1
|
Saunders A, Johnstone E, Foster A. Development of qPCR methods to detect and quantify the novel Fusarium graminearum 3ANX chemotype variant. J Microbiol Methods 2025; 229:107091. [PMID: 39837425 DOI: 10.1016/j.mimet.2025.107091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/23/2024] [Accepted: 01/14/2025] [Indexed: 01/23/2025]
Abstract
The devastating plant pathogen Fusarium graminearum produces mycotoxins including the novel 3ANX toxin. To detect 3ANX-producing isolates, SYBR Green and locked nucleic acid probe assays were developed, targeting 3ANX Tri1 polymorphisms. Assays were efficient with R2 > 0.99 and specific to 3ANX, detecting as few as 2 copies/μL.
Collapse
Affiliation(s)
- Abbey Saunders
- Charlottetown Research and Development Centre, Agriculture and Agri-Food Canada, 440 University Avenue, Charlottetown, PE C1A 4N6, Canada
| | - Emily Johnstone
- Charlottetown Research and Development Centre, Agriculture and Agri-Food Canada, 440 University Avenue, Charlottetown, PE C1A 4N6, Canada
| | - Adam Foster
- Charlottetown Research and Development Centre, Agriculture and Agri-Food Canada, 440 University Avenue, Charlottetown, PE C1A 4N6, Canada.
| |
Collapse
|
2
|
García-García FA, Cristiani-Urbina E, Morales-Barrera L, Rodríguez-Peña ON, Hernández-Portilla LB, Campos JE, Flores-Ortíz CM. Study of Bacillus cereus as an Effective Multi-Type A Trichothecene Inactivator. Microorganisms 2024; 12:2236. [PMID: 39597625 PMCID: PMC11596695 DOI: 10.3390/microorganisms12112236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 11/29/2024] Open
Abstract
Type A trichothecenes are common mycotoxins in stored cereal grains, where co-contamination is likely to occur. Seeking new microbiological options capable of inactivating more than one type A trichothecene, this study aimed to analyze facultative anaerobe bacteria isolated from broiler proventriculus. For this purpose, type A trichothecenes were produced in vitro, and a facultative anaerobic bacterial consortium was obtained from a broiler's proventriculus. Then, the most representative bacterial strains were purified, and trichothecene inactivating assays were performed. Finally, the isolate with the greatest capacity to remove all tested mycotoxins was selected for biosorption assays. The results showed that when the consortium was tested, neosolaniol (NEO) was the most degraded mycotoxin (64.55%; p = 0.008), followed by HT-2 toxin (HT-2) (22.96%; p = 0.008), and T-2 toxin (T-2) (20.84%; p = 0.014). All isolates were bacillus-shaped and Gram-positive, belonging to the Bacillus and Lactobacillus genera, of which B. cereus was found to remove T-2 (28.35%), HT-2 (32.84%), and NEO (27.14%), where biosorption accounted for 86.10% in T-2, 35.59% in HT-2, and 68.64% in NEO. This study is the first to prove the capacity of B. cereus as an effective inactivator and binder of multi-type A trichothecenes.
Collapse
Affiliation(s)
- Fernando Abiram García-García
- Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla 54090, Mexico; (F.A.G.-G.); (L.B.H.-P.)
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Ciudad de México 07738, Mexico;
| | - Eliseo Cristiani-Urbina
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Ciudad de México 07738, Mexico;
| | - Liliana Morales-Barrera
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Ciudad de México 07738, Mexico;
| | - Olga Nelly Rodríguez-Peña
- Laboratorio de Biogeoquímica, Unidad de Biología, Tecnología y Prototipos (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla 54090, Mexico;
| | - Luis Barbo Hernández-Portilla
- Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla 54090, Mexico; (F.A.G.-G.); (L.B.H.-P.)
| | - Jorge E. Campos
- Laboratorio de Bioquímica Molecular, Unidad de Biología, Tecnología y Prototipos (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla 54090, Mexico;
| | - Cesar Mateo Flores-Ortíz
- Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla 54090, Mexico; (F.A.G.-G.); (L.B.H.-P.)
- Laboratorio de Fisiología Vegetal, Unidad de Biología, Tecnología y Prototipos (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla 54090, Mexico
| |
Collapse
|
3
|
Witte T, Hicks C, Hermans A, Shields S, Overy DP. Debunking the Myth of Fusarium poae T-2/HT-2 Toxin Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3949-3957. [PMID: 38375818 PMCID: PMC10905990 DOI: 10.1021/acs.jafc.3c08437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/21/2024]
Abstract
Fusarium poae is commonly detected in field surveys of Fusarium head blight (FHB) of cereal crops and can produce a range of trichothecene mycotoxins. Although experimentally validated reports of F. poae strains producing T-2/HT-2 trichothecenes are rare, F. poae is frequently generalized in the literature as a producer of T-2/HT-2 toxins due to a single study from 2004 in which T-2/HT-2 toxins were detected at low levels from six out of forty-nine F. poae strains examined. To validate/substantiate the observations reported from the 2004 study, the producing strains were acquired and phylogenetically confirmed to be correctly assigned as F. poae; however, no evidence of T-2/HT-2 toxin production was observed from axenic cultures. Moreover, no evidence for a TRI16 ortholog, encoding a key acyltransferase shown to be necessary for T-2 toxin production in other Fusarium species, was observed in any of the de novo assembled genomes of the F. poae strains. Our findings corroborate multiple field-based and in vitro studies on FHB-associated Fusarium populations which also do not support the production of T-2/HT-2 toxins with F. poae and therefore conclude that F. poae should not be generalized as a T-2/HT-2 toxin producing species of Fusarium.
Collapse
Affiliation(s)
- Thomas
E. Witte
- Agriculture
and Agri-Food Canada, Ottawa Research and
Development Centre, Ottawa, Ontario K1A 0C6, Canada
- Department
of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Carmen Hicks
- Agriculture
and Agri-Food Canada, Ottawa Research and
Development Centre, Ottawa, Ontario K1A 0C6, Canada
| | - Anne Hermans
- Agriculture
and Agri-Food Canada, Ottawa Research and
Development Centre, Ottawa, Ontario K1A 0C6, Canada
| | - Sam Shields
- Agriculture
and Agri-Food Canada, Ottawa Research and
Development Centre, Ottawa, Ontario K1A 0C6, Canada
| | - David P. Overy
- Agriculture
and Agri-Food Canada, Ottawa Research and
Development Centre, Ottawa, Ontario K1A 0C6, Canada
| |
Collapse
|
4
|
Wang J, Zhang M, Yang J, Yang X, Zhang J, Zhao Z. Type A Trichothecene Metabolic Profile Differentiation, Mechanisms, Biosynthetic Pathways, and Evolution in Fusarium Species-A Mini Review. Toxins (Basel) 2023; 15:446. [PMID: 37505715 PMCID: PMC10467051 DOI: 10.3390/toxins15070446] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023] Open
Abstract
Trichothecenes are the most common Fusarium toxins detected in grains and related products. Type A trichothecenes are among the mycotoxins of greatest concern to food and feed safety due to their high toxicity. Recently, two different trichothecene genotypes within Fusarium species were reported. The available information showed that Tri1 and Tri16 genes are the key determinants of the trichothecene profiles of T-2 and DAS genotypes. In this review, polymorphisms in the Tri1 and Tri16 genes in the two genotypes were investigated. Meanwhile, the functions of genes involved in DAS and NEO biosynthesis are discussed. The possible biosynthetic pathways of DAS and NEO are proposed in this review, which will facilitate the understanding of the synthesis process of trichothecenes in Fusarium strains and may also inspire researchers to design and conduct further research. Together, the review provides insight into trichothecene profile differentiation and Tri gene evolutionary processes responsible for the structural diversification of trichothecene produced by Fusarium.
Collapse
Affiliation(s)
- Jianhua Wang
- Institute for Agro-Food Standards and Testing Technology, Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai 201403, China; (M.Z.); (J.Y.); (X.Y.); (J.Z.); (Z.Z.)
| | - Mengyuan Zhang
- Institute for Agro-Food Standards and Testing Technology, Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai 201403, China; (M.Z.); (J.Y.); (X.Y.); (J.Z.); (Z.Z.)
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Junhua Yang
- Institute for Agro-Food Standards and Testing Technology, Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai 201403, China; (M.Z.); (J.Y.); (X.Y.); (J.Z.); (Z.Z.)
| | - Xianli Yang
- Institute for Agro-Food Standards and Testing Technology, Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai 201403, China; (M.Z.); (J.Y.); (X.Y.); (J.Z.); (Z.Z.)
| | - Jiahui Zhang
- Institute for Agro-Food Standards and Testing Technology, Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai 201403, China; (M.Z.); (J.Y.); (X.Y.); (J.Z.); (Z.Z.)
| | - Zhihui Zhao
- Institute for Agro-Food Standards and Testing Technology, Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai 201403, China; (M.Z.); (J.Y.); (X.Y.); (J.Z.); (Z.Z.)
| |
Collapse
|
5
|
Karlsson I, Mellqvist E, Persson P. Temporal and spatial dynamics of Fusarium spp. and mycotoxins in Swedish cereals during 16 years. Mycotoxin Res 2022; 39:3-18. [PMID: 36279098 PMCID: PMC10156870 DOI: 10.1007/s12550-022-00469-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 10/31/2022]
Abstract
AbstractWe analysed the dynamics of Fusarium spp. and mycotoxin contamination in Swedish cereals during 2004–2018. More than 1400 cereal samples from field trials were included, collected in a monitoring programme run by the Swedish Board of Agriculture. Five Fusarium mycotoxins were quantified with LC-MS/MS and fungal DNA from four species was quantified using quantitative real-time PCR. Correlation analyses revealed that deoxynivalenol (DON) and zearalenone (ZEN) were mainly associated with Fusarium graminearum, but stronger correlations with F. culmorum was seen some years. Nivalenol (NIV) was associated with F. poae and the HT-2 and T-2 toxins with F. langsethiae. Clear differences in mycotoxin contamination between different cereal crops and geographical regions were identified. The highest levels of DON and ZEN were found in spring wheat in Western Sweden. For NIV, HT-2 and T-2 toxins, the levels were highest in spring oats and spring barley. Regional differences were not detected for NIV, while HT-2 and T-2 toxins were associated with the northernmost region. We found that delayed harvest was strongly associated with increased levels of DON and ZEN in several crops. However, harvest date did not influence the levels of NIV or HT-2 and T-2 toxins. Our results suggest similar distribution patterns of DON and ZEN, in contrast to NIV and HT-2 and T-2 toxins, probably mirroring the differences in the ecology of the toxin-producing Fusarium species. Timely harvest is important to reduce the risk of DON and ZEN contamination, especially for fields with other risk factors.
