1
|
Gunther K, Lynch DR. Pharmacotherapeutic strategies for Friedreich Ataxia: a review of the available data. Expert Opin Pharmacother 2024; 25:529-539. [PMID: 38622054 DOI: 10.1080/14656566.2024.2343782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
INTRODUCTION Friedreich ataxia (FRDA) is a rare autosomal recessive disease, marked by loss of coordination as well as impaired neurological, endocrine, orthopedic, and cardiac function. There are many symptomatic medications for FRDA, and many clinical trials have been performed, but only one FDA-approved medication exists. AREAS COVERED The relative absence of the frataxin protein (FXN) in FRDA causes mitochondrial dysfunction, resulting in clinical manifestations. Currently, the only approved treatment for FRDA is an Nrf2 activator called omaveloxolone (Skyclarys). Patients with FRDA also rely on various symptomatic medications for treatment. Because there is only one approved medication for FRDA, clinical trials continue to advance in FRDA. Although some trials have not met their endpoints, many current and upcoming clinical trials provide exciting possibilities for the treatment of FRDA. EXPERT OPINION The approval of omaveloxolone provides a major advance in FRDA therapeutics. Although well tolerated, it is not curative. Reversal of deficient frataxin levels with gene therapy, protein replacement, or epigenetic approaches provides the most likely prospect for enduring, disease-modifying therapy in the future.
Collapse
Affiliation(s)
- Katherine Gunther
- Friedreich Ataxia Program, Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - David R Lynch
- Friedreich Ataxia Program, Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
2
|
Dridi H, Santulli G, Bahlouli L, Miotto MC, Weninger G, Marks AR. Mitochondrial Calcium Overload Plays a Causal Role in Oxidative Stress in the Failing Heart. Biomolecules 2023; 13:1409. [PMID: 37759809 PMCID: PMC10527470 DOI: 10.3390/biom13091409] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
Heart failure is a serious global health challenge, affecting more than 6.2 million people in the United States and is projected to reach over 8 million by 2030. Independent of etiology, failing hearts share common features, including defective calcium (Ca2+) handling, mitochondrial Ca2+ overload, and oxidative stress. In cardiomyocytes, Ca2+ not only regulates excitation-contraction coupling, but also mitochondrial metabolism and oxidative stress signaling, thereby controlling the function and actual destiny of the cell. Understanding the mechanisms of mitochondrial Ca2+ uptake and the molecular pathways involved in the regulation of increased mitochondrial Ca2+ influx is an ongoing challenge in order to identify novel therapeutic targets to alleviate the burden of heart failure. In this review, we discuss the mechanisms underlying altered mitochondrial Ca2+ handling in heart failure and the potential therapeutic strategies.
Collapse
Affiliation(s)
- Haikel Dridi
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY 10032, USA; (L.B.); (M.C.M.); (G.W.); (A.R.M.)
| | - Gaetano Santulli
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA;
| | - Laith Bahlouli
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY 10032, USA; (L.B.); (M.C.M.); (G.W.); (A.R.M.)
| | - Marco C. Miotto
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY 10032, USA; (L.B.); (M.C.M.); (G.W.); (A.R.M.)
| | - Gunnar Weninger
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY 10032, USA; (L.B.); (M.C.M.); (G.W.); (A.R.M.)
| | - Andrew R. Marks
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY 10032, USA; (L.B.); (M.C.M.); (G.W.); (A.R.M.)
| |
Collapse
|
3
|
Skeletal Muscle Mitochondrial Dysfunction and Oxidative Stress in Peripheral Arterial Disease: A Unifying Mechanism and Therapeutic Target. Antioxidants (Basel) 2020; 9:antiox9121304. [PMID: 33353218 PMCID: PMC7766400 DOI: 10.3390/antiox9121304] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Peripheral artery disease (PAD) is caused by atherosclerosis in the lower extremities, which leads to a spectrum of life-altering symptomatology, including claudication, ischemic rest pain, and gangrene requiring limb amputation. Current treatments for PAD are focused primarily on re-establishing blood flow to the ischemic tissue, implying that blood flow is the decisive factor that determines whether or not the tissue survives. Unfortunately, failure rates of endovascular and revascularization procedures remain unacceptably high and numerous cell- and gene-based vascular therapies have failed to demonstrate efficacy in clinical trials. The low success of vascular-focused therapies implies that non-vascular tissues, such as skeletal muscle and oxidative stress, may substantially contribute to PAD pathobiology. Clues toward the importance of skeletal muscle in PAD pathobiology stem from clinical observations that muscle function is a strong predictor of mortality. Mitochondrial impairments in muscle have been documented in PAD patients, although its potential role in clinical pathology is incompletely understood. In this review, we discuss the underlying mechanisms causing mitochondrial dysfunction in ischemic skeletal muscle, including causal evidence in rodent studies, and highlight emerging mitochondrial-targeted therapies that have potential to improve PAD outcomes. Particularly, we will analyze literature data on reactive oxygen species production and potential counteracting endogenous and exogenous antioxidants.
Collapse
|
4
|
Rooney M, Curley C, Sweeney J, Griffin M, Porter R, Hill E, Katz L. Prolonged oral coenzyme Q10-β-cyclodextrin supplementation increases skeletal muscle complex I+III activity in young Thoroughbreds. JOURNAL OF APPLIED ANIMAL NUTRITION 2020. [DOI: 10.3920/jaan2019.0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Coenzyme Q10 (CoQ10) is an essential component of the mitochondrial electron transport chain (ETC). Decreased skeletal muscle CoQ10 content may result in decreased ETC activity and energy production. This study tested the hypotheses that supplementation with oral CoQ10 will increase plasma CoQ10 concentrations and that prolonged supplementation will increase skeletal muscle CoQ10 content in young, healthy untrained Thoroughbreds. Nineteen Thoroughbreds (27.5±9.7 months old; 11 males, eight females) from one farm and maintained on a grass pasture with one grain meal per day were supplemented daily with 1.5 mg/kg body weight of an oral CoQ10-β-cyclodextrin inclusion complex. Whole-blood and skeletal muscle biopsies were collected before (T0) and after (T1) nine weeks of supplementation. Plasma CoQ10 concentrations were determined via high-performance liquid chromatography. Skeletal muscle mitochondrial ETC combined complex I+III enzyme activity (indirect measurement of CoQ10 content) was assessed spectrophotometrically and normalised to mitochondrial abundance. Horses accepted supplementation with no adverse effects. Plasma CoQ10 concentration increased in all horses following supplementation, with mean plasma CoQ10 concentration significantly increasing from T0 to T1 (0.13±0.02 vs 0.25±0.03 μg/ml; mean difference 0.12±0.03; P=0.004). However, variability in absorbance resulted in a 58% response rate (i.e. doubling of T1 above T0 values). The mean skeletal muscle complex I+III activity significantly increased from T0 to T1 (0.36±0.04 vs 0.59±0.05 pmol/min/mg of muscle, mean difference 0.23±0.05; P=0.0004), although T1 values for three out of 19 horses decreased on average by 23% below T0 values. In conclusion, oral supplementation with CoQ10 in the diet of young, healthy untrained Thoroughbreds increased mean plasma CoQ10 concentration by 99% with prolonged daily supplementation increasing mean skeletal muscle complex I+III activity by 65%. Additional research is warranted investigating training and exercise effects on skeletal muscle CoQ10 content in CoQ10 supplemented and un-supplemented Thoroughbreds.
