and damaged vessels, as well as dramatic changes induced at neuropathological level by treatment in AD mice. We corroborate data on the well-known blood-brain barrier dysfunction in the animal model of MS, experimental autoimmune encephalomyelitis, and further show its extent throughout the CNS axis and at the level of the single vessel/capillary.
Collapse
Affiliation(s)
- Francesca Palermo
- TomaLab, Institute of Nanotechnology, CNR, Rome, Italy.,Dipartimento di Fisica, Università della Calabria, Rende, Italy
| | - Nicola Pieroni
- TomaLab, Institute of Nanotechnology, CNR, Rome, Italy.,Dipartimento di Morfogenesi e Ingegneria Tissutale, Sapienza Università di Roma, Rome, Italy
| | - Laura Maugeri
- TomaLab, Institute of Nanotechnology, CNR, Rome, Italy
| | | | - Alessia Sanna
- TomaLab, Institute of Nanotechnology, CNR, Rome, Italy
| | | | | | - Margie P Olbinado
- Swiss Light Source, Paul Scherrer Institut X-ray Tomography Group, Villigen, Switzerland
| | - Inna Bukreeva
- TomaLab, Institute of Nanotechnology, CNR, Rome, Italy
| | | | - Antonio Uccelli
- Department of Neurosciences, Rehabilitation, Ophthalmology and Maternal-Fetal Medicine (DINOGMI), University of Genoa, Genoa, Italy.,Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | - Giuseppe Gigli
- Institute of Nanotechnology, CNR, Università del Salento, Lecce, Italy
| | - Nicole Kerlero de Rosbo
- Department of Neurosciences, Rehabilitation, Ophthalmology and Maternal-Fetal Medicine (DINOGMI), University of Genoa, Genoa, Italy
| | - Claudia Balducci
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | |
Collapse
|
16
|
Jankovska E, Lipcseyova D, Svrdlikova M, Pavelcova M, Kubala Havrdova E, Holada K, Petrak J. Quantitative proteomic analysis of cerebrospinal fluid of women newly diagnosed with multiple sclerosis. Int J Neurosci 2020; 132:724-734. [PMID: 33059501 DOI: 10.1080/00207454.2020.1837801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE The lack of reliable diagnostic and/or prognostic biomarkers for multiple sclerosis (MS) is the major obstacle to timely and accurate patient diagnosis in MS patients. To identify new proteins associated with MS we performed a detailed proteomic analysis of cerebrospinal fluid (CSF) of patients newly diagnosed with relapsing-remitting MS (RRMS) and healthy controls. MATERIAL Reflecting significantly higher prevalence of MS in women we included only women patients and controls in the study. To eliminate a potential effect of therapy on the CSF composition, only the therapy-naïve patients were included. METHODS Pooled CSF samples were processed in a technical duplicate, and labeled with stable-isotope coded TMT tags. To maximize the proteome coverage, peptide fractionation using 2D-LC preceded mass analysis using Orbitrap Fusion Tribrid Mass Spectrometer. Differential concentration of selected identified proteins between patients and controls was verified using specific antibodies. RESULTS Of the identified 900 CSF proteins, we found 69 proteins to be differentially abundant between patients and controls. In addition to several proteins identified as differentially abundant in MS patients previously, we observed several linked to MS for the first time, namely eosinophil-derived neurotoxin and Nogo receptor. CONCLUSIONS Our data confirm differential abundance of several previously proposed protein markers, and provide indirect support for involvement of copper-iron disbalance in MS. Most importantly, we identified two new differentially abundant CSF proteins that seem to be directly connected with myelin loss and axonal damage via TLR2 signaling and Nogo-receptor pathway in women newly diagnosed with RRMS.
Collapse
Affiliation(s)
- Eliska Jankovska
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Denisa Lipcseyova
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Michaela Svrdlikova
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Miluse Pavelcova
- Department of Neurology and Center for Clinical Neuroscience, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Eva Kubala Havrdova
- Department of Neurology and Center for Clinical Neuroscience, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Karel Holada
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jiri Petrak
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| |
Collapse
|
17
|
Liu H, Anders F, Funke S, Mercieca K, Grus F, Prokosch V. Proteome alterations in aqueous humour of primary open angle glaucoma patients. Int J Ophthalmol 2020; 13:176-179. [PMID: 31956586 DOI: 10.18240/ijo.2020.01.24] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/20/2019] [Indexed: 01/10/2023] Open
Abstract
AIM To unravel the primary open angle glaucoma (POAG) related proteomic changes in aqueous humour (AH). METHODS Totally 35 patients listed for cataract surgery (controls: n=12, age: 67.4±13.6y) or trabeculectomy for POAG (n=23, age: 72.5±8.3y) were included. AH samples of those patients were obtained during cataract surgery or trabeculectomy. AH samples were subsequently pooled into the experimental groups under equal contribution in terms of protein amount of each individual patient. Protein samples were analyzed by a linear trap quadrupol Orbitrap Mass Spectrometry device with an upstream liquid chromatography system. The obtained raw data were analyzed using the Maxquant proteome software and compared. Proteins with a fold-change ratio higher than a cut-off of 2 were considered as noticeably altered. RESULTS A total number of 175 proteins could be identified out of the AH from POAG and cataract by means of quantitative mass spectrometric analysis. Apolipoprotein D (fold change, 3.16 times), complement C3 (2.96), pigment epithelium-derived factor (2.86), dickkopf-related protein 3 (2.18) and wingless-related integration (Wnt) inhibitory factor 1 (2.35) were significantly upregulated within the AH of glaucoma compared to cataract serving as controls. CONCLUSION AH provides a tool to analyze changes in glaucoma and shows striking changes in Wnt signaling inhibitory molecules and other proteins.