Collapse
|
6
|
Meyer JC, Birr T, Hennies I, Wessels D, Schwarz K. Reduction of deoxynivalenol, T-2 and HT-2 toxins and associated Fusarium species during commercial and laboratory de-hulling of milling oats. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:1163-1183. [PMID: 35385360 DOI: 10.1080/19440049.2022.2059576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Oats (Avena sativa L.) are well known for their nutritional properties but are susceptible to the growth of different Fusarium fungi resulting in mycotoxin contamination of harvested oats. In this study, oat samples from harvest years 2011 to 2017 were preselected for their suitability as milling oats for food purposes with DON contents below 1750 µg/kg. The reduction of DON, T-2 and HT-2 toxins during the commercial de-hulling process was analysed. While the average reduction for the sum of T-2 and HT-2 toxins in large oat kernels was 85%, the reduction for thin kernels was 66%. The reduction for DON was about 60% and did not differ for the two kernel fractions. In laboratory de-hulling experiments, milling oat samples and de-hulled oat kernels with known DON, T-2 and HT-2 toxin content were correlated with the associated DNA amount of Fusarium graminearum, Fusarium culmorum and Fusarium langsethiae. The reduction of the Fusarium DNA amount after de-hulling was comparable to the reduction of the associated mycotoxins. Notably, the correlation between F. langsethiae DNA amounts and the sum of T-2 and HT-2 toxin contents was R2 = 0.69 in milling oats and it rose to R2 = 0.85 in de-hulled oat kernels. In laboratory tests, at least one third of the initial levels of DON and the sum of T-2 and HT-2 toxins could be removed by polishing off the first parts of the outer layers; two thirds remained in the polished oat kernels. These observations indicate that de-hulling alone may not be completely sufficient to remove mycotoxin contamination in oats. These findings are of high importance in the discussion of determining legal maximum levels for DON or the sum of T-2 and HT-2 toxins in intermediate and final products.
Collapse
Affiliation(s)
- Jens C Meyer
- H.&J. Brüggen KG, Lübeck, Germany.,Division of Food Technology, Institute of Human Nutrition and Food Science, Kiel University, Kiel, Germany
| | - Tim Birr
- Division of Plant Diseases and Crop Protection, Institute of Phytopathology, Kiel University, Kiel, Germany
| | | | | | - Karin Schwarz
- Division of Food Technology, Institute of Human Nutrition and Food Science, Kiel University, Kiel, Germany
| |
Collapse
|
7
|
|
8
|
Laraba I, McCormick SP, Vaughan MM, Geiser DM, O’Donnell K. Phylogenetic diversity, trichothecene potential, and pathogenicity within Fusarium sambucinum species complex. PLoS One 2021; 16:e0245037. [PMID: 33434214 PMCID: PMC7802971 DOI: 10.1371/journal.pone.0245037] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/21/2020] [Indexed: 01/01/2023] Open
Abstract
The Fusarium sambucinum species complex (FSAMSC) is one of the most taxonomically challenging groups of fusaria, comprising prominent mycotoxigenic plant pathogens and other species with various lifestyles. Among toxins produced by members of the FSAMSC, trichothecenes pose the most significant threat to public health. Herein a global collection of 171 strains, originating from diverse hosts or substrates, were selected to represent FSAMSC diversity. This strain collection was used to assess their species diversity, evaluate their potential to produce trichothecenes, and cause disease on wheat. Maximum likelihood and Bayesian analyses of a combined 3-gene dataset used to infer evolutionary relationships revealed that the 171 strains originally received as 48 species represent 74 genealogically exclusive phylogenetically distinct species distributed among six strongly supported clades: Brachygibbosum, Graminearum, Longipes, Novel, Sambucinum, and Sporotrichioides. Most of the strains produced trichothecenes in vitro but varied in type, indicating that the six clades correspond to type A, type B, or both types of trichothecene-producing lineages. Furthermore, five strains representing two putative novel species within the Sambucinum Clade produced two newly discovered type A trichothecenes, 15-keto NX-2 and 15-keto NX-3. Strains of the two putatively novel species together with members of the Graminearum Clade were aggressive toward wheat when tested for pathogenicity on heads of the susceptible cultivar Apogee. In planta, the Graminearum Clade strains produced nivalenol or deoxynivalenol and the aggressive Sambucinum Clade strains synthesized NX-3 and 15-keto NX-3. Other strains within the Brachygibbosum, Longipes, Novel, Sambucinum, and Sporotrichioides Clades were nonpathogenic or could infect the inoculated floret without spreading within the head. Moreover, most of these strains did not produce any toxin in the inoculated spikelets. These data highlight aggressiveness toward wheat appears to be influenced by the type of toxin produced and that it is not limited to members of the Graminearum Clade.
Collapse
Affiliation(s)
- Imane Laraba
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit. 1815 N. University, Peoria, IL, United States of America
| | - Susan P. McCormick
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit. 1815 N. University, Peoria, IL, United States of America
| | - Martha M. Vaughan
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit. 1815 N. University, Peoria, IL, United States of America
| | - David M. Geiser
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, Pennsylvania, PA, United States of America
| | - Kerry O’Donnell
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit. 1815 N. University, Peoria, IL, United States of America
| |
Collapse
|
9
|
Hussar P, Popovska-Percinic F, Blagoevska K, Järveots T, Dūrītis I. Immunohistochemical Study of Glucose Transporter GLUT-5 in Duodenal Epithelium in Norm and in T-2 Mycotoxicosis. Foods 2020; 9:E849. [PMID: 32610537 PMCID: PMC7404732 DOI: 10.3390/foods9070849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/28/2020] [Accepted: 06/26/2020] [Indexed: 11/16/2022] Open
Abstract
Although patterns of glucose transporter expression and notes about diseases leading to adaptive changes in intestinal fructose transport have been well-characterized, the connection between infection and fructose transportation has been lightly investigated. Up to now only few studies on GLUT-5 expression and function under pathological conditions in bird intestines have been carried out. The aim of our current research was to immunolocalize GLUT-5 in chicken duodenal epithelium in norm and during T-2 mycotoxicosis. Material from chicken (Gallus gallus domesticus) duodenum was collected from twelve seven-day-old female broilers, divided into control group and broilers with T-2 mycotoxicosis. The material was fixed with 10% formalin and thereafter embedded into paraffin; slices 7 μm in thickness were cut, followed by immunohistochemical staining, according to the manufacturers guidelines (IHC kit, Abcam, UK) using polyclonal primary antibody Rabbit anti-GLUT-5. Our study revealed the strong expression of GLUT-5 in the apical parts of the duodenal epithelial cells in the control group chickens and weak staining for GLUT-5 in the intestinal epithelium in the T-2 mycotoxicosis group. Our results confirmed decreased the expression of GLUT-5 in the duodenal epithelium during T-2 mycotoxicosis.
Collapse
Affiliation(s)
- Piret Hussar
- Faculty of Medicine, University of Tartu, Ravila 19, 50411 Tartu, Estonia
| | - Florina Popovska-Percinic
- Faculty of Veterinary Medicine, Ss.Cyril & Methodius University in Skopje, 1000 Skopje, North Macedonia;
| | - Katerina Blagoevska
- Laboratory for Molecular Food Analyses and Genetically Modified Organism, Food Institute, Faculty of Veterinary Medicine, 1000 Skopje, North Macedonia;
| | - Tõnu Järveots
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia;
| | - Ilmārs Dūrītis
- Faculty of Veterinary Medicine, Latvian University of Agriculture, LV 3004 Jelgava, Latvia;
| |
Collapse
|
10
|
Maeda K, Tanaka Y, Matsuyama M, Sato M, Sadamatsu K, Suzuki T, Matsui K, Nakajima Y, Tokai T, Kanamaru K, Ohsato S, Kobayashi T, Fujimura M, Nishiuchi T, Takahashi-Ando N, Kimura M. Substrate specificities of Fusarium biosynthetic enzymes explain the genetic basis of a mixed chemotype producing both deoxynivalenol and nivalenol-type trichothecenes. Int J Food Microbiol 2020; 320:108532. [DOI: 10.1016/j.ijfoodmicro.2020.108532] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 01/02/2020] [Accepted: 01/20/2020] [Indexed: 01/31/2023]
|
11
|
Foroud NA, Baines D, Gagkaeva TY, Thakor N, Badea A, Steiner B, Bürstmayr M, Bürstmayr H. Trichothecenes in Cereal Grains - An Update. Toxins (Basel) 2019; 11:E634. [PMID: 31683661 PMCID: PMC6891312 DOI: 10.3390/toxins11110634] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 01/01/2023] Open
Abstract
Trichothecenes are sesquiterpenoid mycotoxins produced by fungi from the order Hypocreales, including members of the Fusarium genus that infect cereal grain crops. Different trichothecene-producing Fusarium species and strains have different trichothecene chemotypes belonging to the Type A and B class. These fungi cause a disease of small grain cereals, called Fusarium head blight, and their toxins contaminate host tissues. As potent inhibitors of eukaryotic protein synthesis, trichothecenes pose a health risk to human and animal consumers of infected cereal grains. In 2009, Foroud and Eudes published a review of trichothecenes in cereal grains for human consumption. As an update to this review, the work herein provides a comprehensive and multi-disciplinary review of the Fusarium trichothecenes covering topics in chemistry and biochemistry, pathogen biology, trichothecene toxicity, molecular mechanisms of resistance or detoxification, genetics of resistance and breeding strategies to reduce their contamination of wheat and barley.