Collapse
Affiliation(s)
- M.F. Rooney
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, 152-160 Pearse Street, DO2R590, Ireland
| | - C.E. Curley
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, 152-160 Pearse Street, DO2R590, Ireland
| | - J. Sweeney
- RCSI Division of Population Health Sciences, RCSI, Dublin 2, Ireland
| | - M.E. Griffin
- Plusvital Ltd, The Highline, Pottery Road, Dun Laoghaire, Co. Dublin, A96 KW29, Ireland
| | - R.K. Porter
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, 152-160 Pearse Street, DO2R590, Ireland
| | - E.W. Hill
- Plusvital Ltd, The Highline, Pottery Road, Dun Laoghaire, Co. Dublin, A96 KW29, Ireland
| | - L.M. Katz
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
5
|
Cardioprotective effects of idebenone do not involve ROS scavenging: Evidence for mitochondrial complex I bypass in ischemia/reperfusion injury. J Mol Cell Cardiol 2019; 135:160-171. [DOI: 10.1016/j.yjmcc.2019.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/20/2022]
|
6
|
Kiyuna LA, Albuquerque RPE, Chen CH, Mochly-Rosen D, Ferreira JCB. Targeting mitochondrial dysfunction and oxidative stress in heart failure: Challenges and opportunities. Free Radic Biol Med 2018; 129:155-168. [PMID: 30227272 PMCID: PMC6309415 DOI: 10.1016/j.freeradbiomed.2018.09.019] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/28/2018] [Accepted: 09/14/2018] [Indexed: 02/06/2023]
Abstract
Mitochondrial dysfunction characterized by impaired bioenergetics, oxidative stress and aldehydic load is a hallmark of heart failure. Recently, different research groups have provided evidence that selective activation of mitochondrial detoxifying systems that counteract excessive accumulation of ROS, RNS and reactive aldehydes is sufficient to stop cardiac degeneration upon chronic stress, such as heart failure. Therefore, pharmacological and non-pharmacological approaches targeting mitochondria detoxification may play a critical role in the prevention or treatment of heart failure. In this review we discuss the most recent findings on the central role of mitochondrial dysfunction, oxidative stress and aldehydic load in heart failure, highlighting the most recent preclinical and clinical studies using mitochondria-targeted molecules and exercise training as effective tools against heart failure.
Collapse
Affiliation(s)
- Ligia Akemi Kiyuna
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | | | - Che-Hong Chen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, USA
| | | |
Collapse
|
7
|
Yubero D, Allen G, Artuch R, Montero R. The Value of Coenzyme Q 10 Determination in Mitochondrial Patients. J Clin Med 2017; 6:jcm6040037. [PMID: 28338638 PMCID: PMC5406769 DOI: 10.3390/jcm6040037] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/17/2017] [Accepted: 03/17/2017] [Indexed: 12/26/2022] Open
Abstract
Coenzyme Q10 (CoQ) is a lipid that is ubiquitously synthesized in tissues and has a key role in mitochondrial oxidative phosphorylation. Its biochemical determination provides insight into the CoQ status of tissues and may detect CoQ deficiency that can result from either an inherited primary deficiency of CoQ metabolism or may be secondary to different genetic and environmental conditions. Rapid identification of CoQ deficiency can also allow potentially beneficial treatment to be initiated as early as possible. CoQ may be measured in different specimens, including plasma, blood mononuclear cells, platelets, urine, muscle, and cultured skin fibroblasts. Blood and urinary CoQ also have good utility for CoQ treatment monitoring.
Collapse
Affiliation(s)
- Delia Yubero
- Clinical Biochemistry and Molecular Medicine Department, Institut de Recerca Sant Joan de Déu and CIBERER-ISCIII, Passeig Sant Joan de Déu, 2, 08950 Esplugues, Barcelona, Spain.
| | - George Allen
- Department of Blood Sciences, Royal Devon and Exeter NHS Foundation Trust, Exeter EX2 5DW, UK.
| | - Rafael Artuch
- Clinical Biochemistry and Molecular Medicine Department, Institut de Recerca Sant Joan de Déu and CIBERER-ISCIII, Passeig Sant Joan de Déu, 2, 08950 Esplugues, Barcelona, Spain.
| | - Raquel Montero
- Clinical Biochemistry and Molecular Medicine Department, Institut de Recerca Sant Joan de Déu and CIBERER-ISCIII, Passeig Sant Joan de Déu, 2, 08950 Esplugues, Barcelona, Spain.
| |
Collapse
|
8
|
Brown DA, Perry JB, Allen ME, Sabbah HN, Stauffer BL, Shaikh SR, Cleland JGF, Colucci WS, Butler J, Voors AA, Anker SD, Pitt B, Pieske B, Filippatos G, Greene SJ, Gheorghiade M. Expert consensus document: Mitochondrial function as a therapeutic target in heart failure. Nat Rev Cardiol 2016; 14:238-250. [PMID: 28004807 PMCID: PMC5350035 DOI: 10.1038/nrcardio.2016.203] [Citation(s) in RCA: 542] [Impact Index Per Article: 60.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Heart failure is a pressing worldwide public-health problem with millions of patients having worsening heart failure. Despite all the available therapies, the condition carries a very poor prognosis. Existing therapies provide symptomatic and clinical benefit, but do not fully address molecular abnormalities that occur in cardiomyocytes. This shortcoming is particularly important given that most patients with heart failure have viable dysfunctional myocardium, in which an improvement or normalization of function might be possible. Although the pathophysiology of heart failure is complex, mitochondrial dysfunction seems to be an important target for therapy to improve cardiac function directly. Mitochondrial abnormalities include impaired mitochondrial electron transport chain activity, increased formation of reactive oxygen species, shifted metabolic substrate utilization, aberrant mitochondrial dynamics, and altered ion homeostasis. In this Consensus Statement, insights into the mechanisms of mitochondrial dysfunction in heart failure are presented, along with an overview of emerging treatments with the potential to improve the function of the failing heart by targeting mitochondria.
