1
|
Vi TT, Thi Hue Kien D, Thi Long V, Dui LT, Tuyet Nhu VT, Thi Giang N, Thi Xuan Trang H, Yacoub S, Simmons CP. A serotype-specific and tiled amplicon multiplex PCR method for whole genome sequencing of dengue virus. J Virol Methods 2024; 328:114968. [PMID: 38796133 DOI: 10.1016/j.jviromet.2024.114968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Dengue fever, a mosquito-borne viral disease of significant public health concern in tropical and subtropical regions, is caused by any of the four serotypes of the dengue virus (DENV1-4). Cutting-edge technologies like next-generation sequencing (NGS) are revolutionizing virology, enabling in-depth exploration of DENV's genetic diversity. Here, we present an optimized workflow for full-genome sequencing of DENV 1-4 utilizing tiled amplicon multiplex PCR and Illumina sequencing. Our assay, sequenced on the Illumina MiSeq platform, demonstrates its ability to recover the full-length dengue genome across various viral abundances in clinical specimens with high-quality base coverage. This high quality underscores its suitability for precise examination of intra-host diversity, enriching our understanding of viral evolution and holding potential for improved diagnostic and intervention strategies in regions facing dengue outbreaks.
Collapse
Affiliation(s)
- Tran Thuy Vi
- Oxford University Clinical Research Unit, Wellcome Trust Africa Asia Programme, District 5, Ho Chi Minh City, Viet Nam
| | - Duong Thi Hue Kien
- Oxford University Clinical Research Unit, Wellcome Trust Africa Asia Programme, District 5, Ho Chi Minh City, Viet Nam.
| | - Vo Thi Long
- Oxford University Clinical Research Unit, Wellcome Trust Africa Asia Programme, District 5, Ho Chi Minh City, Viet Nam
| | - Le Thi Dui
- Oxford University Clinical Research Unit, Wellcome Trust Africa Asia Programme, District 5, Ho Chi Minh City, Viet Nam
| | - Vu Thi Tuyet Nhu
- Oxford University Clinical Research Unit, Wellcome Trust Africa Asia Programme, District 5, Ho Chi Minh City, Viet Nam
| | - Nguyen Thi Giang
- Oxford University Clinical Research Unit, Wellcome Trust Africa Asia Programme, District 5, Ho Chi Minh City, Viet Nam
| | - Huynh Thi Xuan Trang
- Oxford University Clinical Research Unit, Wellcome Trust Africa Asia Programme, District 5, Ho Chi Minh City, Viet Nam
| | - Sophie Yacoub
- Oxford University Clinical Research Unit, Wellcome Trust Africa Asia Programme, District 5, Ho Chi Minh City, Viet Nam; Centre for Tropical Medicine and Global Health, University of Oxford, UK
| | - Cameron P Simmons
- World Mosquito Program, Monash University, Clayton, Melbourne, VIC 3168, Australia
| |
Collapse
|
2
|
Torralba B, Blanc S, Michalakis Y. Reassortments in single-stranded DNA multipartite viruses: Confronting expectations based on molecular constraints with field observations. Virus Evol 2024; 10:veae010. [PMID: 38384786 PMCID: PMC10880892 DOI: 10.1093/ve/veae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/23/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024] Open
Abstract
Single-stranded DNA multipartite viruses, which mostly consist of members of the genus Begomovirus, family Geminiviridae, and all members of the family Nanoviridae, partly resolve the cost of genomic integrity maintenance through two remarkable capacities. They are able to systemically infect a host even when their genomic segments are not together in the same host cell, and these segments can be separately transmitted by insect vectors from host to host. These capacities potentially allow such viruses to reassort at a much larger spatial scale, since reassortants could arise from parental genotypes that do not co-infect the same cell or even the same host. To assess the limitations affecting reassortment and their implications in genome integrity maintenance, the objective of this review is to identify putative molecular constraints influencing reassorted segments throughout the infection cycle and to confront expectations based on these constraints with empirical observations. Trans-replication of the reassorted segments emerges as the major constraint, while encapsidation, viral movement, and transmission compatibilities appear more permissive. Confronting the available molecular data and the resulting predictions on reassortments to field population surveys reveals notable discrepancies, particularly a surprising rarity of interspecific natural reassortments within the Nanoviridae family. These apparent discrepancies unveil important knowledge gaps in the biology of ssDNA multipartite viruses and call for further investigation on the role of reassortment in their biology.
Collapse
Affiliation(s)
- Babil Torralba
- PHIM, Université Montpellier, IRD, CIRAD, INRAE, Institut Agro, Avenue du Campus d’Agropolis - ZAC de Baillarguet, Montpellier 34980, France
| | - Stéphane Blanc
- PHIM, Université Montpellier, IRD, CIRAD, INRAE, Institut Agro, Avenue du Campus d’Agropolis - ZAC de Baillarguet, Montpellier 34980, France
| | - Yannis Michalakis
- MIVEGEC, Université Montpellier, CNRS, IRD, 911, Avenue Agropolis, Montpellier 34394, France
| |
Collapse
|
3
|
Ariza-Mateos A, Briones C, Perales C, Bayo-Jiménez MT, Domingo E, Gómez J. Viruses as archaeological tools for uncovering ancient molecular relationships. Ann N Y Acad Sci 2023; 1529:3-13. [PMID: 37801367 DOI: 10.1111/nyas.15071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
The entry of a virus into the host cell always implies the alteration of certain intracellular molecular relationships, some of which may involve the recovery of ancient cellular activities. In this sense, viruses are archaeological tools for identifying unexpressed activities in noninfected cells. Among these, activities that hinder virus propagation may represent cellular defense mechanisms, for example, activities that mutagenize the viral genome such as ADAR-1 or APOBEC activities. Instead, those that facilitate virus propagation can be interpreted as the result of viral adaptation to-or mimicking-cellular structures, enabling the virus to perform anthropomorphic activities, including hijacking, manipulating, and reorganizing cellular factors for their own benefit. The alternative we consider here is that some of these second set of cellular activities were already in the uninfected cell but silenced, under the negative control of the cell or lineage, and that they represent a necessary precondition for viral infection. For example, specifically loading an amino acid at the 3'-end of the mRNA of some plant viruses by aminoacyl-tRNA synthetases has proved essential for virus infection despite this reaction not occurring with cellular mRNAs. Other activities of this type are discussed here, together with the biological context in which they acquire a coherent meaning, that is, genetic latency and molecular conflict.
Collapse
Affiliation(s)
- Ascensión Ariza-Mateos
- Laboratory of RNA Archaeology, Instituto de Parasitología y Biomedicina "López-Neyra" (CSIC), Granada, Spain
| | - Carlos Briones
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| | - Celia Perales
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - María Teresa Bayo-Jiménez
- Laboratory of RNA Archaeology, Instituto de Parasitología y Biomedicina "López-Neyra" (CSIC), Granada, Spain
| | - Esteban Domingo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Jordi Gómez
- Laboratory of RNA Archaeology, Instituto de Parasitología y Biomedicina "López-Neyra" (CSIC), Granada, Spain
| |
Collapse
|
4
|
Fan Y, Zhong Y, Pan L, Wang X, Ding M, Liu S. A shift of vector specificity acquired by a begomovirus through natural homologous recombination. MOLECULAR PLANT PATHOLOGY 2023; 24:882-895. [PMID: 37191666 PMCID: PMC10346445 DOI: 10.1111/mpp.13351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023]
Abstract
Recombination is common in plant viruses such as geminiviruses, but the ecological and pathogenic consequences have been explored only in a few cases. Here, we found that a new begomovirus, tomato yellow leaf curl Shuangbai virus (TYLCSbV), probably originated from the recombination of Ageratum yellow vein China virus (AYVCNV) and tobacco curl shoot virus (TbCSV). Agrobacterium-mediated inoculation showed that TYLCSbV and AYVCNV have similar levels of infectivity on tomato and tobacco plants. However, the two viruses exhibit contrasting specificities for vector transmission, that is, TYLCSbV was efficiently transmitted by the whitefly Bemisia tabaci Mediterranean (MED) rather than by the whitefly B. tabaci Middle East-Asia Minor 1 (MEAM1), whereas AYVCNV was more efficiently transmitted by MEAM1. We also showed that the transmission efficiencies of TYLCSbV and AYVCNV are positively correlated with the accumulation of the viruses in whitefly whole bodies and organs/tissues. The key coat protein amino acids that determine their accumulation are between positions 147 and 256. Moreover, field surveys suggest that MED has displaced MEAM1 in some regions where TYLCSbV was collected. Viral competition assays indicated that TYLCSbV outcompeted AYVCNV when transmitted by MED, while the outcome was the opposite when transmitted by MEAM1. Our findings suggest that recombination has resulted in a shift of vector specificity that could provide TYLCSbV with a potential selective transmission advantage, and the population shift of whitefly cryptic species could have influenced virus evolution towards an extended trajectory of transmission.
Collapse
Affiliation(s)
- Yun‐Yun Fan
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang ProvinceInstitute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Yu‐Wei Zhong
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang ProvinceInstitute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Li‐Long Pan
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang ProvinceInstitute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Xiao‐Wei Wang
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang ProvinceInstitute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Ming Ding
- Biotechnology and Germplasm Resources InstituteYunnan Academy of Agricultural SciencesKunmingChina
| | - Shu‐Sheng Liu
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang ProvinceInstitute of Insect Sciences, Zhejiang UniversityHangzhouChina
| |
Collapse
|
5
|
Mhamadi M, Dieng I, Dolgova AS, Touré CT, Ndiaye M, Diagne MM, Faye B, Gladkikh AS, Dedkov VG, Sall AA, Faye O, Faye O. Whole Genome Sequencing Analysis of African Orthobunyavirus Isolates Reveals Naturally Interspecies Segments Recombinations between Bunyamwera and Ngari Viruses. Viruses 2023; 15:v15020550. [PMID: 36851764 PMCID: PMC9963518 DOI: 10.3390/v15020550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/04/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Bunyamwera virus is the prototype of the Bunyamwera serogroup, which belongs to the order Bunyavirales of the Orthobunyavirus genus in the Peribunyaviridae family. Bunyamwera is a negative-sense RNA virus composed of three segments S, M, and L. Genetic recombination is possible between members of this order as it is already documented. Additionally, it can lead to pathogenic or host range improvement, if it occurs with viruses of public health and agricultural importance such as Rift Valley fever virus and Crimea-Congo hemorrhagic fever virus. Here, we characterize five African Orthobunyavirus viruses from different geographical regions. Our results suggest that the five newly characterized strains are identified as Bunyamwera virus strains. Furthermore, two of the five strains sequenced in this study are recombinant strains, as fragments of their segments are carried by Ngari and Bunyamwera strains. Further investigations are needed to understand the functional impact of these recombinations.