Collapse
Affiliation(s)
- Nora A Foroud
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada.
| | - Danica Baines
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada.
| | - Tatiana Y Gagkaeva
- Laboratory of Mycology and Phytopathology, All-Russian Institute of Plant Protection (VIZR), St. Petersburg, Pushkin 196608, Russia.
| | - Nehal Thakor
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada.
| | - Ana Badea
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB R7A 5Y3, Canada.
| | - Barbara Steiner
- Department of Agrobiotechnology (IFA-Tulln), Institute of Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln 3430, Austria.
| | - Maria Bürstmayr
- Department of Agrobiotechnology (IFA-Tulln), Institute of Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln 3430, Austria.
| | - Hermann Bürstmayr
- Department of Agrobiotechnology (IFA-Tulln), Institute of Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln 3430, Austria.
| |
Collapse
|
12
|
González-Jartín JM, Alfonso A, Sainz MJ, Vieytes MR, Botana LM. Detection of new emerging type-A trichothecenes by untargeted mass spectrometry. Talanta 2018; 178:37-42. [DOI: 10.1016/j.talanta.2017.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 10/18/2022]
|
13
|
Ma S, Zhao Y, Sun J, Mu P, Deng Y. miR449a/SIRT1/PGC-1α Is Necessary for Mitochondrial Biogenesis Induced by T-2 Toxin. Front Pharmacol 2018; 8:954. [PMID: 29354057 PMCID: PMC5760504 DOI: 10.3389/fphar.2017.00954] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 12/15/2017] [Indexed: 12/19/2022] Open
Abstract
T-2 toxin is one of the type A trichothecenes produced mainly by the Fusarium genus. Due to its broad distribution and highly toxic nature, it is of great concern as a threat to human health and animal breeding. In addition to its ribotoxic effects, T-2 toxin exposure leads to mitochondrial dysfunction, reactive oxygen species (ROS) accumulation and eventually cell apoptosis. We observed that mitochondrial biogenesis is highly activated in animal cells exposed to T-2 toxin, probably in response to the short-term toxic effects of T-2 toxin. However, the molecular mechanisms of T-2 toxin-induced mitochondrial biogenesis remain unclear. In this study, we investigated the regulatory mechanism of key factors in the ROS production and mitochondrial biogenesis that were elicited by T-2 toxin in HepG2 and HEK293T cells. Low dosages of T-2 toxin significantly increased the levels of both mitochondrial biogenesis and ROS. This increase was linked to the upregulation of SIRT1, which is controlled by miR-449a, whose expression was strongly inhibited by T-2 toxin treatment. In addition, we found that T-2 toxin-induced mitochondrial biogenesis resulted from SIRT1-dependent PGC-1α deacetylation. The accumulation of PGC-1α deacetylation, mediated by high SIRT1 levels in T-2 toxin-treated cells, activated the expression of many genes involved in mitochondrial biogenesis. Together, these data indicated that the miR449a/SIRT1/deacetylated PGC-1α axis plays an essential role in the ability of moderate concentrations of T-2 toxin to stimulate mitochondrial biogenesis and ROS production.
Collapse
Affiliation(s)
- Shijie Ma
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis of Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| | - Yurong Zhao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis of Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| | - Jianwei Sun
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Peiqiang Mu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis of Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis of Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
14
|
Abstract
The genus Fusarium includes numerous toxigenic species that are pathogenic to plants or humans, and are able to colonize a wide range of environments on earth. The genus comprises around 70 well-known species, identified by using a polyphasic approach, and as many as 300 putative species, according to phylogenetic species concepts; many putative species do not yet have formal names. Fusarium is one of the most economically important fungal genera because of yield loss due to plant pathogenic activity; mycotoxin contamination of food and feed products which often render them unaccep for marketing; and health impacts to humans and livestock, due to consumption of mycotoxins. Among the most important mycotoxins produced by species of Fusarium are the trichothecenes and the fumonisins. Fumonisins cause fatal livestock diseases and are considered potentially carcinogenic mycotoxins for humans, while trichothecenes are potent inhibitors of protein synthesis. This chapter summarizes the main aspects of morphology, pathology, and toxigenicity of the main Fusarium species that colonize different agricultural crops and environments worldwide, and cause mycotoxin contamination of food and feed.
Collapse
|
15
|
Knutsen HK, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald I, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Wallace H, Dall'Asta C, Gutleb A, Metzler M, Oswald I, Parent-Massin D, Binaglia M, Steinkellner H, Alexander J. Appropriateness to set a group health based guidance value for T2 and HT2 toxin and its modified forms. EFSA J 2017; 15:e04655. [PMID: 32625252 PMCID: PMC7010130 DOI: 10.2903/j.efsa.2017.4655] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The EFSA Panel on Contaminants in the Food Chain (CONTAM) established a tolerable daily intake (TDI) for T2 and HT2 of 0.02 μg/kg body weight (bw) per day based on a new in vivo subchronic toxicity study in rats that confirmed that immune- and haematotoxicity are the critical effects of T2 and using a reduction in total leucocyte count as the critical endpoint. An acute reference dose (ARfD) of 0.3 μg for T2 and HT2/kg bw was established based on acute emetic events in mink. Modified forms of T2 and HT2 identified are phase I metabolites mainly formed through hydrolytic cleavage of one or more of the three ester groups of T2. Less prominent hydroxylation reactions occur predominantly at the side chain. Phase II metabolism involves conjugation with glucose, modified glucose, sulfate, feruloyl and acetyl groups. The few data on occurrence of modified forms indicate that grain products are their main source. The CONTAM Panel found it appropriate to establish a group TDI and a group ARfD for T2 and HT2 and its modified forms. Potency factors relative to T2 for the modified forms were used to account for differences in acute and chronic toxic potencies. It was assumed that conjugates (phase II metabolites of T2, HT2 and their phase I metabolites), which are not toxic per se, would be cleaved releasing their aglycones. These metabolites were assigned the relative potency factors (RPFs) of their respective aglycones. The RPFs assigned to the modified forms were all either 1 or less than 1. The uncertainties associated with the present assessment are considered as high. Using the established group, ARfD and TDI would overestimate any risk of modified T2 and HT2.
Collapse
|
16
|
Morcia C, Tumino G, Ghizzoni R, Badeck FW, Lattanzio VMT, Pascale M, Terzi V. Occurrence of Fusarium langsethiae and T-2 and HT-2 Toxins in Italian Malting Barley. Toxins (Basel) 2016; 8:E247. [PMID: 27556490 PMCID: PMC4999861 DOI: 10.3390/toxins8080247] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/08/2016] [Accepted: 08/15/2016] [Indexed: 11/16/2022] Open
Abstract
T-2 and HT-2 toxins are two of the most toxic members of type-A trichothecenes, produced by a number of Fusarium species. The occurrence of these mycotoxins was studied in barley samples during a survey carried out in the 2011-2014 growing seasons in climatically different regions in Italy. The percentage of samples found positive ranges from 22% to 53%, with values included between 26 and 787 μg/kg. The percentage of samples with a T-2 and HT-2 content above the EU indicative levels for barley of 200 μg/kg ranges from 2% to 19.6% in the 2011-2014 period. The fungal species responsible for the production of these toxins in 100% of positive samples has been identified as Fusarium langsethiae, a well-known producer of T-2 and HT-2 toxins. A positive correlation between the amount of F. langsethiae DNA and of the sum of T-2 and HT-2 toxins was found. This is the first report on the occurrence of F. langsethiae-and of its toxic metabolites T-2 and HT-2-in malting barley grown in Italy.
Collapse
Affiliation(s)
- Caterina Morcia
- Genomics Research Centre (CREA-GPG), Council for Agricultural Research and Economics, Via San Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Giorgio Tumino
- Genomics Research Centre (CREA-GPG), Council for Agricultural Research and Economics, Via San Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Roberta Ghizzoni
- Genomics Research Centre (CREA-GPG), Council for Agricultural Research and Economics, Via San Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Franz W Badeck
- Genomics Research Centre (CREA-GPG), Council for Agricultural Research and Economics, Via San Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Veronica M T Lattanzio
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), via G. Amendola 122/O, 70126 Bari, Italy.
| | - Michelangelo Pascale
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), via G. Amendola 122/O, 70126 Bari, Italy.
| | - Valeria Terzi
- Genomics Research Centre (CREA-GPG), Council for Agricultural Research and Economics, Via San Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| |
Collapse
|
17
|
Hietaniemi V, Rämö S, Yli-Mattila T, Jestoi M, Peltonen S, Kartio M, Sieviläinen E, Koivisto T, Parikka P. Updated survey of Fusarium species and toxins in Finnish cereal grains. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2016; 33:831-48. [PMID: 27002810 DOI: 10.1080/19440049.2016.1162112] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The aim of the project was to produce updated information during 2005-14 on the Fusarium species found in Finnish cereal grains, and the toxins produced by them, as the last comprehensive survey study of Fusarium species and their toxins in Finland was carried out at the turn of the 1960s and the 1970s. Another aim was to use the latest molecular and chemical methods to investigate the occurrence and correlation of Fusarium species and their mycotoxins in Finland. The most common Fusarium species found in Finland in the FinMyco project 2005 and 2006 were F. avenaceum, F. culmorum, F. graminearum, F. poae, F. sporotrichioides and F. langsethiae. F. avenaceum was the most dominant species in barley, spring wheat and oat samples. The occurrence of F. culmorum and F. graminearum was high in oats and barley. Infection by Fusarium fungi was the lowest in winter cereal grains. The incidence of Fusarium species in 2005 was much higher than in 2006 due to weather conditions. F. langsethiae has become much more common in Finland since 2001. F. graminearum has also risen in the order of importance. A highly significant correlation was found between Fusarium graminearum DNA and deoxynivalenol (DON) levels in Finnish oats, barley and wheat. When comparing the FinMyco data in 2005-06 with the results of the Finnish safety monitoring programme for 2005-14, spring cereals were noted as being more susceptible to infection by Fusarium fungi and the formation of toxins. The contents of T-2 and HT-2 toxins and the frequency of exceptionally high DON concentrations all increased in Finland during 2005-14. Beauvericin (BEA), enniatins (ENNs) and moniliformin (MON) were also very common contaminants of Finnish grains in 2005-06. Climate change is leading to warmer weather, and this may indicate more changes in Finnish Fusarium mycobiota and toxin contents and profiles in the near future.
Collapse
Affiliation(s)
- Veli Hietaniemi
- a MTT Agrifood Research Finland, Services Unit , FI-31600 Jokioinen , Finland
| | - Sari Rämö
- a MTT Agrifood Research Finland, Services Unit , FI-31600 Jokioinen , Finland
| | - Tapani Yli-Mattila
- b Molecular Plant Biology , Department of Biochemistry, University of Turku , FI-20014 Turku , Finland
| | - Marika Jestoi
- c Finnish Food Safety Authority Evira , Product Safety Unit , FI-00790 Helsinki , Finland
| | - Sari Peltonen
- d Association of ProAgria Centres, Crop, Horticulture, Pig and Poultry Business , FI-01301 Vantaa , Finland
| | - Mirja Kartio
- e Finnish Food Safety Authority Evira, Plant Analysis Laboratory Unit , FI-00790 Helsinki , Finland
| | - Elina Sieviläinen
- e Finnish Food Safety Authority Evira, Plant Analysis Laboratory Unit , FI-00790 Helsinki , Finland
| | - Tauno Koivisto
- a MTT Agrifood Research Finland, Services Unit , FI-31600 Jokioinen , Finland
| | - Päivi Parikka
- f MTT Agrifood Research Finland, Plant Production Research , FI-31600 Jokioinen , Finland
| |
Collapse
|
18
|
Lysøe E, Frandsen RJN, Divon HH, Terzi V, Orrù L, Lamontanara A, Kolseth AK, Nielsen KF, Thrane U. Draft genome sequence and chemical profiling of Fusarium langsethiae, an emerging producer of type A trichothecenes. Int J Food Microbiol 2016; 221:29-36. [PMID: 26803271 DOI: 10.1016/j.ijfoodmicro.2016.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/27/2015] [Accepted: 01/11/2016] [Indexed: 12/27/2022]
Abstract
Fusarium langsethiae is a widespread pathogen of small grain cereals, causing problems with T-2 and HT-2 toxin contamination in grains every year. In an effort to better understand the biology of this fungus, we present a draft genome sequence of F. langsethiae Fl201059 isolated from oats in Norway. The assembly was fragmented, but reveals a genome of approximately 37.5 Mb, with a GC content around 48%, and 12,232 predicted protein-coding genes. Focusing on secondary metabolism we identified candidate genes for 12 polyketide synthases, 13 non-ribosomal peptide synthetases, and 22 genes for terpene/isoprenoid biosynthesis. Some of these were found to be unique compared to sequence databases. The identified putative Tri5 cluster was highly syntenic to the cluster reported in F. sporotrichioides. Fusarium langsethiae Fl201059 produces a high number of secondary metabolites on Yeast Extract Sucrose (YES) agar medium, dominated by type A trichothecenes. Interestingly we found production of glucosylated HT-2 toxin (Glu-HT-2), previously suggested to be formed by the host plant and not by the fungus itself. In greenhouse inoculations of F. langsethiae Fl201059 on barley and oats, we detected the type A trichothecenes: neosolaniol, HT-2 toxin, T-2 toxin, Glu-HT-2 and numerous derivatives of these.
