1
|
La Barbera G, Shuler MS, Beck SH, Ibsen PH, Lindberg LJ, Karstensen JG, Dragsted LO. Development of an untargeted DNA adductomics method by ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry. Talanta 2025; 282:126985. [PMID: 39418978 DOI: 10.1016/j.talanta.2024.126985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
Genotoxicants originating from inflammation, diet, and environment can covalently modify DNA, possibly initiating the process of carcinogenesis. DNA adducts have been known for long, but the old methods allowed to target only a few known DNA adducts at a time, not providing a global picture of the "DNA adductome". DNA adductomics is a new research field, aiming to screen for unknown DNA adducts by high resolution mass spectrometry (HRMS). However, DNA adductomics presents several analytical challenges such as the need for high sensitivity and for the development of effective screening approaches to identify novel DNA adducts. In this work, a sensitive untargeted DNA adductomics method was developed by using ultra-high performance liquid chromatography (UHPLC) coupled via an ESI source to a quadrupole-time of flight mass spectrometric instrumentation. Mobile phases with ammonium bicarbonate gave the best signal enhancement. The MS capillary voltage, cone voltage, and detector voltage had most effect on the response of the DNA adducts. A low adsorption vial was selected for reducing analyte loss. Hybrid surface-coated analytical columns were tested for reducing adsorption of the DNA adducts. The optimized method was applied to analyse DNA adducts in calf thymus, cat colon, and human colon DNA by performing a MSE acquisition (all-ion fragmentation acquisition) and screening for the loss of deoxyribose and the nucleobase fragment ions. Fifty-four DNA adducts were tentatively identified, hereof 38 never reported before. This is the first untargeted DNA adductomics study on human colon tissue, and one of the few untargeted DNA adductomics studies in the literature reporting the identification of such a high number of unknowns. This demonstrates promising results for the application of this sensitive method in future human studies for investigating novel potential cancer-causing factors.
Collapse
Affiliation(s)
- Giorgia La Barbera
- Department of Nutrition Exercise and Sports, University of Copenhagen, Frederiksberg, DK-1985, Denmark.
| | - Marshal Spenser Shuler
- Department of Nutrition Exercise and Sports, University of Copenhagen, Frederiksberg, DK-1985, Denmark
| | - Søren Hammershøj Beck
- Gastrounit, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, 2650, Denmark
| | - Per Holger Ibsen
- Department of Pathology, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, 2650, Denmark
| | - Lars Joachim Lindberg
- Danish HNPCC Register, Gastrounit, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, 2650, Denmark
| | - John Gásdal Karstensen
- Danish Polyposis Register, Gastrounit, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, 2650, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, 2000, Denmark
| | - Lars Ove Dragsted
- Department of Nutrition Exercise and Sports, University of Copenhagen, Frederiksberg, DK-1985, Denmark
| |
Collapse
|
2
|
Möller C, Virzi J, Chang YJ, Keidel A, Chao MR, Hu CW, Cooke MS. DNA modifications: Biomarkers for the exposome? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 108:104449. [PMID: 38636743 DOI: 10.1016/j.etap.2024.104449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/25/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
The concept of the exposome is the encompassing of all the environmental exposures, both exogenous and endogenous, across the life course. Many, if not all, of these exposures can result in the generation of reactive species, and/or the modulation of cellular processes, that can lead to a breadth of modifications of DNA, the nature of which may be used to infer their origin. Because of their role in cell function, such modifications have been associated with various major human diseases, including cancer, and so their assessment is crucial. Historically, most methods have been able to only measure one or a few DNA modifications at a time, limiting the information available. With the development of DNA adductomics, which aims to determine the totality of DNA modifications, a far more comprehensive picture of the DNA adduct burden can be gained. Importantly, DNA adductomics can facilitate a "top-down" investigative approach whereby patterns of adducts may be used to trace and identify the originating exposure source. This, together with other 'omic approaches, represents a major tool for unraveling the complexities of the exposome and hence allow a better a understanding of the environmental origins of disease.
Collapse
Affiliation(s)
- Carolina Möller
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA.
| | - Jazmine Virzi
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Yuan-Jhe Chang
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Alexandra Keidel
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan; Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA; College of Public Health, University of South Florida, Tampa, FL 33620, USA; Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
3
|
Abugable AA, Antar S, El-Khamisy SF. Chromosomal single-strand break repair and neurological disease: Implications on transcription and emerging genomic tools. DNA Repair (Amst) 2024; 135:103629. [PMID: 38266593 DOI: 10.1016/j.dnarep.2024.103629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024]
Abstract
Cells are constantly exposed to various sources of DNA damage that pose a threat to their genomic integrity. One of the most common types of DNA breaks are single-strand breaks (SSBs). Mutations in the repair proteins that are important for repairing SSBs have been reported in several neurological disorders. While several tools have been utilised to investigate SSBs in cells, it was only through recent advances in genomics that we are now beginning to understand the architecture of the non-random distribution of SSBs and their impact on key cellular processes such as transcription and epigenetic remodelling. Here, we discuss our current understanding of the genome-wide distribution of SSBs, their link to neurological disorders and summarise recent technologies to investigate SSBs at the genomic level.
Collapse
Affiliation(s)
- Arwa A Abugable
- School of Biosciences, Firth Court, University of Sheffield, Sheffield, UK; The healthy Lifespan and Neuroscience Institutes, University of Sheffield, Sheffield, UK
| | - Sarah Antar
- School of Biosciences, Firth Court, University of Sheffield, Sheffield, UK; The healthy Lifespan and Neuroscience Institutes, University of Sheffield, Sheffield, UK; Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Egypt
| | - Sherif F El-Khamisy
- School of Biosciences, Firth Court, University of Sheffield, Sheffield, UK; The healthy Lifespan and Neuroscience Institutes, University of Sheffield, Sheffield, UK; Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, UK.
| |
Collapse
|
4
|
De Graeve M, Van de Walle E, Van Hecke T, De Smet S, Vanhaecke L, Hemeryck LY. Exploration and optimization of extraction, analysis and data normalization strategies for mass spectrometry-based DNA adductome mapping and modeling. Anal Chim Acta 2023; 1274:341578. [PMID: 37455087 DOI: 10.1016/j.aca.2023.341578] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Although interest in characterizing DNA damage by means of DNA adductomics has substantially grown, the field of DNA adductomics is still in its infancy, with room for optimization of methods for sample analysis, data processing and DNA adduct identification. In this context, the first objective of this study was to evaluate the use of hydrophilic interaction (HILIC) vs. reversed phase liquid chromatography (RPLC) coupled to high resolution mass spectrometry (HRMS) and thermal acidic vs. enzymatic hydrolysis of DNA followed by DNA adduct purification and enrichment using solid-phase extraction (SPE) or fraction collection for DNA adductome mapping. The second objective was to assess the use of total ion count (TIC) and median intensity (MedI) normalization compared to QC (quality control), iQC (internal QC) and quality control-based robust locally estimated scatterplot smoothing (LOESS) signal correction (QC-RLSC) normalization for processing of the acquired data. The results demonstrate that HILIC compared to RPLC allowed better modeling of the tentative DNA adductome, particularly in combination with thermal acidic hydrolysis and SPE (more valid models, with an average Q2(Y) and R2(Y) of 0.930 and 0.998, respectively). Regarding the need for data normalization and the management of (limited) system instability and signal drift, QC normalization outperformed TIC, MedI, iQC and LOESS normalization. As such, QC normalization can be put forward as the default data normalization strategy. In case of momentous signal drift and/or batch effects however, comparison to other normalization strategies (like e.g. LOESS) is recommended. In future work, further optimization of DNA adductomics may be achieved by merging of HILIC and RPLC datasets and/or application of 2D-LC, as well as the inclusion of Schiff base stabilization and/or fraction collection in the thermal acidic hydrolysis-SPE sample preparation workflow.
Collapse
Affiliation(s)
- Marilyn De Graeve
- Laboratory of Integrative Metabolomics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium.
| | - Emma Van de Walle
- Laboratory of Integrative Metabolomics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium.
| | - Thomas Van Hecke
- Laboratory for Animal Nutrition and Animal Product Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links, 653, B-9000, Ghent, Belgium.
| | - Stefaan De Smet
- Laboratory for Animal Nutrition and Animal Product Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links, 653, B-9000, Ghent, Belgium.
| | - Lynn Vanhaecke
- Laboratory of Integrative Metabolomics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium; Institute for Global Food Security, School of Biological Sciences, Queen's University, University Road, Belfast, United Kingdom.
| | - Lieselot Y Hemeryck
- Laboratory of Integrative Metabolomics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium.
| |
Collapse
|
5
|
Jokipii Krueger CC, Moran E, Tessier KM, Tretyakova NY. Isotope Labeling Mass Spectrometry to Quantify Endogenous and Exogenous DNA Adducts and Metabolites of 1,3-Butadiene In Vivo. Chem Res Toxicol 2023; 36:1409-1418. [PMID: 37477250 PMCID: PMC11009968 DOI: 10.1021/acs.chemrestox.3c00141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Human exposure to known carcinogen 1,3-butadiene (BD) is common due to its high concentrations in automobile exhaust, cigarette smoke, and forest fires, as well as its widespread use in the polymer industry. The adverse health effects of BD are mediated by epoxide metabolites such as 3,4-epoxy-1-butene (EB), which reacts with DNA to form 1-hydroxyl-3-buten-1-yl adducts on DNA nucleobases. EB-derived mercapturic acids (1- and 2-(N-acetyl-l-cysteine-S-yl)-1-hydroxybut-3-ene (MHBMA) and N-acetyl-S-(3,4-dihydroxybutyl)-l-cysteine (DHBMA)) and urinary N7-(1-hydroxyl-3-buten-1-yl) guanine DNA adducts (EB-GII) have been used as biomarkers of BD exposure and cancer risk in smokers and occupationally exposed workers. However, low but significant levels of MHBMA, DHBMA, and EB-GII have been reported in unexposed cultured cells, animals, and humans, suggesting that these metabolites and adducts may form endogenously and complicate risk assessment of butadiene exposure. In the present work, stable isotope labeling in combination with high-resolution mass spectrometry was employed to accurately quantify endogenous and exogenous butadiene metabolites and DNA adducts in vivo. Laboratory rats were exposed to 0.3, 0.5, or 3 ppm of BD-d6 by inhalation, and the amounts of endogenous (d0) and exogenous (d6) DNA adducts and metabolites were quantified in tissues and urine by isotope dilution capillary liquid chromatography/high resolution electrospray ionization tandem mass spectrometry (capLC-ESI-HRMS/MS). Our results reveal that EB-GII adducts and MHBMA originate exclusively from exogenous exposure to BD, while substantial amounts of DHBMA are formed endogenously. Urinary EB-GII concentrations were associated with genomic EB-GII levels in tissues of the same animals. Our findings confirm that EB-GII and MHBMA are specific biomarkers of exposure to BD, while endogenous DHBMA predominates at sub-ppm exposures to BD.
