1
|
Pereira ED, Moreira TR, Cruz-Leite VRM, Tomazett MV, Souza Silva LO, Graziani D, Martins JA, Amaral AC, Weber SS, Parente-Rocha JA, Soares CMDA, Borges CL. Paracoccidioides lutzii Infects Galleria mellonella Employing Formamidase as a Virulence Factor. PLoS Negl Trop Dis 2024; 18:e0012452. [PMID: 39226308 PMCID: PMC11398694 DOI: 10.1371/journal.pntd.0012452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/13/2024] [Accepted: 08/12/2024] [Indexed: 09/05/2024] Open
Abstract
The formamidase (FMD) enzyme plays an important role in fungal thriving by releasing a secondary nitrogen source as a product of its activity. In Paracoccidioides species, previous studies have demonstrated the upregulation of this enzyme in a wide range of starvation and infective-like conditions. However, Paracoccidioides lutzii formamidase has not yet been defined as a virulence factor. Here, by employing in vivo infections using an fmd-silenced strain in Galleria mellonella larvae model, we demonstrate the influence of formamidase in P. lutzii's immune stimulation and pathogenicity. The formamidase silencing resulted in improper arrangement of the nodules, poor melanogenesis and decreased fungal burden. Thus, we suggest that formamidase may be a piece composing the process of molecular recognition by Galleria immune cells. Furthermore, formamidase silencing doubled the observed survival rate of the larvae, demonstrating its importance in fungal virulence in vivo. Therefore, our findings indicate that formamidase contributes to Galleria's immune incitement and establishes the role of this enzyme as a P. lutzii virulence factor.
Collapse
Affiliation(s)
- Elisa Dias Pereira
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia, Brazil
| | - Thalison Rodrigues Moreira
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia, Brazil
| | | | - Mariana Vieira Tomazett
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia, Brazil
| | - Lana O’Hara Souza Silva
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia, Brazil
| | - Daniel Graziani
- Multiuser Laboratory for the Evaluation of Molecules, Cells and Tissues, Federal University of Goiás, Goiânia, Brazil
| | - Juliana Assis Martins
- Laboratory of Nano&Biotechnology, Department of Biotechnology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - André Corrêa Amaral
- Laboratory of Nano&Biotechnology, Department of Biotechnology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Simone Schneider Weber
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Juliana Alves Parente-Rocha
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia, Brazil
| | - Célia Maria de Almeida Soares
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia, Brazil
| | - Clayton Luiz Borges
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia, Brazil
| |
Collapse
|
2
|
Cardoso-Miguel MDRD, Bürgel PH, de Castro RJA, Marina CL, de Oliveira SA, Albuquerque P, Silva-Pereira I, Bocca AL, Tavares AH. Dectin-2 is critical for phagocyte function and resistance to Paracoccidioides brasiliensis in mice. Med Mycol 2023; 61:myad117. [PMID: 37960963 DOI: 10.1093/mmy/myad117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/11/2023] [Accepted: 11/11/2023] [Indexed: 11/15/2023] Open
Abstract
Germline-encoded pattern recognition receptors, particularly C-type lectin receptors (CLRs), are essential for phagocytes to sense invading fungal cells. Among CLRs, Dectin-2 (encoded by Clec4n) plays a critical role in the antifungal immune response as it recognizes high-mannose polysaccharides on the fungal cell wall, triggering phagocyte functional activities and ultimately determining adaptive responses. Here, we assessed the role of Dectin-2 on the course of primary Paracoccidioides brasiliensis systemic infection in mice with Dectin-2-targeted deletion. Paracoccidioides brasiliensis constitutes the principal etiologic agent of paracoccidioidomycosis, the most prominent invasive mycosis in Latin American countries. The deficiency of Dectin-2 resulted in shortened survival rates, high lung fungal burden, and increased lung pathology in mice infected with P. brasiliensis. Consistently, dendritic cells (DCs) from mice lacking Dectin-2 infected ex vivo with P. brasiliensis showed impaired secretion of several proinflammatory and regulatory cytokines, including TNF-α, IL-1β, IL-6, and IL-10. Additionally, when cocultured with splenic lymphocytes, DCs were less efficient in promoting a type 1 cytokine pattern secretion (i.e., IFN-γ). In macrophages, Dectin-2-mediated signaling was required to ensure phagocytosis and fungicidal activity associated with nitric oxide production. Overall, Dectin-2-mediated signaling is critical to promote host protection against P. brasiliensis infection, and its exploitation might lead to the development of new vaccines and immunotherapeutic approaches.
Collapse
Affiliation(s)
- Mariana de Resende Damas Cardoso-Miguel
- Graduate Program in Microbial Biology, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil
- Department of Cell Biology, Laboratory of Applied Immunology, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil
| | - Pedro Henrique Bürgel
- Graduate Program in Microbial Biology, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil
- Department of Cell Biology, Laboratory of Applied Immunology, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil
| | - Raffael Júnio Araújo de Castro
- Department of Cell Biology, Laboratory of Applied Immunology, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil
| | - Clara Luna Marina
- Department of Cell Biology, Laboratory of Applied Immunology, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil
| | - Stephan Alberto de Oliveira
- Department of Cell Biology, Laboratory of Applied Immunology, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil
| | - Patrícia Albuquerque
- Graduate Program in Microbial Biology, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil
- Department of Cell Biology, Laboratory of Molecular Biology of Pathogenic Fungi, University of Brasília, Brasília, DF, Brazil
- Laboratory of Microorganism, Faculty of Ceilândia, University of Brasília, Brasília, DF, Brazil
| | - Ildinete Silva-Pereira
- Department of Cell Biology, Laboratory of Molecular Biology of Pathogenic Fungi, University of Brasília, Brasília, DF, Brazil
| | - Anamélia Lorenzetti Bocca
- Department of Cell Biology, Laboratory of Applied Immunology, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil
| | - Aldo Henrique Tavares
- Graduate Program in Microbial Biology, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil
- Laboratory of Microorganism, Faculty of Ceilândia, University of Brasília, Brasília, DF, Brazil
| |
Collapse
|
3
|
Borges BM, Ramos RBC, Preite NW, Kaminski VDL, Alves de Castro P, Camacho M, Maximo MF, Fill TP, Calich VLG, Traynor AM, Sarikaya-Bayram Ö, Doyle S, Bayram Ö, de Campos CBL, Zelanis A, Goldman GH, Loures FV. Transcriptional profiling of a fungal granuloma reveals a low metabolic activity of Paracoccidioides brasiliensis yeasts and an actively regulated host immune response. Front Cell Infect Microbiol 2023; 13:1268959. [PMID: 37868350 PMCID: PMC10585178 DOI: 10.3389/fcimb.2023.1268959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/11/2023] [Indexed: 10/24/2023] Open
Abstract
Granulomas are important immunological structures in the host defense against the fungus Paracoccidioides brasiliensis, the main etiologic agent of Paracoccidioidomycosis (PCM), a granulomatous systemic mycosis endemic in Latin America. We have performed transcriptional and proteomic studies of yeasts present in the pulmonary granulomas of PCM aiming to identify relevant genes and proteins that act under stressing conditions. C57BL/6 mice were infected with 1x106 yeasts and after 8- and 12-weeks of infection, granulomatous lesions were obtained for extraction of fungal and murine RNAs and fungal proteins. Dual transcriptional profiling was done comparing lung cells and P. brasiliensis yeasts from granulomas with uninfected lung cells and the original yeast suspension used in the infection, respectively. Mouse transcripts indicated a lung malfunction, with low expression of genes related to muscle contraction and organization. In addition, an increased expression of transcripts related to the activity of neutrophils, eosinophils, macrophages, lymphocytes as well as an elevated expression of IL-1β, TNF-α, IFN-γ, IL-17 transcripts were observed. The increased expression of transcripts for CTLA-4, PD-1 and arginase-1, provided evidence of immune regulatory mechanisms within the granulomatous lesions. Also, our results indicate iron as a key element for the granuloma to function, where a high number of transcripts related to fungal siderophores for iron uptake was observed, a mechanism of fungal virulence not previously described in granulomas. Furthermore, transcriptomics and proteomics analyzes indicated a low fungal activity within the granuloma, as demonstrated by the decreased expression of genes and proteins related to energy metabolism and cell cycle.