Collapse
Affiliation(s)
- Erik Lysøe
- Department of Plant Health and Biotechnology, NIBIO - Norwegian Institute of Bioeconomy Research, Høgskoleveien 7, 1430 Ås, Norway.
| | - Rasmus J N Frandsen
- Department of Systems Biology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Hege H Divon
- Section of Mycology, Norwegian Veterinary Institute, PO Box 750, Sentrum 0106, Oslo, Norway
| | - Valeria Terzi
- Genomics Research Centre, Council for Agricultural Research and Economics, via S. Protaso, 302, I-29017 Fiorenzuola d'Arda PC, Italy
| | - Luigi Orrù
- Genomics Research Centre, Council for Agricultural Research and Economics, via S. Protaso, 302, I-29017 Fiorenzuola d'Arda PC, Italy
| | - Antonella Lamontanara
- Genomics Research Centre, Council for Agricultural Research and Economics, via S. Protaso, 302, I-29017 Fiorenzuola d'Arda PC, Italy
| | - Anna-Karin Kolseth
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, PO Box 7043, 75007 Uppsala, Sweden
| | - Kristian F Nielsen
- Department of Systems Biology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Ulf Thrane
- Department of Systems Biology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
19
|
Variation in type A trichothecene production and trichothecene biosynthetic genes in Fusarium goolgardi from natural ecosystems of Australia. Toxins (Basel) 2015; 7:4577-94. [PMID: 26556373 PMCID: PMC4663521 DOI: 10.3390/toxins7114577] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/20/2015] [Accepted: 10/26/2015] [Indexed: 01/21/2023] Open
Abstract
Fusarium goolgardi, isolated from the grass tree Xanthorrhoea glauca in natural ecosystems of Australia, is closely related to fusaria that produce a subgroup of trichothecene (type A) mycotoxins that lack a carbonyl group at carbon atom 8 (C-8). Mass spectrometric analysis revealed that F. goolgardi isolates produce type A trichothecenes, but exhibited one of two chemotypes. Some isolates (50%) produced multiple type A trichothecenes, including 4,15-diacetoxyscirpenol (DAS), neosolaniol (NEO), 8-acetylneosolaniol (Ac-NEO) and T-2 toxin (DAS-NEO-T2 chemotype). Other isolates (50%) produced only DAS (DAS chemotype). In the phylogenies inferred from DNA sequences of genes encoding the RNA polymerase II largest (RPB1) and second largest (RPB2) subunits as well as the trichothecene biosynthetic genes (TRI), F. goolgardi isolates were resolved as a monophyletic clade, distinct from other type A trichothecene-producing species. However, the relationships of F. goolgardi to the other species varied depending on whether phylogenies were inferred from RPB1 and RPB2, the 12-gene TRI cluster, the two-gene TRI1-TRI16 locus, or the single-gene TRI101 locus. Phylogenies based on different TRI loci resolved isolates with different chemotypes into distinct clades, even though only the TRI1-TRI16 locus is responsible for structural variation at C-8. Sequence analysis indicated that TRI1 and TRI16 are functional in F. goolgardi isolates with the DAS-NEO-T2 chemotype, but non-functional in isolates with DAS chemotype due to the presence of premature stop codons caused by a point mutation.
Collapse
|
20
|
Covarelli L, Beccari G, Prodi A, Generotti S, Etruschi F, Juan C, Ferrer E, Mañes J. Fusarium species, chemotype characterisation and trichothecene contamination of durum and soft wheat in an area of central Italy. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:540-551. [PMID: 24909776 DOI: 10.1002/jsfa.6772] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 05/22/2014] [Accepted: 06/02/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND Fusarium head blight (FHB) of wheat is an important disease causing yield losses and mycotoxin contamination. The aim of the work was to detect and characterise trichothecene producing Fusarium species in durum and soft wheat cultivated in an area of central Italy in 2009 and 2010 and to determine trichothecene contamination by LC-MS/MS in the grain. RESULTS F. graminearum s. str. was the most frequent species. In 2009, the occurrence of F. avenaceum and F. poae was higher than in 2010. Among F. graminearum strains, the 15-acetyl deoxynivalenol (15-ADON) chemotype could be found more frequently, followed by nivalenol (NIV) and 3-ADON chemotypes, while all F. culmorum isolates belonged to the 3-ADON chemotype. All F. poae strains were NIV chemotypes. In vitro trichothecene production confirmed molecular characterisation. Durum wheat was characterised by a higher average DON contamination with respect to soft wheat, NIV was always detected at appreciable levels while type-A trichothecenes were mostly found in durum wheat samples in 2009 with 6% of samples exceeding the contamination level recently recommended by the European Union. CONCLUSION Climatic conditions were confirmed to be predominant factors influencing mycotoxigenic species composition and mycotoxin contaminations. However, NIV contamination was found to occur irrespective of climatic conditions, suggesting that it may often represent an under-estimated risk to be further investigated.
Collapse
Affiliation(s)
- Lorenzo Covarelli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Laddomada B, Del Coco L, Durante M, Presicce DS, Siciliano PA, Fanizzi FP, Logrieco AF. Volatile Metabolite Profiling of Durum Wheat Kernels Contaminated by Fusarium poae. Metabolites 2014; 4:932-45. [PMID: 25329776 PMCID: PMC4279153 DOI: 10.3390/metabo4040932] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/29/2014] [Accepted: 10/10/2014] [Indexed: 11/17/2022] Open
Abstract
Volatile metabolites from mold contamination have been proposed for the early identification of toxigenic fungi to prevent toxicological risks, but there are no such data available for Fusarium poae. F. poae is one of the species complexes involved in Fusarium head blight, a cereal disease that results in significant yield losses and quality reductions. The identification of volatile organic compounds associated with F. poae metabolism could provide good markers to indicate early fungal contamination. To this aim, we evaluated the volatile profile of healthy and F. poae-infected durum wheat kernels by SPME-GC/MS analysis. The production of volatile metabolites was monitored for seven days, and the time course analysis of key volatiles was determined. A total of 29 volatile markers were selected among the detected compounds, and multivariate analysis was applied to establish the relationship between potential volatile markers and fungal contamination. A range of volatile compounds, including alcohols, ketones, esters, furans and aromatics, were identified, both in contaminated and in healthy kernels. However, the overall volatile profile of infected samples and controls differed, indicating that the whole volatile profile, rather than individual volatile compounds, could be used to identify F. poae contamination of durum wheat grains.
Collapse
Affiliation(s)
- Barbara Laddomada
- Institute of Sciences of Food Production (ISPA), Prov.le Lecce-Monteroni, 73100 Lecce, Italy.
| | - Laura Del Coco
- Di.S.Te.B.A., University of Salento, Prov.le Lecce-Monteroni, 73100 Lecce, Italy.
| | - Miriana Durante
- Institute of Sciences of Food Production (ISPA), Prov.le Lecce-Monteroni, 73100 Lecce, Italy.
| | - Dominique S Presicce
- Institute for Microelectronics and Microsystems (IMM), Prov.le Lecce-Monteroni, 73100 Lecce, Italy.
| | - Pietro A Siciliano
- Institute for Microelectronics and Microsystems (IMM), Prov.le Lecce-Monteroni, 73100 Lecce, Italy.
| | - Francesco P Fanizzi
- Di.S.Te.B.A., University of Salento, Prov.le Lecce-Monteroni, 73100 Lecce, Italy.
| | - Antonio F Logrieco
- Institute of Sciences of Food Production (ISPA), Via Amendola 122/O, 70125 Bari, Italy.
| |
Collapse
|
22
|
Yang L, Zhao Z, Deng Y, Zhou Z, Hou J. Toxicity induced by F. poae-contaminated feed and the protective effect of Montmorillonite supplementation in broilers. Food Chem Toxicol 2014; 74:120-30. [PMID: 25296281 DOI: 10.1016/j.fct.2014.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 09/19/2014] [Accepted: 09/20/2014] [Indexed: 11/18/2022]
Abstract
The T-2 and HT-2 toxins, the main metabolites of Fusarium poae, induce toxicity in broilers and accumulate in tissues. Consequently, during the breeding process of broilers, diets are frequently supplemented with physical adsorbents to protect birds against the toxicity induced by mycotoxins. In the present research, T-2 and HT-2 were produced in maize inoculated with F. poae. Mont, the strongest adsorbent based on in vitro adsorption ratios, was added to the contaminated diet. One-day-old chickens were randomly and equally divided into the following four groups: control diet group, Mont supplemented diet group, contaminated diet group and detoxification diet group. The experiment lasted for 42 days. Compared to the control group, the contaminated group showed significant decrease in body weight, feed intake and TP (P < 0.05), and marked increase in FCR, ALP, AST and ALT activity, T-2/HT-2 residues in the tissues and the relative expressions of apoptosis-related mRNAs (P < 0.05). Mont supplementation provided protection for the treated broilers in terms of performance, blood biochemistry, hepatic function, T-2/HT-2 residue of tissues and apoptosis. Therefore, Mont may be suitable as a detoxification agent for T-2/HT-2 in feed for broilers.