Collapse
Affiliation(s)
- Caitlin C. Jokipii Krueger
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - Erik Moran
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - Katelyn M. Tessier
- Masonic Cancer Center, Biostatistics Core, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - Natalia Y. Tretyakova
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| |
Collapse
|
6
|
Kenderdine T, Fabris D. The multifaceted roles of mass spectrometric analysis in nucleic acids drug discovery and development. MASS SPECTROMETRY REVIEWS 2023; 42:1332-1357. [PMID: 34939674 PMCID: PMC9218015 DOI: 10.1002/mas.21766] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/23/2021] [Accepted: 11/22/2021] [Indexed: 06/07/2023]
Abstract
The deceptively simple concepts of mass determination and fragment analysis are the basis for the application of mass spectrometry (MS) to a boundless range of analytes, including fundamental components and polymeric forms of nucleic acids (NAs). This platform affords the intrinsic ability to observe first-hand the effects of NA-active drugs on the chemical structure, composition, and conformation of their targets, which might affect their ability to interact with cognate NAs, proteins, and other biomolecules present in a natural environment. The possibility of interfacing with high-performance separation techniques represents a multiplying factor that extends these capabilities to cover complex sample mixtures obtained from organisms that were exposed to NA-active drugs. This report provides a brief overview of these capabilities in the context of the analysis of the products of NA-drug activity and NA therapeutics. The selected examples offer proof-of-principle of the applicability of this platform to all phases of the journey undertaken by any successful NA drug from laboratory to bedside, and provide the rationale for its rapid expansion outside traditional laboratory settings in support to ever growing manufacturing operations.
Collapse
Affiliation(s)
| | - Dan Fabris
- Department of Chemistry, University of Connecticut
| |
Collapse
|
7
|
Krieger KL, Mann EK, Lee KJ, Bolterstein E, Jebakumar D, Ittmann MM, Dal Zotto VL, Shaban M, Sreekumar A, Gassman NR. Spatial mapping of the DNA adducts in cancer. DNA Repair (Amst) 2023; 128:103529. [PMID: 37390674 PMCID: PMC10330576 DOI: 10.1016/j.dnarep.2023.103529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
DNA adducts and strand breaks are induced by various exogenous and endogenous agents. Accumulation of DNA damage is implicated in many disease processes, including cancer, aging, and neurodegeneration. The continuous acquisition of DNA damage from exogenous and endogenous stressors coupled with defects in DNA repair pathways contribute to the accumulation of DNA damage within the genome and genomic instability. While mutational burden offers some insight into the level of DNA damage a cell may have experienced and subsequently repaired, it does not quantify DNA adducts and strand breaks. Mutational burden also infers the identity of the DNA damage. With advances in DNA adduct detection and quantification methods, there is an opportunity to identify DNA adducts driving mutagenesis and correlate with a known exposome. However, most DNA adduct detection methods require isolation or separation of the DNA and its adducts from the context of the nuclei. Mass spectrometry, comet assays, and other techniques precisely quantify lesion types but lose the nuclear context and even tissue context of the DNA damage. The growth in spatial analysis technologies offers a novel opportunity to leverage DNA damage detection with nuclear and tissue context. However, we lack a wealth of techniques capable of detecting DNA damage in situ. Here, we review the limited existing in situ DNA damage detection methods and examine their potential to offer spatial analysis of DNA adducts in tumors or other tissues. We also offer a perspective on the need for spatial analysis of DNA damage in situ and highlight Repair Assisted Damage Detection (RADD) as an in situ DNA adduct technique with the potential to integrate with spatial analysis and the challenges to be addressed.
Collapse
Affiliation(s)
- Kimiko L Krieger
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Translational Metabolism and Health Disparities (C-TMH), Baylor College of Medicine, Houston, TX 77030, USA
| | - Elise K Mann
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Kevin J Lee
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Elyse Bolterstein
- Department of Biology, Northeastern Illinois University, Chicago, IL 60625, USA
| | - Deborah Jebakumar
- Department of Anatomic Pathology, Baylor Scott & White Medical Center, Temple, TX 76508, USA; Texas A&M College of Medicine, Temple, TX 76508, USA
| | - Michael M Ittmann
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Human Tissue Acquisition & Pathology Shared Resource, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Valeria L Dal Zotto
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Mohamed Shaban
- Department of Electrical and Computer Engineering, University of South Alabama, Mobile, AL 36688, USA
| | - Arun Sreekumar
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Translational Metabolism and Health Disparities (C-TMH), Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Natalie R Gassman
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
8
|
Bellamri M, Terrell JT, Brandt K, Gruppi F, Turesky RJ, Rizzo CJ. Anthracyclines React with Apurinic/Apyrimidinic Sites in DNA. ACS Chem Biol 2023; 18:1315-1323. [PMID: 37200590 PMCID: PMC10391585 DOI: 10.1021/acschembio.3c00033] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The combination of doxorubicin (Adriamycin) and cyclophosphamide, referred to as AC chemotherapy, is commonly used for the clinical treatment of breast and other cancers. Both agents target DNA with cyclophosphamide causing alkylation damage and doxorubicin stabilizing the topoisomerase II-DNA complex. We hypothesize a new mechanism of action whereby both agents work in concert. DNA alkylating agents, such as nitrogen mustards, increase the number of apurinic/apyrimidinic (AP) sites through deglycosylation of labile alkylated bases. Herein, we demonstrate that anthracyclines with aldehyde-reactive primary and secondary amines form covalent Schiff base adducts with AP sites in a 12-mer DNA duplex, calf thymus DNA, and MDA-MB-231 human breast cancer cells treated with nor-nitrogen mustard and the anthracycline mitoxantrone. The anthracycline-AP site conjugates are characterized and quantified by mass spectrometry after NaB(CN)H3 or NaBH4 reduction of the Schiff base. If stable, the anthracycline-AP site conjugates represent bulky adducts that may block DNA replication and contribute to the cytotoxic mechanism of therapies involving combinations of anthracyclines and DNA alkylating agents.
Collapse
|
9
|
Chen HJC. Mass Spectrometry Analysis of DNA and Protein Adducts as Biomarkers in Human Exposure to Cigarette Smoking: Acrolein as an Example. Chem Res Toxicol 2023; 36:132-140. [PMID: 36626705 DOI: 10.1021/acs.chemrestox.2c00354] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Acrolein is a major component in cigarette smoke and a product of endogenous lipid peroxidation. It is difficult to distinguish human exposure to acrolein from exogenous sources versus endogenous causes, as components in cigarette smoke can stimulate lipid peroxidation in vivo. Therefore, analysis of acrolein-induced DNA and protein adducts by the highly accurate, sensitive, and specific mass spectrometry-based methods is vital to estimate the degree of damage by this IARC Group 2A carcinogen. This Perspective reviews the analyses of acrolein-induced DNA and protein adducts in humans by mass spectrometry focusing on samples accessible for biomonitoring, including DNA from leukocytes and oral cells and abundant proteins from blood, i.e., hemoglobin and serum albumin.
Collapse
Affiliation(s)
- Hauh-Jyun Candy Chen
- Department of Chemistry and Biochemistry and Center for Nano Bio-Detection (AIM-HI), National Chung Cheng University, 168 University Road, Ming-Hsiung, Chia-Yi 62142, Taiwan
| |
Collapse
|
10
|
Harahap Y, Safitri WB, Sunarsih S. Analysis of N 7-(2-carbamoyl-2-hydroxyethyl)guanine in dried blood spot after food exposure by Ultra High Performance Liquid Chromatography-Tandem Mass Spectrometry. BMC Chem 2022; 16:83. [PMID: 36324163 PMCID: PMC9632009 DOI: 10.1186/s13065-022-00875-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022] Open
Abstract
N7-(2-carbamoyl-2-hydroxyethyl)guanine (N7-CAG) is a DNA adduct formed by glycidamide, which is the metabolite of acrylamide. Acrylamide can be found in foods containing reducing sugars and asparagine that are heated at high temperatures. Analysis of N7-CAG was performed in Dried Blood Spot (DBS) samples from 25 subjects of group test who consumed a lot of acrylamide-containing foods and 25 subjects of negative control group. This study aimed to determine whether there is a significant difference in the levels of N7-CAG between the two groups. DBS samples were extracted using the QIAamp DNA Mini Blood Kit and analyzed using Ultra High Performance Liquid Chromatography–Tandem Mass Spectrometry (UHPLC-MS/MS). Separation was performed using an Acquity UPLC BEH C18 column (2.1 mm × 100 mm; 1.7 μm), eluted a flow rate of 0.1 ml/min under an isocratic of mobile phase of 0.1% formic acid and acetonitrile. The bioanalytical method of N7-CAG in DBS with allopurinol as the internal standard by using UHPLC-MS/MS has been validated. The calibration curve range of N7-CAG obtained was 10–300 ng/ml with a coefficient of correlation of 0.997. The results of the analysis on 25 test group subjects showed that the concentration of N7-CAG ranged from 1.87 to 23.71 ng/ml, while the 25 subjects in the negative group ranged from 1.18 to 8.47 ng/ml. The results of the Mann Whitney test showed that there was a significant difference in the levels of N7-CAG between the test group and the negative control group with p value less than 0.001.
