1
|
Saadi S, Makhlouf C, Nacer NE, Halima B, Faiza A, Kahina H, Wahiba F, Afaf K, Rabah K, Saoudi Z. Whey proteins as multifunctional food materials: Recent advancements in hydrolysis, separation, and peptidomimetic approaches. Compr Rev Food Sci Food Saf 2024; 23:e13288. [PMID: 38284584 DOI: 10.1111/1541-4337.13288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/23/2023] [Accepted: 12/11/2023] [Indexed: 01/30/2024]
Abstract
Whey protein derived bioactives, including α-lactalbumin, ß-lactoglobulin, bovine serum albumin, lactoferrin, transferrin, and proteose-peptones, have exhibited wide ranges of functional, biological and therapeutic properties varying from anticancer, antihypertensive, and antimicrobial effects. In addition, their functional properties involve gelling, emulsifying, and foaming abilities. For these reasons, this review article is framed to understand the relationship existed in between those compound levels and structures with their main functional, biological, and therapeutic properties exhibited either in vitro or in vivo. The impacts of hydrolysis mechanism and separation techniques in enhancing those properties are likewise discussed. Furthermore, special emphasize is given to multifunctional effects of whey derived bioactives and their future trends in ameliorating further food, pharmaceutical, and nutraceutical products. The underlying mechanism effects of those properties are still remained unclear in terms of activity levels, efficacy, and targeted effectiveness. For these reasons, some important models linking to functional properties, thermal properties and cell circumstances are established. Moreover, the coexistence of radical trapping groups, chelating groups, sulfhydryl groups, inhibitory groups, and peptide bonds seemed to be the key elements in triggering those functions and properties. Practical Application: Whey proteins are the byproducts of cheese processing and usually the exploitation of these food waste products has increasingly getting acceptance in many countries, especially European countries. Whey proteins share comparable nutritive values to milk products, particularly on their richness on important proteins that can serve immune protection, structural, and energetic roles. The nutritive profile of whey proteins shows diverse type of bioactive molecules like α-lactalbumin, ß-lactoglobulin, lactoferrin, transferrin, immunoglobulin, and proteose peptones with wide biological importance to the living system, such as in maintaining immunological, neuronal, and signaling roles. The diversification of proteins of whey products prompted scientists to exploit the real mechanisms behind of their biological and therapeutic effects, especially in declining the risk of cancer, tumor, and further complications like diabetes type 2 and hypertension risk effects. For these reasons, profiling these types of proteins using different proteomic and peptidomic approaches helps in determining their biological and therapeutic targets along with their release into gastrointestinal tract conditions and their bioavailabilities into portal circulation, tissue, and organs. The wide applicability of those protein fractions and their derivative bioactive products showed significant impacts in the field of emulsion and double emulsion stabilization by playing roles as emulsifying, surfactant, stabilizing, and foaming agents. Their amphoteric properties helped them to act as excellent encapsulating agents, particularly as vehicle for delivering important vitamins and bioactive compounds. The presence of ferric elements increased their transportation to several metal-ions in the same time increased their scavenging effects to metal-transition and peroxidation of lipids. Their richness with almost essential and nonessential amino acids makes them as selective microbial starters, in addition their richness in sulfhydryl amino acids allowed them to act a cross-linker in conjugating further biomolecules. For instance, conjugating gold-nanoparticles and fluorescent materials in targeting diseases like cancer and tumors in vivo is considered the cutting-edges strategies for these versatile molecules due to their active diffusion across-cell membrane and the presence of specific transporters to these therapeutic molecules.