Collapse
Affiliation(s)
- Moufid Mhamadi
- Virology Department, Institut Pasteur de Dakar, Dakar 12900, Senegal
- Parasitology Department, Université Cheikh Anta Diop de Dakar, Dakar 10700, Senegal
| | - Idrissa Dieng
- Virology Department, Institut Pasteur de Dakar, Dakar 12900, Senegal
| | - Anna S. Dolgova
- Saint Petersburg Pasteur Institute, 197101 Saint Petersburg, Russia
- Correspondence: (A.S.D.); (O.F.)
| | | | - Mignane Ndiaye
- Virology Department, Institut Pasteur de Dakar, Dakar 12900, Senegal
| | | | - Babacar Faye
- Parasitology Department, Université Cheikh Anta Diop de Dakar, Dakar 10700, Senegal
| | - Anna S. Gladkikh
- Saint Petersburg Pasteur Institute, 197101 Saint Petersburg, Russia
| | | | - Amadou Alpha Sall
- Virology Department, Institut Pasteur de Dakar, Dakar 12900, Senegal
| | - Ousmane Faye
- Virology Department, Institut Pasteur de Dakar, Dakar 12900, Senegal
| | - Oumar Faye
- Virology Department, Institut Pasteur de Dakar, Dakar 12900, Senegal
- Correspondence: (A.S.D.); (O.F.)
| |
Collapse
|
6
|
Li HL, Yang BY, Wang LJ, Liao K, Sun N, Liu YC, Ma RF, Yang XD. A meta-analysis result: Uneven influences of season, geo-spatial scale and latitude on relationship between meteorological factors and the COVID-19 transmission. ENVIRONMENTAL RESEARCH 2022; 212:113297. [PMID: 35436453 PMCID: PMC9011904 DOI: 10.1016/j.envres.2022.113297] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 05/15/2023]
Abstract
Meteorological factors have been confirmed to affect the COVID-19 transmission, but current studied conclusions varied greatly. The underlying causes of the variance remain unclear. Here, we proposed two scientific questions: (1) whether meteorological factors have a consistent influence on virus transmission after combining all the data from the studies; (2) whether the impact of meteorological factors on the COVID-19 transmission can be influenced by season, geospatial scale and latitude. We employed a meta-analysis to address these two questions using results from 2813 published articles. Our results showed that, the influence of meteorological factors on the newly-confirmed COVID-19 cases varied greatly among existing studies, and no consistent conclusion can be drawn. After grouping outbreak time into cold and warm seasons, we found daily maximum and daily minimum temperatures have significant positive influences on the newly-confirmed COVID-19 cases in cold season, while significant negative influences in warm season. After dividing the scope of the outbreak into national and urban scales, relative humidity significantly inhibited the COVID-19 transmission at the national scale, but no effect on the urban scale. The negative impact of relative humidity, and the positive impacts of maximum temperatures and wind speed on the newly-confirmed COVID-19 cases increased with latitude. The relationship of maximum and minimum temperatures with the newly-confirmed COVID-19 cases were more susceptible to season, while relative humidity's relationship was more affected by latitude and geospatial scale. Our results suggested that relationship between meteorological factors and the COVID-19 transmission can be affected by season, geospatial scale and latitude. A rise in temperature would promote virus transmission in cold seasons. We suggested that the formulation and implementation of epidemic prevention and control should mainly refer to studies at the urban scale. The control measures should be developed according to local meteorological properties for individual city.
Collapse
Affiliation(s)
- Hong-Li Li
- College of Geography and Tourism Culture, Ningbo University, Ningbo, 315211, China
| | - Bai-Yu Yang
- College of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Li-Jing Wang
- College of Geography and Tourism Culture, Ningbo University, Ningbo, 315211, China
| | - Ke Liao
- College of Geography and Tourism Culture, Ningbo University, Ningbo, 315211, China
| | - Nan Sun
- College of Geography and Tourism Culture, Ningbo University, Ningbo, 315211, China
| | - Yong-Chao Liu
- College of Geography and Tourism Culture, Ningbo University, Ningbo, 315211, China; Ningbo Universities Collaborative Innovation Center for Land and Marine Spatial Utilization and Governance Research at Ningbo University, Ningbo, 315211, China; Donghai Academy, Ningbo University, Ningbo, 315211, China
| | - Ren-Feng Ma
- College of Geography and Tourism Culture, Ningbo University, Ningbo, 315211, China; Ningbo Universities Collaborative Innovation Center for Land and Marine Spatial Utilization and Governance Research at Ningbo University, Ningbo, 315211, China; Donghai Academy, Ningbo University, Ningbo, 315211, China
| | - Xiao-Dong Yang
- College of Geography and Tourism Culture, Ningbo University, Ningbo, 315211, China; Ningbo Universities Collaborative Innovation Center for Land and Marine Spatial Utilization and Governance Research at Ningbo University, Ningbo, 315211, China; Donghai Academy, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
7
|
Imran MA, Islam MR, Saha A, Ferdousee S, Mishu MA, Ghosh A. Development of Multi-epitope Based Subunit Vaccine Against Crimean-Congo Hemorrhagic Fever Virus Using Reverse Vaccinology Approach. Int J Pept Res Ther 2022; 28:124. [PMID: 35789799 PMCID: PMC9244561 DOI: 10.1007/s10989-022-10430-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Md. Ashik Imran
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114 Bangladesh
| | - Md. Rubiath Islam
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114 Bangladesh
| | - Akash Saha
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114 Bangladesh
| | - Shahida Ferdousee
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114 Bangladesh
| | - Moshiul Alam Mishu
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114 Bangladesh
| | - Ajit Ghosh
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114 Bangladesh
| |
Collapse
|
8
|
Pervin T, Oany AR. Vaccinomics approach for scheming potential epitope-based peptide vaccine by targeting l-protein of Marburg virus. In Silico Pharmacol 2021; 9:21. [PMID: 33717824 PMCID: PMC7936589 DOI: 10.1007/s40203-021-00080-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 02/02/2021] [Indexed: 12/31/2022] Open
Abstract
Marburg virus is one of the world’s most threatening diseases, causing extreme hemorrhagic fever, with a death rate of up to 90%. The Food and Drug Administration (FDA) currently not authorized any treatments or vaccinations for the hindrance and post-exposure of the Marburg virus. In the present study, the vaccinomics methodology was adopted to design a potential novel peptide vaccine against the Marburg virus, targeting RNA-directed RNA polymerase (l). A total of 48 l-proteins from diverse variants of the Marburg virus were collected from the NCBI GenBank server and used to classify the best antigenic protein leading to predict equally T and B-cell epitopes. Initially, the top 26 epitopes were evaluated for the attraction with major histocompatibility complex (MHC) class I and II alleles. Finally, four prospective central epitopes NLSDLTFLI, FRYEFTRHF, YRLRNSTAL, and YRVRNVQTL were carefully chosen. Among these, FRYEFTRHF and YRVRNVQTL peptides showed 100% conservancy. Though YRLRNSTAL showed 95.74% conservancy, it demonstrated the highest combined score as T cell epitope (2.5461) and population coverage of 94.42% among the whole world population. The epitope was found non-allergenic, and docking interactions with human leukocyte antigens (HLAs) also verified. Finally, in vivo analysis of the recommended peptides might contribute to the advancement of an efficient and exclusively prevalent vaccine that would be an active route to impede the virus spreading.
Collapse
Affiliation(s)
- Tahmina Pervin
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, 9208 Bangladesh
| | - Arafat Rahman Oany
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, 1902 Bangladesh.,Aristopharma Limited, Dhaka, Bangladesh
| |
Collapse
|
9
|
Argondizzo APC, Silva D, Missailidis S. Application of Aptamer-Based Assays to the Diagnosis of Arboviruses Important for Public Health in Brazil. Int J Mol Sci 2020; 22:E159. [PMID: 33375234 PMCID: PMC7796157 DOI: 10.3390/ijms22010159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023] Open
Abstract
Arbovirus infections represent a global public health problem, and recent epidemics of yellow fever, dengue, and Zika have shown their critical importance in Brazil and worldwide. Whilst a major effort for vaccination programs has been in the spotlight, a number of aptamer approaches have been proposed in a complementary manner, offering the possibility of differential diagnosis between these arboviruses, which often present similar clinical symptoms, as well as the potential for a treatment option when no other alternative is available. In this review, we aim to provide a background on arbovirus, with a basic description of the main viral classes and the disease they cause, using the Brazilian context to build a comprehensive understanding of their role on a global scale. Subsequently, we offer an exhaustive revision of the diagnostic and therapeutic approaches offered by aptamers against arboviruses. We demonstrate how these promising reagents could help in the clinical diagnosis of this group of viruses, their use in a range of diagnostic formats, from biosensors to serological testing, and we give a short review on the potential approaches for novel aptamer-based antiviral treatment options against different arboviral diseases.
Collapse
Affiliation(s)
- Ana Paula Corrêa Argondizzo
- Instituto de Tecnologia em Imunobiológicos (Bio-Manguinhos), Fundação Oswaldo Cruz, Av. Brasil, 4365-Rio de Janeiro/RJ CEP 21040-900, Brazil; (A.P.C.A.); (D.S.)
| | - Dilson Silva
- Instituto de Tecnologia em Imunobiológicos (Bio-Manguinhos), Fundação Oswaldo Cruz, Av. Brasil, 4365-Rio de Janeiro/RJ CEP 21040-900, Brazil; (A.P.C.A.); (D.S.)
- Programa de Pós-Graduação em Ciências Médicas da Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier, 255-Rio de Janeiro/RJ-CEP 22783-127, Brazil
| | - Sotiris Missailidis
- Instituto de Tecnologia em Imunobiológicos (Bio-Manguinhos), Fundação Oswaldo Cruz, Av. Brasil, 4365-Rio de Janeiro/RJ CEP 21040-900, Brazil; (A.P.C.A.); (D.S.)
| |
Collapse
|
10
|
Cowley JA. The genomes of Mourilyan virus and Wēnzhōu shrimp virus 1 of prawns comprise 4 RNA segments. Virus Res 2020; 292:198225. [PMID: 33181202 DOI: 10.1016/j.virusres.2020.198225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/16/2022]
Abstract
Reported here is the complete genome sequence of Mourilyan virus (MoV) that infects giant tiger (Penaeus monodon) and kuruma prawns (P. japonicas) in Australia. Its genome was determined using various PCR strategies based on the sequences of 3 randomly-amplified cDNA clones to its L and M RNA segments discovered in a library generated to determine the genome sequence of gill-associated ronivirus. The sequences of PCR products and clones obtained showed the MoV genome to comprise 4 ssRNA segments (L, M, S1 and S2), as confirmed by Northern blotting using RNA from naïve and MoV-infected prawns, and by Illumina sequence analysis of semi-purified MoV. BLASTn searches identified the MoV L, M and S1 RNA segments to be homologous to Wēnzhōu shrimp virus 1 (WzSV1) segments discovered recently in a P. monodon RNA-Seq library (SRR1745808). Mapping this read library to the MoV S2 RNA segment identified WzSV1 to also possess an equivalent segment. BLASTp searches identified the putative non-structural protein (NSs2; 393-394 aa) encoded in their S2 RNA segments to have no homologs in GenBank. Possibly due to NSs2 being encoded in a discrete RNA segment rather than in ambisense relative to the N protein as in the S RNA segments of other phenuiviruses, each of 6 MoV S1 RNA segment clones sequenced possessed a variable-length (≤ 645 nt) imperfect GA-repeat extending from the N protein stop codon to the more variable ∼90 nt segment terminal sequence. Read mapping of RNA-Seq library SRR1745808 showed the WzSV1 S1 RNA segment to possess a similar GA-repeat. However, paired-read variations hindered definitive assembly of a consensus sequence. All 4 MoV and WzSV1 RNA segments terminated with a 10 nt inverted repeat sequence (5'-ACACAAAGAC.) identical to the RNA segment termini of uukuviruses. Phylogenetic analyses of MoV/WzSV1 RNA-dependant RNA polymerase (L RNA), G1G2 precursor glycoprotein (M RNA) and nucleocapsid (N) protein (S1 RNA) sequences generally clustered them with as yet unassigned crustacean/diptera bunya-like viruses on branches positioned closely to others containing tick-transmitted phenuiviruses. As genome sequences of most phenuiviruses discovered recently have originated from meta-transcriptomics studies, the data presented here showing the MoV and WzSV1 genomes to comprise more than 3 RNA segments, like the plant tenuiviruses, suggests a need to investigate the genomes of these unassigned viruses more closely.