Collapse
Affiliation(s)
- Yahdiana Harahap
- grid.9581.50000000120191471Faculty of Pharmacy, Universitas Indonesia, Depok, Indonesia ,grid.512385.80000 0004 0481 8002Faculty of Military Pharmacy, Republic of Indonesia Defense University, Sentul, Bogor Indonesia
| | - Winning Bekti Safitri
- grid.9581.50000000120191471Faculty of Pharmacy, Universitas Indonesia, Depok, Indonesia
| | | |
Collapse
|
11
|
Reynaud N, Belz L, Béal D, Bacqueville D, Duplan H, Géniès C, Questel E, Josse G, Douki T. DNA photoproducts released by repair in biological fluids as biomarkers of the genotoxicity of UV radiation. Anal Bioanal Chem 2022; 414:7705-7720. [PMID: 36063170 DOI: 10.1007/s00216-022-04302-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 01/12/2023]
Abstract
UV-induced formation of photoproducts in DNA is a major initiating event of skin cancer. Consequently, many analytical tools have been developed for their quantification in DNA. In the present work, we extended our previous liquid chromatography-mass spectrometry method to the quantification of the short DNA fragments containing photoproducts that are released from cells by the repair machinery. We designed a robust protocol including a solid-phase extraction step (SPE), an enzymatic treatment aimed at releasing individual photoproducts, and a liquid chromatography method combining on-line SPE and ultra-high-performance liquid chromatography for optimal specificity and sensitivity. We also added relevant internal standards for a better accuracy. The method was validated for linearity, repeatability, and reproducibility. The limits of detection and quantification were found to be in the fmol range. The proof of concept of the use of excreted DNA repair products as biomarkers of the genotoxicity of UV was obtained first in in vitro studies using cultured HaCat cells and ex vivo on human skin explants. Further evidence was obtained from the detection of pyrimidine dimers in the urine of human volunteers collected after recreational exposure in summer. An assay was designed to quantify the DNA photoproducts released from cells within short fragments by the DNA repair machinery. These oligonucleotides were isolated by solid-phase extraction and enzymatically hydrolyzed. The photoproducts were then quantified by on-line SPE combined with UHPLC-MS/MS with isotopic dilution.
Collapse
Affiliation(s)
- Noémie Reynaud
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, F-38000, Grenoble, France
| | - Laura Belz
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, F-38000, Grenoble, France
| | - David Béal
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, F-38000, Grenoble, France
| | - Daniel Bacqueville
- Service Recherche Pharmaco-Clinique, Département Recherche Appliquée, Centre R&D Pierre Fabre, 31000, Toulouse, France
| | - Hélène Duplan
- Service Recherche Pharmaco-Clinique, Département Recherche Appliquée, Centre R&D Pierre Fabre, 31000, Toulouse, France
| | - Camille Géniès
- Service Recherche Pharmaco-Clinique, Département Recherche Appliquée, Centre R&D Pierre Fabre, 31000, Toulouse, France
| | - Emmanuel Questel
- Centre de Recherche sur la Peau, Pierre Fabre Dermo-Cosmétique, 31000, Toulouse, France
| | - Gwendal Josse
- Centre de Recherche sur la Peau, Pierre Fabre Dermo-Cosmétique, 31000, Toulouse, France
| | - Thierry Douki
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, F-38000, Grenoble, France.
| |
Collapse
|
12
|
Guo S, Li L, Yu K, Tan Y, Wang Y. LC-MS/MS for Assessing the Incorporation and Repair of N2-Alkyl-2'-deoxyguanosine in Genomic DNA. Chem Res Toxicol 2022; 35:1814-1820. [PMID: 35584366 PMCID: PMC9588702 DOI: 10.1021/acs.chemrestox.2c00101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Understanding the occurrence, repair, and biological consequences of DNA damage is important in environmental toxicology and risk assessment. The most common way to assess DNA damage elicited by exogenous sources in a laboratory setting is to expose cells or experimental animals with chemicals that modify DNA. Owing to the lack of reaction specificities of DNA damaging agents, the approach frequently does not allow for induction of a specific DNA lesion. Herein, we employed metabolic labeling to selectively incorporate N2-methyl-dG (N2-MedG) and N2-n-butyl-dG (N2-nBudG) into genomic DNA of cultured mammalian cells, and investigated how the levels of the two lesions in cellular DNA are modulated by different DNA repair factors. Our results revealed that nucleotide excision repair (NER) exert moderate effects on the removal of N2-MedG and N2-nBudG from genomic DNA. We also observed that DNA polymerases κ and η contribute to the incorporation of N2-MedG into genomic DNA and modulate its repair in human cells. In addition, loss of ALKBH3 resulted in higher frequencies of N2-MedG and N2-nBuG incorporation into genomic DNA, suggesting a role of oxidative dealkylation in the reversal of these lesions. Together, our study provided new insights into the repair of minor-groove N2-alkyl-dG lesions in mammalian cells.
Collapse
Affiliation(s)
- Su Guo
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, United States
| | - Lin Li
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Kailin Yu
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Ying Tan
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, United States
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, United States
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| |
Collapse
|
13
|
Naumenko NV, Petruseva IO, Lavrik OI. Bulky Adducts in Clustered DNA Lesions: Causes of Resistance to the NER System. Acta Naturae 2022; 14:38-49. [PMID: 36694906 PMCID: PMC9844087 DOI: 10.32607/actanaturae.11741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/18/2022] [Indexed: 01/22/2023] Open
Abstract
The nucleotide excision repair (NER) system removes a wide range of bulky DNA lesions that cause significant distortions of the regular double helix structure. These lesions, mainly bulky covalent DNA adducts, are induced by ultraviolet and ionizing radiation or the interaction between exogenous/endogenous chemically active substances and nitrogenous DNA bases. As the number of DNA lesions increases, e.g., due to intensive chemotherapy and combination therapy of various diseases or DNA repair impairment, clustered lesions containing bulky adducts may occur. Clustered lesions are two or more lesions located within one or two turns of the DNA helix. Despite the fact that repair of single DNA lesions by the NER system in eukaryotic cells has been studied quite thoroughly, the repair mechanism of these lesions in clusters remains obscure. Identification of the structural features of the DNA regions containing irreparable clustered lesions is of considerable interest, in particular due to a relationship between the efficiency of some antitumor drugs and the activity of cellular repair systems. In this review, we analyzed data on the induction of clustered lesions containing bulky adducts, the potential biological significance of these lesions, and methods for quantification of DNA lesions and considered the causes for the inhibition of NER-catalyzed excision of clustered bulky lesions.
Collapse
Affiliation(s)
- N. V. Naumenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russia
| | - I. O. Petruseva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russia
| | - O. I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russia
| |
Collapse
|
14
|
Jun YW, Albarran E, Wilson DL, Ding J, Kool ET. Fluorescence Imaging of Mitochondrial DNA Base Excision Repair Reveals Dynamics of Oxidative Stress Responses. Angew Chem Int Ed Engl 2022; 61:e202111829. [PMID: 34851014 PMCID: PMC8792287 DOI: 10.1002/anie.202111829] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/04/2021] [Indexed: 02/03/2023]
Abstract
Mitochondrial function in cells declines with aging and with neurodegeneration, due in large part to accumulated mutations in mitochondrial DNA (mtDNA) that arise from deficient DNA repair. However, measuring this repair activity is challenging. We employ a molecular approach for visualizing mitochondrial base excision repair (BER) activity in situ by use of a fluorescent probe (UBER) that reacts rapidly with AP sites resulting from BER activity. Administering the probe to cultured cells revealed signals that were localized to mitochondria, enabling selective observation of mtDNA BER intermediates. The probe showed elevated DNA repair activity under oxidative stress, and responded to suppression of glycosylase activity. Furthermore, the probe illuminated the time lag between the initiation of oxidative stress and the initial step of BER. Absence of MTH1 in cells resulted in elevated demand for BER activity upon extended oxidative stress, while the absence of OGG1 activity limited glycosylation capacity.
Collapse
Affiliation(s)
- Yong Woong Jun
- Department of Chemistry, ChEM-H Institute, and Stanford Cancer Institute, Stanford University, Stanford, California, 94305, United States
| | - Eddy Albarran
- Department of Neurosurgery, Department of Neurology and Neurological Sciences, and Wu Tsai Neuroscience institute, Stanford University School of Medicine, Stanford, California, 94305, United States
| | - David L. Wilson
- Department of Chemistry, ChEM-H Institute, and Stanford Cancer Institute, Stanford University, Stanford, California, 94305, United States
| | - Jun Ding
- Department of Neurosurgery, Department of Neurology and Neurological Sciences, and Wu Tsai Neuroscience institute, Stanford University School of Medicine, Stanford, California, 94305, United States
| | - Eric T. Kool
- Department of Chemistry, ChEM-H Institute, and Stanford Cancer Institute, Stanford University, Stanford, California, 94305, United States
| |
Collapse
|
15
|
Jun YW, Albarran E, Wilson DL, Ding J, Kool ET. Fluorescence Imaging of Mitochondrial DNA Base Excision Repair Reveals Dynamics of Oxidative Stress Responses. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yong Woong Jun
- Department of Chemistry, ChEM-H Institute, and Stanford Cancer Institute Stanford University Stanford CA 94305 USA
| | - Eddy Albarran
- Department of Neurosurgery Department of Neurology and Neurological Sciences, and Wu Tsai Neuroscience institute Stanford University School of Medicine Stanford CA 94305 USA
| | - David L. Wilson
- Department of Chemistry, ChEM-H Institute, and Stanford Cancer Institute Stanford University Stanford CA 94305 USA
| | - Jun Ding
- Department of Neurosurgery Department of Neurology and Neurological Sciences, and Wu Tsai Neuroscience institute Stanford University School of Medicine Stanford CA 94305 USA
| | - Eric T. Kool
- Department of Chemistry, ChEM-H Institute, and Stanford Cancer Institute Stanford University Stanford CA 94305 USA
| |
Collapse
|
16
|
Boysen G, Nookaew I. Current and Future Methodology for Quantitation and Site-Specific Mapping the Location of DNA Adducts. TOXICS 2022; 10:toxics10020045. [PMID: 35202232 PMCID: PMC8876591 DOI: 10.3390/toxics10020045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 02/01/2023]
Abstract
Formation of DNA adducts is a key event for a genotoxic mode of action, and their presence is often used as a surrogate for mutation and increased cancer risk. Interest in DNA adducts are twofold: first, to demonstrate exposure, and second, to link DNA adduct location to subsequent mutations or altered gene regulation. Methods have been established to quantitate DNA adducts with high chemical specificity and to visualize the location of DNA adducts, and elegant bio-analytical methods have been devised utilizing enzymes, various chemistries, and molecular biology methods. Traditionally, these highly specific methods cannot be combined, and the results are incomparable. Initially developed for single-molecule DNA sequencing, nanopore-type technologies are expected to enable simultaneous quantitation and location of DNA adducts across the genome. Herein, we briefly summarize the current methodologies for state-of-the-art quantitation of DNA adduct levels and mapping of DNA adducts and describe novel single-molecule DNA sequencing technologies to achieve both measures. Emerging technologies are expected to soon provide a comprehensive picture of the exposome and identify gene regions susceptible to DNA adduct formation.