Collapse
Affiliation(s)
- Bruno Montanari Borges
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Rafael Berton Correia Ramos
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Nycolas Willian Preite
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Valéria de Lima Kaminski
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Patrícia Alves de Castro
- Faculty of Pharmaceutical Science of Ribeirão Preto (FCFRP), University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Maurício Camacho
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | | | - Taicia Pacheco Fill
- Institute of Chemistry, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Vera Lúcia Garcia Calich
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Aimee M. Traynor
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | | | - Sean Doyle
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | - Özgür Bayram
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | | | - André Zelanis
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Gustavo H. Goldman
- Faculty of Pharmaceutical Science of Ribeirão Preto (FCFRP), University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Flávio Vieira Loures
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| |
Collapse
|
4
|
Silva RDS, Segura WD, Oliveira RS, Xander P, Batista WL. Characterization of Aspartic Proteases from Paracoccidioides brasiliensis and Their Role in Fungal Thermo-Dimorphism. J Fungi (Basel) 2023; 9:jof9030375. [PMID: 36983543 PMCID: PMC10053120 DOI: 10.3390/jof9030375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Paracoccidioidomycosis (PCM) is the most prevalent systemic mycosis in Latin America and is caused by fungi from the Paracoccidioides genus. The infection begins after inhalation of the fungal propagules and their thermo-dimorphic shift to yeast form. Proteases play an important role in the host invasion process and immune modulation in many pathogenic microorganisms. Aspartyl proteases are virulence factors in many human fungal pathogens that play an important role in the host invasion process morphogenesis, cellular function, immunity, and nutrition. In the present study, we characterized the modulation of acid proteases from Paracoccidioides brasiliensis. We detected four aspartyl proteases in P. brasiliensis with high homology to aspartic protease from Saccharomyces cerevisiae Pep4. Furthermore, we demonstrated that Pepstatin A can inhibit dimorphic switching (mycelium→yeast) in P. brasiliensis. In addition, these genes were modulated during thermo-dimorphism (M→Y transition) in the presence or absence of carbon and nitrogen sources and during growth at pH 4 during 24 and 48 h. We also observed that P. brasiliensis increase the secretion of aspartic proteases when cultivated at pH 4, and these acid proteases cleave BSA, collagen, and hemoglobin. These data suggest that aspartyl proteases are modulated by environmental conditions and during fungal thermo-dimorphism. Thus, this work brings new possibilities for studying the role of aspartyl proteases in the host-pathogen relationship and P. brasiliensis biology.
Collapse
Affiliation(s)
- Rafael de Souza Silva
- Departamento Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, SP, Brazil
| | - Wilson Dias Segura
- Departamento Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, SP, Brazil
| | - Reinaldo Souza Oliveira
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema 09913-030, SP, Brazil
| | - Patricia Xander
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema 09913-030, SP, Brazil
| | - Wagner Luiz Batista
- Departamento Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, SP, Brazil
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema 09913-030, SP, Brazil
| |
Collapse
|
5
|
Silva LOS, Moreira TR, Gonçales RA, Tomazett MV, Parente-Rocha JA, Mattos K, Paccez JD, Ruiz OH, Pereira M, Soares CMDA, Weber SS, Cruz-Leite VRM, Borges CL. Paracoccidioides lutzii Formamidase Contributes to Fungal Survival in Macrophages. Microorganisms 2022; 10:microorganisms10102011. [PMID: 36296287 PMCID: PMC9608497 DOI: 10.3390/microorganisms10102011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Nitrogen is a crucial nutrient for microorganisms that compose essential biomolecules. However, hosts limit this nutrient as a strategy to counter infections, therefore, pathogens use adaptive mechanisms to uptake nitrogen from alternative sources. In fungi, nitrogen catabolite repression (NCR) activates transcription factors to acquire nitrogen from alternative sources when preferential sources are absent. Formamidase has been related to nitrogen depletion in Aspergillus nidulans through formamide degradation to use the released ammonia as a nitrogen source. In Paracoccidioides spp., formamidase is highly expressed in transcriptomic and proteomic analyses. Here, we aim to investigate the importance of formamidase to Paracoccidioides lutzii. Thereby, we developed a P. lutzii silenced strain of fmd gene (AsFmd) by antisense RNA technology using Agrobacterium tumefaciens-mediated transformation (ATMT). The AsFmd strain led to increased urease expression, an enzyme related to nitrogen assimilation in other fungi, suggesting that P. lutzii might explore urease as an alternative route for ammonia metabolism as a nitrogen source. Moreover, formamidase was important for fungal survival inside macrophages, as fungal recovery after macrophage infection was lower in AsFmd compared to wild-type (WT) strain. Our findings suggest potential alternatives of nitrogen acquisition regulation in P. lutzii, evidencing formamidase influence in fungal virulence.