Collapse
Affiliation(s)
- David A Brown
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, 1035 Integrated Life Sciences Building, 1981 Kraft Drive, Blacksburg, Virginia 24060, USA
| | - Justin B Perry
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, 1035 Integrated Life Sciences Building, 1981 Kraft Drive, Blacksburg, Virginia 24060, USA
| | - Mitchell E Allen
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, 1035 Integrated Life Sciences Building, 1981 Kraft Drive, Blacksburg, Virginia 24060, USA
| | - Hani N Sabbah
- Division of Cardiovascular Medicine, Department of Medicine, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, Michigan 48202, USA
| | - Brian L Stauffer
- Division of Cardiology, Department of Medicine, University of Colorado Denver, 12700 East 19th Avenue, B139, Aurora, Colorado 80045, USA
| | - Saame Raza Shaikh
- Department of Biochemistry and Molecular Biology, East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, 115 Heart Drive, Greenville, North Carolina 27834, USA
| | - John G F Cleland
- National Heart &Lung Institute, National Institute of Health Research Cardiovascular Biomedical Research Unit, Royal Brompton &Harefield Hospitals, Imperial College, London, UK
| | - Wilson S Colucci
- Cardiovascular Medicine Section, Boston University School of Medicine and Boston Medical Center, 88 East Newton Street, C-8, Boston, Massachusetts 02118, USA
| | - Javed Butler
- Division of Cardiology, Health Sciences Center, T-16 Room 080, SUNY at Stony Brook, New York 11794, USA
| | - Adriaan A Voors
- University of Groningen, Department of Cardiology, University Medical Center Groningen, Groningen 9713 GZ, Netherlands
| | - Stefan D Anker
- Department of Innovative Clinical Trials, University Medical Centre Göttingen (UMG), Robert-Koch-Straße, D-37075, Göttingen, Germany
| | - Bertram Pitt
- University of Michigan School of Medicine, 1500 East Medical Center Drive, Ann Arbor, Michigan 48109, USA
| | - Burkert Pieske
- Department of Cardiology, Charité University Medicine, Campus Virchow Klinikum, and German Heart Center Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Gerasimos Filippatos
- National and Kopodistrian University of Athens, School of Medicine, Heart Failure Unit, Department of Cardiology, Athens University Hospital Attikon, Rimini 1, Athens 12462, Greece
| | - Stephen J Greene
- Division of Cardiology, Duke University Medical Center, 2301 Erwin Road Suite 7400, Durham, North Carolina 27705, USA
| | - Mihai Gheorghiade
- Center for Cardiovascular Innovation, Northwestern University Feinberg School of Medicine, 201 East Huron, Galter 3-150, Chicago, Illinois 60611, USA
| |
Collapse
|
9
|
Abstract
The global epidemic of cardiovascular disease remains the leading cause of death in the USA and across the world. Functional and structural integrity of mitochondria are essential for the physiological function of the cardiovascular system. The metabolic adaptation observed in normal heart is lost in the failing myocardium, which becomes progressively energy depleted leading to impaired myocardial contraction and relaxation. Uncoupling of electron transfer from ATP synthesis leads to excess generation of reactive species, leading to widespread cellular injury and cardiovascular disease. Accumulation of mitochondrial DNA mutation has been linked to ischaemic heart disease, cardiomyopathy and atherosclerotic vascular disease. Mitochondria are known to regulate apoptotic and autophagic pathways that have been shown to play an important role in the development of cardiomyopathy and atherosclerosis. A number of pharmacological and non-pharmacological treatment options have been explored in the management of mitochondrial diseases with variable success.
Collapse
Affiliation(s)
- Elizabeth A Dominic
- The George Washington School of Medicine, , Washington, District of Columbia, USA
| | | | | | | | | | | |
Collapse
|
10
|
Fragaki K, Ait-El-Mkadem S, Chaussenot A, Gire C, Mengual R, Bonesso L, Bénéteau M, Ricci JE, Desquiret-Dumas V, Procaccio V, Rötig A, Paquis-Flucklinger V. Refractory epilepsy and mitochondrial dysfunction due to GM3 synthase deficiency. Eur J Hum Genet 2012; 21:528-34. [PMID: 22990144 DOI: 10.1038/ejhg.2012.202] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We report two children, born from consanguineous parents, who presented with early-onset refractory epilepsy associated with psychomotor delay, failure to thrive, blindness and deafness. Polarographic and spectrophotometric analyses in fibroblasts and liver revealed a respiratory chain (RC) dysfunction. Surprisingly, we identified a homozygous nonsense mutation in the GM3 synthase gene by using exome sequencing. GM3 synthase catalyzes the formation of GM3 ganglioside from lactosylceramide, which is the first step in the synthesis of complex ganglioside species. Mass spectrometry analysis revealed that the complete absence of GM3 ganglioside and its biosynthetic derivatives was associated with an upregulation of the alternative globoside pathway in fibroblasts. The accumulation of Gb3 and Gb4 globosides likely has a role in RC dysfunction and in the decrease of mitochondrial membrane potential leading to apoptosis, which we observed in fibroblasts. We show for the first time that GM3 synthase deficiency, responsible for early-onset epilepsy syndrome, leads to a secondary RC dysfunction. Our study highlights the role of secondary mitochondrial disorders that can interfere with the diagnosis and the evolution of other metabolic diseases.