Collapse
Affiliation(s)
- Hanhan Liu
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany.,Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany
| | - Fabian Anders
- Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany
| | - Sebastian Funke
- Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany
| | - Karl Mercieca
- Royal Eye Hospital, School of Medicine, University of Manchester, Manchester M202UL, United Kingdom
| | - Franz Grus
- Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany
| | - Verena Prokosch
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany
| |
Collapse
|
18
|
Timirci-Kahraman O, Karaaslan Z, Tuzun E, Kurtuncu M, Baykal AT, Gunduz T, Tuzuner MB, Akgun E, Gurel B, Eraksoy M, Kucukali CI. Identification of candidate biomarkers in converting and non-converting clinically isolated syndrome by proteomics analysis of cerebrospinal fluid. Acta Neurol Belg 2019; 119:101-111. [PMID: 29873030 DOI: 10.1007/s13760-018-0954-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/24/2018] [Indexed: 01/28/2023]
Abstract
Multiple sclerosis (MS) often starts in the form of clinically isolated syndrome (CIS) and only some of the CIS patients progress to relapsing-remitting MS (RRMS). Biomarkers to predict conversion from CIS to MS are thus greatly needed for making correct treatment decisions. To identify a predictive cerebrospinal fluid (CSF) protein, we analyzed the first-attack CSF samples of CIS patients who converted (CIS-MS) (n = 23) and did not convert (CIS-CIS) (n = 19) to RRMS in a follow-up period of 5 years using proteomics analysis by liquid chromatography tandem-mass spectrometry (LC-MS/MS) and verified by ELISA. Label-free differential proteomics analysis of CSF ensured that 637 proteins were identified and 132 of these proteins were found to be statistically significant. Further investigation with the ingenuity pathway analysis (IPA) software led to identification of three pathway networks mostly comprised proteins involved in inflammatory response, cellular growth and tissue proliferation. CSF levels of four of the most differentially expressed proteins belonging to the cellular proliferation network function, chitinase-3-like protein 1 (CHI3L1), tumor necrosis factor receptor superfamily member 21 (TNFRSF21), homeobox protein Hox-B3 (HOXB3) and iduronate 2-sulfatase (IDS), were measured by ELISA. CSF levels of HOXB3 were significantly increased in CIS-MS patients. Our results indicate that cell and tissue proliferation functions are dysregulated in MS as early as the first clinical episode. HOXB3 has emerged as a potential novel biomarker which might be used for prediction of CIS-MS conversion.
Collapse
|
19
|
Mørkholt AS, Kastaniegaard K, Trabjerg MS, Gopalasingam G, Niganze W, Larsen A, Stensballe A, Nielsen S, Nieland JD. Identification of brain antigens recognized by autoantibodies in experimental autoimmune encephalomyelitis-induced animals treated with etomoxir or interferon-β. Sci Rep 2018; 8:7092. [PMID: 29728570 PMCID: PMC5935685 DOI: 10.1038/s41598-018-25391-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 04/19/2018] [Indexed: 11/08/2022] Open
Abstract
Multiple sclerosis (MS) is a neurodegenerative autoimmune disease, where chronic inflammation plays an essential role in its pathology. A feature of MS is the production of autoantibodies stimulated by an altered-peptide-ligand response and epitope spreading, resulting in loss of tolerance for self-proteins. The involvement of autoantibodies in MS pathogenesis has been suggested to initiate and drive progression of inflammation; however, the etiology of MS remains unknown. The effect of etomoxir and interferon-β (IFN-β) was examined in an experimental-autoimmune-encephalomyelitis (EAE) model of MS. Moreover, the impact of etomoxir and IFN-β on recognition of brain proteins in serum from EAE rats was examined with the purpose of identifying the autoantibody reactivities involved in MS. Animals treated with etomoxir on day 1 exhibited a statistically significantly lower disease score than animals treated with IFN-β (on day 1 or 5) or placebo. Etomoxir treatment on day 5 resulted in a significantly lower disease score than IFN-β treatment on day 1. After disease induction antibodies was induced to a broad pallet of antigens in the brain. Surprisingly, by blocking CPT1 and therewith lipid metabolism several alterations in the antibody response was observed suggesting that autoantibodies play a role in the EAE animal model.
Collapse
Affiliation(s)
| | | | | | - Gopana Gopalasingam
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Wanda Niganze
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Agnete Larsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Søren Nielsen
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - John Dirk Nieland
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
20
|
van den Berg CB, Duvekot JJ, Güzel C, Hansson SR, de Leeuw TG, Steegers EAP, Versendaal J, Luider TM, Stoop MP. Elevated levels of protein AMBP in cerebrospinal fluid of women with preeclampsia compared to normotensive pregnant women. Proteomics Clin Appl 2016; 11. [PMID: 27615121 DOI: 10.1002/prca.201600082] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/03/2016] [Accepted: 09/08/2016] [Indexed: 11/09/2022]
Abstract
PURPOSE To investigate the cerebrospinal fluid (CSF) proteome of patients with preeclampsia (PE) and normotensive pregnant women, in order to provide a better understanding of brain involvement in PE. EXPERIMENTAL DESIGN Ninety-eight CSF samples (43 women with PE and 55 normotensive controls) were analyzed by LC-MS/MS proteome profiling. CSF was obtained during the spinal puncture before caesarean delivery. RESULTS Eight proteins were higher abundant and 17 proteins were lower abundant in patients with PE. The most significantly differentially abundant protein was protein AMBP (alpha-1-microglobulin/bikunin precursor). This finding was validated by performing an ELISA experiment (p = 0.002). CONCLUSIONS AND CLINICAL RELEVANCE The current study showed a clear difference between the protein profiles of CSF from patients with PE and normotensive pregnant women. Protein AMBP is a precursor of a heme-binding protein that counteracts the damaging effects of free hemoglobin, which may be related to the presence of free hemoglobin in CSF. Protein levels showed correlations with clinical symptoms during pregnancy and postpartum. To our knowledge, this is the first LC-MS/MS proteome profiling study on a unique set of CSF samples from (severe) preeclamptic patients and normotensive pregnant women.
Collapse
Affiliation(s)
- Caroline B van den Berg
- Department of Obstetrics and Gynecology, Division of Obstetrics and Prenatal Medicine, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Johannes J Duvekot
- Department of Obstetrics and Gynecology, Division of Obstetrics and Prenatal Medicine, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Coşkun Güzel
- Department of Neurology, Neuro-Oncology, Clinical and Cancer Proteomics Laboratory, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Stefan R Hansson
- Department of Obstetrics and Gynecology, Clinical Sciences, Lund University, Lund, Sweden
| | - Thomas G de Leeuw
- Department of Anaesthesiology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Eric A P Steegers
- Department of Obstetrics and Gynecology, Division of Obstetrics and Prenatal Medicine, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Johannes Versendaal
- Department of Obstetrics and Gynecology, Division of Obstetrics and Prenatal Medicine, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Theo M Luider
- Department of Neurology, Neuro-Oncology, Clinical and Cancer Proteomics Laboratory, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Marcel P Stoop
- Department of Neurology, Neuro-Oncology, Clinical and Cancer Proteomics Laboratory, Erasmus University Medical Centre, Rotterdam, The Netherlands
| |
Collapse
|
21
|
Shen CT, Wei WJ, Qiu ZL, Song HJ, Luo QY. Afamin promotes glucose metabolism in papillary thyroid carcinoma. Mol Cell Endocrinol 2016; 434:108-15. [PMID: 27329154 DOI: 10.1016/j.mce.2016.06.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/05/2016] [Accepted: 06/08/2016] [Indexed: 12/16/2022]
Abstract
Circulating afamin (AFM) concentrations have been investigated as a tumor biomarker in various types of carcinomas. However, suitable cell lines expressing human afamin have not yet been reported and current knowledge of the functions of afamin, particularly at the mechanistic molecular level, is very limited. In the current study, thyroid cancer cell lines 8505c and K1 were used to investigate the potential functions of afamin. AFM over-expression models and vector controls of 8505c (8505c + AFM and 8505c + NC) and K1 (K1 + AFM and K1 + NC) were successfully established by Lenti-LV5-AFM and Lenti-LV5-NC transfection. The change of gene expression was detected by qRT-PCR and western blotting analysis. (18)F-FDG imaging in xenografts model was performed using a micro PET/CT. We found that protein level of GAPDH, GLUT1, HK2, p-AKT, AKT, p-mTOR and PARP1 were up-regulated in K1 + AFM cells when compared to K1 and K1 + NC. While in 8505c, 8505c + NC and 8505c cells, the expression level of these genes were not significantly changed. (18)F-FDG uptake was much higher in K1 + AFM cells when compared to K1 and K1 + NC in vitro and in vivo. In conclusion, afamin could promote glycometabolism by up-regulating the glucose metabolism key enzymes in papillary thyroid carcinoma. These findings reveal new clues of the molecular function of AFM.