Collapse
Affiliation(s)
- Gunnar Boysen
- Department Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
- Correspondence:
| | - Intawat Nookaew
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
- Department Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
17
|
Glatt H, Engst W, Florian S, Schreiner M, Baasanjav-Gerber C. Feeding Brassica vegetables to rats leads to the formation of characteristic DNA adducts (from 1-methoxy-3-indolylmethyl glucosinolate) in many tissues. Arch Toxicol 2022; 96:933-944. [PMID: 34997255 PMCID: PMC8850215 DOI: 10.1007/s00204-021-03216-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 12/23/2021] [Indexed: 11/26/2022]
Abstract
Juices of Brassica vegetables are mutagenic and form characteristic DNA adducts in bacteria and mammalian cells. In this study, we examined whether such adducts are also formed in vivo in animal models. Rats fed raw broccoli ad libitum in addition to normal laboratory chow for 5 weeks showed one major adduct spot and sometimes an additional minor adduct spot in liver, kidney, lung, blood and the gastrointestinal tract, as determined by 32P-postlabelling/thin-layer chromatography. Adducts with the same chromatographic properties were formed when herring sperm DNA (or dG-3’-phosphate) was incubated with 1-methoxy-3-indolylmethyl glucosinolate (phytochemical present in Brassica plants), in the presence of myrosinase (plant enzyme that hydrolyses glucosinolates to bioactive breakdown products). UPLC–MS/MS analysis corroborated this finding: 1-Methoxy-3-indolylmethyl-substituted purine nucleosides were detected in the hepatic DNA of broccoli-fed animals, but not in control animals. Feeding raw cauliflower led to the formation of the same adducts. When steamed rather than raw broccoli was used, the adduct levels were essentially unchanged in liver and jejunum, but elevated in large intestine. Due to inactivation of myrosinase by the steaming, higher levels of the glucosinolates may have reached the large bowl to be activated by glucosidases from intestinal bacteria. In conclusion, the consumption of common Brassica vegetables can lead to the formation of substantial levels of DNA adducts in animal models. The adducts can be attributed to a specific phytochemical, neoglucobrassicin (1-methoxy-3-indolylmethyl glucosinolate).
Collapse
Affiliation(s)
- Hansruedi Glatt
- German Institute of Human Nutrition (DIfE), Potsdam-Rehbrücke, 14558, Nuthetal, Germany.
- Department Food Safety, Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany.
| | - Wolfram Engst
- German Institute of Human Nutrition (DIfE), Potsdam-Rehbrücke, 14558, Nuthetal, Germany
| | - Simone Florian
- German Institute of Human Nutrition (DIfE), Potsdam-Rehbrücke, 14558, Nuthetal, Germany
| | - Monika Schreiner
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), 14979, Grossbeeren, Germany
| | | |
Collapse
|
18
|
Hilgers R, Bijlsma J, Malacaria L, Vincken JP, Furia E, de Bruijn WJC. Transition metal cations catalyze 16O/ 18O exchange of catechol motifs with H 218O. Org Biomol Chem 2022; 20:9093-9097. [DOI: 10.1039/d2ob01884e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the presence of Fe(iii) and several other cations, catechol motifs undergo rapid 16O/18O exchange with H218O under mild conditions. This opens up synthetic possibilities and may have implications for studies using H218O as a mechanistic probe.
Collapse
Affiliation(s)
- Roelant Hilgers
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Judith Bijlsma
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Luana Malacaria
- Dipartimento di Chimica e Tecnologie Chimiche, Via P. Bucci, Cubo 12/D, Università della Calabria, I-87030 Arcavacata di Rende (CS), Italy
| | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Emilia Furia
- Dipartimento di Chimica e Tecnologie Chimiche, Via P. Bucci, Cubo 12/D, Università della Calabria, I-87030 Arcavacata di Rende (CS), Italy
| | - Wouter J. C. de Bruijn
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| |
Collapse
|
19
|
Lu K, Hsiao YC, Liu CW, Schoeny R, Gentry R, Starr TB. A Review of Stable Isotope Labeling and Mass Spectrometry Methods to Distinguish Exogenous from Endogenous DNA Adducts and Improve Dose-Response Assessments. Chem Res Toxicol 2021; 35:7-29. [PMID: 34910474 DOI: 10.1021/acs.chemrestox.1c00212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cancer remains the second most frequent cause of death in human populations worldwide, which has been reflected in the emphasis placed on management of risk from environmental chemicals considered to be potential human carcinogens. The formation of DNA adducts has been considered as one of the key events of cancer, and persistence and/or failure of repair of these adducts may lead to mutation, thus initiating cancer. Some chemical carcinogens can produce DNA adducts, and DNA adducts have been used as biomarkers of exposure. However, DNA adducts of various types are also produced endogenously in the course of normal metabolism. Since both endogenous physiological processes and exogenous exposure to xenobiotics can cause DNA adducts, the differentiation of the sources of DNA adducts can be highly informative for cancer risk assessment. This review summarizes a highly applicable methodology, termed stable isotope labeling and mass spectrometry (SILMS), that is superior to previous methods, as it not only provides absolute quantitation of DNA adducts but also differentiates the exogenous and endogenous origins of DNA adducts. SILMS uses stable isotope-labeled substances for exposure, followed by DNA adduct measurement with highly sensitive mass spectrometry. Herein, the utilities and advantage of SILMS have been demonstrated by the rich data sets generated over the last two decades in improving the risk assessment of chemicals with DNA adducts being induced by both endogenous and exogenous sources, such as formaldehyde, vinyl acetate, vinyl chloride, and ethylene oxide.
Collapse
Affiliation(s)
- Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yun-Chung Hsiao
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Chih-Wei Liu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Rita Schoeny
- Rita Schoeny LLC, 726 Fifth Street NE, Washington, D.C. 20002, United States
| | - Robinan Gentry
- Ramboll US Consulting, Inc., Monroe, Louisiana 71201, United States
| | - Thomas B Starr
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,TBS Associates, 7500 Rainwater Road, Raleigh, North Carolina 27615, United States
| |
Collapse
|
20
|
Genome-wide mapping of genomic DNA damage: methods and implications. Cell Mol Life Sci 2021; 78:6745-6762. [PMID: 34463773 PMCID: PMC8558167 DOI: 10.1007/s00018-021-03923-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/02/2021] [Accepted: 08/11/2021] [Indexed: 12/19/2022]
Abstract
Exposures from the external and internal environments lead to the modification of genomic DNA, which is implicated in the cause of numerous diseases, including cancer, cardiovascular, pulmonary and neurodegenerative diseases, together with ageing. However, the precise mechanism(s) linking the presence of damage, to impact upon cellular function and pathogenesis, is far from clear. Genomic location of specific forms of damage is likely to be highly informative in understanding this process, as the impact of downstream events (e.g. mutation, microsatellite instability, altered methylation and gene expression) on cellular function will be positional—events at key locations will have the greatest impact. However, until recently, methods for assessing DNA damage determined the totality of damage in the genomic location, with no positional information. The technique of “mapping DNA adductomics” describes the molecular approaches that map a variety of forms of DNA damage, to specific locations across the nuclear and mitochondrial genomes. We propose that integrated comparison of this information with other genome-wide data, such as mutational hotspots for specific genotoxins, tumour-specific mutation patterns and chromatin organisation and transcriptional activity in non-cancerous lesions (such as nevi), pre-cancerous conditions (such as polyps) and tumours, will improve our understanding of how environmental toxins lead to cancer. Adopting an analogous approach for non-cancer diseases, including the development of genome-wide assays for other cellular outcomes of DNA damage, will improve our understanding of the role of DNA damage in pathogenesis more generally.
Collapse
|
21
|
Geospatial Assessments of DNA Adducts in the Human Stomach: A Model of Field Cancerization. Cancers (Basel) 2021; 13:cancers13153728. [PMID: 34359626 PMCID: PMC8345122 DOI: 10.3390/cancers13153728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Field cancerization is a popular concept regarding where cancer cells arise in a plane, such as the opened-up gastrointestinal mucosa. The geospatial distribution of DNA adducts, some of which are believed to initiate mutation, may be a clue to understanding the landscape of the preferred occurrence of gastric cancer in the human stomach, such that the occurrence is much more frequent in the lesser curvature than in the greater curvature. METHODS Seven DNA adducts, C5-methyl-2'-deoxycytidine, 2'-deoxyinosine, C5-hydroxymethyl-2'-deoxycytidine, N6-methyl-2'-deoxyadenosine, 1,N6-etheno-2'-deoxyadenosine, N6-hydroxymethyl-2'-deoxyadenosine, and C8-oxo-2'-deoxyguanosine, from different points and zones of the human stomach were semi quantitatively measured by liquid chromatography/tandem mass spectrometry. The differences in the quantity of these DNA adducts from the lesser and greater curvature, the upper, middle and lower third zones, the anterior and posterior wall of the stomach, and the mucosae distant from and near the tumor were compared to determine whether the location preference of cancer in the stomach could be explained by the distribution of these DNA adducts. Comparisons were conducted considering the tumor locations and operation methods. CONCLUSIONS Regarding the DNA adducts investigated, significant differences in quantities and locations in the whole stomach were not noted; thus, these DNA adducts do not explain the preferential occurrence of cancer in particular locations of the human stomach.