Collapse
Affiliation(s)
- Lana O’Hara Souza Silva
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, Brazil
| | - Thalison Rodrigues Moreira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, Brazil
| | - Relber Aguiar Gonçales
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4700-000 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4800-000 Braga, Portugal
| | - Mariana Vieira Tomazett
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, Brazil
| | - Juliana Alves Parente-Rocha
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, Brazil
| | - Karine Mattos
- Bioscience Laboratory, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Juliano Domiraci Paccez
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, Brazil
| | - Orville Hernandez Ruiz
- MICROBA Research Group—Cellular and Molecular Biology Unit—CIB, School of Microbiology, University of Antioquia, Medellín 050010, Colombia
| | - Maristela Pereira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, Brazil
| | - Célia Maria de Almeida Soares
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, Brazil
| | - Simone Schneider Weber
- Bioscience Laboratory, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Vanessa Rafaela Milhomem Cruz-Leite
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, Brazil
- Correspondence: (V.R.M.C.-L.); (C.L.B.); Tel.: +55-62-3521-1110 (C.L.B.)
| | - Clayton Luiz Borges
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, Brazil
- Correspondence: (V.R.M.C.-L.); (C.L.B.); Tel.: +55-62-3521-1110 (C.L.B.)
| |
Collapse
|
6
|
Octaviano CE, Abrantes NE, Puccia R. Extracellular Vesicles From Paracoccidioides brasiliensis Can Induce the Expression of Fungal Virulence Traits In Vitro and Enhance Infection in Mice. Front Cell Infect Microbiol 2022; 12:834653. [PMID: 35295759 PMCID: PMC8918656 DOI: 10.3389/fcimb.2022.834653] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
Extracellular vesicles (EVs) are cellular components involved in cargo delivery to the extracellular environment, including the fungal cell wall. Their importance in cell–cell communication, cell wall remodeling, and fungal virulence is starting to be better explored. In the human pathogenic Paracoccidioides spp., our group has pioneered the description of the EV secretome, carbohydrate cargo, surface oligosaccharide ligands, lipid, and RNA content. Presently, we studied the role of fungal EVs in the context of the virulent/attenuated model of the P. brasiliensis Pb18 isolate, which consists of variants transiently displaying higher (vPb18) or attenuated (aPb18) virulence capacity. In this model, the virulence traits can be recovered through passages of aPb18 in mice. Here, we have been able to revert the aPb18 sensitivity to growth under oxidative and nitrosative stress upon previous co-incubation with vEVs from virulent vPb18. That was probably due to the expression of antioxidant molecules, considering that we observed increased gene expression of the alternative oxidase AOX and peroxiredoxins HYR1 and PRX1, in addition to higher catalase activity. We showed that aEVs from aPb18 stimulated macrophages of the RAW 264.7 and bone marrow-derived types to express high levels of inflammatory mediators, specifically, TNF-α, IL-6, MCP-1, and NO. In our experimental conditions, subcutaneous treatment with EVs (three doses, 7-day intervals) before vPb18 challenge exacerbated murine PCM, as concluded by higher colony-forming units in the lungs after 30 days of infection and histopathology analysis. That effect was largely pronounced after treatment with aEVs, probably because the lung TNF-α, IFN-γ, IL-6, and MCP-1 concentrations were specially increased in aEV-treated when compared with vEV-treated mice. Our present studies were performed with EVs isolated from yeast cell washes of confluent cultures in Ham’s F-12 defined medium. Under these conditions, vEVs and aEVs have similar sizes but probably distinct cargo, considering that vEVs tended to aggregate upon storage at 4°C and −20°C. Additionally, aEVs have decreased amounts of carbohydrate and protein. Our work brings important contribution to the understanding of the role of fungal EVs in cell–cell communication and on the effect of EVs in fungal infection, which clearly depends on the experimental conditions because EVs are complex and dynamic structures.
Collapse
|
7
|
Long-Term In Vitro Passaging Had a Negligible Effect on Extracellular Vesicles Released by Leishmania amazonensis and Induced Protective Immune Response in BALB/c Mice. J Immunol Res 2022; 2021:7809637. [PMID: 34977257 PMCID: PMC8720021 DOI: 10.1155/2021/7809637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/07/2021] [Accepted: 11/25/2021] [Indexed: 12/03/2022] Open
Abstract
Depending on Leishmania species and the presence/absence of virulence factors, Leishmania extracellular vesicles (EVs) can differently stimulate host immune cells. This work is aimed at characterizing and evaluating the protective role of EVs released by Leishmania amazonensis promastigotes under different maintenance conditions. Initially, using a control strain, we standardized 26°C as the best release temperature to obtain EVs with a potential protective role in the experimental leishmaniasis model. Then, long-term (LT-P) promastigotes of L. amazonensis were obtained after long-term in vitro culture (100 in vitro passages). In vivo-derived (IVD-P) promastigotes of L. amazonensis were selected after 3 consecutive experimental infections in BALB/c mice. Those strains developed similar lesion sizes except for IVD-P at 8 weeks post infection. No differences in EV production were detected in both strains. However, the presence of LPG between LT-P and IVD-P EVs was different. Groups of mice immunized with EVs emulsified in the adjuvant and challenged with IVD-P parasites showed decreased lesion size and parasitic load compared with the nonimmunized groups. The immunization regimen with two doses showed high IFN-γ and IgG2a titers in challenged mice with either IVD-P or LT-P EVs. IL-4 and IL-10 were detected in immunized mice, suggesting a mixed Th1/Th2 profile. EVs released by either IVD-P or LT-P induced a partial protective effect in an immunization model. Thus, our results uncover a potential protective role of EVs from L. amazonensis for cutaneous leishmaniasis. Moreover, long-term maintenance under in vitro conditions did not seem to affect EV release and their immunization properties in mice.
Collapse
|
8
|
Braz JD, Sardi JDCO, Pitangui NDS, Voltan AR, Almeida AMF, Mendes-Giannini MJS. Gene expression of Paracoccidioides virulence factors after interaction with macrophages and fibroblasts. Mem Inst Oswaldo Cruz 2021; 116:e200592. [PMID: 33787770 PMCID: PMC8011670 DOI: 10.1590/0074-02760200592] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/09/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Paracoccidioidomycosis (PCM) is a systemic mycosis with high prevalence in Latin America that is caused by thermodimorphic fungal species of the Paracoccidioides genus. OBJECTIVES In this study, we used quantitative polymerase chain reaction (qPCR) to investigate the expression of genes related to the virulence of Paracoccidioides brasiliensis (Pb18) and P. lutzii (Pb01) strains in their mycelial (M) and yeast (Y) forms after contact with alveolar macrophages (AMJ2-C11 cell line) and fibroblasts (MRC-5 cell line). METHODS The selected genes were those coding for 43 kDa glycoprotein (gp43), enolase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 14-3-3 protein (30 kDa), phospholipase, and aspartyl protease. FINDINGS In the Pb18 M form, the aspartyl protease gene showed the highest expression among all genes tested, both before and after infection of host cells. In the Pb18 Y form after macrophage infection, the 14-3-3 gene showed the highest expression among all genes tested, followed by the phospholipase and gp43 genes, and their expression was 50-fold, 10-fold, and 6-fold higher, respectively, than that in the M form. After fibroblast infection with the Pb18 Y form, the 14-3-3 gene showed the highest expression, followed by the phospholipase and aspartyl protease genes, and their expression was 25-fold, 10-fold, and 10-fold higher, respectively, than that in the M form. Enolase and aspartyl protease genes were expressed upon infection of both cell lines. After macrophage infection with the Pb01 Y form, the 14-3-3 gene showed the highest expression, followed by the phospholipase and aspartyl protease genes, and their expression was 18-fold, 12.5-fold, and 6-fold higher, respectively, than that in the M form. MAIN CONCLUSIONS In conclusion, the data show that the expression of the genes analysed may be upregulated upon fungus-host interaction. Therefore, these genes may be involved in the pathogenesis of paracoccidioidomycosis.