Collapse
Affiliation(s)
- Konstantina Fragaki
- Department of Medical Genetics, National Center for Mitochondrial diseases, Nice Teaching Hospital, Nice, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Tsoukala A, Bjørsvik HR. Synthetic Route Discovery and Introductory Optimization of a Novel Process to Idebenone. Org Process Res Dev 2011. [DOI: 10.1021/op200051v] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anna Tsoukala
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| | - Hans-René Bjørsvik
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| |
Collapse
|
12
|
Fragaki K, Cano A, Benoist JF, Rigal O, Chaussenot A, Rouzier C, Bannwarth S, Caruba C, Chabrol B, Paquis-Flucklinger V. Fatal heart failure associated with CoQ10 and multiple OXPHOS deficiency in a child with propionic acidemia. Mitochondrion 2011; 11:533-6. [PMID: 21329767 DOI: 10.1016/j.mito.2011.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Revised: 01/31/2011] [Accepted: 02/03/2011] [Indexed: 10/18/2022]
Abstract
The role of a secondary respiratory chain deficiency as an additional mechanism to intoxication, leading to development of long-term energy-dependent complications, has been recently suggested in patients with propionic acidemia (PA). We show for the first time a coenzyme Q(10) (CoQ(10)) functional defect accompanied by a multiple organ oxidative phosphorylation (OXPHOS) deficiency in a child who succumbed to acute heart failure in the absence of metabolic stress. Quinone-dependent activities in the liver (complex I+III, complex II+III) were reduced, suggesting a decrease in electron transfer related to the quinone pool. The restoration of complex II+III activity after addition of exogenous ubiquinone to the assay system suggests CoQ(10) deficiency. Nevertheless, we disposed of insufficient material to perform direct measurement of CoQ(10) content in the patient's liver. Death occurred before biochemical diagnosis of OXPHOS deficiency could be made. However, this case highlights the usefulness of rapidly identifying CoQ(10) defects secondary to PA since this OXPHOS disorder has a good treatment response which could improve heart complications or prevent their appearance. Nevertheless, further studies will be necessary to determine whether CoQ(10) treatment can be useful in PA complications linked to CoQ(10) deficiency.
Collapse
Affiliation(s)
- Konstantina Fragaki
- Department of Medical Genetics, Archet 2 Hospital, Nice Teaching Hospital, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Wallace DC, Fan W, Procaccio V. Mitochondrial energetics and therapeutics. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2010; 5:297-348. [PMID: 20078222 DOI: 10.1146/annurev.pathol.4.110807.092314] [Citation(s) in RCA: 520] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mitochondrial dysfunction has been linked to a wide range of degenerative and metabolic diseases, cancer, and aging. All these clinical manifestations arise from the central role of bioenergetics in cell biology. Although genetic therapies are maturing as the rules of bioenergetic genetics are clarified, metabolic therapies have been ineffectual. This failure results from our limited appreciation of the role of bioenergetics as the interface between the environment and the cell. A systems approach, which, ironically, was first successfully applied over 80 years ago with the introduction of the ketogenic diet, is required. Analysis of the many ways that a shift from carbohydrate glycolytic metabolism to fatty acid and ketone oxidative metabolism may modulate metabolism, signal transduction pathways, and the epigenome gives us an appreciation of the ketogenic diet and the potential for bioenergetic therapeutics.
Collapse
Affiliation(s)
- Douglas C Wallace
- Center for Molecular and Mitochondrial Medicine and Genetics and Departments of Biological Chemistry, Ecology and Evolutionary Biology, and Pediatrics, University of California at Irvine, Irvine, California 92697-3940, USA.
| | | | | |
Collapse
|
14
|
Abstract
BACKGROUND Friedreich's ataxia is an autosomal recessive neurodegenerative disease where impaired mitochondrial function and excessive production of free radicals play a central pathogenetic role. Idebenone, a synthetic analogue of coenzyme Q, is a powerful antioxidant that was first administrated to Friedreich's ataxia patients less than 10 years ago. OBJECTIVE The aim of this study was to evaluate the efficacy of idebenone administration and define the optimal dosage. METHODS A critical evaluation of all open and double-blinded idebenone trials in Friedreich's ataxia patients was undertaken. RESULTS/CONCLUSIONS Idebenone is well tolerated in paediatric and adult patients. Most trials demonstrated a positive effect on cardiac hypertrophy. The neurological function is in general not modified in adult patients, but a dose-dependent effect was demonstrated in young Friedreich's ataxia patients. Further double-blinded high-dose trials should evaluate idebenone in Friedreich's ataxia early in the disease course.
Collapse
Affiliation(s)
- Caterina Tonon
- Università di Bologna, Dipartimento di Medicina Interna, dell'Invecchiamento e Malattie Nefrologiche, Azienda Ospedaliero-Universitaria di Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | | |
Collapse
|
15
|
Murphy R, Turnbull DM, Walker M, Hattersley AT. Clinical features, diagnosis and management of maternally inherited diabetes and deafness (MIDD) associated with the 3243A>G mitochondrial point mutation. Diabet Med 2008; 25:383-99. [PMID: 18294221 DOI: 10.1111/j.1464-5491.2008.02359.x] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Maternally inherited diabetes and deafness (MIDD) affects up to 1% of patients with diabetes but is often unrecognized by physicians. It is important to make an accurate genetic diagnosis, as there are implications for clinical investigation, diagnosis, management and genetic counselling. This review summarizes the range of clinical phenotypes associated with MIDD; outlines the advances in genetic diagnosis and pathogenesis of MIDD; summarizes the published prevalence data and provides guidance on the clinical management of these patients and their families.
Collapse
Affiliation(s)
- R Murphy
- Institute of Biomedical Sciences, Peninsula Medical School, Exeter, UK.
| | | | | | | |
Collapse
|
16
|
Jauslin ML, Vertuani S, Durini E, Buzzoni L, Ciliberti N, Verdecchia S, Palozza P, Meier T, Manfredini S. Protective effects of Fe-Aox29, a novel antioxidant derived from a molecular combination of Idebenone and vitamin E, in immortalized fibroblasts and fibroblasts from patients with Friedreich Ataxia. Mol Cell Biochem 2007; 302:79-85. [PMID: 17476463 DOI: 10.1007/s11010-007-9429-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Accepted: 02/09/2007] [Indexed: 12/15/2022]
Abstract
Friedreich Ataxia (FRDA), the most frequent inherited ataxia, is not only characterized by progressive gait and limb ataxia, but in most cases is also accompanied by a severe hypertrophic cardiomyopathy. This life threatening symptom can be ameliorated by the administration of idebenone, a short chain quinone antioxidant, supporting additional evidence that oxidative stress plays a major role in the pathogenesis of this disease. In this study we analyze the combinatorial effect of different antioxidants on cell viability of FRDA fibroblasts and of RAT-1 immortalized fibroblasts exposed to oxidative stress. We find that an equimolar mixture of idebenone and vitamin E is more potent than each of the compound alone. Increased potency was also obtained with a novel synthetic antioxidant (Fe-Aox29) combining the active groups from both idebenone and vitamin E. These results indicate, that idebenone and vitamin E might act synergistically to counteract oxidative stress in fibroblasts from FRDA patients.