Collapse
Affiliation(s)
- Chen-Tian Shen
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Wei-Jun Wei
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Zhong-Ling Qiu
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Hong-Jun Song
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Quan-Yong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China.
| |
Collapse
|
22
|
Ibitoye R, Kemp K, Rice C, Hares K, Scolding N, Wilkins A. Oxidative stress-related biomarkers in multiple sclerosis: a review. Biomark Med 2016; 10:889-902. [PMID: 27416337 DOI: 10.2217/bmm-2016-0097] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To provide an up-to-date review of oxidative stress biomarkers in multiple sclerosis and thus identify candidate molecules with greatest promise as biomarkers of diagnosis, disease activity or prognosis. METHOD A semi-systematic literature search using PubMed and other databases. RESULTS Nitric oxide metabolites, superoxide dismutase, catalase, glutathione reductase, inducible nitric oxide synthase, protein carbonyl, 3-nitrotyrosine, isoprostanes, malondialdehyde and products of DNA oxidation have been identified across multiple studies as having promise as diagnostic, therapeutic or prognostic markers in MS. CONCLUSION Heterogeneity of study design, particularly patient selection, limits comparability across studies. Further cohort studies are needed, and we would recommend promising markers be incorporated into future clinical trials to prospectively validate their potential.
Collapse
Affiliation(s)
- Richard Ibitoye
- Institute of Clinical Neurosciences, University of Bristol/Level 1, Learning & Research, Southmead Hospital, Southmead Road, Bristol, BS10 5NB, UK
| | - Kevin Kemp
- Institute of Clinical Neurosciences, University of Bristol/Level 1, Learning & Research, Southmead Hospital, Southmead Road, Bristol, BS10 5NB, UK
| | - Claire Rice
- Institute of Clinical Neurosciences, University of Bristol/Level 1, Learning & Research, Southmead Hospital, Southmead Road, Bristol, BS10 5NB, UK
| | - Kelly Hares
- Institute of Clinical Neurosciences, University of Bristol/Level 1, Learning & Research, Southmead Hospital, Southmead Road, Bristol, BS10 5NB, UK
| | - Neil Scolding
- Institute of Clinical Neurosciences, University of Bristol/Level 1, Learning & Research, Southmead Hospital, Southmead Road, Bristol, BS10 5NB, UK
| | - Alastair Wilkins
- Institute of Clinical Neurosciences, University of Bristol/Level 1, Learning & Research, Southmead Hospital, Southmead Road, Bristol, BS10 5NB, UK
| |
Collapse
|
23
|
van Luijn MM, van Meurs M, Stoop MP, Verbraak E, Wierenga-Wolf AF, Melief MJ, Kreft KL, Verdijk RM, 't Hart BA, Luider TM, Laman JD, Hintzen RQ. Elevated Expression of the Cerebrospinal Fluid Disease Markers Chromogranin A and Clusterin in Astrocytes of Multiple Sclerosis White Matter Lesions. J Neuropathol Exp Neurol 2016; 75:86-98. [PMID: 26683597 DOI: 10.1093/jnen/nlv004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Using proteomics, we previously identified chromogranin A (CgA) and clusterin (CLU) as disease-related proteins in the cerebrospinal fluid (CSF) of patients with multiple sclerosis (MS). CgA and CLU are involved in cell survival and are implicated in neurodegenerative disorders and may also have roles in MS pathophysiology. We investigated CgA and CLU expression in lesions and nonlesional regions in postmortem brains of MS patients and controls and in the brains of marmosets with experimental autoimmune encephalomyelitis. By quantitative PCR, mRNA levels of CgA and CLU were elevated in white matter but not in grey matter of MS patients. In situ analyses showed greater expression of CgA and CLU in white matter lesions than in normal-appearing regions in MS patients and in the marmosets, primarily in or adjacent to perivascular spaces and inflammatory infiltrates. Both proteins were expressed by glial fibrillary acidic protein-positive astrocytes. CgA was more localized in astrocytic processes and endfeet surrounding blood vessels and was abundant in the superficial glia limitans and ependyma, 2 CSF-brain borders. Increased expression of CgA and CLU in reactive astrocytes in MS white matter lesions supports a role for these molecules as neuro-inflammatory mediators and their potential as CSF markers of active pathological processes in MS patients.
Collapse
|
24
|
Abstract
Leakage of the blood-brain barrier (BBB) is a common pathological feature in multiple sclerosis (MS). Following a breach of the BBB, albumin, the most abundant protein in plasma, gains access to CNS tissue where it is exposed to an inflammatory milieu and tissue damage, e.g., demyelination. Once in the CNS, albumin can participate in protective mechanisms. For example, due to its high concentration and molecular properties, albumin becomes a target for oxidation and nitration reactions. Furthermore, albumin binds metals and heme thereby limiting their ability to produce reactive oxygen and reactive nitrogen species. Albumin also has the potential to worsen disease. Similar to pathogenic processes that occur during epilepsy, extravasated albumin could induce the expression of proinflammatory cytokines and affect the ability of astrocytes to maintain potassium homeostasis thereby possibly making neurons more vulnerable to glutamate exicitotoxicity, which is thought to be a pathogenic mechanism in MS. The albumin quotient, albumin in cerebrospinal fluid (CSF)/albumin in serum, is used as a measure of blood-CSF barrier dysfunction in MS, but it may be inaccurate since albumin levels in the CSF can be influenced by multiple factors including: 1) albumin becomes proteolytically cleaved during disease, 2) extravasated albumin is taken up by macrophages, microglia, and astrocytes, and 3) the location of BBB damage affects the entry of extravasated albumin into ventricular CSF. A discussion of the roles that albumin performs during MS is put forth.