Collapse
Affiliation(s)
- Jaqueline Derissi Braz
- Universidade Estadual Paulista, Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, SP, Brasil
| | - Janaina de Cássia Orlandi Sardi
- Universidade Estadual Paulista, Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, SP, Brasil
- Universidade Federal de Mato Grosso do Sul, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Campo Grande, MS, Brasil
| | - Nayla de Souza Pitangui
- Universidade Estadual Paulista, Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, SP, Brasil
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Biologia Celular e Molecular, Ribeirão Preto, SP, Brasil
| | - Aline Raquel Voltan
- Universidade Estadual Paulista, Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, SP, Brasil
| | - Ana Marisa Fusco Almeida
- Universidade Estadual Paulista, Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, SP, Brasil
| | - Maria José Soares Mendes-Giannini
- Universidade Estadual Paulista, Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, SP, Brasil
| |
Collapse
|
9
|
Silva GS, Silva DA, Guilhelmelli F, Jerônimo MS, Cardoso-Miguel MRD, Bürgel PH, Castro RJA, de Oliveira SAM, Silva-Pereira I, Bocca AL, Tavares AH. Zymosan enhances in vitro phagocyte function and the immune response of mice infected with Paracoccidioides brasiliensis. Med Mycol 2021; 59:749-762. [PMID: 33550415 DOI: 10.1093/mmy/myaa117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/26/2020] [Accepted: 12/24/2020] [Indexed: 11/13/2022] Open
Abstract
Paracoccidioides brasiliensis is the major etiologic agent of Paracoccidioidomycosis (PCM), the most frequent human deep mycosis in Latin America. It is proposed that masking of β-glucan in P. brasiliensis cell wall is a critical virulence factor that contributes to the development of a chronic disease characterized by a long period of treatment, which is usually toxic. In this context, the search for immunomodulatory agents for therapeutic purposes is highly desirable. One strategy is to use pattern recognition receptors (PRRs) ligands to stimulate the immune response mediated by phagocytes. Here, we sought to evaluate if Zymosan, a β-glucan-containing ligand of the PRRs Dectin-1/TLR-2, would enhance phagocyte function and the immune response of mice challenged with P. brasiliensis. Dendritic cells (DCs) infected with P. brasiliensis and treated with Zymosan showed improved secretion of several proinflammatory cytokines and expression of maturation markers. In addition, when cocultured with splenic lymphocytes, these cells induced the production of a potential protective type 1 and 17 cytokine patterns. In macrophages, Zymosan ensued a significant fungicidal activity associated with nitric oxide production and phagolysosome acidification. Importantly, we observed a protective effect of Zymosan-primed DCs delivered intranasally in experimental pulmonary PCM. Overall, our findings support the potential use of β-glucan-containing compounds such as Zymosan as an alternative or complementary antifungal therapy. LAY SUMMARY We report for the first time that Paracoccidioides brasiliensis-infected phagocytes treated with Zymosan (cell wall extract from bakers' yeast) show enhanced cytokine production, maturation, and fungal killing. Also, Zymosan-primed phagocytes induce a protective immune response in infected mice.
Collapse
Affiliation(s)
- G S Silva
- Graduate Program in Molecular Pathology, Faculty of Medicine, University of Brasília, UnB, Brasília, DF, Brazil.,Faculty of Ceilândia, University of Brasília, UnB, Brasília, DF, Brazil
| | - D A Silva
- Faculty of Ceilândia, University of Brasília, UnB, Brasília, DF, Brazil
| | - F Guilhelmelli
- Laboratory of Molecular Biology of Pathogenic Fungi. Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - M S Jerônimo
- Laboratory of Applied Immunology, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, UnB, Brasília, DF, Brazil
| | - M R D Cardoso-Miguel
- Graduate Program in Microbial Biology, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, UnB, Brasília, DF, Brazil
| | - P H Bürgel
- Laboratory of Applied Immunology, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, UnB, Brasília, DF, Brazil.,Graduate Program in Microbial Biology, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, UnB, Brasília, DF, Brazil
| | - R J A Castro
- Laboratory of Applied Immunology, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, UnB, Brasília, DF, Brazil
| | - S A M de Oliveira
- Laboratory of Applied Immunology, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, UnB, Brasília, DF, Brazil
| | - I Silva-Pereira
- Laboratory of Molecular Biology of Pathogenic Fungi. Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - A L Bocca
- Laboratory of Applied Immunology, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, UnB, Brasília, DF, Brazil
| | - A H Tavares
- Faculty of Ceilândia, University of Brasília, UnB, Brasília, DF, Brazil
| |
Collapse
|
10
|
Updates in Paracoccidioides Biology and Genetic Advances in Fungus Manipulation. J Fungi (Basel) 2021; 7:jof7020116. [PMID: 33557381 PMCID: PMC7915485 DOI: 10.3390/jof7020116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/28/2022] Open
Abstract
The dimorphic fungi of the Paracoccidioides genus are the causative agents of paracoccidioidomycosis (PCM). This disease is endemic in Latin America and primarily affects workers in rural areas. PCM is considered a neglected disease, despite being a disabling disease that has a notable impact on the public health system. Paracoccidioides spp. are thermally dimorphic fungi that present infective mycelia at 25 °C and differentiate into pathogenic yeast forms at 37 °C. This transition involves a series of morphological, structural, and metabolic changes which are essential for their survival inside hosts. As a pathogen, the fungus is subjected to several varieties of stress conditions, including the host immune response, which involves the production of reactive nitrogen and oxygen species, thermal stress due to temperature changes during the transition, pH alterations within phagolysosomes, and hypoxia inside granulomas. Over the years, studies focusing on understanding the establishment and development of PCM have been conducted with several limitations due to the low effectiveness of strategies for the genetic manipulation of Paracoccidioides spp. This review describes the most relevant biological features of Paracoccidioides spp., including aspects of the phylogeny, ecology, stress response, infection, and evasion mechanisms of the fungus. We also discuss the genetic aspects and difficulties of fungal manipulation, and, finally, describe the advances in molecular biology that may be employed in molecular research on this fungus in the future.