Collapse
|
17
|
Schwimmer C, Rak M, Lefebvre-Legendre L, Duvezin-Caubet S, Plane G, di Rago JP. Yeast models of human mitochondrial diseases: from molecular mechanisms to drug screening. Biotechnol J 2006; 1:270-81. [PMID: 16897707 DOI: 10.1002/biot.200500053] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mitochondrial diseases are rare diseases most often linked to energy in the form of ATP-depletion. The high number of nuclear- and mitochondrial-DNA-encoded proteins (>500), required for ATP production and other crucial mitochondrial functions such as NADH re-oxidation, explains the increasing number of reported disorders. In recent years, yeast has revealed to be a powerful model to identify responsible genes, to study primary effects of pathogenic mutations and to determine the molecular mechanisms leading to mitochondrial disorders. However, the clinical management of patients with mitochondrial disorders is still essentially supportive. Here we review some of the most fruitful yeast mitochondrial disorder models and propose to subject these models to highthroughput chemical library screening to prospect new therapeutic drugs against mitochondrial diseases.
Collapse
|
18
|
Roche Y, Peretti P, Bernard S. Influence of the chain length of ubiquinones on their interaction with DPPC in mixed monolayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:468-78. [PMID: 16631108 DOI: 10.1016/j.bbamem.2006.03.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 03/13/2006] [Accepted: 03/14/2006] [Indexed: 10/24/2022]
Abstract
The thermodynamic behavior of representative short (UQ2), middle (UQ4 and UQ6) and long-chain (UQ10) ubiquinones (UQ) mixed with dipalmitoyl-phosphatidylcholine (DPPC) was studied in monolayers at the air-water interface. The influence of isoprenoid chain-length of UQ on miscibility of both lipids was investigated by analysis of surface pressure-area isotherms and using fluorescence microscopy. Analysis of excess areas (A(ex)) and free energies of mixing (DeltaGm), calculated from compression isotherms in the full range of ubiquinones concentrations, has given evidences for UQ-rich constant-size (UQ6, UQ10) or less growth limited (UQ2, UQ4) microdomains formation within mixed films. Fluorescence microscopy observation revealed that ubiquinones are preferentially soluble in the expanded phase. When lateral pressure increased, concomitant evolutions of A(ex) and DeltaGm parameters, and composition dependence of collapse surface pressures, argue for an evolution towards a total segregation, never reached due to expulsion of ubiquinones from the film. The possible significance of these observations is discussed in relation to ubiquinones organization and similar chain length effects in membranes.
Collapse
Affiliation(s)
- Yann Roche
- Paris Descartes University, Biomedical research center, Laboratoire de Neuro-Physique Cellulaire, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | | | | |
Collapse
|
19
|
Bhagavan HN, Chopra RK. Potential role of ubiquinone (coenzyme Q10) in pediatric cardiomyopathy. Clin Nutr 2005; 24:331-8. [PMID: 15896419 DOI: 10.1016/j.clnu.2004.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Accepted: 12/16/2004] [Indexed: 11/21/2022]
Abstract
Pediatric cardiomyopathy (PCM) represents a group of rare and heterogeneous disorders that often results in death. While there is a large body of literature on adult cardiomyopathy, all of the information is not necessarily relevant to children with PCM. About 40% of children who present with symptomatic cardiomyopathy are reported to receive a heart transplant or die within the first two years of life. In spite of some of the advances in the management of PCM, the data shows that the time to transplantation or death has not improved during the past 35 years. Coenzyme Q10 is a vitamin-like nutrient that has a fundamental role in mitochondrial function, especially as it relates to the production of energy (ATP) and also as an antioxidant. Based upon the biochemical rationale and a large body of data on patients with adult cardiomyopathy, heart failure, and mitochondrial diseases with heart involvement, a role for coenzyme Q10 therapy in PCM patients is indicated, and preliminary results are promising. Additional studies on the potential usefulness of coenzyme Q10 supplementation as an adjunct to conventional therapy in PCM, particularly in children with dilated cardiomyopathy, are therefore warranted.
Collapse
Affiliation(s)
- Hemmi N Bhagavan
- Nutrition Science Department, Tishcon Corporation, 30 New York Avenue, P.O. Box 331, Westbury, NY 11590, USA.
| | | |
Collapse
|
20
|
Fernández-Ayala DJM, López-Lluch G, García-Valdés M, Arroyo A, Navas P. Specificity of coenzyme Q10 for a balanced function of respiratory chain and endogenous ubiquinone biosynthesis in human cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1706:174-83. [PMID: 15620378 DOI: 10.1016/j.bbabio.2004.10.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Revised: 10/08/2004] [Accepted: 10/25/2004] [Indexed: 11/16/2022]
Abstract
Coenzyme Q (Q) is an obligatory component of both respiratory chain and uncoupling proteins. Also, Q acts as an antioxidant in cellular membranes. Several neurodegenerative diseases are associated with modifications of Q10 levels. For these reasons, therapies based on Q supplementation in the diet are currently studied in order to mitigate the symptoms of these diseases. However, the incorporation of exogenous Q also affects aging process in nematodes probably affecting reactive oxygen species (ROS) production. The aim of the present work is to clarify if supplementation with both Q10 and Q6 isoforms affects mitochondrial Q10 content, respiratory chain activity and ROS levels in human cells. Cells incorporated exogenously added Q10 and Q6 isoforms into mitochondria that produced changes in mitochondrial activity depending on the side chain length. Supplementation with Q10, but not with Q6, increased mitochondrial Q-dependent activities. However, Q6 affected the mitochondrial membrane potential, ROS production, and increased the protein levels of both catalase and Mn-superoxide dismutase (Mn-SOD). Also, Q6 induced a transient decrease in endogenous mitochondrial Q10 levels by increasing its catabolism. These results show that human cells supplemented with Q6 undergo a mitochondrial impairment, which is not observed with Q10 supplementation.
