1
|
Ali MU, Anwar L, Ali MH, Iqubal MK, Iqubal A, Baboota S, Ali J. Signalling Pathways Involved in Microglial Activation in Alzheimer's Disease and Potential Neuroprotective Role of Phytoconstituents. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:819-840. [PMID: 36567300 DOI: 10.2174/1871527322666221223091529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/02/2022] [Accepted: 10/19/2022] [Indexed: 12/27/2022]
Abstract
Alzheimer's disease (AD) is a commonly reported neurodegenerative disorder associated with dementia and cognitive impairment. The pathophysiology of AD comprises Aβ, hyperphosphorylated tau protein formation, abrupt cholinergic cascade, oxidative stress, neuronal apoptosis, and neuroinflammation. Recent findings have established the profound role of immunological dysfunction and microglial activation in the pathogenesis of AD. Microglial activation is a multifactorial cascade encompassing various signalling molecules and pathways such as Nrf2/NLRP3/NF-kB/p38 MAPKs/ GSK-3β. Additionally, deposited Aβ or tau protein triggers microglial activation and accelerates its pathogenesis. Currently, the FDA-approved therapeutic regimens are based on the modulation of the cholinergic system, and recently, one more drug, aducanumab, has been approved by the FDA. On the one hand, these drugs only offer symptomatic relief and not a cure for AD. Additionally, no targetedbased microglial medicines are available for treating and managing AD. On the other hand, various natural products have been explored for the possible anti-Alzheimer effect via targeting microglial activation or different targets of microglial activation. Therefore, the present review focuses on exploring the mechanism and associated signalling related to microglial activation and a detailed description of various natural products that have previously been reported with anti-Alzheimer's effect via mitigation of microglial activation. Additionally, we have discussed the various patents and clinical trials related to managing and treating AD.
Collapse
Affiliation(s)
- Mohd Uzair Ali
- School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Laiba Anwar
- School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohd Humair Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
- Sentiss Research Centre, Department of Product Development, Sentiss Pharma Pvt Ltd., Gurugram 122001, India
| | - Ashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
2
|
de la Monte SM. Malignant Brain Aging: The Formidable Link Between Dysregulated Signaling Through Mechanistic Target of Rapamycin Pathways and Alzheimer's Disease (Type 3 Diabetes). J Alzheimers Dis 2023; 95:1301-1337. [PMID: 37718817 PMCID: PMC10896181 DOI: 10.3233/jad-230555] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Malignant brain aging corresponds to accelerated age-related declines in brain functions eventually derailing the self-sustaining forces that govern independent vitality. Malignant brain aging establishes the path toward dementing neurodegeneration, including Alzheimer's disease (AD). The full spectrum of AD includes progressive dysfunction of neurons, oligodendrocytes, astrocytes, microglia, and the microvascular systems, and is mechanistically driven by insulin and insulin-like growth factor (IGF) deficiencies and resistances with accompanying deficits in energy balance, increased cellular stress, inflammation, and impaired perfusion, mimicking the core features of diabetes mellitus. The underlying pathophysiological derangements result in mitochondrial dysfunction, abnormal protein aggregation, increased oxidative and endoplasmic reticulum stress, aberrant autophagy, and abnormal post-translational modification of proteins, all of which are signature features of both AD and dysregulated insulin/IGF-1-mechanistic target of rapamycin (mTOR) signaling. This article connects the dots from benign to malignant aging to neurodegeneration by reviewing the salient pathologies associated with initially adaptive and later dysfunctional mTOR signaling in the brain. Effective therapeutic and preventive measures must be two-pronged and designed to 1) address complex and shifting impairments in mTOR signaling through the re-purpose of effective anti-diabetes therapeutics that target the brain, and 2) minimize the impact of extrinsic mediators of benign to malignant aging transitions, e.g., inflammatory states, obesity, systemic insulin resistance diseases, and repeated bouts of general anesthesia, by minimizing exposures or implementing neuroprotective measures.
Collapse
Affiliation(s)
- Suzanne M. de la Monte
- Departments of Pathology and Laboratory Medicine, Medicine, Neurology and Neurosurgery, Rhode Island Hospital, Lifespan Academic Institutions, and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
3
|
Grain-sized moxibustion inhibits the progression of Alzheimer disease in 5XFAD transgenic mice. JOURNAL OF ACUPUNCTURE AND TUINA SCIENCE 2022. [DOI: 10.1007/s11726-022-1342-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Tao Y, Leng SX, Zhang H. Ketogenic Diet: An Effective Treatment Approach for Neurodegenerative Diseases. Curr Neuropharmacol 2022; 20:2303-2319. [PMID: 36043794 PMCID: PMC9890290 DOI: 10.2174/1570159x20666220830102628] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 06/13/2022] [Accepted: 07/03/2022] [Indexed: 12/29/2022] Open
Abstract
This review discusses the effects and mechanisms of a ketogenic diet on neurodegenerative diseases on the basis of available evidence. A ketogenic diet refers to a high-fat, mediumprotein, and low-carbohydrate diet that leads to a metabolic shift to ketosis. This review systematically summarizes the scientific literature supporting this effective treatment approach for neurodegenerative diseases, including effects on mitochondrial function, oxidative stress, neuronal apoptosis, neuroinflammation, and the microbiota-gut-brain axis. It also highlights the clinical evidence for the effects of the ketogenic diet in the treatment of Alzheimer's disease, Parkinson's disease, and motor neuron disease. Finally, it discusses the common adverse effects of ketogenic therapy. Although the complete mechanism of the ketogenic diet in the treatment of neurodegenerative diseases remains to be elucidated, its clinical efficacy has attracted many new followers. The ketogenic diet is a good candidate for adjuvant therapy, but its specific applicability depends on the type and the degree of the disease.
Collapse
Affiliation(s)
- Ye Tao
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Sean X Leng
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle - Room 1A.38A, Baltimore, MD, 21224, USA
| | - Haiyan Zhang
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
5
|
Wang J, Zeng L, Zhang Y, Qi W, Wang Z, Tian L, Zhao D, Wu Q, Li X, Wang T. Pharmacological properties, molecular mechanisms and therapeutic potential of ginsenoside Rg3 as an antioxidant and anti-inflammatory agent. Front Pharmacol 2022; 13:975784. [PMID: 36133804 PMCID: PMC9483152 DOI: 10.3389/fphar.2022.975784] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/14/2022] [Indexed: 12/06/2022] Open
Abstract
Inflammation and oxidative stress lead to various acute or chronic diseases, including pneumonia, liver and kidney injury, cardiovascular and cerebrovascular diseases, metabolic diseases, and cancer. Ginseng is a well-known and widely used ethnic medicine in Asian countries, and ginsenoside Rg3 is a saponin isolated from Panax ginseng C. A. Meyer, Panax notoginseng, or Panax quinquefolius L. This compound has a wide range of pharmacological properties, including antioxidant and anti-inflammatory activities, which have been evaluated in disease models of inflammation and oxidative stress. Rg3 can attenuate lung inflammation, prevent liver and kidney function damage, mitigate neuroinflammation, prevent cerebral and myocardial ischemia–reperfusion injury, and improve hypertension and diabetes symptoms. The multitarget, multipathway mechanisms of action of Rg3 have been gradually deciphered. This review summarizes the existing knowledge on the anti-inflammatory and antioxidant effects and underlying molecular mechanisms of ginsenoside Rg3, suggesting that ginsenoside Rg3 may be a promising candidate drug for the treatment of diseases with inflammatory and oxidative stress conditions.
Collapse
Affiliation(s)
- Jing Wang
- Department of Respiratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Li Zeng
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Ying Zhang
- Department of Respiratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Wenxiu Qi
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Ziyuan Wang
- Department of Respiratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Lin Tian
- Department of Respiratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, China
- *Correspondence: Qibiao Wu, ; Xiangyan Li, ; Tan Wang,
| | - Xiangyan Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Qibiao Wu, ; Xiangyan Li, ; Tan Wang,
| | - Tan Wang
- Department of Respiratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Qibiao Wu, ; Xiangyan Li, ; Tan Wang,
| |
Collapse
|
6
|
Hölscher C. Protective properties of GLP-1 and associated peptide hormones in neurodegenerative disorders. Br J Pharmacol 2022; 179:695-714. [PMID: 33900631 PMCID: PMC8820183 DOI: 10.1111/bph.15508] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes mellitus and the associated desensitisation of insulin signalling has been identified as a risk factor for progressive neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and others. Glucagon-like peptide 1 (GLP-1) is a hormone that has growth factor-like and neuroprotective properties. Several clinical trials have been conducted, testing GLP-1 receptor agonists in patients with Alzheimer's disease, Parkinson's disease or diabetes-induced memory impairments. The trials showed clear improvements in Alzheimer's disease, Parkinson's disease and diabetic patients. Glucose-dependent insulinotropic polypeptide/gastric inhibitory peptide (GIP) is the 'sister' incretin hormone of GLP-1. GIP analogues have shown neuroprotective effects in animal models of disease and can improve on the effects of GLP-1. Novel dual GLP-1/GIP receptor agonists have been developed that can enter the brain at an enhanced rate. The improved neuroprotective effects of these drugs suggest that they are superior to single GLP-1 receptor agonists and could provide disease-modifying care for Alzheimer's disease and Parkinson's disease patients. LINKED ARTICLES: This article is part of a themed issue on GLP1 receptor ligands (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.4/issuetoc.
Collapse
Affiliation(s)
- Christian Hölscher
- The Second Associated Hospital, Neurology DepartmentShanxi Medical UniversityTaiyuanChina
- Academy of Chinese Medical ScienceHenan University of Chinese MedicineZhengzhouChina
| |
Collapse
|
7
|
Sait A, Angeli C, Doig AJ, Day PJR. Viral Involvement in Alzheimer's Disease. ACS Chem Neurosci 2021; 12:1049-1060. [PMID: 33687205 PMCID: PMC8033564 DOI: 10.1021/acschemneuro.0c00719] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/14/2021] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by the presence of β-amyloid plaques (Aβ) and neurofibrillary tangles (NFTs) in the brain. The prevalence of the disease is increasing and is expected to reach 141 million cases by 2050. Despite the risk factors associated with the disease, there is no known causative agent for AD. Clinical trials with many drugs have failed over the years, and no therapeutic has been approved for AD. There is increasing evidence that pathogens are found in the brains of AD patients and controls, such as human herpes simplex virus-1 (HSV-1). Given the lack of a human model, the route for pathogen entry into the brain remains open for scrutiny and may include entry via a disturbed blood-brain barrier or the olfactory nasal route. Many factors can contribute to the pathogenicity of HSV-1, such as the ability of HSV-1 to remain latent, tau protein phosphorylation, increased accumulation of Aβ invivo and in vitro, and repeated cycle of reactivation if immunocompromised. Intriguingly, valacyclovir, a widely used drug for the treatment of HSV-1 and HSV-2 infection, has shown patient improvement in cognition compared to controls in AD clinical studies. We discuss the potential role of HSV-1 in AD pathogenesis and argue for further studies to investigate this relationship.