Collapse
|
11
|
Prediction of Conserved Peptides of Paracoccidioides for Interferon-γ Release Assay: The First Step in the Development of a Lab-Based Approach for Immunological Assessment during Antifungal Therapy. J Fungi (Basel) 2020; 6:jof6040379. [PMID: 33352628 PMCID: PMC7766394 DOI: 10.3390/jof6040379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022] Open
Abstract
Impaired antigen-specific cell-mediated immunity (CMI) is a primary immunological disturbance observed in individuals that develop paracoccidioidomycosis (PCM) after exposure to Paracoccidioides spp. Restoration of Paracoccidioides-specific CMI is crucial to stop the antifungal treatment and avoid relapses. A convenient and specific laboratory tool to assess antigen specific CMI is required for the appropriate clinical treatment of fungal infections, in order to decrease the time of antifungal therapy. We used an interferon-γ release assay strategy, used in the diagnosis of latent tuberculosis infection, to address our aims in this study. Information on proteins secreted by two well-studied representative strains-Paracoccidioides brasiliensis (Pb18) and P. lutzii (Pb-01)-were explored using PubMed or MEDLINE. From 26 publications, 252 proteins were identified, of which 203 were similar according to the Basic Local Alignment Search Tool. This enabled a selection of conserved peptides using the MEGA software. The SignalP-5.0, TMHMM, IEDB, NetMHC II, and IFNepitope algorithms were used to identify appropriate epitopes. In our study, we predicted antigenic epitopes of Paracoccidioides that could bind to MHC class II and induce IFN-γ secretion. These T cell epitopes can be used in the development of a laboratory tool to monitor the CMI of patients with PCM.
Collapse
|
12
|
Rodrigues AM, Kubitschek-Barreira PH, Pinheiro BG, Teixeira-Ferreira A, Hahn RC, de Camargo ZP. Immunoproteomic Analysis Reveals Novel Candidate Antigens for the Diagnosis of Paracoccidioidomycosis Due to Paracoccidioides lutzii. J Fungi (Basel) 2020; 6:jof6040357. [PMID: 33322269 PMCID: PMC7770604 DOI: 10.3390/jof6040357] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
Paracoccidioidomycosis (PCM) is a life-threatening systemic infection caused by the fungal pathogen Paracoccidioides brasiliensis and related species. Whole-genome sequencing and stage-specific proteomic analysis of Paracoccidioides offer the opportunity to profile humoral immune responses against P. lutzii and P. brasiliensis s. str. infection using innovative screening approaches. Here, an immunoproteomic approach was used to identify PCM-associated antigens that elicit immune responses by combining 2-D electrophoresis of P. lutzii and P. brasiliensis proteomes, immunological detection using a gold-standard serum, and mass spectrometry analysis. A total of 16 and 25 highly immunoreactive proteins were identified in P. lutzii and P. brasiliensis, respectively, and 29 were shown to be the novel antigens for Paracoccidioides species, including seven uncharacterized proteins. Among the panel of proteins identified, most are involved in metabolic pathways, carbon metabolism, and biosynthesis of secondary metabolites in both immunoproteomes. Remarkably, six isoforms of the surface-associated enolase in the range of 54 kDa were identified as the major antigens in human PCM due to P. lutzii. These novel immunoproteomes of Paracoccidioides will be employed to develop a sensitive and affordable point-of-care diagnostic assay and an effective vaccine to identify infected hosts and prevent infection and development of human PCM. These findings provide a unique opportunity for the refinement of diagnostic tools of this important neglected systemic mycosis, which is usually associated with poverty.
Collapse
Affiliation(s)
- Anderson Messias Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil;
- Correspondence: (A.M.R.); (Z.P.d.C.); Tel.: +55-1155764551 (ext. 1540) (A.M.R.); +55-1155764551 (ext. 1512) (Z.P.d.C.)
| | - Paula Helena Kubitschek-Barreira
- Department of Cellular Biology, Roberto Alcantara Gomes Institute of Biology, Rio de Janeiro State University (UERJ), Rio de Janeiro 20511010, Brazil;
| | - Breno Gonçalves Pinheiro
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil;
| | - André Teixeira-Ferreira
- Toxinology Laboratory, Department of Physiology and Pharmacodynamics, Fiocruz, Rio de Janeiro 21040900, Brazil;
| | - Rosane Christine Hahn
- Laboratory of Mycology/Research, Faculty of Medicine, Federal University of Mato Grosso, Cuiabá 78060900, Brazil;
- Júlio Muller University Hospital, Federal University of Mato Grosso, Cuiabá 78048902, Brazil
| | - Zoilo Pires de Camargo
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil;
- Department of Medicine, Discipline of Infectious Diseases, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil
- Correspondence: (A.M.R.); (Z.P.d.C.); Tel.: +55-1155764551 (ext. 1540) (A.M.R.); +55-1155764551 (ext. 1512) (Z.P.d.C.)
| |
Collapse
|
13
|
Navarro MV, Chaves AFA, Castilho DG, Casula I, Calado JCP, Conceição PM, Iwai LK, de Castro BF, Batista WL. Effect of Nitrosative Stress on the S-Nitroso-Proteome of Paracoccidioides brasiliensis. Front Microbiol 2020; 11:1184. [PMID: 32582109 PMCID: PMC7287035 DOI: 10.3389/fmicb.2020.01184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 05/08/2020] [Indexed: 12/12/2022] Open
Abstract
The fungi Paracoccidioides brasiliensis and Paracoccidioides lutzii are the causative agents of paracoccidioidomycosis (PCM), a systemic mycosis endemic to Latin America. This fungus is considered a facultative intracellular pathogen that is able to survive and replicate inside macrophages. The survival of the fungus during infection depends on its adaptability to various conditions, such as nitrosative/oxidative stress produced by the host immune cells, particularly alveolar macrophages. Currently, there is little knowledge about the Paracoccidioides spp. signaling pathways involved in the fungus evasion mechanism of the host defense response. However, it is known that some of these pathways are triggered by reactive oxygen species and reactive nitrogen species (ROS/RNS) produced by host cells. Considering that the effects of NO (nitric oxide) on pathogens are concentration dependent, such effects could alter the redox state of cysteine residues by influencing (activating or inhibiting) a variety of protein functions, notably S-nitrosylation, a highly important NO-dependent posttranslational modification that regulates cellular functions and signaling pathways. It has been demonstrated by our group that P. brasiliensis yeast cells proliferate when exposed to low NO concentrations. Thus, this work investigated the modulation profile of S-nitrosylated proteins of P. brasiliensis, as well as identifying S-nitrosylation sites after treatment with RNS. Through mass spectrometry analysis (LC-MS/MS) and label-free quantification, it was possible to identify 474 proteins in the S-nitrosylated proteome study. With this approach, we observed that proteins treated with NO at low concentrations presented a proliferative response pattern, with several proteins involved in cellular cycle regulation and growth being activated. These proteins appear to play important roles in fungal virulence. On the other hand, fungus stimulated by high NO concentrations exhibited a survival response pattern. Among these S-nitrosylated proteins we identified several potential molecular targets for fungal disease therapy, including cell wall integrity (CWI) pathway, amino acid and folic acid metabolisms. In addition, we detected that the transnitrosylation/denitrosylation redox signaling are preserved in this fungus. Finally, this work may help to uncover the beneficial and antifungal properties of NO in the P. brasiliensis and point to useful targets for the development of antifungal drugs.