Collapse
Affiliation(s)
- Daniel J M Fernández-Ayala
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide, Carretera de Utrera Km 1, 43013, Sevilla, Spain
| | | | | | | | | |
Collapse
|
21
|
Lodi R, Rajagopalan B, Blamire AM, Crilley JG, Styles P, Chinnery PF. Abnormal cardiac energetics in patients carrying the A3243G mtDNA mutation measured in vivo using phosphorus MR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1657:146-50. [PMID: 15238271 DOI: 10.1016/j.bbabio.2004.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Revised: 05/10/2004] [Accepted: 05/10/2004] [Indexed: 11/19/2022]
Abstract
Cardiomyopathy is a frequent cause of morbidity and mortality in patients carrying the A3243G transition in the mitochondrial DNA (mtDNA) tRNALeu(UUR) gene, the most common heteroplasmic single mtDNA defect. We used phosphorus magnetic resonance spectroscopy (31P-MRS) to look for evidence of an in vivo bioenergetics defect in patients carrying the A3243G mtDNA mutation with and without echocardiographic signs of left ventricle hypertrophy (LVH). Eight patients, three with LVH, carrying the A3243G mtDNA mutation and 10 healthy subjects underwent one-dimensional chemical shift imaging 31P-MRS. In the patients, mean cardiac phosphocreatine to adenosine triphosphate ratio (PCr/ATP) (1.55 +/- 0.58) was significantly reduced compared to the control group (2.34 +/- 0.14; P < 0.001). Cardiac PCr/ATP was within the normal range only in one case that showed normal echocardiography. Our results point to a central role of bioenergetics deficit in the development of cardiac hypertrophy in patients with the A3243G mtDNA mutation. Impaired cardiac energy metabolism in patients with normal echocardiography suggests that the enhancement of mitochondrial function may be beneficial not only to patients with cardiac hypertrophy but also to those patients carrying the mutation in the absence of signs of cardiac hypertrophy and/or dysfunction but with cardiac bioenergetics deficit.
Collapse
Affiliation(s)
- Raffaele Lodi
- Dipartimento di Medicina Clinica e Biotecnologia Applicata "D. Campanacci", University of Bologna, Policlinico S. Orsola, Via Massarenti 9, 40138 Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
22
|
Lev D, Nissenkorn A, Leshinsky-Silver E, Sadeh M, Zeharia A, Garty BZ, Blieden L, Barash V, Lerman-Sagie T. Clinical presentations of mitochondrial cardiomyopathies. Pediatr Cardiol 2004; 25:443-50. [PMID: 15185043 DOI: 10.1007/s00246-003-0490-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
UNLABELLED To determine the clinical manifestations and interfamilial variability of patients diagnosed with a mitochondrial cardiomyopathy, we reviewed the charts of 14 patients with cardiomyopathy out of 59 patients with mitochondrial disorders who attended the mitochondrial disease clinic at Wolfson Medical Center from 1996 to 2001. All patients underwent a metabolic evaluation including blood lactate, pyruvate, carnitine, and amino acids and urine organic acids. Respiratory chain enzymes were assessed in 10 patients. The mitochondrial DNA (mtDNA) was assessed for mutations. The age at presentation ranged between 6 months and 24 years. Six of the patients died, 5 from heart failure. The cardiomyopathy was hypertrophic in 10 and dilated in 4. Conduction and rhythm abnormalities were present in 6. Eleven patients had family members with mitochondrial disorders. All the patients had additional involvement of one or more systems. Seven patients exhibited a deficiency of a respiratory chain enzyme in the muscle. The MELAS mtDNA point mutation (3243) was found in one patient. Blood lactic acid levels were increased in 5. Brain MRI abnormalities were observed in 4. CONCLUSIONS Mitochondrial dysfunction frequently affects the heart and may cause both hypertrophic and dilated cardiomyopathy. The cardiomyopathy is usually a part of a multisystem involvement and may rarely be isolated. The course may be stable for many years, but rapid deterioration may occur. Understanding the biochemical and genetic features of these diseases will enable us to comprehend the clinical heterogeneity of these disorders.
Collapse
Affiliation(s)
- D Lev
- Mitochondrial Disease Clinic, Metabolic Neurogenetic Service, Wolfson Medical Center, Holon, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Nalvarte I, Damdimopoulos AE, Spyrou G. Human mitochondrial thioredoxin reductase reduces cytochrome c and confers resistance to complex III inhibition. Free Radic Biol Med 2004; 36:1270-8. [PMID: 15110392 DOI: 10.1016/j.freeradbiomed.2004.02.072] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2003] [Revised: 02/09/2004] [Accepted: 02/19/2004] [Indexed: 11/16/2022]
Abstract
The ubiquitously expressed mammalian thioredoxin reductases are selenoproteins that together with NADPH regenerate active reduced thioredoxins and are involved in diverse actions mediated by redox control. Two main forms of mammalian thioredoxin reductases have been isolated, one cytosolic (TrxR1) and one present in mitochondria (TrxR2). Although the principal target for TrxRs is thioredoxin, the cytosolic form can regenerate several important antioxidants such as ascorbic acid, lipoic acid, and ubiquinone. In this study we demonstrate that cytochrome c is a substrate for both TrxR1 and TrxR2. In addition, cells overexpressing TrxR2 are more resistant to impairment of complex III in the mitochondrial respiratory chain upon both antimycin A and myxothiazol treatments, suggesting a complex III bypassing function of TrxR2. Furthermore, we show that cytochrome c is reduced by TrxR2 in vitro, not only by using NADPH as an electron donor but also by using NADH, pointing at TrxR2 as an important redox protein on complex III impairment. These findings may be valuable in understanding respiratory disorders in mitochondrial diseases.