Collapse
Affiliation(s)
- Ahmad Sait
- Division
of Evolution and Genomic Sciences, Faculty of Biology, Medicine and
Health, The University of Manchester, Manchester M13 9PL, United Kingdom
- Manchester
Institute of Biotechnology, The University
of Manchester, Manchester M1 7DN, United Kingdom
- Faculty
of Applied Medical Science, Medical Laboratory Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Cristian Angeli
- Division
of Evolution and Genomic Sciences, Faculty of Biology, Medicine and
Health, The University of Manchester, Manchester M13 9PL, United Kingdom
- Manchester
Institute of Biotechnology, The University
of Manchester, Manchester M1 7DN, United Kingdom
| | - Andrew J. Doig
- Division
of Neuroscience and Experimental Psychology, School of Biological
Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United
Kingdom
| | - Philip J. R. Day
- Division
of Evolution and Genomic Sciences, Faculty of Biology, Medicine and
Health, The University of Manchester, Manchester M13 9PL, United Kingdom
- Manchester
Institute of Biotechnology, The University
of Manchester, Manchester M1 7DN, United Kingdom
- Department
of Medicine, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
8
|
Dominguez-Meijide A, Vasili E, Outeiro TF. Pharmacological Modulators of Tau Aggregation and Spreading. Brain Sci 2020; 10:E858. [PMID: 33203009 PMCID: PMC7696562 DOI: 10.3390/brainsci10110858] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/25/2022] Open
Abstract
Tauopathies are neurodegenerative disorders characterized by the deposition of aggregates composed of abnormal tau protein in the brain. Additionally, misfolded forms of tau can propagate from cell to cell and throughout the brain. This process is thought to lead to the templated misfolding of the native forms of tau, and thereby, to the formation of newer toxic aggregates, thereby propagating the disease. Therefore, modulation of the processes that lead to tau aggregation and spreading is of utmost importance in the fight against tauopathies. In recent years, several molecules have been developed for the modulation of tau aggregation and spreading. In this review, we discuss the processes of tau aggregation and spreading and highlight selected chemicals developed for the modulation of these processes, their usefulness, and putative mechanisms of action. Ultimately, a stronger understanding of the molecular mechanisms involved, and the properties of the substances developed to modulate them, will lead to the development of safer and better strategies for the treatment of tauopathies.
Collapse
Affiliation(s)
- Antonio Dominguez-Meijide
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, 37073 Goettingen, Germany; (A.D.-M.); (E.V.)
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Eftychia Vasili
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, 37073 Goettingen, Germany; (A.D.-M.); (E.V.)
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, 37073 Goettingen, Germany; (A.D.-M.); (E.V.)
- Max Planck Institute for Experimental Medicine, 37075 Goettingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK
| |
Collapse
|
9
|
Kuznetsova TA, Persiyanova EV, Zaporozhets TS, Besednova NN. [Adjuvants of influenza vaccines: new possibilities of using sulphated polysaccharides from marine brown algae.]. Vopr Virusol 2020; 64:5-11. [PMID: 30893523 DOI: 10.18821/0507-4088-2019-64-1-5-11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/31/2018] [Indexed: 06/09/2023]
Abstract
The review article presents the characteristics of the main adjuvant groups (mineral salts of aluminum, synthetic squalenebased adjuvants - MF59 and AS03, CpG-oligodeoxynucleotides, virosomes, polyoxidonium, sovidone) included in the licensed influenza vaccine. The main mechanisms of adjuvant action, advantages and disadvantages of these adjuvants are shown. The vaccines adjuvants in the phase of experimental studies and clinical trials (ISCOMs, Advax™, chitosan) are described too. Particular attention is paid to sulfated polysaccharides (fucoidans) from marine brown algae as vaccine adjuvants. Numerous results of their application in compositions of experimental vaccines are presented. The prospects of sulfated polysaccharides using in the design of influenza vaccines are estimated. These prospects are determined by high biocompatibility, low toxicity and good tolerance of the human body to fucoidans, as well as mechanisms of their adjuvant activity. Sulfated polysaccharides are agonists of toll-like receptors of innate immunity cells and powerful inducers of the cellular and humoral immune response, which is important for the development of influenza vaccines. The review is based on the information presented in the bibliographic and abstract databases of scientific publications, search engines and publishers: RSCI, Web of Science, Scopus, MEDLINE, Google Scholar, PubMed, Springer Nature, Elsevier and others.
Collapse
Affiliation(s)
- T A Kuznetsova
- Research Somov Institute of Epidemiology and Microbiology, Vladivostok, 690087, Russian Federation
| | - E V Persiyanova
- Research Somov Institute of Epidemiology and Microbiology, Vladivostok, 690087, Russian Federation
- Medical Association of Far East Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russian Federation
| | - T S Zaporozhets
- Research Somov Institute of Epidemiology and Microbiology, Vladivostok, 690087, Russian Federation
| | - N N Besednova
- Research Somov Institute of Epidemiology and Microbiology, Vladivostok, 690087, Russian Federation
| |
Collapse
|
10
|
Loving BA, Bruce KD. Lipid and Lipoprotein Metabolism in Microglia. Front Physiol 2020; 11:393. [PMID: 32411016 PMCID: PMC7198855 DOI: 10.3389/fphys.2020.00393] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/02/2020] [Indexed: 12/25/2022] Open
Abstract
Microglia, once viewed as static bystanders with limited homeostatic functions, are now considered key players in the development of neuroinflammatory and neurodegenerative diseases. Microglial activation is a salient feature of neuroinflammation involving a dynamic process that generates multitudinous microglial phenotypes that can respond to a variety of situational cues in the central nervous system. Recently, a flurry of single cell RNA-sequencing studies have defined microglial phenotypes in unprecedented detail, and have highlighted robust changes in the expression of genes involved in lipid and lipoprotein metabolism. Increased expression of genes such as Apolipoprotein E (ApoE), Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) and Lipoprotein Lipase (LPL) in microglia during development, damage, and disease, suggest that increased lipid metabolism is needed to fuel protective cellular functions such as phagocytosis. This review describes our current understanding of lipid and lipoprotein metabolism in microglia, and highlights microglial lipid metabolism as a modifiable target for the treatment of neurodegenerative diseases such as Alzheimer's disease and multiple sclerosis.
Collapse
Affiliation(s)
- Bailey A. Loving
- School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| | - Kimberley D. Bruce
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
11
|
Hesamian MS, Eskandari N. Potential Role of Trace Elements (Al, Cu, Zn, and Se) in Multiple Sclerosis Physiopathology. Neuroimmunomodulation 2020; 27:163-177. [PMID: 33691322 DOI: 10.1159/000511308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/29/2020] [Indexed: 11/19/2022] Open
Abstract
Multiple sclerosis (MS) is an unpredictable disease of the central nervous system. The cause of MS is not known completely, and pathology is specified by involved demyelinated areas in the white and gray matter of the brain and spinal cord. Inflammation and peripheral tolerance breakdown due to Treg cell defects and/or effector cell resistance are present at all stages of the disease. Several invading peripheral immune cells are included in the process of the disease such as macrophages, CD8+ T cells, CD4+ T cells, B cells, and plasma cells. Trace elements are known as elements found in soil, plants, and living organisms in small quantities. Some of them (e.g., Al, Cu, Zn, Mn, and Se) are essential for the body's functions like catalysts in enzyme systems, energy metabolism, etc. Al toxicity and Cu, Zn, and Se toxicity and deficiency can affect the immune system and following neuron inflammation and degeneration. These processes may result in MS pathology. Of course, factors such as lifestyle, environment, and industrialization can affect levels of trace elements in the human body.
Collapse
Affiliation(s)
- Mohammad Sadegh Hesamian
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nahid Eskandari
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran,
| |
Collapse
|
12
|
Ahmmed MK, Ahmmed F, Tian HS, Carne A, Bekhit AED. Marine omega-3 (n-3) phospholipids: A comprehensive review of their properties, sources, bioavailability, and relation to brain health. Compr Rev Food Sci Food Saf 2019; 19:64-123. [PMID: 33319514 DOI: 10.1111/1541-4337.12510] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/06/2019] [Accepted: 10/27/2019] [Indexed: 12/15/2022]
Abstract
For several decades, there has been considerable interest in marine-derived long chain n-3 fatty acids (n-3 LCPUFAs) due to their outstanding health benefits. n-3 LCPUFAs can be found in nature either in triglycerides (TAGs) or in phospholipid (PL) form. From brain health point of view, PL n-3 is more bioavailable and potent compared to n-3 in TAG form, as only PL n-3 is able to cross the blood-brain barrier and can be involved in brain biochemical reactions. However, PL n-3 has been ignored in the fish oil industry and frequently removed as an impurity during degumming processes. As a result, PL products derived from marine sources are very limited compared to TAG products. Commercially, PLs are being used in pharmaceutical industries as drug carriers, in food manufacturing as emulsifiers and in cosmetic industries as skin care agents, but most of the PLs used in these applications are produced from vegetable sources that contain less (without EPA, DPA, and DHA) or sometimes no n-3 LCPUFAs. This review provides a comprehensive account of the properties, structures, and major sources of marine PLs, and provides focussed discussion of their relationship to brain health. Epidemiological, laboratory, and clinical studies on n-3 LCPUFAs enriched PLs using different model systems in relation to brain and mental health that have been published over the past few years are discussed in detail.
Collapse
Affiliation(s)
- Mirja Kaizer Ahmmed
- Department of Food Science, University of Otago, Dunedin, New Zealand.,Department of Fishing and Post-Harvest Technology, Faculty of Fisheries, Chittagong Veterinary and Animal Sciences University, Khulshi, Bangladesh
| | - Fatema Ahmmed
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| | | | - Alan Carne
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
13
|
Zhu A, Wu Z, Zhong X, Ni J, Li Y, Meng J, Du C, Zhao X, Nakanishi H, Wu S. Brazilian Green Propolis Prevents Cognitive Decline into Mild Cognitive Impairment in Elderly People Living at High Altitude. J Alzheimers Dis 2019; 63:551-560. [PMID: 29630549 DOI: 10.3233/jad-170630] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Systemic inflammation is known as a risk factor of cognitive decline. OBJECTIVE To investigate the effects of propolis on cognitive decline and systemic inflammation in elderly people living at high altitude. METHODS Sixty participants (average 72.8 years) living at altitude (2,260 meters) were randomized to receive propolis (0.83 g, n = 30) or placebo (n = 30) for 24 months. Cognitive outcomes were assessed using MMSE and serum cytokine levels were measured for 24 months in a double-blind study. RESULTS MMSE scores were 26.17 at baseline and 23.87 at 24 months in placebo group. Compared to placebo group, improvements of MMSE scores were significant in propolis-treated subjects (p = 0.007) with a response emerging over time (time points×group interaction, p = 0.016). In addition, the serum IL-1β and IL-6 levels were significantly different across treatments (p < 0.0001) showing upward and downward trends in placebo- and propolis-treated subjects, respectively (p < 0.0001). Serum levels of TNF-α were not significantly different across treatment (p = 0.0528) but with a response emerging over time (time points×group interaction, p = 0.016). In contrast, serum levels of TGFβ1 were significantly different across treatments (p < 0.0001) showing downward and upward trends in placebo- and propolis-treated subjects, respectively. Serum levels of IL-10 were significant for the effect of groups (p = 0.0411). Furthermore, MMSE scores correlated with the decrease in IL-1β and the increase in TGFβ1 in serum. CONCLUSION Elderly people living at high altitude developed to MCI in 24 months with exacerbation of systemic inflammation. Ingestion of propolis (>12 months) protected against cognitive decline after systemic inflammation was reduced.
Collapse
Affiliation(s)
- Aiqin Zhu
- Institution of Geriatric Qinghai Provincial Hospital, Xining, China
| | - Zhou Wu
- Department of Aging Science and Pharmacology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.,OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Xin Zhong
- Institution of Geriatric Qinghai Provincial Hospital, Xining, China
| | - Junjun Ni
- Department of Aging Science and Pharmacology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yinglan Li
- Institution of Geriatric Qinghai Provincial Hospital, Xining, China
| | - Jie Meng
- Department of Aging Science and Pharmacology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Can Du
- Institution of Geriatric Qinghai Provincial Hospital, Xining, China
| | - Xue Zhao
- Institution of Geriatric Qinghai Provincial Hospital, Xining, China
| | - Hiroshi Nakanishi
- Department of Aging Science and Pharmacology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Shizheng Wu
- Institution of Geriatric Qinghai Provincial Hospital, Xining, China
| |
Collapse
|
14
|
Sarrafpour S, Ormseth C, Chiang A, Arakaki X, Harrington M, Fonteh A. Lipid Metabolism in Late-Onset Alzheimer's Disease Differs from Patients Presenting with Other Dementia Phenotypes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16111995. [PMID: 31195602 PMCID: PMC6603882 DOI: 10.3390/ijerph16111995] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023]
Abstract
Abnormal cerebrospinal fluid (CSF) levels of β-amyloid peptides (Aβ42) and Tau and cognitive decline are typical characteristics of Alzheimer’s disease (AD). Since dysregulation in lipid metabolism accompanies abnormal amyloid formation, we quantified glycerophospholipids (GP) and sphingolipids (SP) in CSF fractions from participants with late-onset AD (LOAD, n = 29) or with Other Dementia (OD, n = 10) to determine if alterations in lipid metabolism account for pathological differences. Aβ42 and total Tau levels were determined using a sandwich ELISA. Liposomal-based fluorescent assays were used to measure phospholipase A2 (PLA2) and acid or neutral sphingomyelinase (aSMase, nSMase) activities. Supernatant fluid (SF) and nanoparticle (NP) lipids were quantified using LC-MS/MS. Although CSF Aβ42 and Tau levels are similar, phosphatidylserine (PS) in SF and ceramide (CM) levels in NP are significantly higher in OD compared with LOAD. The aSMase but not the nSMase activity is higher in OD. PLA2 activity in CSF from OD subjects positively correlates with several GP classes in SF and NP fractions but not in LOAD fractions. Our data indicate differences in CSF lipid metabolism between dementia variants. Higher levels of inflammatory and apoptotic lipids may induce faster neuronal death, resulting in the earlier cognitive decline in patients with OD phenotypes.