Collapse
Affiliation(s)
- Marina V. Navarro
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Alison F. A. Chaves
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Daniele G. Castilho
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Isis Casula
- Department of Pharmaceutical Sciences, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, Brazil
| | - Juliana C. P. Calado
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Palloma M. Conceição
- Department of Pharmaceutical Sciences, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, Brazil
| | - Leo K. Iwai
- Laboratory of Applied Toxinology, Center of Toxins, Immune-response and Cell Signaling, Instituto Butantan, São Paulo, Brazil
| | - Beatriz F. de Castro
- Department of Pharmaceutical Sciences, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, Brazil
| | - Wagner L. Batista
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- Department of Pharmaceutical Sciences, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, Brazil
| |
Collapse
|
14
|
Virulence factors of Paracoccidioides brasiliensis as therapeutic targets: a review. Antonie van Leeuwenhoek 2020; 113:593-604. [PMID: 31902009 DOI: 10.1007/s10482-019-01382-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/26/2019] [Indexed: 12/17/2022]
Abstract
Paracoccidiodomycosis (PCM) is a systemic mycosis caused by the fungus Paracoccidioides brasiliensis and Paracoccidioides lutzii. The disease requires long and complicated treatment. The aim of this review is to address the fungal virulence factors that could be the target of the development of new drugs for PCM treatment. Virulence factors favoring the process of fungal infection and pathogenicity are considered as a microbial attribute associated with host susceptibility. P. brasiliensis has some known virulence factors which are 43 kDa glycoprotein (gp 43) which is an important fungal antigen, 70 kDa glycoprotein (gp 70), the carbohydrates constituting the fungal cell wall α-1,3, glucan and β-1,3-glucan, cell adhesion molecules and the presence of melanin pigments. The discovery and development of drugs that interact with these factors, such as inhibitors of β-1,3-glucan, reduced synthesis of gp 43, inhibitors of melanin production, is of great importance for the treatment of PCM. The study of virulence factors favors the understanding of pathogen-host relationships, aiming to evaluate the possibility of developing new therapeutic targets and mechanisms that these molecules play in the infectious process, favoring the design of a more specific treatment for this disease.
Collapse
|
15
|
do Amaral CC, Fernandes GF, Rodrigues AM, Burger E, de Camargo ZP. Proteomic analysis of Paracoccidioides brasiliensis complex isolates: Correlation of the levels of differentially expressed proteins with in vivo virulence. PLoS One 2019; 14:e0218013. [PMID: 31265468 PMCID: PMC6605636 DOI: 10.1371/journal.pone.0218013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 05/23/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Paracoccidioidomycosis (PCM) is a systemic mycosis commonly found in Latin America that is caused by distinct species of Paracoccidioides genus: Paracoccidioides brasiliensis complex (S1, PS2, PS3 and PS4) and Paracoccidioides lutzii. Its pathobiology has been recently explored by different approaches to clarify the mechanisms of host-pathogen interactions underpinning PCM. The diversity of clinical forms of this disease has been attributed to both host- and fungus-related factors. METHODOLOGY/PRINCIPAL FINDINGS For better understanding of the molecular underpinnings of host-fungus interactions, we evaluated in vivo virulence of nine Paracoccidioides brasiliensis complex isolates and correlated it to protein expression profiles obtained by two-dimensional gel electrophoresis. Based on the recovery of viable fungi from mouse organs, the isolates were classified as those having low, moderate, or high virulence. Highly virulent isolates overexpressed proteins related to adhesion process and stress response, probably indicating important roles of those fungal proteins in regulating the colonization capacity, survival, and ability to escape host immune system reaction. Moreover, highly virulent isolates exhibited enhanced expression of glycolytic pathway enzymes concomitantly with repressed expression of succinyl-CoA ligase beta chain, a protein related to the tricarboxylic acid cycle. CONCLUSIONS/SIGNIFICANCE Our findings may point to the mechanisms used by highly virulent P. brasiliensis isolates to withstand host immune reactions and to adapt to transient iron availability as strategies to survive and overcome stress conditions inside the host.
Collapse
Affiliation(s)
- Cristiane Candida do Amaral
- Department of Medicine, Discipline of Infectious Diseases, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Geisa Ferreira Fernandes
- Department of Microbiology, Immunology and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Anderson Messias Rodrigues
- Department of Microbiology, Immunology and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Eva Burger
- Department of Microbiology and Immunology, Federal University of Alfenas (UNIFAL), Alfenas, Brazil
| | - Zoilo Pires de Camargo
- Department of Microbiology, Immunology and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- * E-mail:
| |
Collapse
|
16
|
Castilho DG, Chaves AFA, Navarro MV, Conceição PM, Ferreira KS, da Silva LS, Xander P, Batista WL. Secreted aspartyl proteinase (PbSap) contributes to the virulence of Paracoccidioides brasiliensis infection. PLoS Negl Trop Dis 2018; 12:e0006806. [PMID: 30260953 PMCID: PMC6177206 DOI: 10.1371/journal.pntd.0006806] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 10/09/2018] [Accepted: 08/31/2018] [Indexed: 11/18/2022] Open
Abstract
Paracoccidioidomycosis (PCM) is the most prevalent deep mycosis in Latin America and is caused by fungi from the Paracoccidioides genus. Virulence factors are important fungal characteristics that support the development of disease. Aspartyl proteases (Saps) are virulence factors in many human fungal pathogens that play an important role in the host invasion process. We report here that immunization with recombinant Sap from Paracoccidioides brasiliensis (rPbSap) imparted a protective effect in an experimental PCM model. The rPbSap-immunized mice had decreased fungal loads, and their lung parenchyma were notably preserved. An aspartyl protease inhibitor (pepstatin A) significantly decreased pulmonary injury and reduced fungal loads in the lung. Additionally, we observed that pepstatin A enhanced the fungicidal and phagocytic profile of macrophages against P. brasiliensis. Furthermore, PbSAP expression was highly altered by environmental conditions, including thermal stress, dimorphism switching and low pH. Hence, our data suggest that PbSap is an important virulence regulator in P. brasiliensis.