Collapse
Affiliation(s)
- Lingchen Yang
- College of Veterinary Medicine, Nanjing Agricultural University, No.1 Wei-Gang, Xuanwu District, Nanjing 210095, China
| | - Zhiyong Zhao
- College of Veterinary Medicine, Nanjing Agricultural University, No.1 Wei-Gang, Xuanwu District, Nanjing 210095, China
| | - Yifeng Deng
- College of Veterinary Medicine, Nanjing Agricultural University, No.1 Wei-Gang, Xuanwu District, Nanjing 210095, China
| | - Zhenlei Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, No.1 Wei-Gang, Xuanwu District, Nanjing 210095, China
| | - Jiafa Hou
- College of Veterinary Medicine, Nanjing Agricultural University, No.1 Wei-Gang, Xuanwu District, Nanjing 210095, China.
| |
Collapse
|
23
|
Kokkonen M, Magan N, Medina A. Comparative effects of fungicides and environmental factors on growth and T-2 + HT-2 toxin production by Fusarium sporotrichioides and Fusarium langsethiae strains on an oat-based matrix. WORLD MYCOTOXIN J 2014. [DOI: 10.3920/wmj2013.1658] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The objective of this study was to compare the effect of the fungicides prochloraz and tebuconazole (0-1 µg/ml) on lag phase, growth rate, and T-2 + HT-2 toxin production by strains of Fusarium sporotrichioides and Fusarium langsethiae on oat-based media under different conditions of water activity (aw; 0.98 and 0.95) × temperature (15 and 25 °C). Relative effective dose values for the fungicides required to inhibit growth by 50% (ED50) and 90% (ED90) and T-2 + HT-2 production were determined. The lag phases prior to growth were prolonged at the marginal aw × temperature conditions tested and by the presence of the fungicides. The growth rates of F. sporotrichioides and F. langsethiae were similarly inhibited by prochloraz compared with the controls. However, in the presence of tebuconazole, F. langsethiae was much more tolerant with very little inhibitory effects of the fungicide. The ED50 values ranged from 0.08 to ≯1.0 µg/ml for prochloraz and from 0.34 to ≯1.0 µg/ml for tebuconazole in the case of F. sporotrichioides. For F. langsethiae, these values were 0.09 to ≯1.0 and 0.31 to ≯1.0 µg/ml at the two temperatures and aw levels tested. Prochloraz (0.2-0.4 µg/ml) effectively inhibited toxin production at 15 °C and the two aw levels examined. However, at 25 °C the fungicide was less effective, regardless of the aw level. For tebuconazole, there were significant differences in efficacy against the F. sporotrichioides and F. langsethiae strains. The latter species produced consistently higher amounts of T-2 + HT-2 toxin at both 15 and 25 °C and 0.98 aw. The differential tolerance to the fungicides between the fungal species is discussed in terms of growth and toxin production.
Collapse
Affiliation(s)
- M. Kokkonen
- Applied Mycology Group, Cranfield Health, Cranfield University, Bedford MK43 0AL, United Kingdom
- Finnish Food Safety Authority (EVIRA), Chemistry and Toxicology Unit, Mustialankatu 3, 00790 Helsinki, Finland
| | - N. Magan
- Applied Mycology Group, Cranfield Health, Cranfield University, Bedford MK43 0AL, United Kingdom
| | - A. Medina
- Applied Mycology Group, Cranfield Health, Cranfield University, Bedford MK43 0AL, United Kingdom
| |
Collapse
|
24
|
Mateo E, Valle-Algarra F, Jiménez M, Magan N. Impact of three sterol-biosynthesis inhibitors on growth of Fusarium langsethiae and on T-2 and HT-2 toxin production in oat grain under different ecological conditions. Food Control 2013. [DOI: 10.1016/j.foodcont.2013.05.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Lattanzio VMT, Ciasca B, Haidukowski M, Infantino A, Visconti A, Pascale M. Mycotoxin profile of Fusarium langsethiae isolated from wheat in Italy: production of type-A trichothecenes and relevant glucosyl derivatives. JOURNAL OF MASS SPECTROMETRY : JMS 2013; 48:1291-1298. [PMID: 24338884 DOI: 10.1002/jms.3289] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/26/2013] [Accepted: 09/30/2013] [Indexed: 06/03/2023]
Abstract
Fusarium langsethiae, formally described as a new species over a decade ago, has been identified as the main producer of HT-2 (HT2) and T-2 (T2) toxins in Europe in small cereal grains. Mycotoxin contamination caused by this Fusarium species can represent a food safety hazard that deserves further attention. In the present work, the mycotoxin profile in wheat cultures of F. langsethiae is presented with particular reference to the production of major type-A trichothecenes and their glucosyl derivatives. F. langsethiae isolates, representative of the major Italian wheat cultivation areas, were tested for the production of T2, HT2, diacetoxyscirpenol (DAS) and neosolaniol (NEO), and relevant glucosyl derivatives. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used for the identification and chemical characterization of these metabolites. F. langsethiae isolates under investigation resulted to be potent producers of T2, HT2 and NEO. Furthermore, a well-defined set of isolates, all originating from Central Italy, produced also DAS. All isolates were found to be able to produce HT2 glucosyl derivatives, whereas only traces of T2 glucoside were detected in one sample. Furthermore, two mono-glucosyl derivatives of NEO and one mono-glucoside derivative of DAS were identified and characterized. The screening for the presence/absence of glucosylated trichothecenes in analyzed fungal extracts revealed a general co-occurrence of these derivatives with the parent toxin at levels that could be roughly estimated to account up to 37% of the relevant unconjugated toxin. This is the first report of the production of glucosylated trichothecenes by F. langsethiae cultured on small grains.
Collapse
Affiliation(s)
- Veronica M T Lattanzio
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), via G. Amendola 122/O, 70126, Bari, Italy
| | | | | | | | | | | |
Collapse
|
26
|
Fast methods for screening of trichothecenes in fungal cultures using GC-MS/MS. Mycotoxin Res 2013; 16 Suppl 2:252-6. [PMID: 23605545 DOI: 10.1007/bf02940051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Fast methods for screening for production of simple and macrocyclic trichothecenes, produced on solid substrates were developed. Crude extracts fromFusarium cultures grown on yeast extract sucrose agar (approx. 0.3 cm(2) culture) were derivatised using pentafluoropropionic anhydride and analysed by GC - tandem mass spectrometry using a Finnigan GCQ(+) ion trap. The MS was operated in the EI(+) multiscan mode allowing simultaneous full scan and MS/MS of 3-4 parent ions. Production of acetyl T-2 toxin (AT-2), T-2 toxin, HT-2 toxin (HT-2), T-2 triol (T-2TR), T-2 tetraol (T-2TE), neosolaniol (NEO), iso-neosolaniol (I-NEO), scripentriol (SCR), 4,15-diacetoxyscirpenol (DAS), 15-acetoxyscripentriol (15MAS), 4-acetoxyscripentriol (4MAS), nivalenol (NIV), fusarenon-X (F-X), deoxynivalenol (DON), 15-acetoxy-DON (15DON) and 3-acetoxy-DON (3DON) was studied for severalFusarium species. In hydrolysed crude extracts ofStachybotrys albipes, Trichoderma harzianum, andMemnoniella echinata trichodermol was detected, in cultures ofS. chartarum both verrucarol and trichodermol were detected as the heptafluorobuturyl esters after derivatisation with a imidazole based reagent.
Collapse
|
27
|
Aamot H, Hofgaard I, Brodal G, Elen O, Holen B, Klemsdal S. Evaluation of rapid test kits for quantification of HT-2 and T-2 toxins in naturally contaminated oats. WORLD MYCOTOXIN J 2013. [DOI: 10.3920/wmj2012.1496] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of this study was to evaluate the performance and usefulness of three rapid test kits for analysis of HT-2 and T-2 toxins (HT-2 and T-2), two of the most potent trichothecenes commonly found in European oats. Concentrations of these two toxins combined (HT-2+T-2) were analysed in naturally contaminated oat samples (n=68) using the following test kits: Ridascreen® FAST T-2 Toxin (‘Fast ELISA’), DRAFT Ridascreen® HT-2/T-2 (‘Standard ELISA’, not commercially available), and the lateral flow device ROSA® HT-2-T-2 (‘Rosa LFD’). Mycotoxin analysis by LC-MS/MS was used as a reference method. Rosa LFD offered the best reliability, achieving detection that was stable across toxin levels, whereas detection by both ELISA kits differed significantly among toxin levels (P<0.01). The kits were also evaluated regarding agreement with the reference method (measured as Cohen's kappa) at a HT-2+T-2 concentration of 1000 μg/kg in naturally contaminated oats. Agreement was greatest for Rosa LFD (89.2%), intermediate for Standard ELISA (66.8%), and lowest for Fast ELISA (62.2%). Rosa LFD showed cross-reaction of 100% with both T-2 and HT-2. For the ELISA kits, cross-reactions were 100% with T-2 but below 100% with HT-2. Therefore, to estimate the sum of HT-2 and T-2 in an oat sample, it was necessary to re-calculate the data from both ELISA kits according to the known cross-reaction of each kit with HT-2 and the concentration ratio of HT-2 to T-2 in Norwegian oats. Rosa LFD had the highest correlation with LC-MS/MS (R2=0.94), and the corresponding R2 values for Fast and Standard ELISA were 0.61 and 0.83, respectively. Rosa LFD was well suited for on-site detection. Standard ELISA allows simultaneous testing of several samples that are useful for centralised laboratories.
Collapse
Affiliation(s)
- H.U. Aamot
- Bioforsk - Norwegian Institute for Agricultural and Environmental Research, Plant Health and Plant Protection Division, Høgskoleveien 7, 1432 Ås, Norway
| | - I.S. Hofgaard
- Bioforsk - Norwegian Institute for Agricultural and Environmental Research, Plant Health and Plant Protection Division, Høgskoleveien 7, 1432 Ås, Norway
| | - G. Brodal
- Bioforsk - Norwegian Institute for Agricultural and Environmental Research, Plant Health and Plant Protection Division, Høgskoleveien 7, 1432 Ås, Norway
| | - O. Elen
- Bioforsk - Norwegian Institute for Agricultural and Environmental Research, Plant Health and Plant Protection Division, Høgskoleveien 7, 1432 Ås, Norway
| | - B. Holen
- Bioforsk - Norwegian Institute for Agricultural and Environmental Research, Plant Health and Plant Protection Division, Høgskoleveien 7, 1432 Ås, Norway
| | - S.S. Klemsdal
- Bioforsk - Norwegian Institute for Agricultural and Environmental Research, Plant Health and Plant Protection Division, Høgskoleveien 7, 1432 Ås, Norway
| |
Collapse
|
28
|
Kokkonen M, Medina A, Magan N. Comparative study of water and temperature relations of growth and T-2/HT-2 toxin production by strains of Fusarium sporotrichioides and Fusarium langsethiae. WORLD MYCOTOXIN J 2012. [DOI: 10.3920/wmj2012.1406] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study has compared the effect of water activity (aw, 0.995-0.93) and two temperatures (15, 25 °C) on the growth and HT-2 and T-2 toxin production by three strains of Fusarium sporotrichioides and Fusarium langsethiae in an oat-based medium. There were very little intra-strain differences for each of the species in relation to growth at 0.995-0.93 aw and 15 and 25 °C. Inter-species comparisons showed that at 0.995 and 0.98 aw growth was similar at both temperatures. However, under water stress at 0.95 and 0.93 awF. sporotrichioides strains were more tolerant than those of F. langsethiae. Statistical analyses showed that aw and temperature were significant factors for both species, while strain differences were not (P=0.05). In contrast, the patterns of production of T-2 and HT-2 toxins were very different from that for growth. For F. sporotrichioides, a generally higher amount of toxin was produced at 15 than at 25 °C, with a maximum produced at 0.995 aw, while the production decreased with water stress. Interestingly, maximum production of T-2+HT-2 toxin was achieved by F. langsethiae at 0.98 aw and 25 °C, with very little produced at 0.93 aw. Statistically, aw was the most significant (P=0.05) factor for the mean of the three strains of both species with a significant inter-species difference in terms of toxin production. This was confirmed by the changes in the ratio of HT-2:T-2 toxin in relation to the aw × temperature conditions studied. These results are discussed in the context of the effect of environment on the relative importance of these two species in contaminating oats with these toxins.