Collapse
Affiliation(s)
- Syena Sarrafpour
- Huntington Medical Research Institutes, Pasadena, CA 91105, USA.
- School of Medicine, Tufts University, Medford, MA 02155, USA.
| | - Cora Ormseth
- Huntington Medical Research Institutes, Pasadena, CA 91105, USA.
- Department of Neurology, Yale University, New Haven, CT 06520, USA.
| | - Abby Chiang
- Huntington Medical Research Institutes, Pasadena, CA 91105, USA.
- Beckman Research Institute, City of Hope, Duarte, CA 91010, USA.
| | | | | | - Alfred Fonteh
- Huntington Medical Research Institutes, Pasadena, CA 91105, USA.
| |
Collapse
|
15
|
Rodríguez-Berdini L, Caputto BL. Lipid Metabolism in Neurons: A Brief Story of a Novel c-Fos-Dependent Mechanism for the Regulation of Their Synthesis. Front Cell Neurosci 2019; 13:198. [PMID: 31133814 PMCID: PMC6514095 DOI: 10.3389/fncel.2019.00198] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/18/2019] [Indexed: 12/25/2022] Open
Abstract
The mechanisms that coordinately regulate lipid synthesis in the nervous system together with the high rates of membrane biogenesis needed to support cell growth are largely unknown as are their subcellular site of synthesis. c-Fos, a well-known AP-1 transcription factor, has emerged as a unique protein with the capacity to associate to specific enzymes of the pathway of synthesis of phospholipids at the endoplasmic reticulum and activate their synthesis to accompany genomic decisions of growth. Herein, we discuss this effect of c-Fos in the context of neuronal differentiation and also with respect to pathologies of the nervous system such as the development and growth of tumors. We also provide insights into the sub-cellular sites where this regulation occurs at the endoplasmic reticulum membranes and the molecular mechanism by which c-Fos exerts this activity.
Collapse
Affiliation(s)
- Lucia Rodríguez-Berdini
- Centro de Investigaciones en Química Biológica de Córdoba (Consejo Nacional de Investigaciones Científicas y Técnicas), Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Beatriz L Caputto
- Centro de Investigaciones en Química Biológica de Córdoba (Consejo Nacional de Investigaciones Científicas y Técnicas), Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
16
|
Mowry FE, Biancardi VC. Neuroinflammation in hypertension: the renin-angiotensin system versus pro-resolution pathways. Pharmacol Res 2019; 144:279-291. [PMID: 31039397 DOI: 10.1016/j.phrs.2019.04.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 12/31/2022]
Abstract
Overstimulation of the pro-inflammatory pathways within brain areas responsible for sympathetic outflow is well evidenced as a primary contributing factor to the establishment and maintenance of neurogenic hypertension. However, the precise mechanisms and stimuli responsible for promoting a pro-inflammatory state are not fully elucidated. Recent work has unveiled novel compounds derived from omega-3 polyunsaturated fatty acids (ω-3 PUFAs), termed specialized pro-resolving mediators (SPMs), which actively regulate the resolution of inflammation. Failure or dysregulation of the resolution process has been linked to a variety of chronic inflammatory and neurodegenerative diseases. Given the pathologic role of neuroinflammation in the hypertensive state, SPMs and their associated pathways may provide a link between hypertension and the long-standing association of dietary ω-3 PUFAs with cardioprotection. Herein, we review recent progress in understanding the RAS-driven pathophysiology of neurogenic hypertension, particularly in regards to the chronic low-grade neuroinflammatory response. In addition, we examine the potential for an impaired resolution of inflammation process in the context of hypertension.
Collapse
Affiliation(s)
- Francesca Elisabeth Mowry
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Alabama, USA
| | - Vinicia Campana Biancardi
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Alabama, USA; Center for Neurosciences Research Initiative, Auburn University, Alabama, USA.
| |
Collapse
|
17
|
Kaur D, Sharma V, Deshmukh R. Activation of microglia and astrocytes: a roadway to neuroinflammation and Alzheimer's disease. Inflammopharmacology 2019; 27:663-677. [PMID: 30874945 DOI: 10.1007/s10787-019-00580-x] [Citation(s) in RCA: 300] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 03/06/2019] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that is of high importance to the neuroscience world, yet the complex pathogenicity is not fully understood. Inflammation is usually observed in AD and could implicate both beneficial or detrimental effects depending on the severity of the disease. During initial AD pathology, microglia and astrocyte activation is beneficial since they are involved in amyloid-beta clearance. However, with the progression of the disease, activated microglia elicit detrimental effects by the overexpression of pro-inflammatory cytokines such as interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) bringing forth neurodegeneration in the surrounding brain regions. This results in decline in Aβ clearance by microglia; Aβ accumulation thus increases in the brain resulting in neuroinflammation. Thus, Aβ accumulation is the effect of increased release of pro-inflammatory molecules. Reactive astrocytes acquire gain of toxic function and exhibits neurotoxic effects with loss of neurotrophic functions. Astrocyte dysfunctioning results in increased release of cytokines and inflammatory mediators, neurodegeneration, decreased glutamate uptake, loss of neuronal synapses, and ultimately cognitive deficits in AD. We discuss the role of intracellular signaling pathways in the inflammatory responses produced by astrocytes and microglial activation, including the glycogen synthase kinase-3β, nuclear factor kappa B cascade, mitogen-activated protein kinase pathways and c-Jun N-terminal kinase. In this review, we describe the role of neuroinflammation in the chronicity of AD pathogenesis and an overview of the recent research towards the development of new therapies to treat this disorder.
Collapse
Affiliation(s)
- Darshpreet Kaur
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, 151001, India
| | - Vivek Sharma
- Government College of Pharmacy, Rohru, Shimla, Himachal Pradesh, 171207, India
| | - Rahul Deshmukh
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, 151001, India.
| |
Collapse
|
18
|
McLachlan DRC, Bergeron C, Alexandrov PN, Walsh WJ, Pogue AI, Percy ME, Kruck TPA, Fang Z, Sharfman NM, Jaber V, Zhao Y, Li W, Lukiw WJ. Aluminum in Neurological and Neurodegenerative Disease. Mol Neurobiol 2019; 56:1531-1538. [PMID: 30706368 PMCID: PMC6402994 DOI: 10.1007/s12035-018-1441-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 11/27/2018] [Indexed: 12/30/2022]
Abstract
With continuing cooperation from 18 domestic and international brain banks over the last 36 years, we have analyzed the aluminum content of the temporal lobe neocortex of 511 high-quality human female brain samples from 16 diverse neurological and neurodegenerative disorders, including 2 groups of age-matched controls. Temporal lobes (Brodmann areas A20-A22) were selected for analysis because of their availability and their central role in massive information-processing operations including efferent-signal integration, cognition, and memory formation. We used the analytical technique of (i) Zeeman-type electrothermal atomic absorption spectrophotometry (ETAAS) combined with (ii) preliminary analysis from the advanced photon source (APS) hard X-ray beam (7 GeV) fluorescence raster-scanning (XRFR) spectroscopy device (undulator beam line 2-ID-E) at the Argonne National Laboratory, US Department of Energy, University of Chicago IL, USA. Neurological diseases examined were Alzheimer's disease (AD; N = 186), ataxia Friedreich's type (AFT; N = 6), amyotrophic lateral sclerosis (ALS; N = 16), autism spectrum disorder (ASD; N = 26), dialysis dementia syndrome (DDS; N = 27), Down's syndrome (DS; trisomy, 21; N = 24), Huntington's chorea (HC; N = 15), multiple infarct dementia (MID; N = 19), multiple sclerosis (MS; N = 23), Parkinson's disease (PD; N = 27), and prion disease (PrD; N = 11) that included bovine spongiform encephalopathy (BSE; "mad cow disease"), Creutzfeldt-Jakob disease (CJD) and Gerstmann-Straussler-Sheinker syndrome (GSS), progressive multifocal leukoencephalopathy (PML; N = 11), progressive supranuclear palsy (PSP; N = 24), schizophrenia (SCZ; N = 21), a young control group (YCG; N = 22; mean age, 10.2 ± 6.1 year), and an aged control group (ACG; N = 53; mean age, 71.4 ± 9.3 year). Using ETAAS, all measurements were performed in triplicate on each tissue sample. Among these 17 common neurological conditions, we found a statistically significant trend for aluminum to be increased only in AD, DS, and DDS compared to age- and gender-matched brains from the same anatomical region. This is the largest study of aluminum concentration in the brains of human neurological and neurodegenerative disease ever undertaken. The results continue to suggest that aluminum's association with AD, DDS, and DS brain tissues may contribute to the neuropathology of those neurological diseases but appear not to be a significant factor in other common disorders of the human brain and/or CNS.
Collapse
Affiliation(s)
- Donald R C McLachlan
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Neuropathology, Toronto General Hospital, Toronto, ON, M5G 2C4, Canada
| | - Catherine Bergeron
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Neuropathology, Toronto General Hospital, Toronto, ON, M5G 2C4, Canada
| | | | | | | | - Maire E Percy
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Surrey Place Center, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Obstetrics and Gynecology, Toronto, ON, M5S 1A8, Canada
| | - Theodore P A Kruck
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Zhide Fang
- Department of Biostatistics, School of Public Health, LSU Health Sciences Center, New Orleans, LA, 70112, USA
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
- Louisiana Clinical and Translational Science Center (LA CaTS), LSU Health Sciences Center, New Orleans, LA, 70112, USA
| | - Nathan M Sharfman
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Vivian Jaber
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
- Department of Anatomy and Cell Biology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Wenhong Li
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
- Department of Pharmacology, School of Pharmacy, Jiangxi University of TCM, Nanchang, Jiangxi, 330004, People's Republic of China
| | - Walter J Lukiw
- Russian Academy of Medical Sciences, Moscow, 113152, Russia.
- Alchem Biotek Research, Toronto, ON, M5S 1A8, Canada.