Collapse
Affiliation(s)
- Jeff A Cowley
- Livestock & Aquaculture, CSIRO Agriculture & Food, Queensland Bioscience Precinct, 306 Carmody Road, St. Lucia, QLD, 4067, Australia.
| |
Collapse
|
11
|
Ida J, Kuzuya A, Choong YS, Lim TS. An intermolecular-split G-quadruplex DNAzyme sensor for dengue virus detection. RSC Adv 2020; 10:33040-33051. [PMID: 35515051 PMCID: PMC9056686 DOI: 10.1039/d0ra05439a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 08/23/2020] [Indexed: 01/12/2023] Open
Abstract
Nucleic acids have special ability to organize themselves into various non-canonical structures, including a four-stranded DNA structure termed G-quadruplex (G4) that has been utilized for diagnostic and therapeutic applications. Herein, we report the ability of G4 to distinguish dengue virus (DENV) based on its serotypes (DENV-1, DENV-2, DENV-3 and DENV-4) using a split G4-hemin DNAzyme configuration. In this system, two separate G-rich oligonucleotides are brought together upon target DNA strand hybridization to form a three-way junction architecture, allowing the formation of a G4 structure. The G4 formation in complexation with hemin can thus provide a signal readout by generating a DNAzyme that is able to catalyze H2O2-mediated oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS). This results in a change of color providing a sensing platform for the colorimetric detection of DENV. In our approach, betaine and dimethyl sulfoxide were utilized for better G4 generation by enhancing the target-probe hybridization. In addition to this serotype-specific assay, a multi-probe cocktail assay, which is an all-in-one assay was also examined for DENV detection. The system highlights the potential of split G-quadruplex configurations for the development of DNA-based detection and serotyping systems in the future.
Collapse
Affiliation(s)
- Jeunice Ida
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia 11800 Penang Malaysia +60-4-653-4803 +60-4-653-4852
| | - Akinori Kuzuya
- Department of Chemistry and Materials Engineering, Kansai University 3-3-35 Yamate, Suita Osaka 564-8680 Japan
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia 11800 Penang Malaysia +60-4-653-4803 +60-4-653-4852
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia 11800 Penang Malaysia +60-4-653-4803 +60-4-653-4852
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia 11800 Penang Malaysia
| |
Collapse
|
12
|
Eastwood G, Sang RC, Lutomiah J, Tunge P, Weaver SC. Sylvatic Mosquito Diversity in Kenya-Considering Enzootic Ecology of Arboviruses in an Era of Deforestation. INSECTS 2020; 11:insects11060342. [PMID: 32503123 PMCID: PMC7349089 DOI: 10.3390/insects11060342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/16/2022]
Abstract
As new and re-emerging vector-borne diseases are occurring across the world, East Africa represents an interesting location, being the origin of several arboviruses with a history of urbanization and global spread. Rapid expansion of urban populations and alteration of natural habitats creates the opportunity for arboviruses to host-switch from wild, sylvatic hosts or vectors into urban transmission affecting human populations. Although mosquito surveillance regularly takes place in urban areas of Kenya, for example identifying vectors of dengue virus or malaria viruses, little work has been carried out to determine the distribution and abundance of sylvatic vectors. Here, we describe the mosquito vector species and diversity collected at twelve forest habitats of rural Kenya. We conducted arbovirus screening of over 14,082 mosquitoes (47 species, 11 genera) as 1520 pools, and detected seven viruses (six bunyaviruses, and one flavivirus-bunyavirus co-infection) isolated from pools of Aedes dentatus,Anopheles funestus, Culex annulioris, and Cx. vansomereni. Awareness of sylvatic vector species and their location is a critical part of understanding the ecological foci and enzootic cycling of pathogens that may be of concern to public, animal or wildlife health. As natural ecosystems come under anthropogenic pressures, such knowledge can inform us of the One Health potential for spillover or spillback leading to outbreaks, and assist in vector control strategies.
Collapse
Affiliation(s)
- Gillian Eastwood
- Institute for Human Infections and Immunity, Center for Tropical Diseases, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- College of Agriculture & Life Sciences, Virginia Tech, Blacksburg, VA 24060, USA
- Correspondence: ; Tel.: +1-516-655-7462
| | - Rosemary C. Sang
- Centre for Viral Research, Kenya Medical Research Institute, Mbagathi Way, Nairobi, Kenya; (R.C.S.); (J.L.); (P.T.)
| | - Joel Lutomiah
- Centre for Viral Research, Kenya Medical Research Institute, Mbagathi Way, Nairobi, Kenya; (R.C.S.); (J.L.); (P.T.)
| | - Philip Tunge
- Centre for Viral Research, Kenya Medical Research Institute, Mbagathi Way, Nairobi, Kenya; (R.C.S.); (J.L.); (P.T.)
| | - Scott C. Weaver
- World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity, Center for Tropical Diseases, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA;
| |
Collapse
|
13
|
Abstract
Viruses are diverse parasites of cells and extremely abundant. They might have arisen during an early phase of the evolution of life on Earth dominated by ribonucleic acid or RNA-like macromolecules, or when a cellular world was already well established. The theories of the origin of life on Earth shed light on the possible origin of primitive viruses or virus-like genetic elements in our biosphere. Some features of present-day viruses, notably error-prone replication, might be a consequence of the selective forces that mediated their ancestral origin. Two views on the role of viruses in our biosphere predominate; viruses considered as opportunistic, selfish elements, and viruses considered as active participants in the construction of the cellular world via the lateral transfer of genes. These two models have a bearing on viruses being considered predominantly as disease agents or predominantly as cooperators in the shaping of differentiated cellular organisms.
Collapse
|
14
|
Bonica MB, Goenaga S, Martin ML, Feroci M, Luppo V, Muttis E, Fabbri C, Morales MA, Enria D, Micieli MV, Levis S. Vector competence of Aedes aegypti for different strains of Zika virus in Argentina. PLoS Negl Trop Dis 2019; 13:e0007433. [PMID: 31188869 PMCID: PMC6561534 DOI: 10.1371/journal.pntd.0007433] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/15/2019] [Indexed: 12/20/2022] Open
Abstract
The importance of Zika virus (ZIKV) has increased noticeably since the outbreak in the Americas in 2015, when the illness was associated with congenital disorders. Although there is evidence of sexual transmission of the virus, the mosquito Aedes aegypti is believed to be the main vector for transmission to humans. This species of mosquito has not only been found naturally infected with ZIKV, but also has been the subject of study in many vector competence assays that employ different strains of ZIKV around the world. In Argentina, the first case was reported in February 2016 and a total of 278 autochthonous cases have since been confirmed, however, ZIKV virus has not been isolated from any mosquito species yet in Argentina. In order to elucidate if Argentinian Ae. aegypti populations could be a possible vector of ZIKV, we conducted vector competence studies that involved a local strain of ZIKV from Chaco province, and a Venezuelan strain obtained from an imported case. For this purpose, Ae. aegypti adults from the temperate area of Argentina (Buenos Aires province) were fed with infected blood. Body, legs and saliva were harvested and tested by plaque titration on plates of Vero cells for ZIKV at 7, 11 and 14 days post infection (DPI) in order to calculate infection, transmission, and dissemination rates, respectively. Both strains were able to infect mosquitoes at all DPIs, whereas dissemination and transmission were observed at all DPIs for the Argentinian strain but only at 14 DPI for the Venezuelan strain. This study proves the ability of Ae. aegypti mosquitoes from Argentina to become infected with two different strains of ZIKV, both belonging to the Asian lineage, and that the virus can disseminate to the legs and salivary glands. Zika virus is a flavivirus transmitted by mosquitoes, isolated for the first time in the Ziika Forest in Uganda in 1947 from a rhesus macaque monkey. The disease is usually asymptomatic, but sometimes it causes a mild illness that comes with fever, rash, joint pain, and conjunctivitis. The World Health Organization focused the attention on this virus after the outbreak in the Americas, when the virus was linked to microcephaly and serious neurological diseases, including Guillain-Barré syndrome. Aedes aegypti was incriminated as the main vector of the virus as it was found both naturally and experimentally infected. This mosquito species was declared eradicated in Argentina by 1970 but re-emerged in 1989. Recent studies found a peculiarity in the genetics of Argentinian Ae. aegypti populations that consists in a combination between both subspecies: Ae. aegypti formosus and Ae. aegypti aegypti. Our study tries to elucidate if Ae. aegypti from Argentina are able to transmit the virus in order to add these mosquitoes to the list of possible vectors of ZIKV and, in future prospect, orient to fight the virus by controlling the vector.
Collapse
Affiliation(s)
- Melisa Berenice Bonica
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE-CONICET), Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
- * E-mail: (MBB); (SG)
| | - Silvina Goenaga
- Instituto Nacional de Enfermedades Virales Humanas “Dr. Julio Maiztegui” (INEVH-ANLIS), Pergamino, Buenos Aires, Argentina
- * E-mail: (MBB); (SG)
| | - María Laura Martin
- Instituto Nacional de Enfermedades Virales Humanas “Dr. Julio Maiztegui” (INEVH-ANLIS), Pergamino, Buenos Aires, Argentina
| | - Mariel Feroci
- Instituto Nacional de Enfermedades Virales Humanas “Dr. Julio Maiztegui” (INEVH-ANLIS), Pergamino, Buenos Aires, Argentina
| | - Victoria Luppo
- Instituto Nacional de Enfermedades Virales Humanas “Dr. Julio Maiztegui” (INEVH-ANLIS), Pergamino, Buenos Aires, Argentina
| | - Evangelina Muttis
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE-CONICET), Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Cintia Fabbri
- Instituto Nacional de Enfermedades Virales Humanas “Dr. Julio Maiztegui” (INEVH-ANLIS), Pergamino, Buenos Aires, Argentina
| | - María Alejandra Morales
- Instituto Nacional de Enfermedades Virales Humanas “Dr. Julio Maiztegui” (INEVH-ANLIS), Pergamino, Buenos Aires, Argentina
| | - Delia Enria
- Instituto Nacional de Enfermedades Virales Humanas “Dr. Julio Maiztegui” (INEVH-ANLIS), Pergamino, Buenos Aires, Argentina
| | - María Victoria Micieli
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE-CONICET), Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Silvana Levis
- Instituto Nacional de Enfermedades Virales Humanas “Dr. Julio Maiztegui” (INEVH-ANLIS), Pergamino, Buenos Aires, Argentina
| |
Collapse
|
15
|
Økland AL, Nylund A, Øvergård AC, Skoge RH, Kongshaug H. Genomic characterization, phylogenetic position and in situ localization of a novel putative mononegavirus in Lepeophtheirus salmonis. Arch Virol 2019; 164:675-689. [PMID: 30535526 PMCID: PMC6394706 DOI: 10.1007/s00705-018-04119-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 11/15/2018] [Indexed: 11/28/2022]
Abstract
The complete genome sequence of a novel mononegavirus, Lepeophtheirus salmonis negative-stranded RNA virus 1 (LsNSRV-1), obtained from a salmonid ectoparasite, Lepeophtheirus salmonis was determined. The viral genome contains five open reading frames encoding three unknown proteins (ORF I, II and III), a putative glycoprotein (G), and a large (L) protein. Phylogenetic analysis placed LsNSRV-1 in the recently established mononegaviral family Artoviridae. LsNSRV-1 showed a prevalence of around 97% and was detected in all L. salmonis developmental stages. Viral genomic and antigenomic RNA was localized to nerve tissue, connective tissue, epithelial cells of the gut, subepidermal tissue, exocrine and cement glands, as well as the testis, vas deferens and spermatophore sac of male L. salmonis and the ovaries and oocytes of females. Viral RNA was detected in both the cytoplasm and the nucleoli of infected cells, and putative nuclear export and localization signals were found within the ORF I, III and L proteins, suggesting nuclear replication of LsNSRV-1. RNA interference (RNAi) was induced twice during development by the introduction of a double-stranded RNA fragment of ORF I, resulting in a transient knockdown of viral RNA. A large variation in the knockdown level was seen in adult males and off springs of knockdown animals, whereas the RNA level was more stable in adult females. Together with the localization of viral RNA within the male spermatophore and female oocytes and the amplification of viral RNA in developing embryos, this suggests that LsNSRV-1 is transmitted both maternally and paternally. Small amounts of viral RNA were detected at the site where chalimi were attached to the skin of Atlantic salmon (Salmo salar). However, as the RNAi-mediated treatment did not result in LsNSRV-1-negative offspring and the virus failed to replicate in the tested fish cell cultures, it is difficult to investigate the influence of secreted LsNSRV-1 on the salmon immune response.