Collapse
|
22
|
Cheng X, Liu C, Yang Y, Liang L, Chen B, Yu H, Xia J, Liu S, Li Y. Advances in sulfur mustard-induced DNA adducts: Characterization and detection. Toxicol Lett 2021; 344:46-57. [PMID: 33705862 DOI: 10.1016/j.toxlet.2021.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/20/2022]
Abstract
Sulfur mustard (SM) is a blister chemical warfare agent with severe cytotoxicity and genotoxicity. It can extensively alkylate important macromolecules in organisms, such as proteins, DNA, and lipids, and produce a series of metabolites, among which the characteristic ones can be used as biomarkers. The exact toxicological mechanisms of SM remain unclear but mainly involve the DNA lesions induced by alkylation and oxidative stress caused by glutathione depletion. Various methods have been used to analyze DNA damage caused by SM. Among these methods, liquid chromatography-tandem mass spectrometry (LC-MS/MS) technology stands out and makes it possible to observe damage in view of biomarkers induced by SM. Sample preparation is critical for detection by LC-MS/MS and mainly includes DNA isolation, adduct hydrolysis, and adduct purification. Moreover, optimization of chromatographic conditions, selection of MS transitions, and quantitative strategies are also essential. SM-DNA adducts are generally considered to be N7-HETEG, O6-HETEG, N7-BisG, and N3-HETEA. This article proposes some other possibilities of SM-DNA adducts for the identification of SM genotoxicity.
Collapse
Affiliation(s)
- Xi Cheng
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, 410073, PR China; State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Changcai Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Yang Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Longhui Liang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Bo Chen
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Huilan Yu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Junmei Xia
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Shilei Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China.
| | - Yihe Li
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, 410073, PR China.
| |
Collapse
|
23
|
Clergé A, Le Goff J, Lopez-Piffet C, Meier S, Lagadu S, Vaudorne I, Babin V, Cailly T, Delépée R. Investigation by mass spectrometry and 32P post-labelling of DNA adducts formation from 1,2-naphthoquinone, an oxydated metabolite of naphthalene. CHEMOSPHERE 2021; 263:128079. [PMID: 33297078 DOI: 10.1016/j.chemosphere.2020.128079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 07/08/2020] [Accepted: 08/19/2020] [Indexed: 06/12/2023]
Abstract
Naphthalene is the simplest representative of polycyclic aromatic hydrocarbons (PAHs). It is detected as major pollutant in the different compartments of the environment. This compound is considered by the international agency for research on cancer (IARC), the specialized cancer agency of the World Health Organisation (WHO), as a possible carcinogenic (group 2B) since 2002, mainly based on studies on chronic inhalation in rodent by the national toxicology program of the U.S. department of health and human services. In humans, its main metabolites correspond to derivatives substituted in position and 1 and 2 as 1,2-naphthoquinone (1,2-NphQ). Based on previous studies, 1,2-NphQ is supposed to react with DNA to form mostly depurinating adducts, a possible initiating step of carcinogenicity. To confirm this potentiality, adducts were synthetized by the reaction of 1,2-NphQ with 2'-deoxyguanosine (2'-dG) in N,N-dimethylformamide (DMF), water and calf thymus DNA. 2'-dG adducts were analyzed by 32P post-labelling, HPLC with ultra-violet detection and ultra-performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS). We found stable DNA adducts detected in DNA. We proposed a formation mechanism by a 1,4-Michael addition with 2'-dG. Adducts with 2'-deoxyxanthosine are formed after a spontaneous deamination of 2'-dG. These adducts are good candidates as biomarkers allowing evaluation of exposure to naphthalene and its derivatives in the development of pathologies such as cancer.
Collapse
Affiliation(s)
- Adeline Clergé
- Normandy University, UNICAEN, UNIROUEN, ABTE, Caen, France.
| | | | - Claire Lopez-Piffet
- Normandy University, UNICAEN, UNIROUEN, ABTE, Caen, France; Normandy University, UNICAEN, PRISMM Platform ICORE, Caen, France
| | | | - Stéphanie Lagadu
- Normandy University, UNICAEN, UNIROUEN, ABTE, Caen, France; Normandy University, UNICAEN, PRISMM Platform ICORE, Caen, France; Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
| | - Isabelle Vaudorne
- Normandy University, UNICAEN, UNIROUEN, ABTE, Caen, France; Normandy University, UNICAEN, PRISMM Platform ICORE, Caen, France; Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
| | - Victor Babin
- Normandy University, UNICAEN, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), 14000, Caen, France
| | - Thomas Cailly
- Normandy University, UNICAEN, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), 14000, Caen, France; Normandy University, UNICAEN, IMOGERE, Caen, France; Department of Nuclear Medicine, CHU Côte de Nacre, Caen, France
| | - Raphaël Delépée
- Normandy University, UNICAEN, UNIROUEN, ABTE, Caen, France; Normandy University, UNICAEN, PRISMM Platform ICORE, Caen, France; Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France.
| |
Collapse
|
24
|
Lin HD, Yao CL, Ou WJ, Luo YH, Chen SC. 4-Aminobiphenyl suppresses homologous recombination repair by a reactive oxygen species-dependent p53/miR-513a-5p/p53 loop. Toxicology 2020; 444:152580. [DOI: 10.1016/j.tox.2020.152580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/22/2020] [Accepted: 09/01/2020] [Indexed: 01/19/2023]
|
25
|
Esaka Y, Aruga H, Kunishima S, Yamamoto T, Murakami H, Sawama Y, Sajiki H, Uno B. Preparation of N 2-Ethyl-2'-deoxyguanosine-d 4 as an Internal Standard for the Electrospray Ionization-Tandem Mass Spectrometric Determination of DNA Damage by Acetaldehyde. ANAL SCI 2020; 36:877-880. [PMID: 31983713 DOI: 10.2116/analsci.19n034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The deuteration of N2-ethyl-2'-deoxyguanosine (Et-dG), which is a DNA adduct generated from acetaldehyde, was studied by the addition reaction of acetaldehyde-d4 to 2'-deoxyguanosine (dG) in deuterium oxide (D2O), with the aim to obtain an isotope internal standard for the liquid chromatography/tandem mass spectrometry (LC/MS/MS) quantitation of Et-dG. The replacement of the dG C-8 hydrogen atom by a deuteron atom took place at 50°C in D2O and afforded a mixture of Et-dG-d4 and Et-dG-d5. Et-dG-d4, which was stable in aqueous solutions, was prepared by incubating the mixture in H2O at 60°C for 48 h. The calibration curve was obtained by multiple reaction monitoring (MRM) measurements using a hydrophilic interaction chromatography-electrospray ionization-tandem mass spectrometric (HILIC/ESI-MS/MS) system between the Et-dG concentration, ranging from 1.0 × 10-10 to 4.0 × 10-9 M in the sample solutions, and the relative peak areas of Et-dG (m/z: 296.1 → 180.1) to the value of Et-dG-d4 (m/z: 300.2 → 184.2), with an internal standard showing good linearity (R2 = 0.995, n = 5).
Collapse
Affiliation(s)
- Yukihiro Esaka
- Gifu Pharmaceutical University.,United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University
| | | | | | | | - Hiroya Murakami
- Department of Applied Chemistry, Aichi Institute of Technology
| | | | | | - Bunji Uno
- Gifu Pharmaceutical University.,United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University
| |
Collapse
|
26
|
Zhao L, Sumberaz P. Mitochondrial DNA Damage: Prevalence, Biological Consequence, and Emerging Pathways. Chem Res Toxicol 2020; 33:2491-2502. [PMID: 32486637 DOI: 10.1021/acs.chemrestox.0c00083] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondria have a plethora of functions within a eukaryotic cell, ranging from energy production, cell signaling, and protein cofactor synthesis to various aspects of metabolism. Mitochondrial dysfunction is known to cause over 200 named disorders and has been implicated in many human diseases and aging. Mitochondria have their own genetic material, mitochondrial DNA (mtDNA), which encodes 13 protein subunits in the oxidative phosphorylation system and a full set of transfer and rRNAs. Although more than 99% of the proteins in mitochondria are nuclear DNA (nDNA)-encoded, the integrity of mtDNA is critical for mitochondrial functions, as evidenced by mitochondrial diseases sourced from mtDNA mutations and depletions and the vital role of fragmented mtDNA molecules in cell signaling pathways. Previous research has shown that mtDNA is an important target of genotoxic assaults by a variety of chemical and physical factors. This Perspective discusses the prevalence of mtDNA damage by comparing the abundance of lesions in mDNA and nDNA and summarizes current knowledge on the biological pathways to cope with mtDNA damage, including mtDNA repair, mtDNA degradation, and mitochondrial fission and fusion. Also, emerging roles of mtDNA damage in mutagenesis and immune responses are reviewed.
Collapse
Affiliation(s)
- Linlin Zhao
- Department of Chemistry and Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, California 92521, United States
| | - Philip Sumberaz
- Department of Chemistry and Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|
27
|
Aloisi CMN, Nilforoushan A, Ziegler N, Sturla SJ. Sequence-Specific Quantitation of Mutagenic DNA Damage via Polymerase Amplification with an Artificial Nucleotide. J Am Chem Soc 2020; 142:6962-6969. [PMID: 32196326 PMCID: PMC7192524 DOI: 10.1021/jacs.9b11746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
![]()
DNA mutations can result from replication
errors due to different
forms of DNA damage, including low-abundance DNA adducts induced by
reactions with electrophiles. The lack of strategies to measure DNA
adducts within genomic loci, however, limits our understanding of
chemical mutagenesis. The use of artificial nucleotides incorporated
opposite DNA adducts by engineered DNA polymerases offers a potential
basis for site-specific detection of DNA adducts, but the availability
of effective artificial nucleotides that insert opposite DNA adducts
is extremely limited, and furthermore, there has been no report of
a quantitative strategy for determining how much DNA alkylation occurs
in a sequence of interest. In this work, we synthesized an artificial
nucleotide triphosphate that is selectively inserted opposite O6-carboxymethyl-guanine DNA by an engineered
polymerase and is required for DNA synthesis past the adduct. We characterized
the mechanism of this enzymatic process and demonstrated that the
artificial nucleotide is a marker for the presence and location in
the genome of O6-carboxymethyl-guanine.
Finally, we established a mass spectrometric method for quantifying
the incorporated artificial nucleotide and obtained a linear relationship
with the amount of O6-carboxymethyl-guanine
in the target sequence. In this work, we present a strategy to identify,
locate, and quantify a mutagenic DNA adduct, advancing tools for linking
DNA alkylation to mutagenesis and for detecting DNA adducts in genes
as potential diagnostic biomarkers for cancer prevention.