Collapse
Affiliation(s)
- Daniele Gonçalves Castilho
- Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Alison Felipe Alencar Chaves
- Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Marina Valente Navarro
- Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Palloma Mendes Conceição
- Department of Pharmaceutical Sciences, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Karen Spadari Ferreira
- Department of Pharmaceutical Sciences, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Luiz Severino da Silva
- Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Patricia Xander
- Department of Pharmaceutical Sciences, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Wagner Luiz Batista
- Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Department of Pharmaceutical Sciences, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
- * E-mail:
| |
Collapse
|
17
|
Sylvestre TF, Cavalcante RDS, da Silva JDF, Paniago AMM, Weber SS, Pauletti BA, de Carvalho LR, dos Santos LD, Mendes RP. Serological proteomic biomarkers to identify Paracoccidioides species and risk of relapse. PLoS One 2018; 13:e0202804. [PMID: 30157221 PMCID: PMC6114792 DOI: 10.1371/journal.pone.0202804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/09/2018] [Indexed: 12/20/2022] Open
Abstract
The sensitivity of the double agar gel immunodiffusion test is about 90% in patients with untreated paracoccidioidomycosis (PCM), but it is much lower in cases of relapse. In addition, serum from patients with PCM caused by Paracoccidioides lutzii, frequent in the Midwest region of Brazil, do not react with the classical antigen obtained from Pb B-339. These findings showed the need for alternative diagnostic methods, such as biological markers through proteomics. The aim of this study was to identify biomarkers for the safe identification of PCM relapse and specific proteins that could distinguish infections caused by Paracoccidioides brasiliensis from those produced by Paracoccidioides lutzii. Proteomic analysis was performed in serum from 9 patients with PCM caused by P. brasiliensis, with and without relapse, from 4 patients with PCM produced by P. lutzii, and from 3 healthy controls. The comparative evaluation of the 29 identified plasma proteins suggested that the presence of the immunoglobulin (Ig) alpha-2 chain C region and the absence of Ig heavy chain V-III TIL indicate infection by P. lutzii. In addition, the absence of complement factor B protein might be a predictor of relapse. The evaluation of these proteins in a higher number of patients should be carried out in order to validate these findings.
Collapse
Affiliation(s)
| | | | | | | | - Simone Schneider Weber
- Universidade Federal de Mato Grosso do Sul (UFMS), Faculdade de Medicina, Campo Grande, Brazil
- Instituto de Ciências Exatas e Tecnologia (ICET), Universidade Federal do Amazonas (UFAM), Itacoatiara, Brazil
| | | | - Lídia Raquel de Carvalho
- Universidade Estadual Paulista (UNESP), Instituto de Biociência de Botucatu, Botucatu, São Paulo, Brazil
| | | | - Rinaldo Poncio Mendes
- Universidade Estadual Paulista (UNESP), Faculdade de Medicina de Botucatu, Botucatu, São Paulo, Brazil
| |
Collapse
|
18
|
Castilho DG, Navarro MV, Chaves AFA, Xander P, Batista WL. Recovery of the Paracoccidioides brasiliensis virulence after animal passage promotes changes in the antioxidant repertoire of the fungus. FEMS Yeast Res 2018; 18:4835518. [DOI: 10.1093/femsyr/foy007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 01/31/2018] [Indexed: 01/20/2023] Open
Affiliation(s)
- Daniele G Castilho
- Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, Brazil
| | - Marina V Navarro
- Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, Brazil
| | - Alison F A Chaves
- Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, Brazil
| | - Patricia Xander
- Department of Pharmaceutical Sciences, Instituto de Ciências Ambientais, Químicas e Farmacêuticas (ICAQF), Universidade Federal de São Paulo (UNIFESP), Campus Diadema, Rua São Nicolau, 210, Diadema 09913-030, Brazil
| | - Wagner L Batista
- Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, Brazil
- Department of Pharmaceutical Sciences, Instituto de Ciências Ambientais, Químicas e Farmacêuticas (ICAQF), Universidade Federal de São Paulo (UNIFESP), Campus Diadema, Rua São Nicolau, 210, Diadema 09913-030, Brazil
| |
Collapse
|
19
|
Portes LDS, Kioshima ES, de Camargo ZP, Batista WL, Xander P. Subtractive phage display selection for screening and identification of peptide sequences with potential use in serodiagnosis of paracoccidioidomycosis caused by Paracoccidioides brasiliensis. Lett Appl Microbiol 2017; 65:346-353. [PMID: 28796894 DOI: 10.1111/lam.12788] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 08/01/2017] [Accepted: 08/01/2017] [Indexed: 01/08/2023]
Abstract
Paracoccidioidomycosis (PCM) is a systemic granulomatous disease endemic in Latin America whose aetiologic agents are the thermodimorphic fungi Paracoccidioides brasiliensis and Paracoccidioides lutzii. Despite technological advances, some problems have been reported for the fungal antigens used for serological diagnosis, and inconsistencies among laboratories have been reported. The use of synthetic peptides in the serological diagnosis of infectious diseases has proved to be a valuable strategy because in some cases, the reactions are more specific and sensitive. In this study, we used a subtractive selection with a phage display library against purified polyclonal antibodies for negative and positive PCM sera caused by P. brasiliensis. The binding phages were sequenced and tested in a binding assay to evaluate its interaction with sera from normal individuals and PCM patients. Synthetic peptides derived from these phage clones were tested in a serological assay, and we observed a significant recognition of LP15 by sera from PCM patients infected with P. brasiliensis. Our results demonstrated that subtractive phage display selection may be useful for identifying new epitopes that can be applied to the serodiagnosis of PCM caused by P. brasiliensis. SIGNIFICANCE AND IMPACT OF THE STUDY Currently, there is no standardized method for the preparation of paracoccidioidomycosis (PCM) antigens, which has resulted in differences in the antigens used for serological diagnosis. Here, we report a procedure that uses subtractive phage display selection to select and identify new epitopes for the serodiagnosis of PCM caused by Paracoccidioides brasiliensis. A synthetic peptide obtained using this methodology was successfully recognized by sera from PCM patients, thus demonstrating its potential use for improving the serodiagnosis of this mycosis. The development of synthetic peptides for the serodiagnosis of PCM could be a promising alternative for the better standardization of diagnoses among laboratories.