Collapse
Affiliation(s)
- Steven M LeVine
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
25
|
Pramipexole, a Dopamine D2/D3 Receptor-Preferring Agonist, Prevents Experimental Autoimmune Encephalomyelitis Development in Mice. Mol Neurobiol 2016; 54:1033-1045. [PMID: 26801190 DOI: 10.1007/s12035-016-9717-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/12/2016] [Indexed: 01/16/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is the most used animal model of multiple sclerosis (MS) for the development of new therapies. Dopamine receptors can modulate EAE and MS development, thus highlighting the potential use of dopaminergic agonists in the treatment of MS, which has been poorly explored. Herein, we hypothesized that pramipexole (PPX), a dopamine D2/D3 receptor-preferring agonist commonly used to treat Parkinson's disease (PD), would be a suitable therapeutic drug for EAE. Thus, we report the effects and the underlying mechanisms of action of PPX in the prevention of EAE. PPX (0.1 and 1 mg/kg) was administered intraperitoneally (i.p.) from day 0 to 40 post-immunization (p.i.). Our results showed that PPX 1 mg/kg prevented EAE development, abolishing EAE signs by blocking neuroinflammatory response, demyelination, and astroglial activation in spinal cord. Moreover, PPX inhibited the production of inflammatory cytokines, such as IL-17, IL-1β, and TNF-α in peripheral lymphoid tissue. PPX was also able to restore basal levels of a number of EAE-induced effects in spinal cord and striatum, such as reactive oxygen species, glutathione peroxidase, parkin, and α-synuclein (α-syn). Thus, our findings highlight the usefulness of PPX in preventing EAE-induced motor symptoms, possibly by modulating immune cell responses, such as those found in MS and other T helper cell-mediated inflammatory diseases.
Collapse
|
26
|
Ménoret A, Crocker SJ, Rodriguez A, Rathinam VA, Clark RB, Vella AT. Transition from identity to bioactivity-guided proteomics for biomarker discovery with focus on the PF2D platform. Proteomics Clin Appl 2015. [PMID: 26201056 DOI: 10.1002/prca.201500029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteomic strategies provide a valuable tool kit to identify proteins involved in diseases. With recent progress in MS technology, high throughput proteomics has accelerated protein identification for potential biomarkers. Numerous biomarker candidates have been identified in several diseases, and many are common among pathologies. An overall strategy that could complement and strengthen the search for biomarkers is combining protein identity with biological outcomes. This review describes an emerging framework of bridging bioactivity to protein identity, exploring the possibility that some biomarkers will have a mechanistic role in the disease process. A review of pulmonary, cardiovascular, and CNS biomarkers will be discussed to demonstrate the utility of combining bioactivity with identification as a means to not only find meaningful biomarkers, but also to uncover functional mediators of disease.
Collapse
Affiliation(s)
- Antoine Ménoret
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | - Stephen J Crocker
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Annabelle Rodriguez
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Vijay A Rathinam
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | - Robert B Clark
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | - Anthony T Vella
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
27
|
Sundberg M, Bergquist J, Ramström M. High-abundant protein depletion strategies applied on dog cerebrospinal fluid and evaluated by high-resolution mass spectrometry. Biochem Biophys Rep 2015; 3:68-75. [PMID: 30338299 PMCID: PMC6189695 DOI: 10.1016/j.bbrep.2015.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/18/2015] [Accepted: 07/22/2015] [Indexed: 12/27/2022] Open
Abstract
As the number of fully sequenced animal genomes and the performance of advanced mass spectrometry-based proteomics techniques are continuously improving, there is now a great opportunity to increase the knowledge of various animal proteomes. This research area is further stimulated by a growing interest from veterinary medicine and the pharmaceutical industry. Cerebrospinal fluid (CSF) is a good source for better understanding of diseases related to the central nervous system, both in humans and other animals. In this study, four high-abundant protein depletion columns, developed for human or rat serum, were evaluated for dog CSF. For the analysis, a shotgun proteomics approach, based on nanoLC-LTQ Orbitrap MS/MS, was applied. All the selected approaches were shown to deplete dog CSF with different success. It was demonstrated that the columns significantly improved the coverage of the detected dog CSF proteome. An antibody-based column showed the best performance, in terms of efficiency, repeatability and the number of proteins detected in the sample. In total 983 proteins were detected. Of those, 801 proteins were stated as uncharacterized in the UniProt database. To the best of our knowledge, this is the so far largest number of proteins reported for dog CSF in one single study. We evaluated four high-abundant protein depletion kits on dog CSF. High abundant depletion kit developed for humans/rats can be used for dog CSF. Protein depletion of dog CSF gives extended coverage of the CSF proteome. In total, 983 dog proteins were identified in this study.
Collapse
Affiliation(s)
- Mårten Sundberg
- Department of Chemistry - BMC, Analytical Chemistry and Science for Life Laboratory, Uppsala University, Box 599, 751 24 Uppsala, Sweden
| | - Jonas Bergquist
- Department of Chemistry - BMC, Analytical Chemistry and Science for Life Laboratory, Uppsala University, Box 599, 751 24 Uppsala, Sweden
| | - Margareta Ramström
- Department of Chemistry - BMC, Analytical Chemistry and Science for Life Laboratory, Uppsala University, Box 599, 751 24 Uppsala, Sweden
| |
Collapse
|
28
|
Afamin--A pleiotropic glycoprotein involved in various disease states. Clin Chim Acta 2015; 446:105-10. [PMID: 25892677 DOI: 10.1016/j.cca.2015.04.010] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/28/2015] [Accepted: 04/02/2015] [Indexed: 12/31/2022]
Abstract
The human glycoprotein afamin was discovered as the fourth member of the albumin gene family. Despite intense research over the last 20 years, our knowledge of afamin's physiological or pathophysiological functions is still very limited. Circulating afamin is primarily of hepatic origin and abundant concentrations are found in plasma, cerebrospinal, ovarian follicular and seminal fluids. In vitro binding studies revealed specific binding properties for vitamin E. A previously performed analytical characterization and clinical evaluation study of an enzyme-linked immunosorbent assay for quantitative measurement of afamin in human plasma demonstrated that the afamin assay meets the quality specifications for laboratory medicine. Comparative proteomics has identified afamin as a potential biomarker for ovarian cancer and these findings were confirmed by quantitative immunoassay of afamin and validated in independent cohorts of patients with ovarian cancer. Afamin has also been investigated in other types of carcinoma. Most of these studies await further evaluation with validated quantitative afamin assays and require validation in larger patient cohorts. Transgenic mice overexpressing the human afamin gene revealed increased body weight and increased blood concentrations of lipids and glucose. These transgenic mouse data were in line with three large human population-based studies showing that afamin is strongly associated with the prevalence and development of the metabolic syndrome. This review summarizes and discusses the molecular, biochemical and analytical characterization of afamin as well as possible clinical applications of afamin measurement.