Collapse
Affiliation(s)
- Claudia M N Aloisi
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - Arman Nilforoushan
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - Nathalie Ziegler
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - Shana J Sturla
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| |
Collapse
|
28
|
Cui Y, Yuan J, Wang P, Wu J, Yu Y, Wang Y. Collision-Induced Dissociation Studies of Protonated Ions of Alkylated Thymidine and 2'-Deoxyguanosine. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:927-937. [PMID: 32134268 PMCID: PMC7362892 DOI: 10.1021/jasms.9b00147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mass spectrometry and tandem MS (MS/MS) have been widely employed for the identification and quantification of damaged nucleosides in DNA, including those induced by alkylating agents. Upon collisional activation, protonated ions of alkylated nucleosides frequently undergo facile neutral loss of a 2-deoxyribose in MS/MS, and further cleavage of the resulting protonated nucleobases in MS3 can sometimes be employed for differentiating regioisomeric alkylated DNA lesions. Herein, we investigated systematically the collision-induced dissociation (CID) of the protonated ions of O4-alkylthymidine (O4-alkyldT), O2-alkyldT, O6-alkyl-2'-deoxyguanosine (O6-alkyldG), and N2-alkyldG through MS3 analysis. The MS3 of O2- and O4-MedT exhibit different fragmentation patterns from each other and from other O2- and O4-alkyldT adducts carrying larger alkyl groups. Meanwhile, elimination of alkene via a six-membered ring transition state is the dominant fragmentation pathway for O2-alkyldT, O4-alkyldT, and O6-alkyldG adducts carrying larger alkyl groups, whereas O6-MedG mainly undergoes elimination of ammonia. The breakdown of N2-alkyldG is substantially influenced by the structure of the alkyl group, where the relative ease in eliminating ammonia and alkene is modulated by the chain length and branching of the alkyl groups. We also rationalize our observations with density functional theory (DFT) calculations.
Collapse
|
29
|
Yun BH, Guo J, Bellamri M, Turesky RJ. DNA adducts: Formation, biological effects, and new biospecimens for mass spectrometric measurements in humans. MASS SPECTROMETRY REVIEWS 2020; 39:55-82. [PMID: 29889312 PMCID: PMC6289887 DOI: 10.1002/mas.21570] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/25/2018] [Indexed: 05/18/2023]
Abstract
Hazardous chemicals in the environment and diet or their electrophilic metabolites can form adducts with genomic DNA, which can lead to mutations and the initiation of cancer. In addition, reactive intermediates can be generated in the body through oxidative stress and damage the genome. The identification and measurement of DNA adducts are required for understanding exposure and the causal role of a genotoxic chemical in cancer risk. Over the past three decades, 32 P-postlabeling, immunoassays, gas chromatography/mass spectrometry, and liquid chromatography/mass spectrometry (LC/MS) methods have been established to assess exposures to chemicals through measurements of DNA adducts. It is now possible to measure some DNA adducts in human biopsy samples, by LC/MS, with as little as several milligrams of tissue. In this review article, we highlight the formation and biological effects of DNA adducts, and highlight our advances in human biomonitoring by mass spectrometric analysis of formalin-fixed paraffin-embedded tissues, untapped biospecimens for carcinogen DNA adduct biomarker research.
Collapse
Affiliation(s)
- Byeong Hwa Yun
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Jingshu Guo
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Medjda Bellamri
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Robert J. Turesky
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6 St. SE, Minneapolis, Minnesota, 55455, United States
| |
Collapse
|
30
|
Sidorenko VS. Biotransformation and Toxicities of Aristolochic Acids. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1241:139-166. [PMID: 32383120 DOI: 10.1007/978-3-030-41283-8_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Environmental and iatrogenic exposures contribute significantly to human diseases, including cancer. The list of known human carcinogens has recently been extended by the addition of aristolochic acids (AAs). AAs occur primarily in Aristolochia herbs, which are used extensively in folk medicines, including Traditional Chinese Medicine. Ingestion of AAs results in chronic renal disease and cancer. Despite importation bans imposed by certain countries, herbal remedies containing AAs are readily available for purchase through the internet. With recent advancements in mass spectrometry, next generation sequencing, and the development of integrated organs-on-chips, our knowledge of cancers associated with AA exposure, and of the mechanisms involved in AA toxicities, has significantly improved. DNA adduction plays a central role in AA-induced cancers; however, significant gaps remain in our knowledge as to how cellular enzymes promote activation of AAs and how the reactive species selectively bind to DNA and kidney proteins. In this review, I describe pathways for AAs biotransformation, adduction, and mutagenesis, emphasizing novel methods and ideas contributing to our present understanding of AA toxicities in humans.
Collapse
Affiliation(s)
- Viktoriya S Sidorenko
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
31
|
Zhang N, Deng W, Li Y, Ma Y, Liu Y, Li X, Wang H. Formic Acid of ppm Enhances LC-MS/MS Detection of UV Irradiation-Induced DNA Dimeric Photoproducts. Anal Chem 2019; 92:1197-1204. [PMID: 31786915 DOI: 10.1021/acs.analchem.9b04327] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts (6-4PPs) are genotoxic DNA lesions and mainly generated on thymine-thymine (T-T) dinucleotides upon UV irradiation. Regarding the sensitivity, specificity, and accuracy of analytical methods, it is of first choice to develop a reliable assay for simultaneous detection of these DNA lesions using liquid chromatography-tandem mass spectrometry (LC-MS/MS). However, the dilemma is the low detection sensitivity of the phosphate-containing dimeric photoproducts even using most favorable negative-ion mode for LC-MS/MS analysis. Unexpectedly, we observed that the detection sensitivity of T-T CPD and 6-4PP could be significantly improved using formic acid/acetic acid (∼ppm) as an additive of the mobile phase for reversed-phase LC-MS/MS analysis. This is the first demonstration of the enhancement of LC-MS/MS signals by formic acid/acetic acid in negative-ion mode. Of note, these acidic agents are often used for positive-ion mode in LC-MS assays. Benefited from the developed method, we could quantify both T-T CPD and 6-4PP in mouse embryonic stem cells upon UVC irradiation at low dosage. This sensitive method is applicable to the screening and identification of genes involved in formation, signaling, and repair of UV lesion.
Collapse
Affiliation(s)
- Ning Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , China
| | - Wenchao Deng
- Institute of Environment and Health , Jianghan University , Wuhan 430056 , China
| | - Yao Li
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yangde Ma
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xiangjun Li
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , China.,Institute of Environment and Health , Jianghan University , Wuhan 430056 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
32
|
Walmsley SJ, Guo J, Wang J, Villalta PW, Turesky RJ. Methods and Challenges for Computational Data Analysis for DNA Adductomics. Chem Res Toxicol 2019; 32:2156-2168. [PMID: 31549505 PMCID: PMC7127864 DOI: 10.1021/acs.chemrestox.9b00196] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Frequent exposure to chemicals in the environment, diet, and endogenous electrophiles leads to chemical modification of DNA and the formation of DNA adducts. Some DNA adducts can induce mutations during cell division and, when occurring in critical regions of the genome, can lead to the onset of disease, including cancer. The targeted analysis of DNA adducts over the past 30 years has revealed that the human genome contains many types of DNA damages. However, a long-standing limitation in conducting DNA adduct measurements has been the inability to screen for the total complement of DNA adducts derived from a wide range of chemicals in a single assay. With the advancement of high-resolution mass spectrometry (MS) instrumentation and new scanning technologies, nontargeted "omics" approaches employing data-dependent acquisition and data-independent acquisition methods have been established to simultaneously screen for multiple DNA adducts, a technique known as DNA adductomics. However, notable challenges in data processing must be overcome for DNA adductomics to become a mature technology. DNA adducts occur at low abundance in humans, and current softwares do not reliably detect them when using common MS data acquisition methods. In this perspective, we discuss contemporary computational tools developed for feature finding of MS data widely utilized in the disciplines of proteomics and metabolomics and highlight their limitations for conducting nontargeted DNA-adduct biomarker discovery. Improvements to existing MS data processing software and new algorithms for adduct detection are needed to develop DNA adductomics into a powerful tool for the nontargeted identification of potential cancer-causing agents.
Collapse
Affiliation(s)
- Scott J. Walmsley
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Institute of Health Informatics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jingshu Guo
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jinhua Wang
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Institute of Health Informatics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Peter W. Villalta
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Robert J. Turesky
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
33
|
Liquid chromatography- mass spectrometry for analysis of DNA damages induced by environmental exposure. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115645] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
34
|
Carrà A, Guidolin V, Dator RP, Upadhyaya P, Kassie F, Villalta PW, Balbo S. Targeted High Resolution LC/MS 3 Adductomics Method for the Characterization of Endogenous DNA Damage. Front Chem 2019; 7:658. [PMID: 31709223 PMCID: PMC6822301 DOI: 10.3389/fchem.2019.00658] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022] Open
Abstract
DNA can be damaged through covalent modifications of the nucleobases by endogenous processes. These modifications, commonly referred to as DNA adducts, can persist and may lead to mutations, and ultimately to the initiation of cancer. A screening methodology for the majority of known endogenous DNA adducts would be a powerful tool for investigating the etiology of cancer and for the identification of individuals at high-risk to the detrimental effects of DNA damage. This idea led to the development of a DNA adductomic approach using high resolution data-dependent scanning, an extensive MS2 fragmentation inclusion list of known endogenous adducts, and neutral loss MS3 triggering to profile all DNA modifications. In this method, the detection of endogenous DNA adducts is performed by observation of their corresponding MS3 neutral loss triggered events and their relative quantitation using the corresponding full scan extracted ion chromatograms. The method's inclusion list consists of the majority of known endogenous DNA adducts, compiled, and reported here, as well as adducts specific to tobacco exposure included to compare the performance of the method with previously developed targeted approaches. The sensitivity of the method was maximized by reduction of extraneous background signal through the purification and minimization of the amount of commercially obtained enzymes used for the DNA hydrolysis. In addition, post-hydrolysis sample purification was performed using off-line HPLC fraction collection to eliminate the highly abundant unmodified bases, and to avoid introduction of plasticizers found in solid-phase extraction cartridges. Also, several instrument parameters were evaluated to optimize the ion signal intensities and fragmentation spectra quality. The method was tested on an animal model of lung carcinogenesis where A/J mice were exposed to the tobacco specific lung carcinogen 4-methylnitrosamino-1-3-pyridyl-1-butanone (NNK) with its effects enhanced by co-exposure to the pro-inflammatory agent lipopolysaccharide (LPS). Lung DNA were screened for endogenous DNA adducts known to result from oxidative stress and LPS-induced lipid peroxidation, as well as for adducts due to NNK exposure. The relative quantitation of the detected DNA adducts was performed using parallel reaction monitoring MS2 analysis, demonstrating a general workflow for analysis of endogenous DNA adducts.