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
- Department of Neurology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
| |
Collapse
|
19
|
Lukiw WJ, Kruck TP, Percy ME, Pogue AI, Alexandrov PN, Walsh WJ, Sharfman NM, Jaber VR, Zhao Y, Li W, Bergeron C, Culicchia F, Fang Z, McLachlan DR. Aluminum in neurological disease - a 36 year multicenter study. JOURNAL OF ALZHEIMER'S DISEASE & PARKINSONISM 2018; 8:457. [PMID: 31179161 PMCID: PMC6550484 DOI: 10.4172/2161-0460.1000457] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Aluminum is a ubiquitous neurotoxin highly enriched in our biosphere, and has been implicated in the etiology and pathology of multiple neurological diseases that involve inflammatory neural degeneration, behavioral impairment and cognitive decline. Over the last 36 years our group has analyzed the aluminum content of the temporal lobe neocortex of 511 high quality coded human brain samples from 18 diverse neurological and neurodegenerative disorders, including 2 groups of age-matched controls. Brodmann anatomical areas including the inferior, medial and superior temporal gyrus (A20-A22) were selected for analysis: (i) because of their essential functions in massive neural information processing operations including cognition and memory formation; and (ii) because subareas of these anatomical regions are unique to humans and are amongst the earliest areas affected by progressive neurodegenerative disorders such as Alzheimer's disease (AD). Coded brain tissue samples were analyzed using the analytical technique of: (i) Zeeman-type electrothermal atomic absorption spectrophotometry (ETAAS) combined with (ii) an experimental multi-elemental analysis using the advanced photon source (APS) ultra-bright storage ring-generated hard X-ray beam (7 GeV) and fluorescence raster scanning (XRFR) spectroscopy device at the Argonne National Laboratory, US Department of Energy, University of Chicago IL, USA. These data represent the largest study of aluminum concentration in the brains of human neurological and neurodegenerative disease ever undertaken. Neurological diseases examined were AD (N=186), ataxia Friedreich's type (AFT; N=6), amyotrophic lateral sclerosis (ALS; N=16), autism spectrum disorder (ASD; N=26), dialysis dementia syndrome (DDS; N=27), Down's syndrome (DS; trisomy21; N=24), Huntington's chorea (HC; N=15), multiple infarct dementia (MID; N=19), multiple sclerosis (MS; N=23), Parkinson's disease (PD; N=27), prion disease (PrD; N=11) including bovine spongiform encephalopathy (BSE; 'mad cow disease'), Creutzfeldt-Jakob disease (CJD) and Gerstmann-Straussler-Sheinker syndrome (GSS), progressive multifocal leukoencephalopathy (PML; N=11), progressive supranuclear palsy (PSP; N=24), schizophrenia (SCZ; N=21), a young control group (YCG; N=22) and an aged control group (ACG; N=53). Amongst these 18 common neurological conditions and controls we report a statistically significant trend for aluminum to be increased only in AD, DS and DDS compared to age- and gender-matched brains from the same anatomical region. The results continue to suggest that aluminum's association with AD, DDS and DS brain tissues may contribute to the neuropathology of these neurological diseases but appear not to be a significant factor in other common disorders of the human central nervous system (CNS).
Collapse
Affiliation(s)
- Walter J. Lukiw
- LSU Neuroscience Center, Louisiana State University Health
Sciences Center, New Orleans LA 70112, USA
- Department of Neurology, Louisiana State University Health
Sciences Center, New Orleans LA 70112, USA
- Department of Ophthalmology, Louisiana State University
Health Sciences Center, New Orleans LA 70112, USA
- Alchem Biotek Research, Toronto ON M5S 1A8, CANADA
- Russian Academy of Medical Sciences, Moscow 113152, RUSSIAN
FEDERATION
| | - Theodore P.A. Kruck
- Department of Physiology, Medical Sciences Building,
University of Toronto, Toronto ON M5S 1A8, CANADA
| | - Maire E. Percy
- Surrey Place Center, University of Toronto, Toronto ON M5S
1A8 CANADA
- Department of Neurogenetics, University of Toronto, Toronto
ON M5S 1A8 CANADA
| | | | | | | | - Nathan M. Sharfman
- LSU Neuroscience Center, Louisiana State University Health
Sciences Center, New Orleans LA 70112, USA
| | - Vivian R. Jaber
- LSU Neuroscience Center, Louisiana State University Health
Sciences Center, New Orleans LA 70112, USA
| | - Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health
Sciences Center, New Orleans LA 70112, USA
- Department of Anatomy and Cell Biology, Louisiana State
University Health Sciences Center, New Orleans LA 70112, USA
| | - Wenhong Li
- LSU Neuroscience Center, Louisiana State University Health
Sciences Center, New Orleans LA 70112, USA
- Department of Pharmacology, School of Pharmacy, Jiangxi
University of TCM, Nanchang, Jiangxi 330004 CHINA
| | - Catherine Bergeron
- Department of Physiology, Medical Sciences Building,
University of Toronto, Toronto ON M5S 1A8, CANADA
- Tanz Centre for Research in Neurodegenerative Diseases,
University of Toronto, Toronto ON M5S 1A8 CANADA
- Department of Neuropathology, Toronto General Hospital,
Toronto, ON M5G 2C4, CANADA
| | - Frank Culicchia
- LSU Neuroscience Center, Louisiana State University Health
Sciences Center, New Orleans LA 70112, USA
- Department of Neurosurgery, Louisiana State University
Health Sciences Center, New Orleans LA 70112, USA
- Culicchia Neurological Clinic, West Jefferson Medical
Center, Marrero, LA 70072 USA
| | - Zhide Fang
- Department of Biostatistics, School of Public Health, LSU
Health Sciences Center, New Orleans LA 70112, USA
- Department of Genetics, Louisiana State University Health
Sciences Center, New Orleans LA 70112, USA
- Louisiana Clinical and Translational Science Center (LA
CaTS), LSU Health Sciences Center, New Orleans LA 70112, USA
| | - Donald R.C. McLachlan
- Department of Physiology, Medical Sciences Building,
University of Toronto, Toronto ON M5S 1A8, CANADA
- Tanz Centre for Research in Neurodegenerative Diseases,
University of Toronto, Toronto ON M5S 1A8 CANADA
- Department of Neuropathology, Toronto General Hospital,
Toronto, ON M5G 2C4, CANADA
| |
Collapse
|
20
|
Chianese R, Coccurello R, Viggiano A, Scafuro M, Fiore M, Coppola G, Operto FF, Fasano S, Laye S, Pierantoni R, Meccariello R. Impact of Dietary Fats on Brain Functions. Curr Neuropharmacol 2018; 16:1059-1085. [PMID: 29046155 PMCID: PMC6120115 DOI: 10.2174/1570159x15666171017102547] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 08/24/2017] [Accepted: 10/10/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Adequate dietary intake and nutritional status have important effects on brain functions and on brain health. Energy intake and specific nutrients excess or deficiency from diet differently affect cognitive processes, emotions, behaviour, neuroendocrine functions and synaptic plasticity with possible protective or detrimental effects on neuronal physiology. Lipids, in particular, play structural and functional roles in neurons. Here the importance of dietary fats and the need to understand the brain mechanisms activated by peripheral and central metabolic sensors. Thus, the manipulation of lifestyle factors such as dietary interventions may represent a successful therapeutic approach to maintain and preserve brain health along lifespan. METHODS This review aims at summarizing the impact of dietary fats on brain functions. RESULTS Starting from fat consumption, nutrient sensing and food-related reward, the impact of gut-brain communications will be discussed in brain health and disease. A specific focus will be on the impact of fats on the molecular pathways within the hypothalamus involved in the control of reproduction via the expression and the release of Gonadotropin-Releasing Hormone. Lastly, the effects of specific lipid classes such as polyunsaturated fatty acids and of the "fattest" of all diets, commonly known as "ketogenic diets", on brain functions will also be discussed. CONCLUSION Despite the knowledge of the molecular mechanisms is still a work in progress, the clinical relevance of the manipulation of dietary fats is well acknowledged and such manipulations are in fact currently in use for the treatment of brain diseases.
Collapse
Affiliation(s)
- Rosanna Chianese
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Roberto Coccurello
- Institute of Cell Biology and Neurobiology, National Research Council (C.N.R.), Rome, Italy.,Fondazione S. Lucia (FSL) IRCCS, Roma, Italy
| | - Andrea Viggiano
- Department of Medicine, Surgery and Scuola Medica Salernitana, University of Salerno, Baronissi, SA, Italy
| | - Marika Scafuro
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marco Fiore
- Institute of Cell Biology and Neurobiology, National Research Council (C.N.R.), Rome, Italy.,Fondazione S. Lucia (FSL) IRCCS, Roma, Italy
| | - Giangennaro Coppola
- Department of Medicine, Surgery and Scuola Medica Salernitana, University of Salerno, Baronissi, SA, Italy.,UO Child and Adolescent Neuropsychiatry, Medical School, University of Salerno, Salerno, Italy
| | | | - Silvia Fasano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Sophie Laye
- INRA, Bordeaux University, Nutrition and Integrative Neurobiology, UMR, Bordeaux, France
| | - Riccardo Pierantoni
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosaria Meccariello
- Department of Movement and Wellness Sciences, Parthenope University of Naples, Naples, Italy
| |
Collapse
|
21
|
Wiciński M, Wódkiewicz E, Słupski M, Walczak M, Socha M, Malinowski B, Pawlak-Osińska K. Neuroprotective Activity of Sitagliptin via Reduction of Neuroinflammation beyond the Incretin Effect: Focus on Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6091014. [PMID: 30186862 PMCID: PMC6116461 DOI: 10.1155/2018/6091014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/22/2018] [Accepted: 07/26/2018] [Indexed: 12/25/2022]
Abstract
Sitagliptin is a member of a class of drugs that inhibit dipeptidyl peptidase (DPP-4). It increases the levels of the active form of incretins such as GLP-1 (glucagon-like peptide-1) or GIP (gastric inhibitory polypeptide) and by their means positively affects glucose metabolism. It is successfully applied in the treatment of diabetes mellitus type 2. The most recent scientific reports suggest beneficial effect of sitagliptin on diseases in which neuron damage occurs. Result of experimental studies may indicate a reducing influence of sitagliptin on inflammatory response within encephalon area. Sitagliptin decreased the levels of proinflammatory factors: TNF-α (tumor necrosis factor-α), IL-6 (interleukin-6), IL-17 (interleukin-17), and CD-163 (cluster of differentiation 163), and contributed to an increase in levels of anti-inflammatory factors: IL-10 (interleukin-10) and TGF-β (transforming growth factor β). Moreover, sitagliptin demonstrated antioxidative and antiapoptotic properties by modifying glutamate and glutathione levels within the region of hippocampus in mice. It has been observed that sitagliptin decreases accumulation of β-amyloid within encephalon structures in experimental models of Alzheimer's dementia. This effect may be connected with SDF-1α (stromal cell-derived factor 1α) concentration. Administration of sitagliptin caused a significant improvement in MMSE (Mini-Mental State Examination) tests used for assessment of dementias. The paper presents potential mechanisms of sitagliptin activity in conditions connected with neuroinflammation with special emphasis on Alzheimer's disease.
Collapse
Affiliation(s)
- Michał Wiciński
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland
| | - Eryk Wódkiewicz
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland
| | - Maciej Słupski
- Department of Hepatobiliary and General Surgery, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland
| | - Maciej Walczak
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland
| | - Maciej Socha
- Department of Obstetrics, Gynecology and Gynecological Oncology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Ujejskiego 75, 85-168 Bydgoszcz, Poland
| | - Bartosz Malinowski
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland
| | - Katarzyna Pawlak-Osińska
- Department of Pathophysiology of Hearing and Balance System, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland
| |
Collapse
|
22
|
Teng T, Dong L, Ridgley DM, Ghura S, Tobin MK, Sun GY, LaDu MJ, Lee JC. Cytosolic Phospholipase A 2 Facilitates Oligomeric Amyloid-β Peptide Association with Microglia via Regulation of Membrane-Cytoskeleton Connectivity. Mol Neurobiol 2018; 56:3222-3234. [PMID: 30112630 DOI: 10.1007/s12035-018-1304-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/07/2018] [Indexed: 12/22/2022]
Abstract
Cytosolic phospholipase A2 (cPLA2) mediates oligomeric amyloid-β peptide (oAβ)-induced oxidative and inflammatory responses in glial cells. Increased activity of cPLA2 has been implicated in the neuropathology of Alzheimer's disease (AD), suggesting that cPLA2 regulation of oAβ-induced microglial activation may play a role in the AD pathology. We demonstrate that LPS, IFNγ, and oAβ increased phosphorylated cPLA2 (p-cPLA2) in immortalized mouse microglia (BV2). Aβ association with primary rat microglia and BV2 cells, possibly via membrane-binding and/or intracellular deposition, presumably indicative of microglia-mediated clearance of the peptide, was reduced by inhibition of cPLA2. However, cPLA2 inhibition did not affect the depletion of this associated Aβ when cells were washed and incubated in a fresh medium after oAβ treatment. Since the depletion was abrogated by NH4Cl, a lysosomal inhibitor, these results suggested that cPLA2 was not involved in the degradation of the associated Aβ. To further dissect the effects of cPLA2 on microglia cell membranes, atomic force microscopy (AFM) was used to determine endocytic activity. The force for membrane tether formation (Fmtf) is a measure of membrane-cytoskeleton connectivity and represents a mechanical barrier to endocytic vesicle formation. Inhibition of cPLA2 increased Fmtf in both unstimulated BV2 cells and cells stimulated with LPS + IFNγ. Thus, increasing p-cPLA2 would decrease Fmtf, thereby increasing endocytosis. These results suggest a role of cPLA2 activation in facilitating oAβ endocytosis by microglial cells through regulation of the membrane-cytoskeleton connectivity.