Collapse
Affiliation(s)
- M. Kokkonen
- Finnish Food Safety Authority (EVIRA), Chemistry and Toxicology Unit, Mustialankatu 3, 00790 Helsinki, Finland
- Applied Mycology Group, Cranfield Health, Cranfield University, Vincent Building, Bedford MK43 0AL, United Kingdom
| | - A. Medina
- Applied Mycology Group, Cranfield Health, Cranfield University, Vincent Building, Bedford MK43 0AL, United Kingdom
| | - N. Magan
- Applied Mycology Group, Cranfield Health, Cranfield University, Vincent Building, Bedford MK43 0AL, United Kingdom
| |
Collapse
|
29
|
Ndossi D, Frizzell C, Tremoen N, Fæste C, Verhaegen S, Dahl E, Eriksen G, Sørlie M, Connolly L, Ropstad E. An in vitro investigation of endocrine disrupting effects of trichothecenes deoxynivalenol (DON), T-2 and HT-2 toxins. Toxicol Lett 2012; 214:268-78. [DOI: 10.1016/j.toxlet.2012.09.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 09/05/2012] [Accepted: 09/05/2012] [Indexed: 10/27/2022]
|
30
|
Edwards SG, Imathiu SM, Ray RV, Back M, Hare MC. Molecular studies to identify the Fusarium species responsible for HT-2 and T-2 mycotoxins in UK oats. Int J Food Microbiol 2012; 156:168-75. [DOI: 10.1016/j.ijfoodmicro.2012.03.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 03/05/2012] [Accepted: 03/20/2012] [Indexed: 11/28/2022]
|
31
|
Mateo EM, Valle-Algarra F, Mateo R, Jiménez M, Magan N. Effect of fenpropimorph, prochloraz and tebuconazole on growth and production of T-2 and HT-2 toxins by Fusarium langsethiae in oat-based medium. Int J Food Microbiol 2011; 151:289-98. [DOI: 10.1016/j.ijfoodmicro.2011.09.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 09/12/2011] [Accepted: 09/18/2011] [Indexed: 10/17/2022]
|
32
|
Nielsen LK, Jensen JD, Nielsen GC, Jensen JE, Spliid NH, Thomsen IK, Justesen AF, Collinge DB, Jørgensen LN. Fusarium head blight of cereals in Denmark: species complex and related mycotoxins. PHYTOPATHOLOGY 2011; 101:960-9. [PMID: 21323468 DOI: 10.1094/phyto-07-10-0188] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Quantitative real-time polymerase chain reaction differentiating 10 Fusarium spp. and Microdochium nivale or M. majus was applied to a total of 396 grain samples of wheat, barley, triticale, oat, and rye sampled across Denmark from 2003 to 2007, along with selected samples of wheat and barley from 1957 to 2000, to determine incidence and abundance of individual Fusarium spp. The mycotoxins deoxynivalenol (DON), nivalenol, zearalenone, T-2, and HT-2 were quantified using liquid chromatography-double mass spectrometry. Major differences in the Fusarium species complex among the five cereals as well as great yearly variation were seen. Fusarium graminearum, F. culmorum, and F. avenaceum were dominant in wheat, with DON as the dominant mycotoxin. F. langsethiae, F. culmorum, and F. avenaceum were dominant in barley and oat, leading to relatively high levels of the mycotoxins T-2 and HT-2. F. graminearum, F. culmorum, and F. avenaceum dominated in triticale and rye. The nontoxigenic M. nivale/majus were present in significant amounts in all cereal species. Wheat and barley samples from 1957 to 1996 exhibited no or very low amounts of F. graminearum, indicating a recent increase of this pathogen. Biomass and mycotoxin data exhibited good correlations between Fusarium spp. and their corresponding mycotoxins under field conditions.
Collapse
Affiliation(s)
- L K Nielsen
- Aarhus University, Faculty of Agricultural Science, Department of Integrated Pest Management, Research Centre Flakkebjerg, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Pettersson H, Brown C, Hauk J, Hoth S, Meyer J, Wessels D. Survey of T-2 and HT-2 toxins by LC-MS/MS in oats and oat products from European oat mills in 2005-2009. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2011; 4:110-5. [PMID: 24785722 PMCID: PMC3144484 DOI: 10.1080/19393210.2011.561933] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 02/06/2011] [Indexed: 10/25/2022]
Abstract
T-2 and HT-2 toxins were analysed in oats (n = 243), oat flakes (n = 529), oat meal (n = 105) and oat by-products (n = 209) from 11 European mills during 2005-2009 by high-performance liquid chromatography with a triple quadrupole mass spectrometer. Limits of quantification were 5 µg kg(-1) for both T-2 and HT-2 toxins in oats. The incidence of T-2 + HT-2 (>5 µg kg(-1)) in oats, oat flakes, oat meal and oat by-products was 93, 77, 34 and 99%, respectively. The mean values of T-2 + HT-2 were 94, 17, 11 and 293 µg kg(-1) for oats, oat flakes, oat meal and oat by-products, respectively. T-2 and HT-2 occurred together and the T-2 level was 52% of HT-2 in oats. Maximal T-2 and HT-2 concentration in oat flakes and oat meal were 197 and 118 µg kg(-1). The toxins were reduced by 82-88% during processing, but increased 3.1 times in oat by-products.
Collapse
Affiliation(s)
- Hans Pettersson
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, P.O. Box 7024, S-750 07 Uppsala, Sweden
| | - Colin Brown
- CEEREAL, European Breakfast Cereal Association, B-1040 Brussels, Belgium
| | - Julia Hauk
- CEEREAL, European Breakfast Cereal Association, B-1040 Brussels, Belgium
| | - Stefan Hoth
- CEEREAL, European Breakfast Cereal Association, B-1040 Brussels, Belgium
| | - Jens Meyer
- CEEREAL, European Breakfast Cereal Association, B-1040 Brussels, Belgium
| | - Detlev Wessels
- Gesellschaft für Bioanalytik Hamburg mbH, Goldtschmidtstrasse 5, D-21073 Hamburg, Germany
| |
Collapse
|
34
|
Yli-Mattila T, Ward TJ, O'Donnell K, Proctor RH, Burkin AA, Kononenko GP, Gavrilova OP, Aoki T, McCormick SP, Gagkaeva TY. Fusarium sibiricum sp. nov, a novel type A trichothecene-producing Fusarium from northern Asia closely related to F. sporotrichioides and F. langsethiae. Int J Food Microbiol 2011; 147:58-68. [PMID: 21459470 DOI: 10.1016/j.ijfoodmicro.2011.03.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 03/04/2011] [Accepted: 03/07/2011] [Indexed: 11/27/2022]
Abstract
Production of type A trichothecenes has been reported in the closely related species Fusarium langsethiae and F. sporotrichioides. Here, we characterized a collection of Fusarium isolates from Siberia and the Russian Far East (hereafter Asian isolates) that produce high levels of the type A trichothecene T-2 toxin and are similar in morphology to the type A trichothecene-producing F. langsethiae, and to F. poae which often produces the type B trichothecene nivalenol. The Asian isolates possess unique macroscopic and microscopic characters and have a unique TG repeat in the nuclear ribosomal intergenic spacer (IGS rDNA) region. In Asian isolates, the TRI1-TRI16 locus, which determines type A versus type B trichothecene production in other species, is more similar in organization and sequence to the TRI1-TRI16 locus in F. sporotrichioides and F. langsethiae than to that in F. poae. Phylogenetic analysis of the TRI1 and TRI16 gene coding regions indicates that the genes in the Asian isolates are more closely related to those of F. sporotrichioides than F. langsethiae. Phylogenetic analysis of the beta-tubulin, translation elongation factor, RNA polymerase II and phosphate permease gene sequences resolved the Asian isolates into a well-supported sister lineage to F. sporotrichioides, with F. langsethiae forming a sister lineage to F. sporotrichioides and the Asian isolates. The Asian isolates are conspecific with Norwegian isolate IBT 9959 based on morphological and molecular analyses. In addition, the European F. langsethiae isolates from Finland and Russia were resolved into two distinct subgroups based on analyses of translation elongation factor and IGS rDNA sequences. Nucleotide polymorphisms within the IGS rDNA were used to design PCR primers that successfully differentiated the Asian isolates from F. sporotrichioides and F. langsethiae. Based on these data, we formally propose that the Asian isolates together with Norwegian isolate IBT 9959 comprise a novel phylogenetic species, F. sibiricum, while the two subgroups of F. langsethiae only represent intraspecific groups.