Collapse
Affiliation(s)
| | | | | | | | | | - Peter W. Villalta
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
35
|
Tang Y, Zhang JL. Recent developments in DNA adduct analysis using liquid chromatography coupled with mass spectrometry. J Sep Sci 2019; 43:31-55. [PMID: 31573133 DOI: 10.1002/jssc.201900737] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/04/2019] [Accepted: 09/27/2019] [Indexed: 12/15/2022]
Abstract
The formation of DNA adducts by genotoxic agents is an early event in cancer development, and it may lead to gene mutations, thereby initiating tumor development. The measurement of DNA adducts can provide critical information about the genotoxic potential of a chemical and its mechanism of carcinogenesis. In recent decades, liquid chromatography coupled with mass spectrometry has become the most important technique for analyzing DNA adducts. The improvements in resolution achievable with new chromatographic separation techniques coupled with the high specificity and sensitivity and wide dynamic range of new mass spectrometry systems have been used for both qualitative and quantitative analyses of DNA adducts. This review discusses the challenges in qualitative and quantitative analyses of DNA adducts by liquid chromatography coupled with mass spectrometry and highlights recent developments towards overcoming the limitations of liquid chromatography coupled with mass spectrometry methods. The key steps and new solutions, such as sample preparation, mass spectrometry fragmentation, and method validation, are summarized. In addition, the fundamental principles and latest advances in DNA adductomic approaches are reviewed.
Collapse
Affiliation(s)
- Yu Tang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Jin-Lan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, P. R. China
| |
Collapse
|
36
|
Zhang N, Lu M, Duan X, Liu CC, Wang H. In situ calibration of Direct Analysis in Real Time-mass spectrometry for direct quantification: Urine excretion rate index creatinine as an example. Talanta 2019; 201:134-142. [DOI: 10.1016/j.talanta.2019.03.092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/23/2019] [Accepted: 03/27/2019] [Indexed: 10/27/2022]
|
37
|
Emerging Technologies in Mass Spectrometry-Based DNA Adductomics. High Throughput 2019; 8:ht8020013. [PMID: 31091740 PMCID: PMC6630665 DOI: 10.3390/ht8020013] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/19/2019] [Accepted: 05/09/2019] [Indexed: 12/11/2022] Open
Abstract
The measurement of DNA adducts, the covalent modifications of DNA upon the exposure to the environmental and dietary genotoxicants and endogenously produced electrophiles, provides molecular evidence for DNA damage. With the recent improvements in the sensitivity and scanning speed of mass spectrometry (MS) instrumentation, particularly high-resolution MS, it is now feasible to screen for the totality of DNA damage in the human genome through DNA adductomics approaches. Several MS platforms have been used in DNA adductomic analysis, each of which has its strengths and limitations. The loss of 2′-deoxyribose from the modified nucleoside upon collision-induced dissociation is the main transition feature utilized in the screening of DNA adducts. Several advanced data-dependent and data-independent scanning techniques originated from proteomics and metabolomics have been tailored for DNA adductomics. The field of DNA adductomics is an emerging technology in human exposure assessment. As the analytical technology matures and bioinformatics tools become available for analysis of the MS data, DNA adductomics can advance our understanding about the role of chemical exposures in DNA damage and disease risk.
Collapse
|
38
|
1-Methoxy-3-indolylmethyl DNA adducts in six tissues, and blood protein adducts, in mice under pak choi diet: time course and persistence. Arch Toxicol 2019; 93:1515-1527. [PMID: 30993378 DOI: 10.1007/s00204-019-02452-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/09/2019] [Indexed: 10/27/2022]
Abstract
We previously showed that purified 1-methoxy-3-indolylmethyl (1-MIM) glucosinolate, a secondary plant metabolite in Brassica species, is mutagenic in various in vitro systems and forms DNA and protein adducts in mouse models. In the present study, we administered 1-MIM glucosinolate in a natural matrix to mice, by feeding a diet containing pak choi powder and extract. Groups of animals were killed after 1, 2, 4 and 8 days of pak choi diet, directly or, in the case of the 8-day treatment, after 0, 8 and 16 days of recovery with pak choi-free diet. DNA adducts [N2-(1-MIM)-dG, N6-(1-MIM)-dA] in six tissues, as well as protein adducts [τN-(1-MIM)-His] in serum albumin (SA) and hemoglobin (Hb) were determined using UPLC-MS/MS with isotopically labeled internal standards. None of the samples from the 12 control animals under standard diet contained any 1-MIM adducts. All groups receiving pak choi diet showed DNA adducts in all six tissues (exception: lung of mice treated for a single day) as well as SA and Hb adducts. During the feeding period, all adduct levels continuously increased until day 8 (in the jejunum until day 4). During the 14-day recovery period, N2-(1-MIM)-dG in liver, kidney, lung, jejunum, cecum and colon decreased to 52, 41, 59, 11, 7 and 2%, respectively, of the peak level. The time course of N6-(1-MIM)-dA was similar. Immunohistochemical analyses indicated that cell turnover is a major mechanism of DNA adduct elimination in the intestine. In the same recovery period, protein adducts decreased more rapidly in SA than in Hb, to 0.7 and 37%, respectively, of the peak level, consistent with the differential turnover of these proteins. In conclusion, the pak choi diet lead to the formation of high levels of adducts in mice. Cell and protein turnover was a major mechanism of adduct elimination, at least in gut and blood.
Collapse
|
39
|
Golime R, Chandra B, Palit M, Dubey DK. Adductomics: a promising tool for the verification of chemical warfare agents’ exposures in biological samples. Arch Toxicol 2019; 93:1473-1484. [DOI: 10.1007/s00204-019-02435-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 03/14/2019] [Indexed: 11/29/2022]
|
40
|
Abstract
The chemistry of DNA and its repair selectivity control the influence of genomic oxidative stress on the development of serious disorders such as cancer and heart diseases. DNA is oxidized by endogenous reactive oxygen species (ROS) in vivo or in vitro as a result of high energy radiation, non-radiative metabolic processes, and other consequences of oxidative stress. Some oxidations of DNA and tumor suppressor gene p53 are thought to be mutagenic when not repaired. For example, site-specific oxidations of p53 tumor suppressor gene may lead to cancer-related mutations at the oxidation site codon. This review summarizes the research on the primary products of the most easily oxidized nucleobase guanine (G) when different oxidation methods are used. Guanine is by far the most oxidized DNA base. The primary initial oxidation product of guanine for most, but not all, pathways is 8-oxoguanine (8-oxoG). With an oxidation potential much lower than G, 8-oxoG is readily susceptible to further oxidation, and the products often depend on the oxidants. Specific products may control the types of subsequent mutations, but mediated by gene repair success. Site-specific oxidations of p53 tumor suppressor gene have been reported at known mutation hot spots, and the codon sites also depend on the type of oxidants. Modern methodologies using LC-MS/MS for codon specific detection and identification of oxidation sites are summarized. Future work aimed at understanding DNA oxidation in nucleosomes and interactions between DNA damage and repair is needed to provide a better picture of how cancer-related mutations arise.
Collapse
Affiliation(s)
- Di Jiang
- Department of ChemistryUniversity of ConnecticutStorrsCT 06269United States
| | - James F. Rusling
- Department of ChemistryUniversity of ConnecticutStorrsCT 06269United States
- Department of SurgeryNeag Cancer Center, UConn HealthFarmingtonCT 06032United States
- Institute of Material ScienceUniversity of ConnecticutStorrsCT 06269United States
- School of ChemistryNational University of Ireland at GalwayIreland
| |
Collapse
|
41
|
Cui Y, Wang P, Yu Y, Yuan J, Wang Y. Normalized Retention Time for Targeted Analysis of the DNA Adductome. Anal Chem 2018; 90:14111-14115. [PMID: 30500177 PMCID: PMC6309434 DOI: 10.1021/acs.analchem.8b04660] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A wide spectrum of DNA lesions can be generated from byproducts of endogenous metabolism and/or from environmental exposure. A DNA adductomic approach for the robust quantification of DNA adducts in cellular and tissue DNA may facilitate the use of DNA adducts for biomonitoring studies and enable comprehensive assessment about DNA repair. Normalized retention time (iRT) has been widely used in scheduled selected-reaction monitoring (SRM) methods for highly sensitive and high-throughput analyses of protein samples in complicated matrices. By using a similar method, we established the iRT scores for 36 modified nucleosides from the retention times of the four canonical 2'-deoxynucleosides on a nanoflow liquid chromatography-nanospray ionization-tandem mass spectrometry (nLC-NSI-MS/MS) system. The iRT scores facilitated reliable prediction of retention time and were employed for establishing a scheduled SRM method for quantitative assessment of a subset of the DNA adductome. The quantification results of the scheduled SRM method were more accurate and precise than those from an unscheduled method.