Collapse
Affiliation(s)
- Tao Teng
- Department of Bioengineering, University of Illinois at Chicago, 835 S Wolcott Ave, W100, Chicago, IL, 60612, USA
| | - Li Dong
- Department of Bioengineering, University of Missouri, Columbia, MO, 65211, USA
| | - Devin M Ridgley
- Department of Bioengineering, University of Illinois at Chicago, 835 S Wolcott Ave, W100, Chicago, IL, 60612, USA
| | - Shivesh Ghura
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Matthew K Tobin
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Grace Y Sun
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - James C Lee
- Department of Bioengineering, University of Illinois at Chicago, 835 S Wolcott Ave, W100, Chicago, IL, 60612, USA.
| |
Collapse
|
23
|
de Oliveira MR, Andrade CMB, Fürstenau CR. Naringenin Exerts Anti-inflammatory Effects in Paraquat-Treated SH-SY5Y Cells Through a Mechanism Associated with the Nrf2/HO-1 Axis. Neurochem Res 2018; 43:894-903. [DOI: 10.1007/s11064-018-2495-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/27/2018] [Accepted: 02/02/2018] [Indexed: 12/16/2022]
|
24
|
Layé S, Nadjar A, Joffre C, Bazinet RP. Anti-Inflammatory Effects of Omega-3 Fatty Acids in the Brain: Physiological Mechanisms and Relevance to Pharmacology. Pharmacol Rev 2018; 70:12-38. [PMID: 29217656 DOI: 10.1124/pr.117.014092] [Citation(s) in RCA: 253] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 09/05/2017] [Indexed: 12/17/2022] Open
Abstract
Classically, polyunsaturated fatty acids (PUFA) were largely thought to be relatively inert structural components of brain, largely important for the formation of cellular membranes. Over the past 10 years, a host of bioactive lipid mediators that are enzymatically derived from arachidonic acid, the main n-6 PUFA, and docosahexaenoic acid, the main n-3 PUFA in the brain, known to regulate peripheral immune function, have been detected in the brain and shown to regulate microglia activation. Recent advances have focused on how PUFA regulate the molecular signaling of microglia, especially in the context of neuroinflammation and behavior. Several active drugs regulate brain lipid signaling and provide proof of concept for targeting the brain. Because brain lipid metabolism relies on a complex integration of diet, peripheral metabolism, including the liver and blood, which supply the brain with PUFAs that can be altered by genetics, sex, and aging, there are many pathways that can be disrupted, leading to altered brain lipid homeostasis. Brain lipid signaling pathways are altered in neurologic disorders and may be viable targets for the development of novel therapeutics. In this study, we discuss in particular how n-3 PUFAs and their metabolites regulate microglia phenotype and function to exert their anti-inflammatory and proresolving activities in the brain.
Collapse
Affiliation(s)
- Sophie Layé
- Institut National pour la Recherche Agronomique and Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France (S.L., A.N., C.J.); and Department of Nutritional Sciences, University of Toronto, Ontario, Canada (R.P.B.)
| | - Agnès Nadjar
- Institut National pour la Recherche Agronomique and Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France (S.L., A.N., C.J.); and Department of Nutritional Sciences, University of Toronto, Ontario, Canada (R.P.B.)
| | - Corinne Joffre
- Institut National pour la Recherche Agronomique and Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France (S.L., A.N., C.J.); and Department of Nutritional Sciences, University of Toronto, Ontario, Canada (R.P.B.)
| | - Richard P Bazinet
- Institut National pour la Recherche Agronomique and Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France (S.L., A.N., C.J.); and Department of Nutritional Sciences, University of Toronto, Ontario, Canada (R.P.B.)
| |
Collapse
|
25
|
Spencer SJ, Korosi A, Layé S, Shukitt-Hale B, Barrientos RM. Food for thought: how nutrition impacts cognition and emotion. NPJ Sci Food 2017; 1:7. [PMID: 31304249 PMCID: PMC6550267 DOI: 10.1038/s41538-017-0008-y] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 07/24/2017] [Accepted: 08/10/2017] [Indexed: 01/27/2023] Open
Abstract
More than one-third of American adults are obese and statistics are similar worldwide. Caloric intake and diet composition have large and lasting effects on cognition and emotion, especially during critical periods in development, but the neural mechanisms for these effects are not well understood. A clear understanding of the cognitive-emotional processes underpinning desires to over-consume foods can assist more effective prevention and treatments of obesity. This review addresses recent work linking dietary fat intake and omega-3 polyunsaturated fatty acid dietary imbalance with inflammation in developing, adult, and aged brains. Thus, early-life diet and exposure to stress can lead to cognitive dysfunction throughout life and there is potential for early nutritional interventions (e.g., with essential micronutrients) for preventing these deficits. Likewise, acute consumption of a high-fat diet primes the hippocampus to produce a potentiated neuroinflammatory response to a mild immune challenge, causing memory deficits. Low dietary intake of omega-3 polyunsaturated fatty acids can also contribute to depression through its effects on endocannabinoid and inflammatory pathways in specific brain regions leading to synaptic phagocytosis by microglia in the hippocampus, contributing to memory loss. However, encouragingly, consumption of fruits and vegetables high in polyphenolics can prevent and even reverse age-related cognitive deficits by lowering oxidative stress and inflammation. Understanding relationships between diet, cognition, and emotion is necessary to uncover mechanisms involved in and strategies to prevent or attenuate comorbid neurological conditions in obese individuals.
Collapse
Affiliation(s)
- Sarah J. Spencer
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3788 Australia
| | - Aniko Korosi
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, 1098 XH Netherlands
| | - Sophie Layé
- Nutrition et Neurobiologie Intégrée, INRA, Bordeaux University, Bordeaux, UMR1286 France
| | - Barbara Shukitt-Hale
- USDA-ARS, Human Nutrition Research Center On Aging at Tufts University, Boston, MA 02111-1524 USA
| | - Ruth M. Barrientos
- Department of Psychology & Neuroscience, and Center for Neuroscience, University of Colorado, Campus Box 345, Boulder, CO 80309-0345 USA
| |
Collapse
|
26
|
Pogue AI, Jaber V, Zhao Y, Lukiw WJ. Systemic Inflammation in C57BL/6J Mice Receiving Dietary Aluminum Sulfate; Up-Regulation of the Pro-Inflammatory Cytokines IL-6 and TNFα, C-Reactive Protein (CRP) and miRNA-146a in Blood Serum. ACTA ACUST UNITED AC 2017; 7. [PMID: 29354323 PMCID: PMC5771428 DOI: 10.4172/2161-0460.1000403] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A number of experimental investigations utilizing different murine species have previously reported: (i) that standard mouse-diets supplemented with physiologically realistic amounts of neurotoxic metal salts substantially induce pro-inflammatory signaling in a number of murine tissues; (ii) that these diet-stimulated changes may contribute to a systemic inflammation (SI), a potential precursor to neurodegenerative events in both the central and the peripheral nervous system (CNS, PNS); and (iii) that these events may ultimately contribute to a chronic and progressive inflammatory neurodegeneration, such as that which is observed in Alzheimer’s disease (AD) brain. In these experiments we assayed for markers of SI in the blood serum of C57BL/6J mice after 0, 1, 3 and 5 months of exposure to a standard mouse diet that included aluminum-sulfate in the food and drinking water, compared to age-matched controls receiving magnesium-sulfate or no additions. The data indicate that the SI markers that include the pro-inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor alpha (TNFα), the acute phase reactive protein C-reactive protein (CRP) production and a triad of pro-inflammatory microRNAs (miRNA-9, miRNA-125b and miRNA-146a) all increase in the serum after aluminum-sulfate exposure. For the first time these results suggest that ad libitum exposure to aluminum-sulfate at physiologically realistic concentrations, as would be found in the human diet over the long term, may predispose to SI and the potential development of chronic, progressive, inflammatory neurodegeneration with downstream pathogenic consequences.
Collapse
Affiliation(s)
| | - V Jaber
- LSU Neuroscience Center, Louisiana State University Health Sciences Center New Orleans, New Orleans LA, USA
| | - Y Zhao
- LSU Neuroscience Center, Louisiana State University Health Sciences Center New Orleans, New Orleans LA, USA.,Department of Anatomy and Cell Biology, Louisiana State University Health Sciences Center New Orleans, New Orleans LA, USA
| | - W J Lukiw
- Alchem Biotech, Toronto ON, Canada.,Department of Ophthalmology, Louisiana State University Health Sciences Center New Orleans, New Orleans LA, USA.,Department of Neurology, Louisiana State University Health Sciences Center New Orleans, New Orleans LA, USA
| |
Collapse
|
27
|
Li D, Tomljenovic L, Li Y, Shaw CA. RETRACTED: Subcutaneous injections of aluminum at vaccine adjuvant levels activate innate immune genes in mouse brain that are homologous with biomarkers of autism. J Inorg Biochem 2017; 177:39-54. [PMID: 28923356 DOI: 10.1016/j.jinorgbio.2017.08.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 01/11/2023]
Affiliation(s)
- Dan Li
- Dept. of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lucija Tomljenovic
- Dept. of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yongling Li
- Dept. of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher A Shaw
- Dept. of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada; Program in Experimental Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
28
|
de Oliveira MR, de Souza ICC, Fürstenau CR. Carnosic Acid Induces Anti-Inflammatory Effects in Paraquat-Treated SH-SY5Y Cells Through a Mechanism Involving a Crosstalk Between the Nrf2/HO-1 Axis and NF-κB. Mol Neurobiol 2017; 55:890-897. [DOI: 10.1007/s12035-017-0389-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 01/04/2017] [Indexed: 12/13/2022]
|
29
|
Meta-analysis of cyclooxygenase-2 (COX-2) 765G>C polymorphism and Alzheimer’s disease. J Clin Neurosci 2016; 31:4-9. [DOI: 10.1016/j.jocn.2015.11.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/30/2015] [Indexed: 01/19/2023]
|
30
|
Feng Z, Pearce LV, Zhang Y, Xing C, Herold BKA, Ma S, Hu Z, Turcios NA, Yang P, Tong Q, McCall AK, Blumberg PM, Xie XQ. Multi-Functional Diarylurea Small Molecule Inhibitors of TRPV1 with Therapeutic Potential for Neuroinflammation. AAPS J 2016; 18:898-913. [PMID: 27000851 PMCID: PMC5333490 DOI: 10.1208/s12248-016-9888-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/10/2016] [Indexed: 01/05/2023] Open
Abstract
Transient receptor potential vanilloid type 1 (TRPV1), a heat-sensitive calcium channel protein, contributes to inflammation as well as to acute and persistent pain. Since TRPV1 occupies a central position in pathways of neuronal inflammatory signaling, it represents a highly attractive potential therapeutic target for neuroinflammation. In the present work, we have in silico identified a series of diarylurea analogues for hTRPV1, of which 11 compounds showed activity in the nanomolar to micromolar range as validated by in vitro biological assays. Then, we utilized molecular docking to explore the detailed interactions between TRPV1 and the compounds to understand the contributions of the different substituent groups. Tyr511, Leu518, Leu547, Thr550, Asn551, Arg557, and Leu670 were important for the recognition of the small molecules by TRPV1. A hydrophobic group in R2 or a polar/hydrophilic group in R1 contributed significantly to the activities of the antagonists at TRPV1. In addition, the subtle different binding pose of meta-chloro in place of para-fluoro in the R2 group converted antagonism into partial agonism, as was predicted by our short-term molecular dynamics (MD) simulation and validated by bioassay. Importantly, compound 15, one of our best TRPV1 inhibitors, also showed potential binding affinity (1.39 μM) at cannabinoid receptor 2 (CB2), which is another attractive target for immuno-inflammation diseases. Furthermore, compound 1 and its diarylurea analogues were predicted to target the C-X-C chemokine receptor 2 (CXCR2), although bioassay validation of CXCR2 with these compounds still needs to be performed. This prediction from the modeling is of interest, since CXCR2 is also a potential therapeutic target for chronic inflammatory diseases. Our findings provide novel strategies to develop a small molecule inhibitor to simultaneously target two or more inflammation-related proteins for the treatment of a wide range of inflammatory disorders including neuroinflammation and neurodegenerative diseases with potential synergistic effect.