Collapse
Affiliation(s)
- Arnfinn Lodden Økland
- Fish Disease Research Group, Department of Biological Sciences, University of Bergen, Thormøhlensgt. 55, Pb. 7803, 5020, Bergen, Norway.
| | - Are Nylund
- Fish Disease Research Group, Department of Biological Sciences, University of Bergen, Thormøhlensgt. 55, Pb. 7803, 5020, Bergen, Norway
| | - Aina-Cathrine Øvergård
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Thormøhlensgt. 55, Pb. 7803, 5020, Bergen, Norway
| | - Renate Hvidsten Skoge
- Fish Disease Research Group, Department of Biological Sciences, University of Bergen, Thormøhlensgt. 55, Pb. 7803, 5020, Bergen, Norway
| | - Heidi Kongshaug
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Thormøhlensgt. 55, Pb. 7803, 5020, Bergen, Norway
| |
Collapse
|
16
|
Zhao W, Wang Q, Xu Z, Liu R, Cui F. Immune responses induced by different genotypes of the disease-specific protein of Rice stripe virus in the vector insect. Virology 2019; 527:122-131. [PMID: 30500711 DOI: 10.1016/j.virol.2018.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/15/2018] [Accepted: 11/17/2018] [Indexed: 01/25/2023]
Abstract
Persistent plant viruses circulate between host plants and vector insects, possibly leading to the genetic divergence in viral populations. We analyzed the single nucleotide polymorphisms (SNPs) of Rice stripe virus (RSV) when it incubated in the small brown planthopper and rice. Two SNPs, which lead to nonsynonymous substitutions in the disease-specific protein (SP) of RSV, produced three genotypes, i.e., GG, AA and GA. The GG type mainly existed in the early infection period of RSV in the planthoppers and was gradually substituted by the other two genotypes during viral transmission. The two SNPs did not affect the interactions of SP with rice PsbP or with RSV coat protein. The GG genotype of SP induced stronger immune responses than those of the other two genotypes in the pattern recognition molecule and immune-responsive effector pathways. These findings demonstrated the population variations of RSV during the circulation between the vector insect and host plant.
Collapse
Affiliation(s)
- Wan Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qianshuo Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Zhongtian Xu
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai 201602, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Renyi Liu
- Center for Agroforestry Mega Data Science and FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
17
|
Sas MA, Vina-Rodriguez A, Mertens M, Eiden M, Emmerich P, Chaintoutis SC, Mirazimi A, Groschup MH. A one-step multiplex real-time RT-PCR for the universal detection of all currently known CCHFV genotypes. J Virol Methods 2018; 255:38-43. [PMID: 29408661 DOI: 10.1016/j.jviromet.2018.01.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 01/25/2018] [Accepted: 01/25/2018] [Indexed: 10/18/2022]
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is a fatal disease in humans, which is endemic in many countries of Africa, Southern Asia and Southeastern Europe. It is caused by the Crimean-Congo hemorrhagic fever virus (CCHFV), which is an arthropod-borne virus (arbovirus) transmitted by ixodid ticks, mainly of the genus Hyalomma. Animals like hares, hedgehogs, cattle, camels and small ruminants can become infected without developing clinical signs. Seroconversion occurs after a short viremia of up to two weeks, and thus seroprevalence studies in ruminants can be used to reveal risk areas for the human population. Virus detection by real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) is essential to prove an actual circulation of CCHFV in a country and is also used as diagnostic method for acute human CCHFV infections. In this study, a new universal one-step multiplex real-time RT-qPCR for the sensitive and specific detection of CCHFV is presented. For this purpose, 14 new primers and 2 probes were simultaneously used to detect RNAs representing all six CCHFV genotypes. Additionally, a GC-mirrored sequence within the synthetic RNAs enables the discrimination between true positive samples and unintentional laboratory contaminations. CCHFV negative samples from different animal species and ten different members of the order Bunyavirales were eventually tested to reveal the specificity of the new RT-qPCR.
Collapse
Affiliation(s)
- Miriam A Sas
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald - Isle of Riems, Germany
| | - Ariel Vina-Rodriguez
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald - Isle of Riems, Germany
| | - Marc Mertens
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald - Isle of Riems, Germany
| | - Martin Eiden
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald - Isle of Riems, Germany
| | - Petra Emmerich
- Department of Virology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; Department of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University of Rostock, 18057 Rostock, Germany
| | - Serafeim C Chaintoutis
- Diagnostic Laboratory, Department of Clinical Sciences, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ali Mirazimi
- Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Martin H Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald - Isle of Riems, Germany.
| |
Collapse
|
18
|
Ryabov EV. Invertebrate RNA virus diversity from a taxonomic point of view. J Invertebr Pathol 2017; 147:37-50. [PMID: 27793741 PMCID: PMC7094257 DOI: 10.1016/j.jip.2016.10.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 10/03/2016] [Accepted: 10/14/2016] [Indexed: 02/04/2023]
Abstract
Invertebrates are hosts to diverse RNA viruses that have all possible types of encapsidated genomes (positive, negative and ambisense single stranded RNA genomes, or a double stranded RNA genome). These viruses also differ markedly in virion morphology and genome structure. Invertebrate RNA viruses are present in three out of four currently recognized orders of RNA viruses: Mononegavirales, Nidovirales, and Picornavirales, and 10 out of 37 RNA virus families that have yet to be assigned to an order. This mini-review describes general properties of the taxonomic groups, which include invertebrate RNA viruses on the basis of their current classification by the International Committee on Taxonomy of Viruses (ICTV).
Collapse
Affiliation(s)
- Eugene V Ryabov
- ER Healthcare Consulting Ltd., Poundgate Lane, Coventry CV4 8HJ, United Kingdom.
| |
Collapse
|
19
|
Araldi RP, Assaf SMR, Carvalho RFD, Carvalho MACRD, Souza JMD, Magnelli RF, Módolo DG, Roperto FP, Stocco RDC, Beçak W. Papillomaviruses: a systematic review. Genet Mol Biol 2017; 40:1-21. [PMID: 28212457 PMCID: PMC5409773 DOI: 10.1590/1678-4685-gmb-2016-0128] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/28/2016] [Indexed: 12/15/2022] Open
Abstract
In the last decades, a group of viruses has received great attention due to its
relationship with cancer development and its wide distribution throughout the
vertebrates: the papillomaviruses. In this article, we aim to review some of the most
relevant reports concerning the use of bovines as an experimental model for studies
related to papillomaviruses. Moreover, the obtained data contributes to the
development of strategies against the clinical consequences of bovine
papillomaviruses (BPV) that have led to drastic hazards to the herds. To overcome the
problem, the vaccines that we have been developing involve recombinant DNA
technology, aiming at prophylactic and therapeutic procedures. It is important to
point out that these strategies can be used as models for innovative procedures
against HPV, as this virus is the main causal agent of cervical cancer, the second
most fatal cancer in women.
Collapse
Affiliation(s)
- Rodrigo Pinheiro Araldi
- Laboratório de Genética, Instituto Butantan, São Paulo, SP, Brazil.,Programa de Pós-graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas (ICB), Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | | | | | | | - Jacqueline Mazzuchelli de Souza
- Laboratório de Genética, Instituto Butantan, São Paulo, SP, Brazil.,Programa de Pós-graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas (ICB), Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Roberta Fiusa Magnelli
- Laboratório de Genética, Instituto Butantan, São Paulo, SP, Brazil.,Programa de Pós-graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas (ICB), Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | | | - Franco Peppino Roperto
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Università degli Studi di Napoli Federico II, Napoli, Campania, Italy
| | | | - Willy Beçak
- Laboratório de Genética, Instituto Butantan, São Paulo, SP, Brazil
| |
Collapse
|
20
|
Remoli ME, Jiménez M, Fortuna C, Benedetti E, Marchi A, Genovese D, Gramiccia M, Molina R, Ciufolini MG. Phleboviruses detection in Phlebotomus perniciosus from a human leishmaniasis focus in South-West Madrid region, Spain. Parasit Vectors 2016; 9:205. [PMID: 27075742 PMCID: PMC4831143 DOI: 10.1186/s13071-016-1488-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 04/03/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phlebotomus-borne (PhB-) viruses are distributed in large areas of the Old World and are widespread throughout the Mediterranean basin, where recent investigations have indicated that virus diversity is higher than initially suspected. Some of these viruses are causes of meningitis, encephalitis and febrile illnesses. In order to monitor the viral presence and the infection rate of PhB-viruses in a recently identified and well characterized human zoonotic leishmaniasis focus in southwestern Madrid, Spain, a sand fly collection was carried out. METHODS Sand fly insects were collected in four stations using CDC light traps during 2012-2013 summer seasons. Screening for Phlebovirus presence both via isolation on Vero cells and via polymerase chain reaction (PCR), using degenerated primers targeting a portion of the L segment, was performed. The serological identity and phylogenetic relationships on the three genomic segments of the viral isolates were carried out. RESULTS Six viral isolates belonging to different serological complexes of the genus Phlebovirus were obtained from fifty pools on a total of 963 P. perniciosus (202 females). Phylogenetic analysis and serological assays allowed the identification of two isolates of Toscana virus (TOSV) B genotype, three isolates strongly related to Italian Arbia virus (ARBV), and one isolate of a novel putative Phlebovirus related to the recently characterized Arrabida virus in South Portugal, tentatively named Arrabida-like virus. Positive male sand fly pools suggested that transovarial or venereal transmission could occur under natural conditions. CONCLUSIONS Our findings highlighted the presence of different Phlebovirus species in the South-West area of the Madrid Autonomous Community where an outbreak of cutaneous and visceral human leishmaniasis has been recently described. The evidence of viral species never identified before in Spain, as ARBV and Arrabida-like virus, and TOSV B genotype focus stability was demonstrated. Environmental aspects such as climate change, growing urbanization, socio-economic development could have contributed to the genesis of this wide ecological niche of PhB-viruses and Leishmania spp. The potential role of vertebrates as reservoir for the phleboviruses identified and the possibility of Phleboviruses-Leishmania co-infection in the same sand fly should be assessed. Furthermore the PhB-viruses impact on human health should be implemented.