Collapse
Affiliation(s)
- Tapani Yli-Mattila
- Department of Biochemistry and Food Chemistry, University of Turku, FI-20014 Turku, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Stakheev A, Ryazantsev D, Gagkaeva T, Zavriev S. PCR detection of Fusarium fungi with similar profiles of the produced mycotoxins. Food Control 2011. [DOI: 10.1016/j.foodcont.2010.09.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
36
|
Strub C, Pocaznoi D, Lebrihi A, Fournier R, Mathieu F. Influence of barley malting operating parameters on T-2 and HT-2 toxinogenesis of Fusarium langsethiae, a worrying contaminant of malting barley in Europe. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2010; 27:1247-52. [PMID: 20597020 DOI: 10.1080/19440049.2010.487498] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The fungus Fusarium langsethiae, exclusively described in Europe at present, seems to have taken the place of other Fusarium species in barley fields over the last 5 years. It has proved to be a highly toxic type-A trichothecene producer (T-2 and HT-2 toxins). The aim of this work was to study the ecotoxinogenesis of this fungus the better to identify and manage the health risk it may pose during the beer manufacturing process. The influence of temperature and water activity on its growth rate and production of toxins are particularly assessed from a macroscopic point of view. Different cultures were grown on sterilized rehydrated barley with a water activity between 0.630 and 0.997 and a temperature ranging from 5 to 35 degrees C. Biomass specific to F. langsethiae and T-2 and HT-2 toxins were quantified by real-time polymerase chain reaction and liquid chromatography-mass spectrometry, respectively. It appears that the optimal temperature and water activity for F. langsethiae toxinogenesis are 28 degrees C and 0.997. This fungus was able to produce 2.22 g kg(-1) of these toxins in 16 days on barley in optimal production conditions. The malting process seems to be a critical step because, in its temperature range, specific production was six times higher than under optimal temperatures for fungus growth. In the short-term, this work will help redefine the process conditions for malting. In the medium-term, the results will contribute to the development of a molecular tool to diagnose the presence of this contaminant and the detection of the toxins in barley, from fields to the end product.
Collapse
Affiliation(s)
- C Strub
- Laboratoire de Genie Chimique, Universite de Toulouse, Ecole Nationale Supérieure d'Agronomie de Toulouse, 1 Avenue de l'Agrobiopôle, BP Castanet-Tolosan, France.
| | | | | | | | | |
Collapse
|
37
|
van der Fels-Klerx H, Stratakou I. T-2 toxin and HT-2 toxin in grain and grain-based commodities in Europe: occurrence, factors affecting occurrence, co-occurrence and toxicological effects. WORLD MYCOTOXIN J 2010. [DOI: 10.3920/wmj2010.1237] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This paper presents an overview of the occurrence of T-2 toxin and HT-2 toxin in cereals in Europe and derived food products, factors influencing the occurrence, co-occurrence with other trichothecenes, and toxicological effects of T-2 and HT-2 in human. Of all cereals, oats showed to be most susceptible to T-2/HT-2 contamination. Particularly, oats grown in Scandinavia and UK in the period 2003-2007 were highly contaminated. This contamination has reduced in 2008 and 2009. In raw cereals, T-2 and HT-2 levels were highly correlated with each other in most instances, with the HT-2 level being two to seven times higher than the T-2 level. The toxin levels showed not to be correlated with levels of deoxynivalenol and nivalenol. The occurrence of T-2 and HT-2 in the field varied between years, regions, cereal grain varieties, sowing time, and precrop. Organically produced cereals contained lower T-2 and HT-2 levels as compared to conventionally grown cereals. Little or no effects from using fungicides was seen. Processing cereals resulted in low T-2 and HT-2 levels in food products, although oat products contained some T-2 and HT-2. The by-products from food processing, often used for animal feeding, frequently were highly contaminated. T-2 and HT-2 showed to have high acute and subacute toxicity, as they caused haematotoxic, immunotoxic, cytotoxic, and dermal effects. Carcinogenicity of T-2 and HT-2 in human has not been proven. Outbreaks of human toxicosis caused by trichothecenes, including T-2 and HT-2, have been reported. The present overview is deemed to be valuable for risk assessments at the European level, planned to be held by EFSA. It also provides directions for further research, including the ecology of the fungi responsible for T-2 and HT-2, and agronomical practices to reduce the contamination in the field.
Collapse
Affiliation(s)
| | - I. Stratakou
- RIKILT, Wageningen UR, P.O. Box 230, 6700 AE, Wageningen, the Netherlands
- Department of Toxicology, Wageningen University, P.O. Box 8000, 6700 AE Wageningen, the Netherlands
| |
Collapse
|
38
|
Fernández-Ortuño D, Loza-Reyes E, Atkins SL, Fraaije BA. The CYP51C gene, a reliable marker to resolve interspecific phylogenetic relationships within the Fusarium species complex and a novel target for species-specific PCR. Int J Food Microbiol 2010; 144:301-9. [PMID: 21071105 DOI: 10.1016/j.ijfoodmicro.2010.10.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 10/14/2010] [Accepted: 10/17/2010] [Indexed: 10/18/2022]
Abstract
Early diagnosis and control of different Fusarium species is essential for successful management of plant disease and subsequent prevention of toxins entering the food chain. This issue can be addressed using phylogenetic analyses and other molecular techniques, including the design of species-specific primers and corresponding PCR assays. In practice, only a few genes are sequenced for most species and insights into the evolutionary mechanisms at the species level usually stem from phylogenetic analyses of only one or a small number of genetic loci. This poses the question of whether the recovered tree accurately reflects the relationships among species or rather more local interrelationships particular to the genetic marker employed. This study examined if the Fusarium-specific CYP51C gene can be used to establish evolutionary relationships between Fusarium species and enable species-specific detection. The resolving power of the CYP51C gene was studied for 46 Fusarium isolates representing 18 different species. The resulting phylogeny analysis showed clear and well-structured separation of the isolates according to their species rank, synthesised toxin and Fusarium section. Moreover, a comparison between the individual CYP51C phylogeny and a reference tree (inferred from the concatenation of ITS, CYP51C, β-tubulin and TEF-1α sequences) indicated superior resolution of CYP51C relative to ITS and β-tubulin sequences. In addition to its suitability as a reliable marker for diagnosis of different toxigenic Fusarium species, we also show that the CYP51C gene is a promising target for development of species-specific PCR. This was demonstrated by the specific detection of Fusarium cerealis in grain samples of wheat.
Collapse
Affiliation(s)
- Dolores Fernández-Ortuño
- Fungicide Research Group, Centre for Sustainable Pest and Disease Management, Department of Plant Pathology and Microbiology, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom.
| | | | | | | |
Collapse
|
39
|
Medina A, Magan N. Temperature and water activity effects on production of T-2 and HT-2 by Fusarium langsethiae strains from north European countries. Food Microbiol 2010; 28:392-8. [PMID: 21356443 DOI: 10.1016/j.fm.2010.09.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 09/27/2010] [Accepted: 09/28/2010] [Indexed: 11/19/2022]
Abstract
This study has examined the effect of ecophysiological factors, water activity (a(w), 0.995-0.90) and temperature (10-37 °C), on the T-2 and HT-2 toxins production by Fusarium langsethiae. Two dimensional profiles for optimum and marginal conditions have been built for two strains from each of four northern European countries (UK, Norway, Sweden, Finland) on an oat-based medium. This showed that the optimum a(w) and temperature conditions for T-2 + HT-2 production was between 0.98-0.995, and 20-30 °C respectively. Kruskal-Wallis analysis of ranks showed a statistically significant differences between the different a(w) levels examined (P < 0.001) but no significant effect of the temperatures examined. The ratio of HT-2/T-2 was investigated and non-uniform distribution of HT-2 toxin was found under different ecological conditions. No statistically significant differences were found for the mean toxin production between strains from the different countries. Intra-strain differences in toxin production was only found for those from Finland (P-value = 0.0247). The growth/no growth and toxin/no toxin conditions in relation to a(w) x temperature have been constructed for the first time. This knowledge will be useful in developing prevention strategies to minimise T-2 and HT-2 toxin contamination by strains of F. langsethiae on important small grain cereals.
Collapse
Affiliation(s)
- A Medina
- Applied Mycology Group, Cranfield Health, Vincent Building, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK.
| | | |
Collapse
|
40
|
Langseth W, Rundberget T, Uhlig S. Electron ionisation mass spectrometry of the pentafluoropropionate esters of trichothecene analogues and culmorin compounds from Fusarium species. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:2641-2649. [PMID: 20740541 DOI: 10.1002/rcm.4687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
This paper reports the mass spectra, obtained after electron ionisation (EI) at 70 eV, of 34 trichothecenes and five culmorin compounds after acylation with pentafluoropropionic anhydride. The derivatised fungal metabolites were separated by gas chromatography, and the mass spectra were obtained by scanning of a single quadrupole mass filter in the scan range m/z 200-900. The fragmentation pathways of three trichothecenes (triacetyl-deoxynivalenol, 4,15-diacetoxy-scirpenol, T-2 toxin) have been studied in more detail by linked scan-high-resolution mass spectrometry. The most common trichothecenes are today more often routinely analysed using LC/MS-based methodologies. However, EI-MS may give complementary structural information, and the data that are summarised in this article may help to identify analogues of one of the largest class of mycotoxins, the tricothecenes, as well as culmorin compounds that are commonly co-produced by Fusarium culmorum and F. graminearum in cultures or naturally contaminated samples.
Collapse
Affiliation(s)
- Wenche Langseth
- National Veterinary Institute, P.O. Box 750 Sentrum, N-0106 Oslo, Norway
| | | | | |
Collapse
|
41
|
Somma S, Alvarez C, Ricci V, Ferracane L, Ritieni A, Logrieco A, Moretti A. Trichothecene and beauvericin mycotoxin production and genetic variability inFusarium poaeisolated from wheat kernels from northern Italy. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2010; 27:729-37. [DOI: 10.1080/19440040903571788] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
42
|
Investigation of stored wheat mycoflora, reporting theFusarium cf.langsethiae in three provinces of Iran during 2007. ANN MICROBIOL 2009. [DOI: 10.1007/bf03178344] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
43
|
Riazantsev DI, Abramova SL, Evstratova SV, Gagkaeva TI, Zavriev SK. FLASH-PCR diagnostics of toxigenic fungi of the genus Fusarium. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2008; 34:799-807. [PMID: 19088754 DOI: 10.1134/s1068162008060113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- D Iu Riazantsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997 Russia
| | | | | | | | | |
Collapse
|
44
|
|
45
|
Niessen L. PCR-based diagnosis and quantification of mycotoxin-producing fungi. ADVANCES IN FOOD AND NUTRITION RESEARCH 2008; 54:81-138. [PMID: 18291305 DOI: 10.1016/s1043-4526(07)00003-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Mycotoxins are secondary metabolites produced by filamentous fungi which have toxicologically relevant effects on vertebrates if administered in small doses via a natural route. In order to improve food safety and to protect consumers from harmful contaminants, the presence of fungi with the potential to produce such compounds must be checked at critical control points during the production of agricultural commodities as well as during the process of food and feed preparation. Polymerase chain reaction (PCR)-based diagnosis has been applied as an alternative assay replacing cumbersome and time-consuming microbiological and chemical methods for the detection and identification of the most serious toxin producers in the fungal genera Fusarium, Aspergillus, and Penicillium. The current chapter covers the numerous PCR-based assays which have been published since the first description of the use of this technology to detect Aspergillus flavus biosynthesis genes in 1996.