Collapse
Affiliation(s)
- Zhiwei Feng
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
- NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Larry V Pearce
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, Maryland, 20892, USA
| | - Yu Zhang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
- NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Changrui Xing
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
- NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Brienna K A Herold
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, Maryland, 20892, USA
| | - Shifan Ma
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
- NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Ziheng Hu
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
- NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Noe A Turcios
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, Maryland, 20892, USA
| | - Peng Yang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
- NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Qin Tong
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
- NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Anna K McCall
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, Maryland, 20892, USA
| | - Peter M Blumberg
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, Maryland, 20892, USA.
- Laboratory of Cancer Biology and Genetics, National Institutes of Health, Building 37, Room 4048B, 37 Convent Drive MSC 4255, Bethesda, Maryland, 20892-4255, USA.
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
- NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
- Departments of Computational Biology and of Structural Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA.
| |
Collapse
|
31
|
Pogue AI, Lukiw WJ. Aluminum, the genetic apparatus of the human CNS and Alzheimer's disease (AD). Morphologie 2016; 100:56-64. [PMID: 26969391 DOI: 10.1016/j.morpho.2016.01.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/13/2016] [Accepted: 01/19/2016] [Indexed: 06/05/2023]
Abstract
The genomes of eukaryotes orchestrate their expression to ensure an effective, homeostatic and functional gene signaling program, and this includes fundamentally altered patterns of transcription during aging, development, differentiation and disease. These actions constitute an extremely complex and intricate process as genetic operations such as transcription involve the very rapid translocation and polymerization of ribonucleotides using RNA polymerases, accessory transcription protein complexes and other interrelated chromatin proteins and genetic factors. As both free ribonucleotides and polymerized single-stranded RNA chains, ribonucleotides are highly charged with phosphate, and this genetic system is extremely vulnerable to disruption by a large number of electrostatic forces, and primarily by cationic metals such as aluminum. Aluminum has been shown by independent researchers to be particularly genotoxic to the genetic apparatus, and it has become reasonably clear that aluminum disturbs genetic signaling programs in the CNS that bear a surprising resemblance to those observed in Alzheimer's disease (AD) brain. This paper will focus on a discussion of two molecular-genetic aspects of aluminum genotoxicity: (1) the observation that micro-RNA (miRNA)-mediated global gene expression patterns in aluminum-treated transgenic animal models of AD (Tg-AD) strongly resemble those found in AD; and (2) the concept of "human biochemical individuality" and the hypothesis that individuals with certain gene expression patterns may be especially sensitive and perhaps predisposed to aluminum genotoxicity.
Collapse
Affiliation(s)
- A I Pogue
- Alchem Biotech, Toronto, ON M5S 1A8, Canada
| | - W J Lukiw
- Alchem Biotech, Toronto, ON M5S 1A8, Canada; Neuroscience Center and the Departments of Neurology and Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| |
Collapse
|
32
|
Nutrients, Microglia Aging, and Brain Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:7498528. [PMID: 26941889 PMCID: PMC4752989 DOI: 10.1155/2016/7498528] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/21/2015] [Accepted: 12/31/2015] [Indexed: 02/04/2023]
Abstract
As the life expectancy continues to increase, the cognitive decline associated with Alzheimer's disease (AD) becomes a big major issue in the world. After cellular activation upon systemic inflammation, microglia, the resident immune cells in the brain, start to release proinflammatory mediators to trigger neuroinflammation. We have found that chronic systemic inflammatory challenges induce differential age-dependent microglial responses, which are in line with the impairment of learning and memory, even in middle-aged animals. We thus raise the concept of “microglia aging.” This concept is based on the fact that microglia are the key contributor to the acceleration of cognitive decline, which is the major sign of brain aging. On the other hand, inflammation induces oxidative stress and DNA damage, which leads to the overproduction of reactive oxygen species by the numerous types of cells, including macrophages and microglia. Oxidative stress-damaged cells successively produce larger amounts of inflammatory mediators to promote microglia aging. Nutrients are necessary for maintaining general health, including the health of brain. The intake of antioxidant nutrients reduces both systemic inflammation and neuroinflammation and thus reduces cognitive decline during aging. We herein review our microglia aging concept and discuss systemic inflammation and microglia aging. We propose that a nutritional approach to controlling microglia aging will open a new window for healthy brain aging.
Collapse
|
33
|
Steardo L, Bronzuoli MR, Iacomino A, Esposito G, Steardo L, Scuderi C. Does neuroinflammation turn on the flame in Alzheimer's disease? Focus on astrocytes. Front Neurosci 2015; 9:259. [PMID: 26283900 PMCID: PMC4518161 DOI: 10.3389/fnins.2015.00259] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/10/2015] [Indexed: 12/18/2022] Open
Abstract
Data from animal models and Alzheimer's disease (AD) subjects provide clear evidence for an activation of inflammatory pathways during the pathogenetic course of such illness. Biochemical and neuropathological studies highlighted an important cause/effect relationship between inflammation and AD progression, revealing a wide range of genetic, cellular, and molecular changes associated with the pathology. In this context, glial cells have been proved to exert a crucial role. These cells, in fact, undergo important morphological and functional changes and are now considered to be involved in the onset and progression of AD. In particular, astrocytes respond quickly to pathology with changes that have been increasingly recognized as a continuum, with potentially beneficial and/or negative consequences. Although it is now clear that activated astrocytes trigger the neuroinflammatory process, however, the precise mechanisms have not been completely elucidated. Neuroinflammation is certainly a multi-faceted and complex phenomenon and, especially in the early stages, exerts a reparative intent. However, for reasons not yet all well known, this process goes beyond the physiologic control and contributes to the exacerbation of the damage. Here we scrutinize some evidence supporting the role of astrocytes in the neuroinflammatory process and the possibility that these cells could be considered a promising target for future AD therapies.
Collapse
Affiliation(s)
- Luca Steardo
- Department of Psychiatry, University of Naples SUNNaples, Italy
| | - Maria R. Bronzuoli
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of RomeRome, Italy
| | - Aniello Iacomino
- Faculty of Psychology, University of Rome “G. Marconi”Rome, Italy
| | - Giuseppe Esposito
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of RomeRome, Italy
| | - Luca Steardo
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of RomeRome, Italy
| | - Caterina Scuderi
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of RomeRome, Italy
| |
Collapse
|
34
|
Tan CSH, Ng YK, Ong WY. Epigenetic Regulation of Cytosolic Phospholipase A2 in SH-SY5Y Human Neuroblastoma Cells. Mol Neurobiol 2015; 53:3854-3872. [PMID: 26162318 DOI: 10.1007/s12035-015-9314-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/23/2015] [Indexed: 12/19/2022]
Abstract
Group IVA cytosolic phospholipase A2 (cPLA2 or PLA2G4A) is a key enzyme that contributes to inflammation via the generation of arachidonic acid and eicosanoids. While much is known about regulation of cPLA2 by posttranslational modification such as phosphorylation, little is known about its epigenetic regulation. In this study, treatment with histone deacetylase (HDAC) inhibitors, trichostatin A (TSA), valproic acid, tubacin and the class I HDAC inhibitor, MS-275, were found to increase cPLA2α messenger RNA (mRNA) expression in SH-SY5Y human neuroblastoma cells. Co-treatment of the histone acetyltransferase (HAT) inhibitor, anacardic acid, modulated upregulation of cPLA2α induced by TSA. Specific involvement of class I HDACs and HAT in cPLA2α regulation was further shown, and a Tip60-specific HAT inhibitor, NU9056, modulated the upregulation of cPLA2α induced by MS-275. In addition, co-treatment of with histone methyltransferase (HMT) inhibitor, 5'-deoxy-5'-methylthioadenosine (MTA) suppressed TSA-induced cPLA2α upregulation. The above changes in cPLA2 mRNA expression were reflected at the protein level by Western blots and immunocytochemistry. Chromatin immunoprecipitation (ChIP) showed TSA increased binding of trimethylated H3K4 to the proximal promoter region of the cPLA2α gene. Cell injury after TSA treatment as indicated by lactate dehydrogenase (LDH) release was modulated by anacardic acid, and a role of cPLA2 in mediating TSA-induced injury shown, after co-incubation with the cPLA2 selective inhibitor, arachidonoyl trifluoromethyl ketone (AACOCF3). Together, results indicate epigenetic regulation of cPLA2 and the potential of such regulation for treatment of chronic inflammation.
Collapse
Affiliation(s)
- Charlene Siew-Hon Tan
- Department of Anatomy, National University of Singapore, Singapore, 119260, Singapore
| | - Yee-Kong Ng
- Department of Anatomy, National University of Singapore, Singapore, 119260, Singapore
| | - Wei-Yi Ong
- Department of Anatomy, National University of Singapore, Singapore, 119260, Singapore. .,Neurobiology and Ageing Research Programme, National University of Singapore, Singapore, 119260, Singapore.
| |
Collapse
|
35
|
Shaw CA, Li D, Tomljenovic L. Are there negative CNS impacts of aluminum adjuvants used in vaccines and immunotherapy? Immunotherapy 2014; 6:1055-71. [DOI: 10.2217/imt.14.81] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In spite of a common view that aluminum (Al) salts are inert and therefore harmless as vaccine adjuvants or in immunotherapy, the reality is quite different. In the following article we briefly review the literature on Al neurotoxicity and the use of Al salts as vaccine adjuvants and consider not only direct toxic actions on the nervous system, but also the potential impact for triggering autoimmunity. Autoimmune and inflammatory responses affecting the CNS appear to underlie some forms of neurological disease, including developmental disorders. Al has been demonstrated to impact the CNS at every level, including by changing gene expression. These outcomes should raise concerns about the increasing use of Al salts as vaccine adjuvants and for the application as more general immune stimulants.
Collapse
Affiliation(s)
- Christopher A Shaw
- Neural Dynamics Research Group, 828 W. 10th Ave, Vancouver, BC, V5Z 1L8, Canada
| | - Dan Li
- Neural Dynamics Research Group, 828 W. 10th Ave, Vancouver, BC, V5Z 1L8, Canada
| | - Lucija Tomljenovic
- Neural Dynamics Research Group, 828 W. 10th Ave, Vancouver, BC, V5Z 1L8, Canada
| |
Collapse
|
36
|
Lee B, Sur B, Park J, Kim SH, Kwon S, Yeom M, Shim I, Lee H, Hahm DH. Ginsenoside rg3 alleviates lipopolysaccharide-induced learning and memory impairments by anti-inflammatory activity in rats. Biomol Ther (Seoul) 2013; 21:381-90. [PMID: 24244826 PMCID: PMC3825202 DOI: 10.4062/biomolther.2013.053] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/12/2013] [Accepted: 09/23/2013] [Indexed: 11/05/2022] Open
Abstract
The purpose of this study was to examine whether ginsenoside Rg3 (GRg3) could improve learning and memory impairments and inflammatory reactions induced by injecting lipopolysaccharide (LPS) into the brains of rats. The effects of GRg3 on proinflammatory mediators in the hippocampus and the underlying mechanisms of these effects were also investigated. Injection of LPS into the lateral ventricle caused chronic inflammation and produced deficits in learning in a memory-impairment animal model. Daily administration of GRg3 (10, 20, and 50 mg/kg, i.p.) for 21 consecutive days markedly improved the LPS-induced learning and memory disabilities demonstrated on the step-through passive avoidance test and Morris water maze test. GRg3 administration significantly decreased expression of pro-inflammatory mediators such as tumor necrosis factor-α, interleukin-1β, and cyclooxygenase-2 in the hippocampus, as assessed by reverse transcription-polymerase chain reaction analysis and immunohistochemistry. Together, these findings suggest that GRg3 significantly attenuated LPS-induced cognitive impairment by inhibiting the expression of pro-inflammatory mediators in the rat brain. These results suggest that GRg3 may be effective for preventing or slowing the development of neurological disorders, including Alzheimer's disease, by improving cognitive and memory functions due to its anti-inflammatory activity in the brain.