Collapse
Affiliation(s)
- Yuxiang Cui
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States
| | - Pengcheng Wang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yang Yu
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States
| | - Jun Yuan
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
42
|
Turesky RJ. Mechanistic Evidence for Red Meat and Processed Meat Intake and Cancer Risk: A Follow-up on the International Agency for Research on Cancer Evaluation of 2015. Chimia (Aarau) 2018; 72:718-724. [PMID: 30376922 PMCID: PMC6294997 DOI: 10.2533/chimia.2018.718] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Working Group of the International Agency for Research on Cancer classified the consumption of processed meat as carcinogenic to humans (Group 1), and classified red meat as probably carcinogenic to humans (Group 2A); consumption of both meat types is associated with an increased risk of colorectal cancer. These classifications are based on a compilation of epidemiology data and mechanistic evidence from animal and human studies. The curing of meats with nitrite can produce carcinogenic N-nitroso compounds (NOCs), and the smoking of meat produces polycyclic aromatic hydrocarbons (PAHs). The high-temperature cooking of meat also produces carcinogenic heterocyclic aromatic amines (HAAs). The ingestion of heme from meat can catalyze the formation of NOCs and lipid peroxidation products (LPOs) in the digestive tract. Many of these chemicals form DNA adducts, some of which can induce mutations and initiate carcinogenesis. Another recent hypothesis is that N-glycolylneuraminic acid, a non-human sialic acid sugar present in red meat, becomes incorporated in the cell membrane, triggering the immune response with associated inflammation and reactive oxygen species, which can contribute to DNA damage, tumor promotion, and cancer. The mechanisms by which these chemicals in meat induce DNA damage, and the impact of dietary and host factors that influence the biological potency of these chemicals are highlighted in this updated report.
Collapse
Affiliation(s)
- Robert J Turesky
- Masonic Cancer Center Department of Medicinal Chemistry College of Pharmacy, University of Minnestoa 2231 6th St SE, Minneapolis, MN, USA;,
| |
Collapse
|
43
|
A mass spectrometric platform for the quantitation of sulfur mustard-induced nucleic acid adducts as mechanistically relevant biomarkers of exposure. Arch Toxicol 2018; 93:61-79. [PMID: 30324314 DOI: 10.1007/s00204-018-2324-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/02/2018] [Indexed: 12/31/2022]
Abstract
Despite its worldwide ban, the warfare agent sulfur mustard (SM) still represents a realistic threat, due to potential release in terroristic attacks and asymmetric conflicts. Therefore, the rigorous and quantitative detection of SM exposure is crucial for diagnosis, health risk assessment, and surveillance of international law. Alkylation adducts of nucleic acids can serve as valuable toxicologically relevant 'biomarkers of SM exposure'. Here, we developed a robust and versatile bioanalytical platform based on isotope dilution UPLC-MS/MS to quantify major SM-induced DNA and RNA adducts, as well as adducts induced by the monofunctional mustard 2-chloroethyl ethyl sulfide. We synthesized 15N/13C-labeled standards, which allowed absolute quantitation with full chemical specificity and subfemtomole sensitivities. DNA and RNA mono-alkylation adducts and crosslinks were carefully analyzed in a dose- and time-dependent manner in various matrices, including human cancer and primary cells, derived of the main SM-target tissues. Nucleic acid adducts were detected up to 6 days post-exposure, indicating long persistence, which highlights their toxicological relevance and proves their suitability as forensic and medical biomarkers. Finally, we investigated ex vivo-treated rat skin biopsies and human blood samples, which set the basis for the implementation into the method portfolio of Organization for the Prohibition of Chemical Weapons-designated laboratories to analyze authentic samples from SM-exposed victims.
Collapse
|
44
|
Zubel T, Bürkle A, Mangerich A. Mass spectrometric analysis of sulfur mustard-induced biomolecular adducts: Are DNA adducts suitable biomarkers of exposure? Toxicol Lett 2018; 293:21-30. [DOI: 10.1016/j.toxlet.2017.12.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/10/2017] [Accepted: 12/20/2017] [Indexed: 11/25/2022]
|
45
|
IWAMASA E, MIKI Y, INOUE Y, ESAKA Y, MURAKAMI H, TESHIMA N. Study on HILIC Separation Conditions for DNA Adductomics. BUNSEKI KAGAKU 2018. [DOI: 10.2116/bunsekikagaku.67.479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Emi IWAMASA
- Department of Applied Chemistry, Aichi Institute of Technology
| | - Yuta MIKI
- Department of Applied Chemistry, Aichi Institute of Technology
| | - Yoshinori INOUE
- Department of Applied Chemistry, Aichi Institute of Technology
| | | | - Hiroya MURAKAMI
- Department of Applied Chemistry, Aichi Institute of Technology
| | - Norio TESHIMA
- Department of Applied Chemistry, Aichi Institute of Technology
| |
Collapse
|
46
|
Richterova M, Stetina R, Jost P, Svobodova H, Rehacek V, Kassa J. Inter strand crosslinks in DNA induced in vivo by percutaneous application of sulphur mustard to rats and mice. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 832-833:35-40. [DOI: 10.1016/j.mrgentox.2018.06.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/06/2018] [Accepted: 06/06/2018] [Indexed: 10/14/2022]
|
47
|
Chan W, Wong SK, Li W. Quantification of DNA and Protein Adducts of 1-Nitropyrene: Significantly Higher Levels of Protein than DNA Adducts in the Internal Organs of 1-Nitropyrene Exposed Rats. Chem Res Toxicol 2018; 31:680-687. [DOI: 10.1021/acs.chemrestox.8b00035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
48
|
Matter B, Seiler CL, Murphy K, Ming X, Zhao J, Lindgren B, Jones R, Tretyakova N. Mapping three guanine oxidation products along DNA following exposure to three types of reactive oxygen species. Free Radic Biol Med 2018; 121:180-189. [PMID: 29702150 PMCID: PMC6858621 DOI: 10.1016/j.freeradbiomed.2018.04.561] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 12/18/2022]
Abstract
Reactive oxygen and nitrogen species generated during respiration, inflammation, and immune response can damage cellular DNA, contributing to aging, cancer, and neurodegeneration. The ability of oxidized DNA bases to interfere with DNA replication and transcription is strongly influenced by their chemical structures and locations within the genome. In the present work, we examined the influence of local DNA sequence context, DNA secondary structure, and oxidant identity on the efficiency and the chemistry of guanine oxidation in the context of the Kras protooncogene. A novel isotope labeling strategy developed in our laboratory was used to accurately map the formation of 2,2-diamino-4-[(2-deoxy-β-D-erythropentofuranosyl)amino]- 5(2 H)-oxazolone (Z), 8-oxo-7,8-dihydro-2'-deoxyguanosine (OG), and 8-nitroguanine (8-NO2-G) lesions along DNA duplexes following photooxidation in the presence of riboflavin, treatment with nitrosoperoxycarbonate, and oxidation in the presence of hydroxyl radicals. Riboflavin-mediated photooxidation preferentially induced OG lesions at 5' guanines within GG repeats, while treatment with nitrosoperoxycarbonate targeted 3'-guanines within GG and AG dinucleotides. Little sequence selectivity was observed following hydroxyl radical-mediated oxidation. However, Z and 8-NO2-G adducts were overproduced at duplex ends, irrespective of oxidant identity. Overall, our results indicate that the patterns of Z, OG, and 8-NO2-G adduct formation in the genome are distinct and are influenced by oxidant identity and the secondary structure of DNA.
Collapse
Affiliation(s)
- Brock Matter
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Christopher L Seiler
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kristopher Murphy
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xun Ming
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jianwei Zhao
- Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Bruce Lindgren
- Biostatistics Core, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Roger Jones
- Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Natalia Tretyakova
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
49
|
Yun BH, Guo J, Turesky RJ. Formalin-Fixed Paraffin-Embedded Tissues-An Untapped Biospecimen for Biomonitoring DNA Adducts by Mass Spectrometry. TOXICS 2018; 6:E30. [PMID: 29865161 PMCID: PMC6027047 DOI: 10.3390/toxics6020030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/21/2018] [Accepted: 05/25/2018] [Indexed: 01/03/2023]
Abstract
The measurement of DNA adducts provides important information about human exposure to genotoxic chemicals and can be employed to elucidate mechanisms of DNA damage and repair. DNA adducts can serve as biomarkers for interspecies comparisons of the biologically effective dose of procarcinogens and permit extrapolation of genotoxicity data from animal studies for human risk assessment. One major challenge in DNA adduct biomarker research is the paucity of fresh frozen biopsy samples available for study. However, archived formalin-fixed paraffin-embedded (FFPE) tissues with clinical diagnosis of disease are often available. We have established robust methods to recover DNA free of crosslinks from FFPE tissues under mild conditions which permit quantitative measurements of DNA adducts by liquid chromatography-mass spectrometry. The technology is versatile and can be employed to screen for DNA adducts formed with a wide range of environmental and dietary carcinogens, some of which were retrieved from section-cuts of FFPE blocks stored at ambient temperature for up to nine years. The ability to retrospectively analyze FFPE tissues for DNA adducts for which there is clinical diagnosis of disease opens a previously untapped source of biospecimens for molecular epidemiology studies that seek to assess the causal role of environmental chemicals in cancer etiology.
Collapse
Affiliation(s)
- Byeong Hwa Yun
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6th St. SE, Minneapolis, MN 55455, USA.
| | - Jingshu Guo
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6th St. SE, Minneapolis, MN 55455, USA.
| | - Robert J Turesky
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6th St. SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
50
|
Recent technical and biological development in the analysis of biomarker N-deoxyguanosine-C8-4-aminobiphenyl. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1087-1088:49-60. [PMID: 29709872 DOI: 10.1016/j.jchromb.2018.04.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/05/2018] [Accepted: 04/23/2018] [Indexed: 12/12/2022]
Abstract
4-Aminobiphenyl (4-ABP) which is primarily formed during tobacco combustion and overheated meat is a major carcinogen responsible for various cancers. Its adducted form, N-deoxyguanosine-C8-4-aminobiphenyl (dG-C8-4-ABP), has long been employed as a biomarker for assessment of the risk for cancer. In this review, the metabolism and carcinogenisity of 4-ABP will be discussed, followed by a discussion of the current common approaches of analyzing dG-C8-4-ABP. The major part of this review will be on the history and recent development of key methods for detection and quantitation of dG-C8-4-ABP in complex biological samples and their biological applications, from the traditional 2P-postlabelling and immunoassay methods to modern liquid chromatography-mass spectrometry (LC-MS) with the latter as the focus. Many vital biological discoveries based on dG-C8-4-ABP have been published by using the nanoLC-MS with column switching platform in our laboratory, which has also been adopted and further improved by many other researchers. We hope this review can provide a perspective of the challenges that had to be addressed in reaching our present goals and possibly bring new ideas for those who are still working on the frontline of DNA adducts area.
Collapse
|