Collapse
Affiliation(s)
- Maria Elena Remoli
- National Reference Laboratory for Arboviruses, Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, 00161, Rome, Italy.
| | - Maribel Jiménez
- Unidad de EntomologíaMédica, Servicio de Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo s/n, 28220, Majadahonda, Madrid, Spain
| | - Claudia Fortuna
- National Reference Laboratory for Arboviruses, Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Eleonora Benedetti
- National Reference Laboratory for Arboviruses, Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Antonella Marchi
- National Reference Laboratory for Arboviruses, Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Domenico Genovese
- Unit of Global Health, Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Marina Gramiccia
- Unit of Vector-borne Diseases and International Health, Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Ricardo Molina
- Unidad de EntomologíaMédica, Servicio de Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo s/n, 28220, Majadahonda, Madrid, Spain
| | - Maria Grazia Ciufolini
- National Reference Laboratory for Arboviruses, Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, 00161, Rome, Italy.
| |
Collapse
|
21
|
Plant Virus Diversity and Evolution. CURRENT RESEARCH TOPICS IN PLANT VIROLOGY 2016. [PMCID: PMC7123681 DOI: 10.1007/978-3-319-32919-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Historically, the majority of plant virology focused on agricultural systems. Recent efforts have expanded our knowledge of the true diversity of plant viruses by studying those viruses that infect wild, undomesticated plants. Those efforts have provided answers to basic ecological questions regarding viruses in the wild, and insights into evolutionary questions, regarding the origins of viruses. While much work has been done, we have merely scratched the surface of the diversity that is estimated to exist. In this chapter we discuss the state of our knowledge of virus diversity, both in agricultural systems as well as in native wild systems, the border between these two systems and how viruses adapt and move across this border into an artificial, domesticated environment. We look at how this diversity has affected our outlook on viruses as a whole, shifting our past view of viruses as purely antagonistic entities of destruction to one where viruses are in a mutually beneficial relationship with their hosts. Additionally, we discuss the current work that plant virology has put forth regarding the evolutionary mechanisms, the life histories, and the deep evolution of viruses.
Collapse
|
22
|
Introduction to Virus Origins and Their Role in Biological Evolution. VIRUS AS POPULATIONS 2016. [PMCID: PMC7204881 DOI: 10.1016/b978-0-12-800837-9.00001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Viruses are extremely abundant and diverse parasites of cells. They might have arisen during an early phase of the evolution of life on Earth dominated by RNA or RNA-like macromolecules, or when a cellular world was already well established. The theories of the origin of life on Earth shed light on the possible origin of primitive viruses or virus-like genetic elements in our biosphere. Some features of present day viruses, notably error-prone replication, might be a consequence of the selective forces that mediated their ancestral origin. Two views on the role of viruses in our biosphere predominate: viruses considered as opportunistic, selfish elements, and viruses considered as active participants in the construction of the cellular world via lateral transfers of genes. These two models bear on considering viruses predominantly as disease agents or predominantly as cooperators in the shaping of differentiated cellular organisms.
Collapse
|
23
|
Remoli ME, Bongiorno G, Fortuna C, Marchi A, Bianchi R, Khoury C, Ciufolini MG, Gramiccia M. Experimental evaluation of sand fly collection and storage methods for the isolation and molecular detection of Phlebotomus-borne viruses. Parasit Vectors 2015; 8:576. [PMID: 26552444 PMCID: PMC4640371 DOI: 10.1186/s13071-015-1192-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/31/2015] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Several viruses have been recently isolated from Mediterranean phlebotomine sand flies; some are known to cause human disease while some are new to science. To monitor the Phlebotomus-borne viruses spreading, field studies are in progress using different sand fly collection and storage methods. Two main sampling techniques consist of CDC light traps, an attraction method allowing collection of live insects in which the virus is presumed to be fairly preserved, and sticky traps, an interception method suitable to collect dead specimens in high numbers, with a risk for virus viability or integrity. Sand flies storage requires a "deep cold chain" or specimen preservation in ethanol. In the present study the influence of sand fly collection and storage methods on viral isolation and RNA detection performances was evaluated experimentally. METHODS Specimens of laboratory-reared Phlebotomus perniciosus were artificially fed with blood containing Toscana virus (family Bunyaviridae, genus Phlebovirus). Various collection and storage conditions of blood-fed females were evaluated to mimic field procedures using single and pool samples. Isolation on VERO cell cultures, quantitative Real time-Retro-transcriptase (RT)-PCR and Nested-RT-PCR were performed according to techniques commonly used in surveillance studies. RESULTS Live engorged sand flies stored immediately at -80 °C were the most suitable sample for phlebovirus identification by both virus isolation and RNA detection. The viral isolation rate remained very high (26/28) for single dead engorged females frozen after 1 day, while it was moderate (10/30) for specimens collected by sticky traps maintained up to 3 days at room temperature and then stored frozen without ethanol. Opposed to viral isolation, molecular RNA detection kept very high on dead sand flies collected by sticky traps when left at room temperature up to 6 days post blood meal and then stored frozen in presence (88/95) or absence (87/88) of ethanol. Data were confirmed using sand fly pools. CONCLUSIONS While the collection and storage methods investigated had not much impact on the ability to detect viral RNA by molecular methods, they affected the capacity to recover viable viruses. Consequently, sand fly collection and handling procedures should be established in advance depending on the goal of the surveillance studies.
Collapse
Affiliation(s)
- Maria Elena Remoli
- Department of Infectious Parasitic and Immune-Mediated Diseases, Unit of Viral diseases and attenuated vaccine, Istituto Superiore di Sanità, Rome, Italy.
| | - Gioia Bongiorno
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Unit of Vector-borne Diseases and International Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Claudia Fortuna
- Department of Infectious Parasitic and Immune-Mediated Diseases, Unit of Viral diseases and attenuated vaccine, Istituto Superiore di Sanità, Rome, Italy.
| | - Antonella Marchi
- Department of Infectious Parasitic and Immune-Mediated Diseases, Unit of Viral diseases and attenuated vaccine, Istituto Superiore di Sanità, Rome, Italy.
| | - Riccardo Bianchi
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Unit of Vector-borne Diseases and International Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Cristina Khoury
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Unit of Vector-borne Diseases and International Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Maria Grazia Ciufolini
- Department of Infectious Parasitic and Immune-Mediated Diseases, Unit of Viral diseases and attenuated vaccine, Istituto Superiore di Sanità, Rome, Italy.
| | - Marina Gramiccia
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Unit of Vector-borne Diseases and International Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
24
|
Oany AR, Sharmin T, Chowdhury AS, Jyoti TP, Hasan MA. Highly conserved regions in Ebola virus RNA dependent RNA polymerase may be act as a universal novel peptide vaccine target: a computational approach. In Silico Pharmacol 2015; 3:7. [PMID: 26820892 PMCID: PMC4529428 DOI: 10.1186/s40203-015-0011-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/22/2015] [Indexed: 11/10/2022] Open
Abstract
Purpose Ebola virus (EBOV) is such kind of virus which is responsible for 23,825 cases and 9675 deaths worldwide only in 2014 and with an average diseases fatality rate between 25 % and 90 %. Although, medical technology has tried to handle the problems, there is no Food and Drug Administration (FDA)-approved therapeutics or vaccines available for the prevention, post exposure, or treatment of Ebola virus disease (EVD). Methods In the present study, we used the immunoinformatics approach to design a potential epitope-based vaccine against the RNA-dependent RNA polymerase-L of EBOV. BioEdit v7.2.3 sequence alignment editor, Jalview v2 and CLC Sequence Viewer v7.0.2 were used for the initial sequence analysis for securing the conservancy from the sequences. Later the Immune Epitope Database and Analysis Resource (IEDB-AR) was used for the identification of T-cell and B-cellepitopes associated with type I and II major histocompatibility complex molecules analysis. Finally, the population coverage analysis was employed. Results The core epitope “FRYEFTAPF” was found to be the most potential one, with 100 % conservancy among all the strains of EBOV. It also interacted with both type I and II major histocompatibility complex molecules and is considered as nonallergenic in nature. Finally, with impressive cumulative population coverage of 99.87 % for the both MHC-I and MHC-II class throughout the world population was found for the proposed epitope. Conclusion To end, the projected peptide gave us a solid stand to propose for vaccine consideration and that might be experimented for its potency in eliciting immunity through humoral and cell mediated immune responses in vitro and in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s40203-015-0011-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Arafat Rahman Oany
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Tahmina Sharmin
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Afrin Sultana Chowdhury
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chittagong-4331, Bangladesh
| | - Tahmina Pervin Jyoti
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna-9208, Bangladesh
| | - Md Anayet Hasan
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chittagong-4331, Bangladesh.
| |
Collapse
|
25
|
Morya VK, Singh Y, Singh BK, Thomas G. Ecogenomics of Geminivirus from India and Neighbor Countries: An In Silico Analysis of Recombination Phenomenon. Interdiscip Sci 2015. [PMID: 26199210 DOI: 10.1007/s12539-015-0020-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Recombination is one of the keys factor in evolutionary processes, involved in shaping the architecture of genomes and consequent phenotype. Understanding the recombination phenomenon especially among viruses will help in disease management. The present study aimed for in-silico analysis of recombination phenomenon among Begomoviruses, particularly emphasizing on viruses strains reported from India and neighboring countries. A total of 956 virus sequences have been used in this study. The Tomato yellow leaf curl China viruses, namely [Formula: see text] and [Formula: see text] were identified with the highest number of recombination event (1273). However, the Mung bean yellow mosaic India virus [Formula: see text] was found to have 1170 recombination event. The phylogenic analysis among the highly recombinant sequences was carried to get an insight of the evolution among viral sequences in this class of plant viruses. The phylogenetic analysis revealed a pattern in diversity among these virus strains and a split tree analysis showed diversity in the range of 0.049128335-10.269852. This in silico analysis may pave way for a greater understanding of recombination phenomenon in geminiviruses and it might be helpful for strategic plant viral disease management.
Collapse
Affiliation(s)
- V K Morya
- Department of Biological Engineering, Inha University, Nam-gu, Yong-Hyun Incheon, 402-751, Korea,
| | | | | | | |
Collapse
|
26
|
Nsamba P, de Beer T, Chitray M, Scott K, Vosloo W, Maree F. Determination of common genetic variants within the non-structural proteins of foot-and-mouth disease viruses isolated in sub-Saharan Africa. Vet Microbiol 2015; 177:106-22. [DOI: 10.1016/j.vetmic.2015.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 10/23/2022]
|
27
|
Kwon T, Yoon SH, Kim KW, Caetano-Anolles K, Cho S, Kim H. Time-calibrated phylogenomics of the classical swine fever viruses: genome-wide bayesian coalescent approach. PLoS One 2015; 10:e0121578. [PMID: 25815768 PMCID: PMC4376735 DOI: 10.1371/journal.pone.0121578] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 02/13/2015] [Indexed: 01/03/2023] Open
Abstract
The phylogeny of classical swine fever virus (CSFV), the causative agent of classical swine fever (CSF), has been investigated extensively. However, no evolutionary research has been performed using the whole CSFV genome. In this study, we used 37 published genome sequences to investigate the time-calibrated phylogenomics of CSFV. In phylogenomic trees based on Bayesian inference (BI) and Maximum likelihood (ML), the 37 isolates were categorized into five genetic types (1.1, 1.2, 2.1, 2.3, and 3.4). Subgenotype 1.1 is divided into 3 groups and 1 unclassified isolate, 2.1 into 4 groups, 2.3 into 2 groups and 1 unclassified isolate, and subgenotype 1.2 and 3.4 consisted of one isolate each. We did not observe an apparent temporal or geographical relationship between isolates. Of the 14 genomic regions, NS4B showed the most powerful phylogenetic signal. Results of this evolutionary study using Bayesian coalescent approach indicate that CSFV has evolved at a rate of 13×.010-4 substitutions per site per year. The most recent common ancestor of CSFV appeared 2770.2 years ago, which was about 8000 years after pig domestication. The effective population size of CSFV underwent a slow increase until the 1950s, after which it has remained constant.