Collapse
Affiliation(s)
- Bombi Lee
- Acupuncture and Meridian Science Research Center
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Bhattacharjee S, Zhao Y, Hill JM, Culicchia F, Kruck TPA, Percy ME, Pogue AI, Walton J, Lukiw WJ. Selective accumulation of aluminum in cerebral arteries in Alzheimer's disease (AD). J Inorg Biochem 2013; 126:35-7. [PMID: 23764827 PMCID: PMC3720708 DOI: 10.1016/j.jinorgbio.2013.05.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/10/2013] [Accepted: 05/14/2013] [Indexed: 11/28/2022]
Abstract
Once biologically available aluminum bypasses gastrointestinal and blood-brain barriers, this environmentally-abundant neurotoxin has an exceedingly high affinity for the large pyramidal neurons of the human brain hippocampus. This same anatomical region of the brain is also targeted by the earliest evidence of Alzheimer's disease (AD) neuropathology. The mechanism for the selective targeting and transport of aluminum into the hippocampus of the human brain is not well understood. In an effort to improve our understanding of a pathological aluminum entry system into the brain, this study examined the aluminum content of 8 arteries that supply blood to the hippocampus, including the aorta and several cerebral arteries. In contrast to age-matched controls, in AD patients we found a gradient of increasing aluminum concentration from the aorta to the posterior cerebral artery that supplies blood to the hippocampus. Primary cultures of human brain endothelial cells were found to have an extremely high affinity for aluminum when compared to other types of brain cells. Together, these results suggest for the first time that endothelial cells that line the cerebral vasculature may have biochemical attributes conducive to binding and targeting aluminum to selective anatomical regions of the brain, such as the hippocampus, with potential downstream pro-inflammatory and pathogenic consequences.
Collapse
Affiliation(s)
- S. Bhattacharjee
- Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112 USA
| | - Yuhai Zhao
- Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112 USA
| | - James M. Hill
- Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112 USA
- Department of Neurology and Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA 70112 USA
| | - Frank Culicchia
- Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112 USA
- Department of Neurosurgery, Louisiana State University Health Sciences Center, New Orleans, LA 70112 USA
| | - Theodore P. A. Kruck
- Neurogenetics Laboratory, Surrey Place Centre & Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, CANADA
| | - Maire E. Percy
- Neurogenetics Laboratory, Surrey Place Centre & Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, CANADA
| | | | - J.R. Walton
- University of New South Wales, Sydney, NSW 2204 AUSTRALIA
| | - Walter J. Lukiw
- Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112 USA
- Department of Neurology and Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA 70112 USA
| |
Collapse
|
38
|
Faivre E, Hölscher C. Neuroprotective effects of D-Ala(2)GIP on Alzheimer's disease biomarkers in an APP/PS1 mouse model. ALZHEIMERS RESEARCH & THERAPY 2013; 5:20. [PMID: 23601582 PMCID: PMC3706793 DOI: 10.1186/alzrt174] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 03/09/2013] [Accepted: 04/08/2013] [Indexed: 12/16/2022]
Abstract
Introduction Type 2 diabetes mellitus has been identified as a risk factor for Alzheimer's disease (AD). An impairment of insulin signaling as well as a desensitization of its receptor has been found in AD brains. Glucose-dependent insulinotropic polypeptide (GIP) normalises insulin signaling by facilitating insulin release. GIP directly modulates neurotransmitter release, LTP formation, and protects synapses from the detrimental effects of beta-amyloid fragments on LTP formation, and cell proliferation of progenitor cells in the dentate gyrus. Here we investigate the potential therapeutic property of the new long lasting incretin hormone analogue D-Ala2GIP on key symptoms found in a mouse model of Alzheimer' disease (APPswe/PS1detaE9). Methods D-Ala2GIP was injected for 21 days at 25 nmol/kg ip once daily in APP/PS1 male mice and wild type (WT) littermates aged 6 or 12 months of age. Amyloid plaque load, inflammation biomarkers, synaptic plasticity in the brain (LTP), and memory were measured. Results D-Ala2GIP improved memory in WT mice and rescued the cognitive decline of 12 months old APP/PS1 mice in two different memory tasks. Furthermore, deterioration of synaptic function in the dentate gyrus and cortex was prevented in 12 months old APP/PS1 mice. D-Ala2GIP facilitated synaptic plasticity in APP/PS1 and WT mice and reduced the number of amyloid plaques in the cortex of D-Ala2GIP injected APP/PS1 mice. The inflammatory response in microglia was also reduced. Conclusion The results demonstrate that D-Ala2GIP has neuroprotective properties on key hallmarks found in AD. This finding shows that novel GIP analogues have the potential as a novel therapeutic for AD.
Collapse
Affiliation(s)
- Emilie Faivre
- School of Biomedical Sciences, Ulster University, Cromore road, Coleraine, BT52 1SA, UK
| | - Christian Hölscher
- School of Biomedical Sciences, Ulster University, Cromore road, Coleraine, BT52 1SA, UK
| |
Collapse
|
39
|
Halatek T, Lutz P, Stetkiewicz J, Krajnow A, Wieczorek E, Swiercz R, Szymczak M, Wasowicz W. Comparison of neurobehavioral and biochemical effects in rats exposed to dusts from copper smelter plant at different locations. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2013; 48:1000-1011. [PMID: 23573920 DOI: 10.1080/10934529.2013.773198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Mixed exposure to metals (including arsenic and lead) associated with the neurological and respiratory effects constitute one of the major health problems of copper smelting. Chemical composition of the dust, and the expected health effect of inhalation can be very diverse at different parts of the smelter plant. The aims of this study were to compare lung responses and behavioral effects in female Wistar rats after instillation of dust collected from different production processes at the same smelter department. Dusts collected at two different locations of furnace hall were sifted through 25-μm-mesh sieve. Obtained dust fractions, P-25(I) collected near stove, rich in heavy metals and arsenic, and P-25(II) collected near anode residue storage site, rich in aluminium, were instilled to rats. At 1, 7 and 30 days after dusts instillation, lung injury and inflammation were measured by analyzing sings of lung permeability in the bronchoalveolar lavage fluid (BALF), cell differentiation in BALF sediment and lung morphology. The behavioral studies were done 30 days after exposure. Results of biochemical tests showed a strong pro-inflammatory effect of P-25(I) fractions. Mostly characteristic effects after instillation of P-25(I) samples were 10× increased protein leakages in BALF. Both P-25(I) and P-25(II) fractions caused a reduction of Clara-cell 16 protein concentration (CC16) in BALF and activation of serum butyrylcholinesterase (BChE) at all time points. The morphological studies after exposure to P-25(I) fractions showed multi-focal infiltrations in the alveoli. The behavioral results, especially P-25(II) group rats (in open filed, passive avoidance and hot plate tests), indicated adverse effects in the nervous system, which may be related to changes in the dopaminergic and cholinergic pathway. The symptoms were noted in the form of persistent neurobehavioral changes which might be associated with the content of neurotoxic metals. e.g. Al, Mn and/or As. Decrease of CC16 concentration that occurred immediately after instillation of both dust samples, point out impaired anti-inflammatory potential, resulted in early harmful effect not only to the respiratory tract but also to the whole body, including the nervous system.
Collapse
Affiliation(s)
- Tadeusz Halatek
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, Lodz, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Rapoport SI. Translational studies on regulation of brain docosahexaenoic acid (DHA) metabolism in vivo. Prostaglandins Leukot Essent Fatty Acids 2013; 88:79-85. [PMID: 22766388 PMCID: PMC3467358 DOI: 10.1016/j.plefa.2012.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 04/29/2012] [Accepted: 05/01/2012] [Indexed: 01/30/2023]
Abstract
One goal in the field of brain polyunsaturated fatty acid (PUFA) metabolism is to translate the many studies that have been conducted in vitro and in animal models to the clinical setting. Doing so should elucidate the role of PUFAs in the human brain, and effects of diet, drugs, disease and genetics on this role. This review discusses new in vivo radiotracer kinetic and neuroimaging techniques that allow us to do this, with a focus on docosahexaenoic acid (DHA). We illustrate how brain PUFA metabolism is influenced by graded reductions in dietary n-3 PUFA content in unanesthetized rats. We also show how kinetic tracer techniques in rodents have helped to identify mechanisms of action of mood stabilizers used in bipolar disorder, how DHA participates in neurotransmission, and how brain DHA metabolism is regulated by calcium-independent iPLA₂β. In humans, regional rates of brain DHA metabolism can be quantitatively imaged with positron emission tomography following intravenous injection of [1-¹¹C]DHA.
Collapse
Affiliation(s)
- Stanley I Rapoport
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Building 9, Room 1S128, Bethesda, MD 20892, USA.
| |
Collapse
|
41
|
Simen AA, Bordner KA, Martin MP, Moy LA, Barry LC. Cognitive dysfunction with aging and the role of inflammation. Ther Adv Chronic Dis 2012; 2:175-95. [PMID: 23251749 DOI: 10.1177/2040622311399145] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
As the average lifespan continues to climb because of advances in medical care, there is a greater need to understand the factors that contribute to quality of life in the elderly. The capacity to live independently is highly significant in this regard, but is compromised by cognitive dysfunction. Aging is associated with decreases in cognitive function, including impairments in episodic memory and executive functioning. The prefrontal cortex appears to be particularly vulnerable to the effects of advancing age. Although the mechanism of age-related cognitive decline is not yet known, age-related inflammatory changes are likely to play a role. New insights from preclinical and clinical research may give rise to novel therapeutics which may have efficacy in slowing or preventing cognitive decline with advancing age.
Collapse
Affiliation(s)
- Arthur A Simen
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | |
Collapse
|
42
|
Duffy AM, Hölscher C. The incretin analogue D-Ala2GIP reduces plaque load, astrogliosis and oxidative stress in an APP/PS1 mouse model of Alzheimer's disease. Neuroscience 2012; 228:294-300. [PMID: 23103794 DOI: 10.1016/j.neuroscience.2012.10.045] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 10/19/2012] [Indexed: 12/24/2022]
Abstract
Type 2 diabetes mellitus has been identified as a risk factor for Alzheimer's disease (AD). Insulin is a neuroprotective growth factor, and an impairment of insulin signalling has been found in AD brains. Glucose-dependent insulinotropic polypeptide (GIP), an incretin hormone, normalises insulin signalling and also acts as a neuroprotective growth factor. GIP plays an important role in memory formation, synaptic plasticity and cell proliferation. We have shown previously that the long-lasting incretin hormone analogue D-Ala(2)GIP protects memory formation and synaptic plasticity, reduces plaques, normalises the proliferation of stem cells, reduces the activation of microglia, and prevents the loss of synapses in the cortex of the APPswe/PS1deltaE9 mouse model of Alzheimer's disease. D-Ala(2)GIP was injected for 35 days at 25 nmol/kg i.p. once daily in APP/PS1 male mice and wild-type (WT) littermates aged 6, 12 and 19 months. In a follow-up study, we analysed plaque load, the activation of astrocytes as a means of chronic inflammation in the brain, and oxidative stress in the brains of these mice (8-oxoguanine levels). D-Ala(2)GIP reduced the amyloid plaque load in 12- and 19-month-old mice, and the inflammation response as shown in the reduction of activated astrocytes in 12- and 19-month old APP/PS1 mice. Chronic oxidative stress in the brain was reduced in 12- and 19-month-old mice as shown in the reduction of 8-oxoguanine levels in the cortex of D-Ala(2)GIP-injected APP/PS1 mice. The results demonstrate that D-Ala(2)GIP has neuroprotective properties on key markers found in Alzheimer's disease. This finding shows that novel GIP analogues have the potential to be developed as novel therapeutics for Alzheimer's disease.