Collapse
|
29
|
Cardoso BR, Roberts BR, Bush AI, Hare DJ. Selenium, selenoproteins and neurodegenerative diseases. Metallomics 2015; 7:1213-28. [DOI: 10.1039/c5mt00075k] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A review of selenium's essential role in normal brain function and its potential involvement in neurodegenerative diseases.
Collapse
Affiliation(s)
- Bárbara Rita Cardoso
- The Florey Institute of Neuroscience and Mental Health
- The University of Melbourne
- Parkville, Australia
- Faculty of Pharmaceutical Sciences
- Department of Food and Experimental Nutrition
| | - Blaine R. Roberts
- The Florey Institute of Neuroscience and Mental Health
- The University of Melbourne
- Parkville, Australia
| | - Ashley I. Bush
- The Florey Institute of Neuroscience and Mental Health
- The University of Melbourne
- Parkville, Australia
| | - Dominic J. Hare
- The Florey Institute of Neuroscience and Mental Health
- The University of Melbourne
- Parkville, Australia
- Elemental Bio-imaging Facility
- University of Technology Sydney
| |
Collapse
|
30
|
Kroksveen AC, Opsahl JA, Guldbrandsen A, Myhr KM, Oveland E, Torkildsen Ø, Berven FS. Cerebrospinal fluid proteomics in multiple sclerosis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:746-56. [PMID: 25526888 DOI: 10.1016/j.bbapap.2014.12.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/27/2014] [Accepted: 12/11/2014] [Indexed: 12/31/2022]
Abstract
Multiple sclerosis (MS) is an immune mediated chronic inflammatory disease of the central nervous system usually initiated during young adulthood, affecting approximately 2.5 million people worldwide. There is currently no cure for MS, but disease modifying treatment has become increasingly more effective, especially when started in the first phase of the disease. The disease course and prognosis are often unpredictable and it can be challenging to determine an early diagnosis. The detection of novel biomarkers to understand more of the disease mechanism, facilitate early diagnosis, predict disease progression, and find treatment targets would be very attractive. Over the last decade there has been an increasing effort toward finding such biomarker candidates. One promising strategy has been to use state-of-the-art quantitative proteomics approaches to compare the cerebrospinal fluid (CSF) proteome between MS and control patients or between different subgroups of MS. In this review we summarize and discuss the status of CSF proteomics in MS, including the latest findings with a focus on the last five years. This article is part of a Special Issue entitled: Neuroproteomics: Applications in Neuroscience and Neurology.
Collapse
Affiliation(s)
- Ann C Kroksveen
- Proteomics Unit (PROBE), Department of Biomedicine, University of Bergen, Postbox 7804, N-5009 Bergen, Norway; The KG Jebsen Centre for MS-Research, Department of Clinical Medicine, University of Bergen, Postbox 7804, N-5021 Bergen, Norway
| | - Jill A Opsahl
- Proteomics Unit (PROBE), Department of Biomedicine, University of Bergen, Postbox 7804, N-5009 Bergen, Norway; The KG Jebsen Centre for MS-Research, Department of Clinical Medicine, University of Bergen, Postbox 7804, N-5021 Bergen, Norway
| | - Astrid Guldbrandsen
- Proteomics Unit (PROBE), Department of Biomedicine, University of Bergen, Postbox 7804, N-5009 Bergen, Norway
| | - Kjell-Morten Myhr
- The KG Jebsen Centre for MS-Research, Department of Clinical Medicine, University of Bergen, Postbox 7804, N-5021 Bergen, Norway; Department of Neurology, Haukeland University Hospital, Postbox 1400, 5021 Bergen, Norway; The Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital, Postbox 1400, 5021 Bergen, Norway
| | - Eystein Oveland
- Proteomics Unit (PROBE), Department of Biomedicine, University of Bergen, Postbox 7804, N-5009 Bergen, Norway; The KG Jebsen Centre for MS-Research, Department of Clinical Medicine, University of Bergen, Postbox 7804, N-5021 Bergen, Norway
| | - Øivind Torkildsen
- The KG Jebsen Centre for MS-Research, Department of Clinical Medicine, University of Bergen, Postbox 7804, N-5021 Bergen, Norway; Department of Neurology, Haukeland University Hospital, Postbox 1400, 5021 Bergen, Norway; The Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital, Postbox 1400, 5021 Bergen, Norway
| | - Frode S Berven
- Proteomics Unit (PROBE), Department of Biomedicine, University of Bergen, Postbox 7804, N-5009 Bergen, Norway; The KG Jebsen Centre for MS-Research, Department of Clinical Medicine, University of Bergen, Postbox 7804, N-5021 Bergen, Norway; The Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital, Postbox 1400, 5021 Bergen, Norway.
| |
Collapse
|
31
|
Mitra V, Smilde A, Hoefsloot H, Suits F, Bischoff R, Horvatovich P. Inversion of peak elution order prevents uniform time alignment of complex liquid-chromatography coupled to mass spectrometry datasets. J Chromatogr A 2014; 1373:61-72. [PMID: 25482036 DOI: 10.1016/j.chroma.2014.10.101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 12/01/2022]
Abstract
Retention time alignment is one of the most challenging steps in processing LC-MS datasets of complex proteomics samples acquired within a differential profiling study. A large number of time alignment methods have been developed for accurate pre-processing of such datasets. These methods generally assume that common compounds elute in the same order but they do not test whether this assumption holds. If this assumption is not valid, alignments based on a monotonic retention time function will lose accuracy for peaks that depart from the expected order of the retention time correspondence function. To address this issue, we propose a quality control method that assesses if a pair of complex LC-MS datasets can be aligned with the same alignment performance based on statistical tests before correcting retention time shifts. The algorithm first confirms the presence of an adequate number of common peaks (>∼100 accurately matched peak pairs), then determines if the probability for a conserved elution order of those common peaks is sufficiently high (>0.01) and finally performs retention time alignment of two LC-MS chromatograms. This procedure was applied to LC-MS and LC-MS/MS datasets from two different inter-laboratory proteomics studies showing that a large number of common peaks in chromatograms acquired by different laboratories change elution order with considerable retention time differences.