Collapse
Affiliation(s)
- Taehyung Kwon
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Sook Hee Yoon
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Kyu-Won Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 151-747, Republic of Korea
| | - Kelsey Caetano-Anolles
- Department of Animal Sciences, University of Illinois, Urbana, IL, 61801, United States of America
| | - Seoae Cho
- C&K Genomics Inc. 514 Main Bldg., Seoul National University Research Park, San 4-2 Boncheon-dong, Gwanak-gu, Seoul, 151-919, Republic of Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
- * E-mail:
| |
Collapse
|
28
|
Oany AR, Ahmad SAI, Hossain MU, Jyoti TP. Identification of highly conserved regions in L-segment of Crimean-Congo hemorrhagic fever virus and immunoinformatic prediction about potential novel vaccine. Adv Appl Bioinform Chem 2015; 8:1-10. [PMID: 25609983 PMCID: PMC4293217 DOI: 10.2147/aabc.s75250] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is a tick-borne zoonotic viral disease with a disease fatality rate between 15% and 70%. Despite the wide range of distribution, the virus (CCHFV) is basically endemic in Africa, Asia, eastern Europe, and the Middle East. Acute febrile illness associated with petechiae, disseminated intravascular coagulation, and multiple-organ failure are the main symptoms of the disease. With all these fatal effects, CCHFV is considered a huge threat as no successful therapeutic approach is currently available for the treatment of this disease. In the present study, we have used the immunoinformatics approach to design a potential epitope-based vaccine against the RNA-dependent RNA polymerase-L of CCHFV. Both the T-cell and B-cell epitopes were assessed, and the epitope "DCSSTPPDR" was found to be the most potential one, with 100% conservancy among all the strains of CCHFV. The epitope was also found to interact with both type I and II major histocompatibility complex molecules and is considered nonallergenic as well. In vivo study of our proposed peptide is advised for novel universal vaccine production, which might be an effective path to prevent CCHF disease.
Collapse
Affiliation(s)
- Arafat Rahman Oany
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Santosh, Tangail, Bangladesh
| | - Shah Adil Ishtiyaq Ahmad
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Santosh, Tangail, Bangladesh
| | - Mohammad Uzzal Hossain
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Santosh, Tangail, Bangladesh
| | - Tahmina Pervin Jyoti
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| |
Collapse
|
29
|
Sayler KA, Barbet AF, Chamberlain C, Clapp WL, Alleman R, Loeb JC, Lednicky JA. Isolation of Tacaribe virus, a Caribbean arenavirus, from host-seeking Amblyomma americanum ticks in Florida. PLoS One 2014; 9:e115769. [PMID: 25536075 PMCID: PMC4275251 DOI: 10.1371/journal.pone.0115769] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 11/26/2014] [Indexed: 12/25/2022] Open
Abstract
Arenaviridae are a family of single stranded RNA viruses of mammals and boid snakes. Twenty-nine distinct mammalian arenaviruses have been identified, many of which cause severe hemorrhagic disease in humans, particularly in parts of sub-Saharan Africa, and in Central and South America. Humans typically become infected with an arenavirus through contact with excreta from infected rodents. Tacaribe virus (TCRV) is an arenavirus that was first isolated from bats and mosquitoes during a rabies surveillance survey conducted in Trinidad from 1956 to 1958. Tacaribe virus is unusual because it has never been associated with a rodent host and since that one time isolation, the virus has not been isolated from any vertebrate or invertebrate hosts. We report the re-isolation of the virus from a pool of 100 host-seeking Amblyomma americanum (lone star ticks) collected in a Florida state park in 2012. TCRV was isolated in two cell lines and its complete genome was sequenced. The tick-derived isolate is nearly identical to the only remaining isolate from Trinidad (TRVL-11573), with 99.6% nucleotide identity across the genome. A quantitative RT-PCR assay was developed to test for viral RNA in host-seeking ticks collected from 3 Florida state parks. Virus RNA was detected in 56/500 (11.2%) of surveyed ticks. As this virus was isolated from ticks that parasitize humans, the ability of the tick to transmit the virus to people should be evaluated. Furthermore, reservoir hosts for the virus need to be identified in order to develop risk assessment models of human infection.
Collapse
Affiliation(s)
- Katherine A. Sayler
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| | - Anthony F. Barbet
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Casey Chamberlain
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
| | - William L. Clapp
- Department of Pathology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Rick Alleman
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Julia C. Loeb
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, United States of America
| | - John A. Lednicky
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
30
|
Morya VK, Singh Y, Singh BK, Thomas G. Ecogenomics of Geminivirus from India and neighbor countries: An in silico analysis of recombination phenomenon. Interdiscip Sci 2014. [PMID: 25376873 DOI: 10.1007/s12539-014-0209-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 03/14/2014] [Accepted: 06/11/2014] [Indexed: 09/29/2022]
Abstract
Recombination is one of the keys factor in evolutionary processes, involved in shaping the architecture of genomes and consequent phenotype. Understanding the recombination phenomenon especially among viruses will help in disease management. The present study aimed for in-silico analysis of recombination phenomenon among Begomoviruses. Particularly emphasizing on viruses strains reported from India and neighboring countries. A total of 956 virus sequences have been used in this study. The Tomato yellow leaf curl China viruses, namely gi|29825986|; gi|283468151|; gi|190559151| and gi|61652782| were identified with the highest number of recombination event (1273). However, the Mung bean yellow mosaic India virus (gi|66351988|) was found to have 1170 recombination event. The phylogenic analysis among the highly recombinant sequences was carried to get an insight of the evolution among viral sequences in this class of plant viruses. The phylogenetic analysis revealed a pattern in diversity among these virus strains and a split tree analysis showed diversity in the range of 0.049128335 to 10.269852. This in silico analysis may pave way for a greater understanding of recombination phenomenon in Ggeminiviruses and it might be helpful for strategic plant viral disease management.
Collapse
Affiliation(s)
- V K Morya
- Dept. Biological Engineering, Inha University, Nam-GU, Yong-Hyun Incheon, Korea, 402-751,
| | | | | | | |
Collapse
|
31
|
Morya VK, Singh Y, Singh BK, Thomas G. Ecogenomics of Geminivirus from India and neighbor countries: An in silico analysis of recombination phenomenon. Interdiscip Sci 2014. [PMID: 25519153 DOI: 10.1007/s12539-014-0231-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 03/14/2014] [Accepted: 06/11/2014] [Indexed: 12/01/2022]
Abstract
Recombination is one of the keys factor in evolutionary processes, involved in shaping the architecture of genomes and consequent phenotype. Understanding the recombination phenomenon especially among viruses will help in disease management. The present study aimed for in-silico analysis of recombination phenomenon among Begomoviruses. Particularly emphasizing on viruses strains reported from India and neighboring countries. A total of 956 virus sequences have been used in this study. The Tomato yellow leaf curl China viruses, namely gi|29825986|; gi|283468151|; gi|190559151| and gi|61652782| were identified with the highest number of recombination event (1273). However, the Mung bean yellow mosaic India virus (gi|66351988|) was found to have 1170 recombination event. The phylogenic analysis among the highly recombinant sequences was carried to get an insight of the evolution among viral sequences in this class of plant viruses. The phylogenetic analysis revealed a pattern in diversity among these virus strains and a split tree analysis showed diversity in the range of 0.049128335 to 10.269852. This in silico analysis may pave way for a greater understanding of recombination phenomenon in Ggeminiviruses and it might be helpful for strategic plant viral disease management.
Collapse
Affiliation(s)
- V K Morya
- Dept. Biological Engineering, Inha University, Nam-GU, Yong-Hyun Incheon, Korea, 402-751,
| | | | | | | |
Collapse
|
32
|
Harper SJ. Citrus tristeza virus: Evolution of Complex and Varied Genotypic Groups. Front Microbiol 2013; 4:93. [PMID: 23630519 PMCID: PMC3632782 DOI: 10.3389/fmicb.2013.00093] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/03/2013] [Indexed: 12/22/2022] Open
Abstract
Amongst the Closteroviridae, Citrus tristeza virus (CTV) is almost unique in possessing a number of distinct and characterized strains, isolates of which produce a wide range of phenotype combinations among its different hosts. There is little understanding to connect genotypes to phenotypes, and to complicate matters more, these genotypes are found throughout the world as members of mixed populations within a single host plant. There is essentially no understanding of how combinations of genotypes affect symptom expression and disease severity. We know little about the evolution of the genotypes that have been characterized to date, little about the biological role of their diversity and particularly, about the effects of recombination. Additionally, genotype grouping has not been standardized. In this study we utilized an extensive array of CTV genomic information to classify the major genotypes, and to determine the major evolutionary processes that led to their formation and subsequent retention. Our analyses suggest that three major processes act on these genotypes: (1) ancestral diversification of the major CTV lineages, followed by (2) conservation and co-evolution of the major functional domains within, though not between CTV genotypes, and (3) extensive recombination between lineages that have given rise to new genotypes that have subsequently been retained within the global population. The effects of genotype diversity and host-interaction are discussed, as is a proposal for standardizing the classification of existing and novel CTV genotypes.
Collapse
Affiliation(s)
- S J Harper
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida Lake Alfred, FL, USA
| |
Collapse
|
33
|
Abstract
Evolution of RNA viruses occurs through disequilibria of collections of closely related mutant spectra or mutant clouds termed viral quasispecies. Here we review the origin of the quasispecies concept and some biological implications of quasispecies dynamics. Two main aspects are addressed: (i) mutant clouds as reservoirs of phenotypic variants for virus adaptability and (ii) the internal interactions that are established within mutant spectra that render a virus ensemble the unit of selection. The understanding of viruses as quasispecies has led to new antiviral designs, such as lethal mutagenesis, whose aim is to drive viruses toward low fitness values with limited chances of fitness recovery. The impact of quasispecies for three salient human pathogens, human immunodeficiency virus and the hepatitis B and C viruses, is reviewed, with emphasis on antiviral treatment strategies. Finally, extensions of quasispecies to nonviral systems are briefly mentioned to emphasize the broad applicability of quasispecies theory.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), C/ Nicolás Cabrera, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.
| | | | | |
Collapse
|
34
|
Novello G, Capone G, Fasano C, Bavaro SL, Polito AN, Kanduc D. A quantitative description of the peptide sharing between poliovirus and Homo sapiens. Immunopharmacol Immunotoxicol 2011; 34:373-8. [PMID: 22145926 DOI: 10.3109/08923973.2011.608360] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In the present study, we analyze the peptide commonality between poliovirus polyprotein and the human proteins. We report on the following findings: (1) the extent of polio peptide overlap on the human proteome is high, and involves the entire viral polyprotein; (2) viral peptide matching affects human proteins linked to fundamental cellular functions. The data may help to further our understanding of the relationships between poliovirus and the human host.