Collapse
Affiliation(s)
- Ludwig Niessen
- Technische Universität München, Lehrstuhl für Technische Mikrobiologie, Weihenstephaner Steig 16, D-85350 Freising, Germany
| |
Collapse
|
46
|
Kristensen R, Gauthier G, Berdal KG, Hamels S, Remacle J, Holst-Jensen A. DNA microarray to detect and identify trichothecene- and moniliformin-producing Fusarium species. J Appl Microbiol 2007; 102:1060-70. [PMID: 17381750 DOI: 10.1111/j.1365-2672.2006.03165.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS To develop a DNA microarray for easy and fast detection of trichothecene- and moniliformin-producing Fusarium species. METHOD AND RESULTS A DNA microarray was developed for detection and identification of 14 trichothecene- and moniliformin-producing species of the fungal genus Fusarium. The array could also differentiate between four species groups. Capture probes were designed based on recent phylogenetic analyses of translation elongation factor-1 alpha (TEF-1alpha) sequences. Particular emphasis was put on designing capture probes corresponding to groups or species with particular mycotoxigenic synthetic abilities. A consensus PCR amplification of a part of the TEF-1alpha is followed by hybridization to the Fusarium chip and the results are visualized by a colorimetric Silverquant detection method. We validated the Fusarium chip against five naturally infected cereal samples for which we also have morphological and chemical data. The limit of detection was estimated to be less than 16 copies of genomic DNA in spiked commercial wheat flour. CONCLUSIONS The current Fusarium chip proved to be a highly sensitive and fast microarray for detection and identification of Fusarium species. We postulate that the method also has potential for (semi-)quantification. SIGNIFICANCE AND IMPACT OF THE STUDY The Fusarium chip may prove to be a very valuable tool for screening of cereal samples in the food and feed production chain, and may facilitate detection of new or introduced Fusarium spp.
Collapse
Affiliation(s)
- R Kristensen
- Section of Feed and Food Microbiology, National Veterinary Institute, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
47
|
Schollenberger M, Drochner W, Müller HM. Fusarium toxins of the scirpentriol subgroup: a review. Mycopathologia 2007; 164:101-18. [PMID: 17610049 DOI: 10.1007/s11046-007-9036-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Accepted: 06/06/2007] [Indexed: 11/28/2022]
Abstract
Scirpentriol and its seven acetylated derivatives comprise a family of type-A trichothecene toxins produced by several species of Fusarium fungi. Out of this group 4,15-diacetoxyscirpenol has attracted most attention. It elicits toxic responses in several species and was detected in a variety of substrates. Out of the three possible monoacetylated derivatives 15-monoacetoxyscirpenol and the parent alcohol scirpentriol received some attention, whereas the remaining members of the family were mentioned in few reports. The present review deals with the structure, biosynthesis, analysis and toxicity of scirpentriol toxins. Formation by Fusarium species as well as culture conditions used for toxigenicity studies are reviewed; data about the natural occurrence of scirpentriol toxins in different cereal types, cereal associated products as well as in non-grain matrices including potato and soya bean are reported. Basing on literature reports about the toxicity of scirpentriol toxins an attempt is made to summarise the state of knowledge for risk evaluation for human and animal health.
Collapse
Affiliation(s)
- Margit Schollenberger
- Institute of Animal Nutrition, Hohenheim University, Emil-Wolff-Str. 10, 70599, Stuttgart, Germany.
| | | | | |
Collapse
|
48
|
Halstensen AS, Nordby KC, Klemsdal SS, Elen O, Clasen PE, Eduard W. Toxigenic Fusarium spp. as determinants of trichothecene mycotoxins in settled grain dust. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2006; 3:651-9. [PMID: 17015401 DOI: 10.1080/15459620600987431] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Trichothecenes are immunosuppressive mycotoxins produced mainly by Fusarium spp. and often are detected as natural contaminants of grain and other agricultural products. Exposure to trichothecenes through inhalation during grain work may represent possible health risks for grain farmers. We aimed, therefore, to investigate the level of Fusarium spp. and trichothecenes in settled grain dust collected during work on 92 Norwegian farms. Mycotoxins were determined by gas chromatography-mass spectrometry, whereas the Fusarium spp. were identified and quantified both by species-specific semiquantitative polymerase chain reaction (PCR) and by cultivation. All potential trichothecene-producing molds in the grain dust were quantified using a PCR assay specific for tri5, the gene coding for trichodiene synthase that catalyzes the first step in the trichothecene biosynthesis. We performed correlation analysis between mold-DNA and mycotoxins to assess whether the PCR-detected DNA could be used as indicators of the mycotoxins. The methodological problem of detecting small amounts of airborne mycotoxins during grain work may then be avoided. Whereas the trichothecene-producing Fusarium species in grain dust could not be identified or quantified to a sufficient extent by cultivation, all investigated Fusarium spp. could be specifically detected by PCR and quantified from the DNA agarose gel band intensities. Furthermore, we observed a strong correlation between the trichothecenes HT-2 toxin (HT-2) or T-2 toxin (T-2) and DNA specific for tri5 (r = 0.68 for HT-2 and r = 0.50 for T-2; p < 0.001), F. langsethiae (r = 0.77 for HT-2 and r = 0.59 for T-2; p < 0.001), or F. poae (r = 0.41 for HT-2 and r = 0.35 for T-2; p < 0.001). However, only a moderate correlation was observed between the trichothecene deoxynivalenol (DON) and the combination of its producers, F. culmorum and F. graminearum (r = 0.24, p = 0.02), and no significant correlation was observed between DON and tri5. PCR clearly improved the detection of toxigenic Fusaria as potential sources of health risks for farmers inhaling grain dust during work, but the use of Fusarium-DNA as indicators for trichothecenes should be used cautiously.
Collapse
|
49
|
Halstensen AS, Nordby KC, Eduard W, Klemsdal SS. Real-time PCR detection of toxigenic Fusarium in airborne and settled grain dust and associations with trichothecene mycotoxins. ACTA ACUST UNITED AC 2006; 8:1235-41. [PMID: 17133280 DOI: 10.1039/b609840a] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inhalation of immunomodulating mycotoxins produced by Fusarium spp. that are commonly found in grain dust may imply health risks for grain farmers. Airborne Fusarium and mycotoxin exposure levels are mainly unknown due to difficulties in identifying Fusarium and mycotoxins in personal aerosol samples. We used a novel real-time PCR method to quantify the fungal trichodiene synthase gene (tri5) and DNA specific to F. langsethiae and F. avenaceum in airborne and settled grain dust, determined the personal inhalant exposure level to toxigenic Fusarium during various activities, and evaluated whether quantitative measurements of Fusarium-DNA could predict trichothecene levels in grain dust. Airborne Fusarium-DNA was detected in personal samples even from short tasks (10-60 min). The median Fusarium-DNA level was significantly higher in settled than in airborne grain dust (p < 0.001), and only the F. langsethiae-DNA levels correlated significantly in settled and airborne dust (r(s) = 0.20, p = 0.003). Both F. langsethiae-DNA and tri5-DNA were associated with HT-2 and T-2 toxins (r(s) = 0.24-0.71, p < 0.05 to p < 00.01) in settled dust, and could thus be suitable as indicators for HT-2 and T-2. The median personal inhalant exposure to specific toxigenic Fusarium spp. was less than 1 genome m(-3), but the exposure ranged from 0-10(5) genomes m(-3). This study is the first to apply real-time PCR on personal samples of inhalable grain dust for the quantification of tri5 and species-specific Fusarium-DNA, which may have potential for risk assessments of inhaled trichothecenes.
Collapse
Affiliation(s)
- Anne Straumfors Halstensen
- National Institute of Occupational Health, Dept of Chemical and Biological Working Environment, N-0033 Oslo, Norway.
| | | | | | | |
Collapse
|
50
|
Kristensen R, Torp M, Kosiak B, Holst-Jensen A. Phylogeny and toxigenic potential is correlated in Fusarium species as revealed by partial translation elongation factor 1 alpha gene sequences. ACTA ACUST UNITED AC 2005; 109:173-86. [PMID: 15839101 DOI: 10.1017/s0953756204002114] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Partial translation elongation factor 1 alpha (TEF-1alpha) gene and intron sequences are reported from 148 isolates of 11 species of the anamorph genus Fusarium; F. avenaceum (syn. F. arthrosporioides), F. cerealis, F. culmorum, F. equiseti, F.flocciferum, F. graminearum, F. lunulosporum, F. sambucinum, F. torulosum, F. tricinctum and F. venenatum. The sequences were aligned with TEF-1alpha sequences retrieved from 35 isolates of F. kyushuense, F. langsethiae, F. poae and F. sporotrichioides in a previous study, and 39 isolates of F. cerealis, F. culmorum, F. graminearum and F. pseudograminearum retrieved from sequence databases. The 222 aligned sequences were subjected to phylogenetic analyses using maximum parsimony and Bayesian Markov Chain Monte Carlo maximum likelihood statistics. Support for internal branching topologies was examined by Bremer support, bootstrap and posterior probability analyses. The resulting trees were largely congruent. The taxon groups included in the sections Discolor, Gibbosum and Sporotrichiella sensu Wollenweber & Reinking (1935) all appeared to be polyphyletic. All species were monophyletic except F. flocciferum that was paraphyletic, and one isolate classified as F. cfr langsethiae on the basis of morphology that grouped with F. sporotrichioides. Mapping of toxin profiles, host preferences and geographic origin onto the DNA based phylogenetic tree structure indicated that in particular the toxin profiles corresponded with phylogeny, i.e. phylotoxigenic relationships were inferred. A major distinction was observed between the trichothecene and non-trichothecene producers, and the trichothecene producers were grouped into one clade of strictly type A trichothecene producers, one clade of strictly type B trichothecene producers and one clade with both type A and type B trichothecene producers. Furthermore, production of the type A trichothecenes T-2/HT-2 toxins are associated with a lineage comprising F. langsethiae and F. sporotrichioides. The ability to produce zearalenone was apparently gained parallel to the ability to produce trichothecenes, and later lost in a derived sublineage. The ability to produce enniatins is a shared feature of the entire study group, with the exception of the strict trichothecene type B producers and F. equiseti. The ability to produce moniliformin seems to be an ancestral feature of members of the genus Fusarium which seems to have been lost in the clades consisting of trichothecene/zearalenone producers. The aims of the present study were to determine the phylogenetic relationships between the different species of Fusarium commonly occurring on Norwegian cereals and some of their closest relatives, as well as to reveal underlying patterns such as the ability to produce certain mycotoxins, geographic distribution and host preferences. Implications for a better classification of Fusarium are discussed and highlighted.
Collapse
Affiliation(s)
- Ralf Kristensen
- Section of Food and Feed Microbiology, National Veterinary Institute, N-0033 Oslo, Norway
| | | | | | | |
Collapse
|