Collapse
Affiliation(s)
- L da Silva Portes
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo - Campus Diadema, São Paulo, Brasil
| | - E S Kioshima
- Laboratório de Micologia Médica, Departamento de Análises Clínicas, Universidade Estadual de Maringá, Maringá, Brasil
| | - Z P de Camargo
- Laboratório de Micologia Médica e Molecular, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo - Campus São Paulo, São Paulo, Brasil
| | - W L Batista
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo - Campus Diadema, São Paulo, Brasil
| | - P Xander
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo - Campus Diadema, São Paulo, Brasil
| |
Collapse
|
20
|
Köhler JR, Hube B, Puccia R, Casadevall A, Perfect JR. Fungi that Infect Humans. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0014-2016. [PMID: 28597822 PMCID: PMC11687496 DOI: 10.1128/microbiolspec.funk-0014-2016] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Indexed: 12/18/2022] Open
Abstract
Fungi must meet four criteria to infect humans: growth at human body temperatures, circumvention or penetration of surface barriers, lysis and absorption of tissue, and resistance to immune defenses, including elevated body temperatures. Morphogenesis between small round, detachable cells and long, connected cells is the mechanism by which fungi solve problems of locomotion around or through host barriers. Secretion of lytic enzymes, and uptake systems for the released nutrients, are necessary if a fungus is to nutritionally utilize human tissue. Last, the potent human immune system evolved in the interaction with potential fungal pathogens, so few fungi meet all four conditions for a healthy human host. Paradoxically, the advances of modern medicine have made millions of people newly susceptible to fungal infections by disrupting immune defenses. This article explores how different members of four fungal phyla use different strategies to fulfill the four criteria to infect humans: the Entomophthorales, the Mucorales, the Ascomycota, and the Basidiomycota. Unique traits confer human pathogenic potential on various important members of these phyla: pathogenic Onygenales comprising thermal dimorphs such as Histoplasma and Coccidioides; the Cryptococcus spp. that infect immunocompromised as well as healthy humans; and important pathogens of immunocompromised patients-Candida, Pneumocystis, and Aspergillus spp. Also discussed are agents of neglected tropical diseases important in global health such as mycetoma and paracoccidiomycosis and common pathogens rarely implicated in serious illness such as dermatophytes. Commensalism is considered, as well as parasitism, in shaping genomes and physiological systems of hosts and fungi during evolution.
Collapse
Affiliation(s)
- Julia R Köhler
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute Jena (HKI), Jena, Germany
| | - Rosana Puccia
- Disciplina de Biologia Celular, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina-Universidade Federal de São Paulo, São Paulo, Brazil
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - John R Perfect
- Division of Infectious Diseases, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
21
|
Chaves AFA, Navarro MV, Castilho DG, Calado JCP, Conceição PM, Batista WL. A conserved dimorphism-regulating histidine kinase controls the dimorphic switching in Paracoccidioides brasiliensis. FEMS Yeast Res 2016; 16:fow047. [PMID: 27268997 DOI: 10.1093/femsyr/fow047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2016] [Indexed: 02/05/2023] Open
Abstract
Paracoccidioides brasiliensis and P. lutzii, thermally dimorphic fungi, are the causative agents of paracoccidioidomycosis (PCM). Paracoccidioides infection occurs when conidia or mycelium fragments are inhaled by the host, which causes the Paracoccidioides cells to transition to the yeast form. The development of disease requires conidia inside the host alveoli to differentiate into yeast cells in a temperature-dependent manner. We describe the presence of a two-component signal transduction system in P. brasiliensis, which we investigated by expression analysis of a hypothetical protein gene (PADG_07579) that showed high similarity with the dimorphism-regulating histidine kinase (DRK1) gene of Blastomyces dermatitidis and Histoplasma capsulatum This gene was sensitive to environmental redox changes, which was demonstrated by a dose-dependent decrease in transcript levels after peroxide stimulation and a subtler decrease in transcript levels after NO stimulation. Furthermore, the higher PbDRK1 levels after treatment with increasing NaCl concentrations suggest that this histidine kinase can play a role as osmosensing. In the mycelium-yeast (M→Y) transition, PbDRK1 mRNA expression increased 14-fold after 24 h incubation at 37°C, consistent with similar observations in other virulent fungi. These results demonstrate that the PbDRK1 gene is differentially expressed during the dimorphic M→Y transition. Finally, when P. brasiliensis mycelium cells were exposed to a histidine kinase inhibitor and incubated at 37°C, there was a delay in the dimorphic M→Y transition, suggesting that histidine kinases could be targets of interest for PCM therapy.
Collapse
Affiliation(s)
- Alison F A Chaves
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, Unidade José Alencar, Street São Nicolau, nº210, 4º floor, São Paulo 04023-900, Brazil
| | - Marina V Navarro
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, Unidade José Alencar, Street São Nicolau, nº210, 4º floor, São Paulo 04023-900, Brazil
| | - Daniele G Castilho
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, Unidade José Alencar, Street São Nicolau, nº210, 4º floor, São Paulo 04023-900, Brazil
| | - Juliana C P Calado
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, Unidade José Alencar, Street São Nicolau, nº210, 4º floor, São Paulo 04023-900, Brazil
| | - Palloma M Conceição
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema 09913-030, São Paulo, Brazil
| | - Wagner L Batista
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, Unidade José Alencar, Street São Nicolau, nº210, 4º floor, São Paulo 04023-900, Brazil Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema 09913-030, São Paulo, Brazil
| |
Collapse
|
22
|
Tashima AK, Castilho DG, Chaves AFA, Xander P, Zelanis A, Batista WL. Data in support of quantitative proteomics to identify potential virulence regulators in Paracoccidioides brasiliensis isolates. Data Brief 2015; 5:155-60. [PMID: 26501084 PMCID: PMC4588363 DOI: 10.1016/j.dib.2015.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 08/31/2015] [Accepted: 09/01/2015] [Indexed: 11/30/2022] Open
Abstract
Paracoccidioides genus are the etiologic agents of paracoccidioidomycosis (PCM), a systemic mycosis endemic in Latin America. Few virulence factors have been identified in these fungi. This paper describes support data from the quantitative proteomics of Paracoccidioides brasiliensis attenuated and virulent isolates [1]. The protein compositions of two isolates of the Pb18 strain showing distinct infection profiles were quantitatively assessed by stable isotopic dimethyl labeling and proteomic analysis. The mass spectrometry and the analysis dataset have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with identifier PXD000804.
Collapse
Affiliation(s)
- Alexandre Keiji Tashima
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Daniele Gonçalves Castilho
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Alison Felipe Alencar Chaves
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Patricia Xander
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Campus Diadema, Diadema, SP, Brazil
| | - André Zelanis
- Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, Campus São José dos Campos, Rua Talim, 330, São José dos Campos, SP, Brazil
| | - Wagner Luiz Batista
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil ; Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Campus Diadema, Diadema, SP, Brazil
| |
Collapse
|