Collapse
Affiliation(s)
- Giuseppe Novello
- Department of Biochemistry and Molecular Biology, University of Bari, Italy
| | | | | | | | | | | |
Collapse
|
35
|
Foo SS, Chen W, Herrero L, Bettadapura J, Narayan J, Dar L, Broor S, Mahalingam S. The genetics of alphaviruses. Future Virol 2011. [DOI: 10.2217/fvl.11.123] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alphaviruses are emerging human pathogens that are transmitted by arthropod vectors. Their ability to infect a wide range of vertebrate hosts including humans, equines, birds and rodents has brought about a series of epidemic and epizootic outbreaks worldwide. Their potential to cause a pandemic has spurred the interest of researchers globally, leading to the rapid advancement on the characterization of genetic determinants of alphaviruses. In this review, the focal point is placed on the genetics of alphaviruses, whereby the genetic composition, clinical features, evolution and adaptation of alphaviruses, modulation of IFN response by alphavirus proteins and therapeutic aspects of alphaviruses will be discussed.
Collapse
Affiliation(s)
- Suan Sin Foo
- Singapore Immunology Network, Agency for Science, Technology & Research (A*STAR), Biopolis, Singapore
- Emerging Viruses & Inflammation Research Group, Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Weiqiang Chen
- Singapore Immunology Network, Agency for Science, Technology & Research (A*STAR), Biopolis, Singapore
- Emerging Viruses & Inflammation Research Group, Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Lara Herrero
- Emerging Viruses & Inflammation Research Group, Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Jayaram Bettadapura
- Emerging Viruses & Inflammation Research Group, Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | | | - Lalit Dar
- All India Institute of Medical Sciences, New Delhi, India
| | - Shobha Broor
- All India Institute of Medical Sciences, New Delhi, India
| | - Suresh Mahalingam
- Emerging Viruses & Inflammation Research Group, Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
36
|
Abstract
Pathogenic viruses have RNA genomes that cause acute and chronic infections. These viruses replicate with high mutation rates and exhibit significant genetic diversity, so-called viral quasispecies. Viral quasispecies play an important role in chronic infectious diseases, but little is known about their involvement in acute infectious diseases such as dengue virus (DENV) infection. DENV, the most important human arbovirus, is a causative agent of dengue fever (DF) and dengue hemorrhagic fever (DHF). Accumulating observations suggest that DENV exists as an extremely diverse virus population, but its biological significance is unclear. In other virus diseases, quasispecies affect the therapeutic strategies using drugs and vaccines. Here, I describe the quasispecies of DENV and discuss the possible role of quasispecies in the pathogenesis of and therapeutic strategy against DENV infection in comparison with other viruses such as Hepatitis C virus, human immunodeficiency virus type 1, and poliovirus.
Collapse
Affiliation(s)
- Takeshi Kurosu
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
37
|
Identification of a phylogenetically distinct orthobunyavirus from group C. Arch Virol 2011; 156:1173-84. [PMID: 21465087 DOI: 10.1007/s00705-011-0976-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 03/08/2011] [Indexed: 01/28/2023]
Abstract
Apeu virus (APEUV) (family Bunyaviridae, genus Orthobunyavirus) was plaque purified and characterised by serological and molecular analysis. Neutralising assays confirmed cross-reactivity between purified APEUV clones and the Caraparu virus complex of group C orthobunyaviruses. Partial sequencing of the L, M and S segments of one APEUV clone (APEUV-CL5) was carried out. A phylogenetic tree constructed with the L amino acid sequences clustered APEUV-CL5 within the genus Orthobunyavirus, confirming its serological classification. Analysis of M segment sequences clustered APEUV-CL5 in the Caraparu virus complex (Group C), in agreement with serological tests and previous molecular characterisation. However, the sequence of the nucleocapsid gene (N) gave low identity values when compared to those of the group C viruses. The phylogenetic tree based on N nucleotide sequences clustered APEUV-CL5 next to the California and Bwamba groups. This remarkable S nucleotide variability suggests that APEUV-CL5 could be a genetic reassortant and that this evolutionary mechanism is present in the history of the group C viruses.
Collapse
|
38
|
Abstract
This chapter discusses the general mechanisms of antiviral resistance. Mammalian viruses represent a diverse group of infectious agents. The viruses that cause the common diseases of man and domestic animals comprise approximately 25 known families, which fall into groups according to their genome and replication strategies. Further evolution of modern viruses is continuing with mutations, recombinations, or reassortments. The use of vaccines has greatly reduced the burden of human disease caused by several other human viruses. Specific antiviral compounds have been developed for several of those viral infections that have not been adequately controlled by vaccines. Herpes viruses establish a latent state that enables the virus to remain in the host for a lifetime despite normal adaptive immune responses. Antivirals are effective at reducing virus replication during an acute episode. Another way in which a virus can establish a form of latency is by means of integration of a DNA copy of the genome. The virus has over 100 serotypes/genotypes. The mutation rate of a virus has been described as the probability that during a single replication of the virus genome a particular nucleotide position is altered. Several families of RNA virus have segmented genomes. Resistant variants are selected so quickly that a treated person can pass on resistant virus to contacts. Viruses are resistant to specific antiviral drugs. Although the genetic barrier needs to be increased for long-term delay in resistance in chronic infections, with any drug combination used in naturally self-limiting infections, the extra effect in reducing viral load quickly may well be a useful benefit. Our current antiviral therapies have been successful in reducing the burden of human diseases but many viruses have evolved strategies for countering new threats to their replication.
Collapse
|
39
|
Barton HD, Gregory AJ, Davis R, Hanlon CA, Wisely SM. Contrasting landscape epidemiology of two sympatric rabies virus strains. Mol Ecol 2010; 19:2725-38. [PMID: 20546130 DOI: 10.1111/j.1365-294x.2010.04668.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Viral strain evolution and disease emergence are influenced by anthropogenic change to the environment. We investigated viral characteristics, host ecology, and landscape features in the rabies-striped skunk disease system of the central Great Plains to determine how these factors interact to influence disease emergence. We amplified portions of the N and G genes of rabies viral RNA from 269 samples extracted from striped skunk brains throughout the distribution of two different rabies strains for which striped skunks were the reservoir. Because the distribution of these two strains overlapped on the landscape and were present in the same host population, we could evaluate how viral properties influenced epidemiological patterns in the area of sympatry. We found that South Central Skunk rabies (SCSK) exhibited intense purifying selection and high infectivity, which are both characteristics of an epizootic virus. Conversely, North Central Skunk rabies (NCSK) exhibited relaxed purifying selection and comparatively lower infectivity, suggesting the presence of an enzootic virus. The host population in the area of sympatry was highly admixed, and skunks among allopatric and sympatric areas had similar effective population sizes. Spatial analysis indicated that landscape features had minimal influence on NCSK movement across the landscape, but those same features were partial barriers to the spread of SCSK. We conclude that NCSK and SCSK have different epidemiological properties that interact differently with both host and landscape features to influence rabies spread in the central Great Plains. We suggest a holistic approach for future studies of emerging infectious diseases that includes studies of viral properties, host characteristics, and spatial features.
Collapse
Affiliation(s)
- Heather D Barton
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506, USA
| | | | | | | | | |
Collapse
|
40
|
Abstract
The pathogenesis of hepatitis B virus (HBV) is complex and it appears that molecular variants play a role in this process. HBV undergoes numerous rounds of error prone production within an infected host. The resulting quasispecies are heterogeneous and in the absence of archaeological records of past infection, the evolution of HBV can only be inferred indirectly from its epidemiology and by genetic analysis. This review gathered the controversies about the HBV origin and factors influencing its quasispecies. Also, it provided some evidence on how HBV genotypes correlated with human history and patterns of migration. It is our belief that this topic deserves further attention and thus it is likely that more critical research work will be performed to elucidate the unknown mechanisms and processes in this area.
Collapse
Affiliation(s)
- S M Jazayeri
- Hepatitis B Molecular Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | | | | |
Collapse
|
41
|
Full-genome sequence analysis of a multirecombinant echovirus 3 strain isolated from sewage in Greece. J Clin Microbiol 2010; 48:1513-9. [PMID: 20129960 DOI: 10.1128/jcm.00475-09] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
An echovirus 3 (Echo3) strain (strain LR31G7) was isolated from a sewage treatment plant in Greece in 2005. Full-genome molecular, phylogenetic, and SimPlot analyses were conducted in order to reveal the evolutionary pathways of the isolate. Nucleotide and phylogenetic analyses of part of the VP1 genomic region revealed that the isolated strain correlates with Echo3 strains isolated during the same year in France and Japan, implying that the same virus circulated in Europe and Asia. LR31G7 was found to be a recombinant that shares the 3' part of its genome with an Echo25 strain isolated from asymptomatic infants in Norway in 2003. Nucleotide and SimPlot analyses of the VP1-2A junction, where the recombination was located, revealed the exact recombination breakpoint (nucleotides 3357 to 3364). Moreover, there is evidence that recombination events had occurred in 3B-3D region in the evolutionary history of the isolate. Our study indicates that recombination events play major roles in enterovirus evolution and that the circulation of multirecombinant strains with unknown properties could be potentially dangerous for public health.
Collapse
|
42
|
Weaver SC, Reisen WK. Present and future arboviral threats. Antiviral Res 2010; 85:328-45. [PMID: 19857523 PMCID: PMC2815176 DOI: 10.1016/j.antiviral.2009.10.008] [Citation(s) in RCA: 956] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Revised: 10/01/2009] [Accepted: 10/16/2009] [Indexed: 11/20/2022]
Abstract
Arthropod-borne viruses (arboviruses) are important causes of human disease nearly worldwide. All arboviruses circulate among wild animals, and many cause disease after spillover transmission to humans and agriculturally important domestic animals that are incidental or dead-end hosts. Viruses such as dengue (DENV) and chikungunya (CHIKV) that have lost the requirement for enzootic amplification now produce extensive epidemics in tropical urban centers. Many arboviruses recently have increased in importance as human and veterinary pathogens using a variety of mechanisms. Beginning in 1999, West Nile virus (WNV) underwent a dramatic geographic expansion into the Americas. High amplification associated with avian virulence coupled with adaptation for replication at higher temperatures in mosquito vectors, has caused the largest epidemic of arboviral encephalitis ever reported in the Americas. Japanese encephalitis virus (JEV), the most frequent arboviral cause of encephalitis worldwide, has spread throughout most of Asia and as far south as Australia from its putative origin in Indonesia and Malaysia. JEV has caused major epidemics as it invaded new areas, often enabled by rice culture and amplification in domesticated swine. Rift Valley fever virus (RVFV), another arbovirus that infects humans after amplification in domesticated animals, undergoes epizootic transmission during wet years following droughts. Warming of the Indian Ocean, linked to the El Niño-Southern Oscillation in the Pacific, leads to heavy rainfall in east Africa inundating surface pools and vertically infected mosquito eggs laid during previous seasons. Like WNV, JEV and RVFV could become epizootic and epidemic in the Americas if introduced unintentionally via commerce or intentionally for nefarious purposes. Climate warming also could facilitate the expansion of the distributions of many arboviruses, as documented for bluetongue viruses (BTV), major pathogens of ruminants. BTV, especially BTV-8, invaded Europe after climate warming and enabled the major midge vector to expand is distribution northward into southern Europe, extending the transmission season and vectorial capacity of local midge species. Perhaps the greatest health risk of arboviral emergence comes from extensive tropical urbanization and the colonization of this expanding habitat by the highly anthropophilic (attracted to humans) mosquito, Aedes aegypti. These factors led to the emergence of permanent endemic cycles of urban DENV and CHIKV, as well as seasonal interhuman transmission of yellow fever virus. The recent invasion into the Americas, Europe and Africa by Aedes albopictus, an important CHIKV and secondary DENV vector, could enhance urban transmission of these viruses in tropical as well as temperate regions. The minimal requirements for sustained endemic arbovirus transmission, adequate human viremia and vector competence of Ae. aegypti and/or Ae. albopictus, may be met by two other viruses with the potential to become major human pathogens: Venezuelan equine encephalitis virus, already an important cause of neurological disease in humans and equids throughout the Americas, and Mayaro virus, a close relative of CHIKV that produces a comparably debilitating arthralgic disease in South America. Further research is needed to understand the potential of these and other arboviruses to emerge in the future, invade new geographic areas, and become important public and veterinary health problems.