Collapse
Affiliation(s)
- Ivan Nalvarte
- Department of Biosciences at Novum, Center for Biotechnology, Karolinska Institutet, SE-141 57 Huddinge, Sweden
| | | | | |
Collapse
|
24
|
Pastore A, Tozzi G, Gaeta LM, Bertini E, Serafini V, Di Cesare S, Bonetto V, Casoni F, Carrozzo R, Federici G, Piemonte F. Actin glutathionylation increases in fibroblasts of patients with Friedreich's ataxia: a potential role in the pathogenesis of the disease. J Biol Chem 2003; 278:42588-95. [PMID: 12915401 DOI: 10.1074/jbc.m301872200] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Increasing evidence suggests that iron-mediated oxidative stress might underlie the development of neurodegeneration in Friedreich's ataxia (FRDA), an autosomal recessive ataxia caused by decreased expression of frataxin, a protein implicated in iron metabolism. In this study, we demonstrate that, in fibroblasts of patients with FRDA, the cellular redox equilibrium is shifted toward more protein-bound glutathione. Furthermore, we found that actin is glutathionylated, probably as a result of the accumulation of reactive oxygen species, generated by iron overload in the disease. Indeed, high-pressure liquid chromatography analysis of control fibroblasts in vivo treated with FeSO4 showed a significant increase in the protein-bound/free GSH ratio, and Western blot analysis indicated a relevant rise in glutathionylation. Actin glutathionylation contributes to impaired microfilament organization in FRDA fibroblasts. Rhodamine phalloidin staining revealed a disarray of actin filaments and a reduced signal of F-actin fluorescence. The same hematoxylin/eosin-stained cells showed abnormalities in size and shape. When we treated FRDA fibroblasts with reduced glutathione, we obtained a complete rescue of cytoskeletal abnormalities and cell viability. Thus, we conclude that oxidative stress may induce actin glutathionylation and impairment of cytoskeletal functions in FRDA fibroblasts.
Collapse
Affiliation(s)
- Anna Pastore
- Laboratory of Biochemistry, Children's Hospital and Research Institute Bambino Gesù, Piazza S. Onofrio 4, 00165 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Affiliation(s)
- Yau-Huei Wei
- Department of Biochemistry, Center for Cellular and Molecular Biology, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | | |
Collapse
|
26
|
Abstract
The heart is highly dependent for its function on oxidative energy generated in mitochondria, primarily by fatty acid beta-oxidation, respiratory electron chain and oxidative phosphorylation. Defects in mitochondrial structure and function have been found in association with cardiovascular diseases such as dilated and hypertrophy cardiomyopathy, cardiac conduction defects and sudden death, ischemic and alcoholic cardiomyopathy, as well as myocarditis. While a subset of these mitochondrial abnormalities have a defined genetic basis (e.g. mitochondrial DNA changes leading to oxidative phosphorylation dysfunction,fatty acid beta-oxidation defects due to specific nuclear DNA mutations), other abnormalities appear to be due to a more sporadic or environmental cardiotoxic insult or have not yet been characterized.This review focuses on abnormalities in mitochondrial bioenergetic function and mitochondrial DNA defects associated with cardiovascular diseases, their significance in cardiac pathogenesis as well as on the available diagnostic and therapeutic options. A concise background concerning mitochondrial biogenesis and bioenergetic pathways during cardiac growth,development and aging will also be provided.
Collapse
Affiliation(s)
- José Marín-García
- The Molecular Cardiology and Neuromuscular Institute. Highland Park, NJ 08904, USA.
| | | |
Collapse
|
27
|
Mahoney DJ, Parise G, Tarnopolsky MA. Nutritional and exercise-based therapies in the treatment of mitochondrial disease. Curr Opin Clin Nutr Metab Care 2002; 5:619-29. [PMID: 12394637 DOI: 10.1097/00075197-200211000-00004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW This review will critically summarize the nutritional and exercise-based interventions that have been used to treat mitochondrial disease, with a focus on the biochemical or molecular rationale for their use as well as recent advances in the field. RECENT FINDINGS Many nutritional-based treatment strategies have been used in an attempt to target energy impairment and its sequelae. Recently, coenzyme Q10, idebenone and triacylglycerol have been shown to bypass defective respiratory enzymes or scavenge free radicals, whereas creatine monohydrate has provided an alternative energy source. Thiamine has been used to decrease lactate levels and increase flux through aerobic metabolism, and riboflavin has been used as a precursor to complexes I and II. Several therapies employing various antioxidants in combination with other supplements have been effective at targeting several of the final common pathways of mitochondrial disease. Miscellaneous supplements, such as L-arginine and uridine, have also had recent success. However, although positive responses have been reported with these agents, many reports have shown no benefit, and there is widespread disparity in the literature. An alternative approach to treatment is exercise training. Both resistance and endurance exercise training have had positive outcomes in patients with mitochondrial disease, although several questions remain to be answered. SUMMARY There is no currently recognized treatment for mitochondrial disease. Future clinical trials are needed, as well as research into the potential for in-vitro screening of various compounds within affected cells from patients. Until this time, an accurate diagnosis will facilitate treatment on a case-by-case basis.
Collapse
Affiliation(s)
- Douglas J Mahoney
- Department of Medical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
28
|
Abstract
Here, relationships between alterations in tissue-specific content, protein structure, activity, and/or assembly of respiratory complexes III and IV induced by mutations in corresponding genes and various human pathologies are reviewed. Cytochrome bc(1) complex and cytochrome c oxidase (COX) deficiencies have been detected in a heterogeneous group of neuromuscular and non-neuromuscular diseases in childhood and adulthood, presenting a number of clinical phenotypes of variable severity. Such disorders can be caused by mutations located either in mitochondrial genes or in nuclear genes encoding structural subunits of the complexes or corresponding assembly factors/chaperones. Of the defects in mitochondrial DNA genes, mutations in cytochrome b subunit of complex III, and in structural subunits I-III of COX have been described to date. As to defects in nuclear DNA genes, mutations in genes encoding the complexes assembly factors such as the BCS1L protein for complex III; and SURF-1, SCO1, SCO2, and COX10 for complex IV have been identified so far.
Collapse
Affiliation(s)
- Vitaliy B Borisov
- AN Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119899, Russian Federation.
| |
Collapse
|
29
|
Marín-García J, Goldenthal MJ. Understanding the impact of mitochondrial defects in cardiovascular disease: a review. J Card Fail 2002; 8:347-61. [PMID: 12411986 DOI: 10.1054/jcaf.2002.127774] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Defects in mitochondrial structure and function have been found in association with cardiovascular diseases such as dilated and hypertrophic cardiomyopathy, cardiac conduction defects and sudden death, ischemic and alcoholic cardiomyopathy, and myocarditis. A genetic basis has been established for some mitochondrial abnormalities (eg, mitochondrial DNA changes leading to oxidative phosphorylation dysfunction, fatty acid beta-oxidation (FAO) defects resulting from specific nuclear mutations) whereas other abnormalities appear to be due to a more sporadic or environmental cardiotoxic insult or have not yet been characterized. METHODS This article reviews mitochondrial abnormalities in structure or function reported in cardiac diseases highlighting information about their potential etiology, significance in cardiac pathogenesis, and diagnostic and therapeutic options available to the clinician. We also provide a brief background concerning mitochondrial biogenesis and bioenergetic pathways in cardiac growth, development, and aging. CONCLUSIONS Although aberrations in bioenergetic functioning of mitochondria appear to be most often related to cardiac dysfunction, the primary defect(s) causing bioenergetic dysfunction may reside in a nonbioenergetic pathway (eg, signaling between mitochondria and nucleus) or in overall mitochondrial biogenesis or degradation pathways.