Collapse
Affiliation(s)
- Vikram Mitra
- Analytical Biochemistry, Department of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands; Netherlands Bioinformatics Centre, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Age Smilde
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Huub Hoefsloot
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Frank Suits
- IBM T.J. Watson Research Centre, 1101 Kitchawan Road, Yorktown Heights, 10598 NY, USA
| | - Rainer Bischoff
- Analytical Biochemistry, Department of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands; Netherlands Bioinformatics Centre, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Péter Horvatovich
- Analytical Biochemistry, Department of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands; Netherlands Bioinformatics Centre, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
32
|
Farias AS, Pradella F, Schmitt A, Santos LMB, Martins-de-Souza D. Ten years of proteomics in multiple sclerosis. Proteomics 2014; 14:467-80. [PMID: 24339438 DOI: 10.1002/pmic.201300268] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/19/2013] [Accepted: 08/21/2013] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis, which is the most common cause of chronic neurological disability in young adults, is an inflammatory, demyelinating, and neurodegenerative disease of the CNS, which leads to the formation of multiple foci of demyelinated lesions in the white matter. The diagnosis is based currently on magnetic resonance image and evidence of dissemination in time and space. However, this could be facilitated if biomarkers were available to rule out other disorders with similar symptoms as well as to avoid cerebrospinal fluid analysis, which requires an invasive collection. Additionally, the molecular mechanisms of the disease are not completely elucidated, especially those related to the neurodegenerative aspects of the disease. The identification of biomarker candidates and molecular mechanisms of multiple sclerosis may be approached by proteomics. In the last 10 years, proteomic techniques have been applied in different biological samples (CNS tissue, cerebrospinal fluid, and blood) from multiple sclerosis patients and in its experimental model. In this review, we summarize these data, presenting their value to the current knowledge of the disease mechanisms, as well as their importance in identifying biomarkers or treatment targets.
Collapse
Affiliation(s)
- Alessandro S Farias
- Neuroimmunomodulation Group, Department of Genetics, Evolution and Bioagents, University of Campinas (UNICAMP) - Campinas, São Paulo, Brazil; Neuroimmunology Unit, Department of Genetics, Evolution and Bioagents, University of Campinas (UNICAMP) - Campinas, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
33
|
Wallin MT, Oh U, Nyalwidhe J, Semmes J, Kislinger T, Coffman P, Kurtzke JF, Jacobson S. Serum proteomic analysis of a pre-symptomatic multiple sclerosis cohort. Eur J Neurol 2014; 22:591-9. [DOI: 10.1111/ene.12534] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 06/09/2014] [Indexed: 12/14/2022]
Affiliation(s)
- M. T. Wallin
- VA Multiple Sclerosis Center of Excellence - East; Washington DC USA
- Georgetown University School of Medicine; Washington DC USA
| | - U. Oh
- Virginia Commonwealth University School of Medicine; Richmond VA USA
| | - J. Nyalwidhe
- Leroy T. Canoles Jr Cancer Research Center; Eastern Virginia Medical School; Norfolk VA USA
| | - J. Semmes
- Leroy T. Canoles Jr Cancer Research Center; Eastern Virginia Medical School; Norfolk VA USA
| | | | - P. Coffman
- VA Multiple Sclerosis Center of Excellence - East; Washington DC USA
| | - J. F. Kurtzke
- VA Multiple Sclerosis Center of Excellence - East; Washington DC USA
- Georgetown University School of Medicine; Washington DC USA
| | - S. Jacobson
- National Institute of Neurological Disorders and Stroke; NIH; Bethesda MD USA
| |
Collapse
|
34
|
Turvey ME, Koudelka T, Comerford I, Greer JM, Carroll W, Bernard CCA, Hoffmann P, McColl SR. Quantitative proteome profiling of CNS-infiltrating autoreactive CD4+ cells reveals selective changes during experimental autoimmune encephalomyelitis. J Proteome Res 2014; 13:3655-70. [PMID: 24933266 DOI: 10.1021/pr500158r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a murine model of multiple sclerosis, a chronic neurodegenerative and inflammatory autoimmune condition of the central nervous system (CNS). Pathology is driven by the infiltration of autoreactive CD4(+) lymphocytes into the CNS, where they attack neuronal sheaths causing ascending paralysis. We used an isotope-coded protein labeling approach to investigate the proteome of CD4(+) cells isolated from the spinal cord and brain of mice at various stages of EAE progression in two EAE disease models: PLP139-151-induced relapsing-remitting EAE and MOG35-55-induced chronic EAE, which emulate the two forms of human multiple sclerosis. A total of 1120 proteins were quantified across disease onset, peak-disease, and remission phases of disease, and of these 13 up-regulated proteins of interest were identified with functions relating to the regulation of inflammation, leukocyte adhesion and migration, tissue repair, and the regulation of transcription/translation. Proteins implicated in processes such as inflammation (S100A4 and S100A9) and tissue repair (annexin A1), which represent key events during EAE progression, were validated by quantitative PCR. This is the first targeted analysis of autoreactive cells purified from the CNS during EAE, highlighting fundamental CD4(+) cell-driven processes that occur during the initiation of relapse and remission stages of disease.
Collapse
Affiliation(s)
- Michelle E Turvey
- Chemokine Biology Laboratory, School of Molecular and Biomedical Science, University of Adelaide and Centre for Molecular Pathology , South Australia 5005, Australia
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Oxidative stress and inflammation underpin most diseases; their mechanisms are inextricably linked. Chronic inflammation is associated with oxidation, anti-inflammatory cascades are linked to decreased oxidation, increased oxidative stress triggers inflammation, and redox balance inhibits the inflammatory cellular response. Whether or not oxidative stress and inflammation represent the cause or consequence of cellular pathology, they contribute significantly to the pathogenesis of noncommunicable diseases (NCD). The incidence of obesity and other related metabolic disturbances are increasing, as are age-related diseases due to a progressively aging population. Relationships between oxidative stress, inflammatory signaling, and metabolism are, in the broad sense of energy transformation, being increasingly recognized as part of the problem in NCD. In this chapter, we summarize the pathologic consequences of an imbalance between circulating and cellular paraoxonases, the system for scavenging excessive reactive oxygen species and circulating chemokines. They act as inducers of migration and infiltration of immune cells in target tissues as well as in the pathogenesis of disease that perturbs normal metabolic function. This disruption involves pathways controlling lipid and glucose homeostasis as well as metabolically driven chronic inflammatory states that encompass several response pathways. Dysfunction in the endoplasmic reticulum and/or mitochondria represents an important feature of chronic disease linked to oxidation and inflammation seen as self-reinforcing in NCD. Therefore, correct management requires a thorough understanding of these relationships and precise interpretation of laboratory test results.
Collapse
|
36
|
Dagley LF, Emili A, Purcell AW. Application of quantitative proteomics technologies to the biomarker discovery pipeline for multiple sclerosis. Proteomics Clin Appl 2014; 7:91-108. [PMID: 23112123 DOI: 10.1002/prca.201200104] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/04/2012] [Accepted: 10/11/2012] [Indexed: 11/08/2022]
Abstract
Multiple sclerosis is an inflammatory-mediated demyelinating disorder most prevalent in young Caucasian adults. The various clinical manifestations of the disease present several challenges in the clinic in terms of diagnosis, monitoring disease progression and response to treatment. Advances in MS-based proteomic technologies have revolutionized the field of biomarker research and paved the way for the identification and validation of disease-specific markers. This review focuses on the novel candidates discovered by the application of quantitative proteomics to relevant disease-affected tissues in both the human context and within the animal model of the disease known as experimental autoimmune encephalomyelitis. The role of targeted MS approaches for biomarker validation studies, such as multiple reaction monitoring will also be discussed.