Collapse
Affiliation(s)
- Scott C Weaver
- Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA.
| | | |
Collapse
|
43
|
A time-dependent threshold condition to determine the onset of AIDS. ARTIFICIAL LIFE AND ROBOTICS 2009. [DOI: 10.1007/s10015-009-0737-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
44
|
Weaver SC, Vasilakis N. Molecular evolution of dengue viruses: contributions of phylogenetics to understanding the history and epidemiology of the preeminent arboviral disease. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2009; 9:523-40. [PMID: 19460319 PMCID: PMC3609037 DOI: 10.1016/j.meegid.2009.02.003] [Citation(s) in RCA: 317] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 02/04/2009] [Accepted: 02/05/2009] [Indexed: 12/31/2022]
Abstract
Dengue viruses (DENV) are the most important arboviral pathogens in tropical and subtropical regions throughout the world, putting at risk of infection nearly a third of the global human population. Evidence from the historical record suggests a long association between these viruses and humans. The transmission of DENV includes a sylvatic, enzootic cycle between nonhuman primates and arboreal mosquitoes of the genus Aedes, and an urban, endemic/epidemic cycle between Aedes aegypti, a mosquito with larval development in peridomestic water containers, and human reservoir hosts. DENV are members of the genus Flavivirus in the Family Flaviviridae and comprise of 4 antigenically distinct serotypes (DENV-1-4). Although they are nearly identical epidemiologically, the 4 DENV serotypes are genetically quite distinct. Utilization of phylogenetic analyses based on partial and/or complete genomic sequences has elucidated the origins, epidemiology (genetic diversity, transmission dynamics and epidemic potential), and the forces that shape DENV molecular evolution (rates of evolution, selection pressures, population sizes, putative recombination and evolutionary constraints) in nature. In this review, we examine how phylogenetics have improved understanding of DENV population dynamics and sizes at various stages of infection and transmission, and how this information may influence pathogenesis and improve our ability to understand and predict DENV emergence.
Collapse
Affiliation(s)
- Scott C Weaver
- Department of Pathology, Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA.
| | | |
Collapse
|
45
|
Domingo E, Escarmís C, Menéndez-Arias L, Perales C, Herrera M, Novella IS, Holland JJ. Viral Quasispecies: Dynamics, Interactions, and Pathogenesis *. ORIGIN AND EVOLUTION OF VIRUSES 2008. [PMCID: PMC7149507 DOI: 10.1016/b978-0-12-374153-0.00004-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Quasispecies theory is providing a solid, evolving conceptual framework for insights into virus population dynamics, adaptive potential, and response to lethal mutagenesis. The complexity of mutant spectra can influence disease progression and viral pathogenesis, as demonstrated using virus variants selected for increased replicative fidelity. Complementation and interference exerted among components of a viral quasispecies can either reinforce or limit the replicative capacity and disease potential of the ensemble. In particular, a progressive enrichment of a replicating mutant spectrum with interfering mutant genomes prompted by enhanced mutagenesis may be a key event in the sharp transition of virus populations into error catastrophe that leads to virus extinction. Fitness variations are influenced by the passage regimes to which viral populations are subjected, notably average fitness decreases upon repeated bottleneck events and fitness gains upon competitive optimization of large viral populations. Evolving viral quasispecies respond to selective constraints by replication of subpopulations of variant genomes that display higher fitness than the parental population in the presence of the selective constraint. This has been profusely documented with fitness effects of mutations associated with resistance of pathogenic viruses to antiviral agents. In particular, selection of HIV-1 mutants resistant to one or multiple antiretroviral inhibitors, and the compensatory effect of mutations in the same genome, offers a compendium of the molecular intricacies that a virus can exploit for its survival. This chapter reviews the basic principles of quasispecies dynamics as they can serve to explain the behavior of viruses.
Collapse
|
46
|
Li D, Shang YJ, Liu ZX, Liu XT, Cai XP. Molecular relationships between type Asia 1 new strain from China and type O Panasia strains of foot-and-mouth-disease virus. Virus Genes 2007; 35:273-9. [PMID: 17380372 DOI: 10.1007/s11262-006-0073-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2006] [Accepted: 12/21/2006] [Indexed: 11/25/2022]
Abstract
The complete genome of Asia 1/HNK/CHA/05 strain of foot-and-mouth disease virus (FMDV) was sequenced, which was isolated from Chinese Hongkong in 2005. It is 8187 nt long in size and contains 5'-UTR, polyprotein region, and 3'-UTR. Polyprotein region can be divided into four parts of L, P1, P2 and P3. In this report, these six parts of the whole genome of the strain were compared with 12 reference strains using DNAStar and Simplot softwares. The comparison of P1 confirmed that Asia 1/HNK/CHA/05 has a high identity with nine type Asia 1 reference sequences from 85.9 to 92.6% (Ind/491/97 strain is the highest) but from 69.6 to 69.7% with three type O Panasia sequences. The identities of 5'-UTR, L, P2, P3 and 3'-UTR with three Panasia strains are from 89.0 to 90.6%, 92.5 to 93.4%, 94.8 to 95.5%, 96.0 to 96.7% and 90.7 to 92.5% separately, but with nine type Asia 1 strains are from 83.5 to 85.9%, 87.7 to 90.7%, 87.0 to 91.6%, 91.6 to 92.8% and 86.0 to 100% separately, which illuminates the closer relationship between Asia 1/HNK/CHA/05 and Panasia strains in 5'-UTR, L, nonstructural region and 3'-UTR although they do not belong to the same serotype. The SimPlot software was used to examine the authentic relationships of Asia 1/HNK/CHA/05 with 12 reference sequences. It was found that Asia 1/HNK/CHA/05 strain has a highest similarity with three Panasia strains especially Tibet/CHA/99 in 5'-UTR, L, nonstructural region and 3'-UTR but has a highest similarity with Asia 1/Ind/491/97 strain in P1 region, which suggested that the gene recombination had occurred around nucleotide position 1811 and 3971in the polyprotein region between Tibet/CHA/99 and Ind/491/97 to recombine the Asia 1/HNK/CHA/05 strain.
Collapse
Affiliation(s)
- Dong Li
- State Key Laboratory of Veterinary Etiologic Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Yanchangbao Xujiaping No.1, Lanzhou, Gansu 730046, China.
| | | | | | | | | |
Collapse
|
47
|
Belguith K, Bouslama L, Sdiri K, Nsaibia S, Ouni M. Génotypes d'échovirus 6 circulant dans la région de Monastir. ACTA ACUST UNITED AC 2007; 55:316-22. [PMID: 17418503 DOI: 10.1016/j.patbio.2006.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Accepted: 10/02/2006] [Indexed: 10/23/2022]
Abstract
UNLABELLED OBJECTIVE OF THE WORK: Echoviruses of serotype 6 were reported to be endemic in Tunisia and even in other country over the world. they are associated with many outbreak meningitis. The Objective of this study was to genetically characterize echovirus 6 fields isolates. It gives a first approach on the molecular epidemiology of this serotype. MATERIAL AND METHODS Phylogenetic analysis of partial sequence in the 3'half of the VP1 region (2874-3529) from 25 strains of echovirus 6. RESULTS 9 genotypes of echovirus 6 were individualized. Study area was Monastir, a touristic tunisian city. Strains were isolated from wastewater during one year, may correspond to three genotypes. CONCLUSION Many genotype could circulating during the same time and in the same region. This phenomena was reported to be atypic in the case of poliovirus.
Collapse
Affiliation(s)
- K Belguith
- Laboratoire des maladies transmissibles et substances biologiquement actives, faculté de pharmacie, 5000, rue Avicenne, 5000 Monastir, Tunisie.
| | | | | | | | | |
Collapse
|
48
|
Nasri D, Bouslama L, Pillet S, Bourlet T, Aouni M, Pozzetto B. Basic rationale, current methods and future directions for molecular typing of human enterovirus. Expert Rev Mol Diagn 2007; 7:419-434. [PMID: 17620049 DOI: 10.1586/14737159.7.4.419] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Enterovirus is a genus of the Picornaviridae family including more than 80 serotypes belonging to four species designed Human enterovirus A to D. The antigens of the structural proteins support the subdivision of enteroviruses into multiple serotypes. Comparative phylogeny based on molecular typing methods has been of great help to classify former and new types of enterovirus, and to investigate the diversity of enteroviruses and the evolutionary mechanisms involved in their diversity. By now, molecular typing methods of enterovirus rely mainly on the sequencing of an amplicon targeting a variable part of the region coding for the capsid proteins (VP1 and, alternatively, VP2 or VP4), either from a strain recovered by cell culture or, more recently, by direct amplification of a clinical or environmental specimen. In the future, microarrays are thought to play a major role in enterovirus typing and in the analysis of the determinants of virulence that support the puzzling diversity of the pathological conditions associated with human infection by these viruses.
Collapse
Affiliation(s)
- Dorsaf Nasri
- Laboratory of Bacteriology-Virology, GIMAP EA3064, Faculté de Médicine Jacques Lisfranc, Saint-Etienne cedex 02, France.
| | | | | | | | | | | |
Collapse
|
49
|
Vadivukarasi T, Girish KR, Usha R. Sequence and recombination analyses of the geminivirus replication initiator protein. J Biosci 2007; 32:17-29. [PMID: 17426377 DOI: 10.1007/s12038-007-0003-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The sequence motifs present in the replication initiator protein (Rep) of geminiviruses have been compared with those present in all known rolling circle replication initiators. The predicted secondary structures of Rep representing each group of organisms have been compared and found to be conserved. Regions of recombination in the Rep gene and the adjoining 5' intergenic region (IR)of representative species of Geminiviridae have been identified using Recombination Detection Programs. The possible implications of such recombinations on the increasing host range of geminivirus infections are discussed.
Collapse
Affiliation(s)
- T Vadivukarasi
- Center for Excellence in Bioinformatics, School of Biotechnology, Madurai Kamaraj University, Madurai 625 21, India
| | | | | |
Collapse
|
50
|
Deyde VM, Khristova ML, Rollin PE, Ksiazek TG, Nichol ST. Crimean-Congo hemorrhagic fever virus genomics and global diversity. J Virol 2006; 80:8834-42. [PMID: 16912331 PMCID: PMC1563879 DOI: 10.1128/jvi.00752-06] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is a severe illness with high case fatality that occurs in Africa, Europe, the Middle East, and Asia. The complete genomes of 13 geographically and temporally diverse virus strains were determined, and CCHF viruses were found to be highly variable with 20 and 8%, 31 and 27%, and 22 and 10% nucleotide and deduced amino acid differences detected among virus S (nucleocapsid), M (glycoprotein), and L (polymerase) genome segments, respectively. Distinct geographic lineages exist, but with multiple exceptions indicative of long-distance virus movement. Discrepancies among the virus S, M, and L phylogenetic tree topologies document multiple RNA segment reassortment events. An analysis of individual segment datasets suggests genetic recombination also occurs. For an arthropod-borne virus, the genomic plasticity of CCHF virus is surprisingly high.
Collapse
Affiliation(s)
- Varough M Deyde
- Special Pathogens Branch, Division of Viral and Rickettsial Diseases, Atlanta, GA 30329, USA
| | | | | | | | | |
Collapse
|