Collapse
Affiliation(s)
- José Marín-García
- Molecular Cardiology and Neuromuscular Institute, Highland Park, New Jersey 08904, USA
| | | |
Collapse
|
30
|
Geromel V, Darin N, Chrétien D, Bénit P, DeLonlay P, Rötig A, Munnich A, Rustin P. Coenzyme Q(10) and idebenone in the therapy of respiratory chain diseases: rationale and comparative benefits. Mol Genet Metab 2002; 77:21-30. [PMID: 12359126 DOI: 10.1016/s1096-7192(02)00145-2] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
While there have been major advances in both the identification of the molecular basis and our understanding of mitochondrial pathology, the clinical management of patients with mitochondrial respiratory chain disease is still essentially supportive. Quinones are the only pharmacological agents that have proven some efficacy when, and only when, given to patients presenting with quite specific respiratory chain defects. In this article, after a short presentation of the coenzyme Q(10) molecule, its origin and distribution in human body, we summarize our present knowledge on its several physiological functions. We next discuss the rational that justifies using different types of quinones in the therapy of mitochondrial disorders. We finally briefly review the available data obtained in the therapy of mitochondrial disorders by using quinones as either substitutive electron carriers or antioxidant compounds.
Collapse
Affiliation(s)
- Vanna Geromel
- Service de Génétique Médicale and Unité de Recherches sur les Handicaps Génétiques de l'Enfant INSERM U-393, Hôpital Necker-Enfants Malades, 149, rue de Sèvres, 75743 15, Paris Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Ardaillou R. [Gene therapy: its current place and its future]. Rev Med Interne 2002; 23:679-82. [PMID: 12360748 DOI: 10.1016/s0248-8663(02)00641-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Abstract
Mitochondrial dysfunction should be considered in the differential diagnosis of any progressive multisystem disorder. The diagnosis is most challenging when only one symptom is present. In contrast, the diagnosis is easier to consider when two or more seemingly unrelated symptoms are present, involving more than one organ system. It is important to consider the diagnosis of a mitochondrial disorder when dealing with an unexplained association of symptoms, with an early onset and progressive course involving seemingly unrelated organs. The investigation can be relatively straightforward if a person has a recognizable phenotype and if it is possible to identify a known pathogenic mtDNA mutation. The difficulty arises when no known mtDNA defect can be found or when the clinical abnormalities are complex and not easily matched to those of more common mitochondrial disorders. In summary: A full mitochondrial evaluation often is warranted in children with a complex neurologic picture or a single neurologic symptom and other system involvement. When the presentation is classic for a maternally inherited mitochondrial syndrome, such as MELAS, MERRF, or Leber's hereditary optic neuropathy, appropriate mtDNA studies should be obtained first. When the clinical picture is classic for a nuclear DNA inherited syndrome and the gene or linkage is known, such as MNGIE, the clinician should proceed with genetic studies. When the clinical picture is nonspecific but highly suggestive of a mitochondrial disorder, the clinician should start with plasma or CSF lactic acid, ketone bodies, plasma acylcarnitines, and urinary organic acids. If these studies are abnormal, the clinician should proceed with muscle biopsy and assessment of the respiratory chain enzymes. Normal plasma or CSF lactic acid does not rule out a mitochondrial disorder.
Collapse
Affiliation(s)
- Lynette Gillis
- Section of Biochemical Genetics, Department of Human Genetics and Molecular Biology, Division of Gastroenterology and Nutrition, University of Pennsylvania School of Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
33
|
Abstract
Recently, our knowledge of yeast mitochondrial biogenesis has considerably progressed. This concerns the import machinery that guides preproteins synthesized on the cytoplasmic ribosomes through the mitochondrial outer and inner membranes, as well as the inner membrane insertion machinery of mitochondrially encoded polypeptides, or the proteins participating in the assembly and quality control of the respiratory complexes and ATP synthase. More recently, two new fields have emerged, biosynthesis of the iron-sulfur clusters and dynamics of the mitochondrion. Many of the newly discovered yeast proteins have homologues in human mitochondria. Thus, Saccharomyces cerevisiae has proven a particularly suitable simple organism for approaching the molecular bases of a growing number of human mitochondrial diseases caused by mutations in nuclear genes identified by positional cloning.
Collapse
Affiliation(s)
- Françoise Foury
- Unité de Biochimie Physiologique, Place Croix du Sud, 2-20, 1348 Louvain-la-Neuve, Belgium.
| | | |
Collapse
|
34
|
Murphy MP. Development of lipophilic cations as therapies for disorders due to mitochondrial dysfunction. Expert Opin Biol Ther 2001; 1:753-64. [PMID: 11728211 DOI: 10.1517/14712598.1.5.753] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mitochondrial dysfunction causes or exacerbates a number of diseases. These include genetic disorders such as Friedreich's ataxia where the primary lesion is a defect in a nuclear gene and those diseases caused by mutations to mitochondrial DNA. Mitochondrial damage also contributes to neurodegenerative diseases, diabetes and ischaemia-reperfusion injury. Drug therapies to prevent or alleviate mitochondrial dysfunction use redox active compounds, anti-oxidants or mitochondrial co-factors, however, their effectiveness is limited. A promising approach to increase the selectivity and potency of these compounds is to modify them so that they concentrate within mitochondria. This can be done by incorporating a lipophilic cation which causes the molecules to concentrate several hundred-fold in mitochondria, driven by the membrane potential across the inner membrane. As lipophilic cations cross biological membranes easily, they can be delivered to mitochondria of the heart, brain and skeletal muscle, the organs most affected by mitochondrial damage. Mitochondria-targeted lipophilic cations may lead to improved therapies for diseases involving mitochondrial dysfunction.
Collapse
Affiliation(s)
- M P Murphy
- MRC-Dunn Human Nutrition Unit, Wellcome Trust-MRC Building, Hills Road, Cambridge CB2 2XY, UK.
| |
Collapse
|