Collapse
Affiliation(s)
- Laura F Dagley
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
37
|
Dagley LF, Croft NP, Isserlin R, Olsen JB, Fong V, Emili A, Purcell AW. Discovery of novel disease-specific and membrane-associated candidate markers in a mouse model of multiple sclerosis. Mol Cell Proteomics 2013; 13:679-700. [PMID: 24361864 DOI: 10.1074/mcp.m113.033340] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Multiple sclerosis is a chronic demyelinating disorder characterized by the infiltration of auto-reactive immune cells from the periphery into the central nervous system resulting in axonal injury and neuronal cell death. Experimental autoimmune encephalomyelitis represents the best characterized animal model as common clinical, histological, and immunological features are recapitulated. A label-free mass spectrometric proteomics approach was used to detect differences in protein abundance within specific fractions of disease-affected tissues including the soluble lysate derived from the spinal cord and membrane protein-enriched peripheral blood mononuclear cells. Tissues were harvested from actively induced experimental autoimmune encephalomyelitis mice and sham-induced ("vehicle" control) counterparts at the disease peak followed by subsequent analysis by nanoflow liquid chromatography tandem mass spectrometry. Relative protein quantitation was performed using both intensity- and fragmentation-based approaches. After statistical evaluation of the data, over 500 and 250 differentially abundant proteins were identified in the spinal cord and peripheral blood mononuclear cell data sets, respectively. More than half of these observations have not previously been linked to the disease. The biological significance of all candidate disease markers has been elucidated through rigorous literature searches, pathway analysis, and validation studies. Results from comprehensive targeted mass spectrometry analyses have confirmed the differential abundance of ∼ 200 candidate markers (≥ twofold dysregulated expression) at a 70% success rate. This study is, to our knowledge, the first to examine the cell-surface proteome of peripheral blood mononuclear cells in experimental autoimmune encephalomyelitis. These data provide a unique mechanistic insight into the dynamics of peripheral immune cell infiltration into CNS-privileged sites at a molecular level and has identified several candidate markers, which represent promising targets for future multiple sclerosis therapies. The mass spectrometry proteomics data associated with this manuscript have been deposited to the ProteomeXchange Consortium with the data set identifier PXD000255.
Collapse
Affiliation(s)
- Laura F Dagley
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
| | | | | | | | | | | | | |
Collapse
|
38
|
Mavel S, Nadal-Desbarats L, Blasco H, Bonnet-Brilhault F, Barthélémy C, Montigny F, Sarda P, Laumonnier F, Vourc′h P, Andres CR, Emond P. 1H–13C NMR-based urine metabolic profiling in autism spectrum disorders. Talanta 2013; 114:95-102. [DOI: 10.1016/j.talanta.2013.03.064] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 03/16/2013] [Accepted: 03/25/2013] [Indexed: 01/04/2023]
|
39
|
Kaltashov IA, Bobst CE, Nguyen SN, Wang S. Emerging mass spectrometry-based approaches to probe protein-receptor interactions: focus on overcoming physiological barriers. Adv Drug Deliv Rev 2013; 65:1020-30. [PMID: 23624418 DOI: 10.1016/j.addr.2013.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 04/15/2013] [Accepted: 04/17/2013] [Indexed: 01/10/2023]
Abstract
Physiological barriers, such as the blood-brain barrier and intestinal epithelial barrier, remain significant obstacles towards wider utilization of biopharmaceutical products. Receptor-mediated transcytosis has long been viewed as an attractive means of crossing such barriers, but successful exploitation of this route requires better understanding of the interactions between the receptors and protein-based therapeutics. Detailed characterization of such processes at the molecular level is challenging due to the very large physical size and heterogeneity of these species, which makes use of many state-of-the art analytical techniques, such as high-resolution NMR and X-ray crystallography impractical. Mass spectrometry has emerged in the past decade as a powerful tool to study protein-receptor interactions, although its applications to investigate interaction of biopharmaceuticals with their physiological partners are still limited. We highlight the potential of this technique by considering several recent examples where it had been instrumental for understanding molecular mechanisms critical for receptor-mediated transcytosis of transferrin-based therapeutics.
Collapse
|
40
|
Craft GE, Chen A, Nairn AC. Recent advances in quantitative neuroproteomics. Methods 2013; 61:186-218. [PMID: 23623823 PMCID: PMC3891841 DOI: 10.1016/j.ymeth.2013.04.008] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 03/29/2013] [Accepted: 04/13/2013] [Indexed: 01/07/2023] Open
Abstract
The field of proteomics is undergoing rapid development in a number of different areas including improvements in mass spectrometric platforms, peptide identification algorithms and bioinformatics. In particular, new and/or improved approaches have established robust methods that not only allow for in-depth and accurate peptide and protein identification and modification, but also allow for sensitive measurement of relative or absolute quantitation. These methods are beginning to be applied to the area of neuroproteomics, but the central nervous system poses many specific challenges in terms of quantitative proteomics, given the large number of different neuronal cell types that are intermixed and that exhibit distinct patterns of gene and protein expression. This review highlights the recent advances that have been made in quantitative neuroproteomics, with a focus on work published over the last five years that applies emerging methods to normal brain function as well as to various neuropsychiatric disorders including schizophrenia and drug addiction as well as of neurodegenerative diseases including Parkinson's disease and Alzheimer's disease. While older methods such as two-dimensional polyacrylamide electrophoresis continued to be used, a variety of more in-depth MS-based approaches including both label (ICAT, iTRAQ, TMT, SILAC, SILAM), label-free (label-free, MRM, SWATH) and absolute quantification methods, are rapidly being applied to neurobiological investigations of normal and diseased brain tissue as well as of cerebrospinal fluid (CSF). While the biological implications of many of these studies remain to be clearly established, that there is a clear need for standardization of experimental design and data analysis, and that the analysis of protein changes in specific neuronal cell types in the central nervous system remains a serious challenge, it appears that the quality and depth of the more recent quantitative proteomics studies is beginning to shed light on a number of aspects of neuroscience that relates to normal brain function as well as of the changes in protein expression and regulation that occurs in neuropsychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- George E Craft
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06508
| | - Anshu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06508
| | - Angus C Nairn
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06508
- Yale/NIDA Neuroproteomics Center, Yale University School of Medicine, New Haven, CT, 06508
| |
Collapse
|
41
|
Nguyen SN, Bobst CE, Kaltashov IA. Mass spectrometry-guided optimization and characterization of a biologically active transferrin-lysozyme model drug conjugate. Mol Pharm 2013; 10:1998-2007. [PMID: 23534953 DOI: 10.1021/mp400026y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Transferrin is a promising drug carrier that has the potential to deliver metals, small organic molecules and therapeutic proteins to cancer cells and/or across physiological barriers (such as the blood-brain barrier). Despite this promise, very few transferrin-based therapeutics have been developed and reached clinical trials. This modest success record can be explained by the complexity and heterogeneity of protein conjugation products, which also pose great challenges to their analytical characterization. In this work, we use lysozyme conjugated to transferrin as a model therapeutic that targets the central nervous system (where its bacteriostatic properties may be exploited to control infection) and develop analytical protocols based on electrospray ionization mass spectrometry to characterize its structure and interactions with therapeutic targets and physiological partners critical for its successful delivery. Mass spectrometry has already become an indispensable tool facilitating all stages of the protein drug development process, and this work demonstrates the enormous potential of this technique in facilitating the development of a range of therapeutically effective protein-drug conjugates.