Collapse
Affiliation(s)
- A M Duffy
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | | |
Collapse
|
43
|
Shao N, Feng N, Wang Y, Mi Y, Li T, Hua L. Systematic review and meta-analysis of COX-2 expression and polymorphisms in prostate cancer. Mol Biol Rep 2012; 39:10997-1004. [PMID: 23053989 DOI: 10.1007/s11033-012-2001-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 10/01/2012] [Indexed: 12/18/2022]
Abstract
Evidence is accumulating that cyclooxygenase-2 (COX-2) may play an important role in prostate cancer (PCa). Recently, gene polymorphisms in COX-2 have been implicated to alter the risk of PCa and overexpression of COX-2 may be associated with clinical and prognostic significance in PCa. However, the results of these studies are inconclusive or controversial. To derive a more precise estimation of the relationships, we performed an updated meta-analysis. A comprehensive search was conducted to examine all the eligible studies of COX-2 polymorphism and expression in PCa. We used odds ratios (ORs) to assess the strength of the association and the 95 % confidence intervals (CIs) give a sense of the precision of the estimate. Overall, no significant associations between COX-2 polymorphism and PCa risk were found. However, high expression of COX-2 was significantly higher in T3-T4 stages of PCa than in T1-T2 stages of PCa (OR = 2.33, 95 %CI: 1.54-3.53, P < 0.0001). COX-2 might play an important role in the progress of PCa, overexpression of COX-2 correlates with T3-T4 stages of PCa. COX-2 might be a potential therapy target for PCa and work as a prognostic factor for PCa patients.
Collapse
Affiliation(s)
- Ning Shao
- Department of Urology, Jiangsu Province Geriatric Hospital, 65 Jiangsu Road, Nanjing, 210024, China
| | | | | | | | | | | |
Collapse
|
44
|
Dan P, Rosenblat G, Yedgar S. Phospholipase A2 activities in skin physiology and pathology. Eur J Pharmacol 2012; 691:1-8. [DOI: 10.1016/j.ejphar.2012.07.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Revised: 06/21/2012] [Accepted: 07/02/2012] [Indexed: 01/22/2023]
|
45
|
Metal-sulfate induced generation of ROS in human brain cells: detection using an isomeric mixture of 5- and 6-carboxy-2',7'-dichlorofluorescein diacetate (carboxy-DCFDA) as a cell permeant tracer. Int J Mol Sci 2012; 13:9615-9626. [PMID: 22949820 PMCID: PMC3431818 DOI: 10.3390/ijms13089615] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/20/2012] [Accepted: 07/24/2012] [Indexed: 12/13/2022] Open
Abstract
Evolution of reactive oxygen species (ROS), generated during the patho-physiological stress of nervous tissue, has been implicated in the etiology of several progressive human neurological disorders including Alzheimer’s disease (AD) and amylotrophic lateral sclerosis (ALS). In this brief communication we used mixed isomers of 5-(and-6)-carboxy-2′,7′-dichlorofluorescein diacetate (carboxy-DCFDA; C25H14Cl2O9; MW 529.3), a novel fluorescent indicator, to assess ROS generation within human neuronal-glial (HNG) cells in primary co-culture. We introduced pathological stress using the sulfates of 12 environmentally-, industrially- and agriculturally-relevant divalent and trivalent metals including Al, Cd, Cu, Fe, Hg, Ga, Mg, Mn, Ni, Pb, Sn and Zn. In this experimental test system, of all the metal sulfates analyzed, aluminum sulfate showed by far the greatest ability to induce intracellular ROS. These studies indicate the utility of using isomeric mixtures of carboxy-H2DCFDA diacetates as novel and highly sensitive, long-lasting, cell-permeant, fluorescein-based tracers for quantifying ROS generation in intact, metabolizing human brain cells, and in analyzing the potential epigenetic contribution of different metal sulfates to ROS-generation and ROS-mediated neurological dysfunction.
Collapse
|
46
|
Lee B, Sur B, Cho S, Yeom M, Shim I, Lee H, Hahm DH. Protective effect ofPhellodendri Cortexagainst lipopolysaccharide-induced memory impairment in rats. Anim Cells Syst (Seoul) 2012. [DOI: 10.1080/19768354.2012.699004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
47
|
Fahnestock M. Brain-derived neurotrophic factor: the link between amyloid-β and memory loss. FUTURE NEUROLOGY 2011. [DOI: 10.2217/fnl.11.44] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a critical molecule for learning and memory. Brain BDNF levels correlate with cognitive status. BDNF is downregulated in Alzheimer’s disease, in age-related cognitive impairment and in a variety of other neurodegenerative and psychiatric disorders exhibiting cognitive deficits. BDNF is downregulated in the Alzheimer’s disease brain by soluble, aggregated amyloid-β, acting via a pathway involving the transcription factor cAMP response element binding protein, which activates BDNF transcript IV. The complete pathway by which BDNF is downregulated is still unclear, and the diagnostic and therapeutic use of BDNF in neurodegenerative disease has not yet been exploited.
Collapse
Affiliation(s)
- Margaret Fahnestock
- Department of Psychiatry & Behavioural Neurosciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
48
|
Rao JS, Kim HW, Kellom M, Greenstein D, Chen M, Kraft AD, Harry GJ, Rapoport SI, Basselin M. Increased neuroinflammatory and arachidonic acid cascade markers, and reduced synaptic proteins, in brain of HIV-1 transgenic rats. J Neuroinflammation 2011; 8:101. [PMID: 21846384 PMCID: PMC3175175 DOI: 10.1186/1742-2094-8-101] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 08/16/2011] [Indexed: 12/23/2022] Open
Abstract
Background Cognitive impairment has been reported in human immune deficiency virus-1- (HIV-1-) infected patients as well as in HIV-1 transgenic (Tg) rats. This impairment has been linked to neuroinflammation, disturbed brain arachidonic acid (AA) metabolism, and synapto-dendritic injury. We recently reported upregulated brain AA metabolism in 7- to 9-month-old HIV-1 Tg rats. We hypothesized that these HIV-1 Tg rats also would show upregulated brain inflammatory and AA cascade markers and a deficit of synaptic proteins. Methods We measured protein and mRNA levels of markers of neuroinflammation and the AA cascade, as well as pro-apoptotic factors and synaptic proteins, in brains from 7- to 9-month-old HIV-1 Tg and control rats. Results Compared with control brain, HIV-1 Tg rat brain showed immunoreactivity to glycoprotein 120 and tat HIV-1 viral proteins, and significantly higher protein and mRNA levels of (1) the inflammatory cytokines interleukin-1β and tumor necrosis factor α, (2) the activated microglial/macrophage marker CD11b, (3) AA cascade enzymes: AA-selective Ca2+-dependent cytosolic phospholipase A2 (cPLA2)-IVA, secretory sPLA2-IIA, cyclooxygenase (COX)-2, membrane prostaglandin E2 synthase, 5-lipoxygenase (LOX) and 15-LOX, cytochrome p450 epoxygenase, and (4) transcription factor NF-κBp50 DNA binding activity. HIV-1 Tg rat brain also exhibited signs of cell injury, including significantly decreased levels of brain-derived neurotrophic factor (BDNF) and drebrin, a marker of post-synaptic excitatory dendritic spines. Expression of Ca2+-independent iPLA2-VIA and COX-1 was unchanged. Conclusions HIV-1 Tg rats show elevated brain markers of neuroinflammation and AA metabolism, with a deficit in several synaptic proteins. These changes are associated with viral proteins and may contribute to cognitive impairment. The HIV-1 Tg rat may be a useful model for understanding progression and treatment of cognitive impairment in HIV-1 patients.
Collapse
Affiliation(s)
- Jagadeesh Sridhara Rao
- Brain Physiology and Metabolism Section, National Institute on Aging, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Blaylock RL, Maroon J. Immunoexcitotoxicity as a central mechanism in chronic traumatic encephalopathy-A unifying hypothesis. Surg Neurol Int 2011; 2:107. [PMID: 21886880 PMCID: PMC3157093 DOI: 10.4103/2152-7806.83391] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 06/06/2011] [Indexed: 12/17/2022] Open
Abstract
Some individuals suffering from mild traumatic brain injuries, especially repetitive mild concussions, are thought to develop a slowly progressive encephalopathy characterized by a number of the neuropathological elements shared with various neurodegenerative diseases. A central pathological mechanism explaining the development of progressive neurodegeneration in this subset of individuals has not been elucidated. Yet, a large number of studies indicate that a process called immunoexcitotoxicity may be playing a central role in many neurodegenerative diseases including chronic traumatic encephalopathy (CTE). The term immunoexcitotoxicity was first coined by the lead author to explain the evolving pathological and neurodevelopmental changes in autism and the Gulf War Syndrome, but it can be applied to a number of neurodegenerative disorders. The interaction between immune receptors within the central nervous system (CNS) and excitatory glutamate receptors trigger a series of events, such as extensive reactive oxygen species/reactive nitrogen species generation, accumulation of lipid peroxidation products, and prostaglandin activation, which then leads to dendritic retraction, synaptic injury, damage to microtubules, and mitochondrial suppression. In this paper, we discuss the mechanism of immunoexcitotoxicity and its link to each of the pathophysiological and neurochemical events previously described with CTE, with special emphasis on the observed accumulation of hyperphosphorylated tau.
Collapse
Affiliation(s)
- Russell L Blaylock
- Theoretical Neurosciences, LLC Visiting Professor of Biology, Belhaven University, Jackson, MS 315 Rolling Meadows Rd, Ridgeland, MS 39157, USA
| | | |
Collapse
|
50
|
Pogue AI, Percy ME, Cui JG, Li YY, Bhattacharjee S, Hill JM, Kruck TPA, Zhao Y, Lukiw WJ. Up-regulation of NF-kB-sensitive miRNA-125b and miRNA-146a in metal sulfate-stressed human astroglial (HAG) primary cell cultures. J Inorg Biochem 2011; 105:1434-7. [PMID: 22099153 DOI: 10.1016/j.jinorgbio.2011.05.012] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 05/11/2011] [Accepted: 05/18/2011] [Indexed: 11/28/2022]
Abstract
Micro RNAs (miRNAs) constitute a unique class of small, non-coding ribonucleic acids (RNAs) that regulate gene expression at the post-transcriptional level. The presence of two inducible miRNAs, miRNA-125b and miRNA-146a, involved in respectively, astroglial cell proliferation and in the innate immune and inflammatory response, is significantly up-regulated in human neurological disorders including Alzheimer's disease (AD). In this study we analyzed abundances miRNA-125b and miRNA-146a in magnesium-, iron-, gallium, and aluminum-sulfate-stressed human-astroglial (HAG) cells, a structural and immune-responsive brain cell type. The combination of iron- plus aluminum-sulfate was found to be significantly synergistic in up-regulating reactive oxygen species (ROS) abundance, NF-кB-DNA binding and miRNA-125b and miRNA-146a expression. Treatment of metal-sulfate stressed HAG cells with the antioxidant phenyl butyl nitrone (PBN) or the NF-кB inhibitors curcumin, the metal chelator-anti-oxidant pyrollidine dithiocarbamate (PDTC), or the resveratrol analog CAY10512, abrogated both NF-кB signaling and induction of these miRNAs. Our observations further illustrate the potential of physiologically relevant amounts of aluminum and iron sulfates to synergistically up-regulate specific miRNAs known to contribute to AD-relevant pathogenetic mechanisms, and suggest that antioxidants or NF-кB inhibitors may be useful to quench metal-sulfate triggered genotoxicity.
Collapse
Affiliation(s)
- Aileen I Pogue
- Neuroscience Center, Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112 USA
| | | | | | | | | | | | | | | | | |
Collapse
|