Collapse
Affiliation(s)
- Son N Nguyen
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | | | | |
Collapse
|
42
|
GC-MS-based urine metabolic profiling of autism spectrum disorders. Anal Bioanal Chem 2013; 405:5291-300. [DOI: 10.1007/s00216-013-6934-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/12/2013] [Accepted: 03/20/2013] [Indexed: 01/05/2023]
|
43
|
Harris VK, Donelan N, Yan QJ, Clark K, Touray A, Rammal M, Sadiq SA. Cerebrospinal fluid fetuin-A is a biomarker of active multiple sclerosis. Mult Scler 2013; 19:1462-72. [DOI: 10.1177/1352458513477923] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: There is an urgent need for biomarkers in multiple sclerosis (MS) that can reliably measure ongoing disease activity relative to inflammation, neurodegeneration, and demyelination/remyelination. Fetuin-A was recently identified as a potential biomarker in MS cerebrospinal fluid (CSF). Fetuin-A has diverse functions, including a role in immune pathways. Objective: The objective of this research is to investigate whether fetuin-A is a direct indicator of disease activity. Methods: We measured fetuin-A in CSF and plasma of patients with MS and correlated these findings to clinical disease activity and natalizumab response. Fetuin-A expression was characterized in MS brain tissue and in experimental autoimmune encephalomyelitis (EAE) mice. We also examined the pathogenic role of fetuin-A in EAE using fetuin-A-deficient mice. Results: Elevated CSF fetuin-A correlated with disease activity in MS. In natalizumab-treated patients, CSF fetuin-A levels were reduced one year post-treatment, correlating with therapeutic response. Fetuin-A was markedly elevated in demyelinated lesions and in gray matter within MS brain tissue. Similarly, fetuin-A was elevated in degenerating neurons around demyelinated lesions in EAE. Fetuin-A-deficient mice demonstrated delayed onset and reduced severity of EAE symptoms. Conclusions: Our results show that CSF fetuin-A is a biomarker of disease activity and natalizumab response in MS. Neuronal expression of fetuin-A suggests that fetuin-A may play a pathological role in the disease process.
Collapse
Affiliation(s)
| | | | - Qi Jiang Yan
- Multiple Sclerosis Research Center of New York, USA
| | - Kristi Clark
- Multiple Sclerosis Research Center of New York, USA
| | - Amir Touray
- Multiple Sclerosis Research Center of New York, USA
| | | | - Saud A Sadiq
- Multiple Sclerosis Research Center of New York, USA
| |
Collapse
|
44
|
Farias AS, Martins-de-Souza D, Guimarães L, Pradella F, Moraes AS, Facchini G, Novello JC, Santos LMB. Proteome analysis of spinal cord during the clinical course of monophasic experimental autoimmune encephalomyelitis. Proteomics 2013; 12:2656-62. [PMID: 22740327 DOI: 10.1002/pmic.201200044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The induction of autoimmune encephalomyelitis (EAE) in Lewis rats results in a period of exacerbation followed by complete recovery. Therefore, this model is widely used for studying the evolution of multiple sclerosis. In the present investigation, differentially expressed proteins in the spinal cord of Lewis rats during the evolution of EAE were assessed using the combination of 2DE and MALDI-TOF MS. The majority of the differentially expressed proteins were identified during the acute phase of EAE, in relation to naïve control animals. On the other hand, recovered rats presented a similar protein expression pattern in comparison with the naïve ones. This observation can be explained, at least in part, by the intense catabolism existent in acute phase due to nervous tissue damage. In recovered rats, we have described the upregulation of proteins that are apparently involved in the recovery of damaged tissue, such as light and medium neurofilaments, glial fibrillary acidic protein, tubulins subunits, and quaking protein. These proteins are involved mainly in cell growth, myelination, and remyelination as well as in astrocyte and oligodendrocyte maturation. The present study has demonstrated that the inflammatory response, characterized by an increase of the proliferative response and infiltration of autoreactive T lymphocytes in the central nervous system, occurs simultaneously with neurodegeneration.
Collapse
Affiliation(s)
- Alessandro S Farias
- Neuroimmunology Unit, Department of Genetics Evolution and Bioagents, University of Campinas, SP, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Stoop MP, Rosenling T, Attali A, Meesters RJW, Stingl C, Dekker LJ, van Aken H, Suidgeest E, Hintzen RQ, Tuinstra T, van Gool A, Luider TM, Bischoff R. Minocycline effects on the cerebrospinal fluid proteome of experimental autoimmune encephalomyelitis rats. J Proteome Res 2012; 11:4315-25. [PMID: 22768796 DOI: 10.1021/pr300428e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To identify response biomarkers for pharmaceutical treatment of multiple sclerosis, we induced experimental autoimmune encephalomyelitis (EAE) in rats and treated symptomatic animals with minocycline. Cerebrospinal fluid (CSF) samples were collected 14 days after EAE induction at the peak of neurological symptoms, and proteomics analysis was performed using nano-LC-Orbitrap mass spectrometry. Additionally, the minocycline concentration in CSF was determined using quantitative matrix-assisted laser desorption/ionization-triple-quadrupole tandem mass spectrometry (MALDI-MS/MS) in the selected reaction monitoring (SRM) mode. Fifty percent of the minocycline-treated EAE animals did not show neurological symptoms on day 14 ("responders"), while the other half displayed neurological symptoms ("nonresponders"), indicating that minocycline delayed disease onset and attenuated disease severity in some, but not all, animals. Neither CSF nor plasma minocycline concentrations correlated with the onset of symptoms or disease severity. Analysis of the proteomics data resulted in a list of 20 differentially abundant proteins between the untreated animals and the responder group of animals. Two of these proteins, complement C3 and carboxypeptidase B2, were validated by quantitative LC-MS/MS in the SRM mode. Differences in the CSF proteome between untreated EAE animals and minocycline-treated responders were similar to the differences between minocycline-treated responders and nonresponders (70% overlap). Six proteins that remained unchanged in the minocycline-treated animals but were elevated in untreated EAE animals may be related to the mechanism of action of minocycline.
Collapse
Affiliation(s)
- Marcel P Stoop
- Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|