Collapse
Affiliation(s)
- Sami Saadi
- Institut de la Nutrition, de l'Alimentation et des Technologies Agroalimentaires (INATAA), Université Frères Mentouri Constantine 1, Constantine, Algeria
- Laboratoire de Génie Agro-alimentaire, équipe Génie des Procédés Alimentaires, Biodiversité et Agro environnement, INATAA, Université Frères Mentouri Constantine 1 (UFC1), Constantine, Algeria
| | - Chaalal Makhlouf
- Institut de la Nutrition, de l'Alimentation et des Technologies Agroalimentaires (INATAA), Université Frères Mentouri Constantine 1, Constantine, Algeria
- Laboratory of Biotechnology and Food Quality, Institute of Nutrition, Food and Agro-Food Technologies, University of Constantine 1, Constantine, Algeria
- Laboratory of Applied Biochemistry, Faculty of Nature and Life Science, University of Bejaia, Bejaia, Algeria
| | - Nor Elhouda Nacer
- Department of Biology of Organisms, Faculty of Natural and Life Sciences, University of Batna 2, Batna, Algeria
| | - Boughellout Halima
- Institut de la Nutrition, de l'Alimentation et des Technologies Agroalimentaires (INATAA), Université Frères Mentouri Constantine 1, Constantine, Algeria
- Laboratoire de Génie Agro-alimentaire, équipe Génie des Procédés Alimentaires, Biodiversité et Agro environnement, INATAA, Université Frères Mentouri Constantine 1 (UFC1), Constantine, Algeria
| | - Adoui Faiza
- Institut de la Nutrition, de l'Alimentation et des Technologies Agroalimentaires (INATAA), Université Frères Mentouri Constantine 1, Constantine, Algeria
- Laboratoire de Génie Agro-alimentaire, équipe Génie des Procédés Alimentaires, Biodiversité et Agro environnement, INATAA, Université Frères Mentouri Constantine 1 (UFC1), Constantine, Algeria
| | - Hafid Kahina
- Institut de la Nutrition, de l'Alimentation et des Technologies Agroalimentaires (INATAA), Université Frères Mentouri Constantine 1, Constantine, Algeria
- Equipe MaQuaV, Laboratoire Bioqual INATAA, Université des Frères Mentouri-Constantine 1, Constantine, Algeria
| | - Falek Wahiba
- Institut de la Nutrition, de l'Alimentation et des Technologies Agroalimentaires (INATAA), Université Frères Mentouri Constantine 1, Constantine, Algeria
- Laboratoire de Génie Agro-alimentaire, équipe Génie des Procédés Alimentaires, Biodiversité et Agro environnement, INATAA, Université Frères Mentouri Constantine 1 (UFC1), Constantine, Algeria
| | - Kheroufi Afaf
- Institut de la Nutrition, de l'Alimentation et des Technologies Agroalimentaires (INATAA), Université Frères Mentouri Constantine 1, Constantine, Algeria
- Laboratoire de Génie Agro-alimentaire, équipe Génie des Procédés Alimentaires, Biodiversité et Agro environnement, INATAA, Université Frères Mentouri Constantine 1 (UFC1), Constantine, Algeria
| | - Kezih Rabah
- Institut de la Nutrition, de l'Alimentation et des Technologies Agroalimentaires (INATAA), Université Frères Mentouri Constantine 1, Constantine, Algeria
- Laboratory of Biotechnology and Food Quality, Institute of Nutrition, Food and Agro-Food Technologies, University of Constantine 1, Constantine, Algeria
| | - Zineddine Saoudi
- Institut de la Nutrition, de l'Alimentation et des Technologies Agroalimentaires (INATAA), Université Frères Mentouri Constantine 1, Constantine, Algeria
- Laboratoire de Génie Agro-alimentaire, équipe Génie des Procédés Alimentaires, Biodiversité et Agro environnement, INATAA, Université Frères Mentouri Constantine 1 (UFC1), Constantine, Algeria
| |
Collapse
|
2
|
Chakraborty S, Rudra Paul A, Majumdar S. Base and metal free true recyclable medium for Knoevenagel condensation reaction in SDS-ionic liquid-aqueous miceller composite system. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
3
|
Macedo A, Filipe P, Thomé NG, Vieira J, Oliveira C, Teodósio C, Ferreira R, Roque L, Fonte P. A Brief Overview of the Oral Delivery of Insulin as an Alternative to the Parenteral Delivery. Curr Mol Med 2021; 20:134-143. [PMID: 31965934 DOI: 10.2174/1566524019666191010095522] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/18/2019] [Accepted: 09/23/2019] [Indexed: 12/27/2022]
Abstract
Diabetes mellitus greatly affects the quality of life of patients and has a worldwide prevalence. Insulin is the most commonly used drug to treat diabetic patients and is usually administered through the subcutaneous route. However, this route of administration is ineffective due to the low concentration of insulin at the site of action. This route of administration causes discomfort to the patient and increases the risk of infection due to skin barrier disturbance caused by the needle. The oral administration of insulin has been proposed to surpass the disadvantages of subcutaneous administration. In this review, we give an overview of the strategies to deliver insulin by the oral route, from insulin conjugation to encapsulation into nanoparticles. These strategies are still under development to attain efficacy and effectiveness that are expected to be achieved in the near future.
Collapse
Affiliation(s)
- Ana Macedo
- LAQV, REQUIMTE, Department of Chemical Sciences - Applied Chemistry Lab, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.,CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Patrícia Filipe
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal.,Department of Biomedical Sciences, University of Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain
| | - Natália G Thomé
- Center for Marine Sciences (CCMAR), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal.,Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
| | - João Vieira
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Carolina Oliveira
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Catarina Teodósio
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Raquel Ferreira
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Luís Roque
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Pedro Fonte
- LAQV, REQUIMTE, Department of Chemical Sciences - Applied Chemistry Lab, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.,CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal.,Center for Marine Sciences (CCMAR), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal.,Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal.,IBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal
| |
Collapse
|
4
|
Overcoming the intestinal barrier: A look into targeting approaches for improved oral drug delivery systems. J Control Release 2020; 322:486-508. [DOI: 10.1016/j.jconrel.2020.04.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/17/2022]
|
5
|
Discovery of An Orally Effective Factor IX-Transferrin Fusion Protein for Hemophilia B. Int J Mol Sci 2019; 21:ijms21010021. [PMID: 31861459 PMCID: PMC6981973 DOI: 10.3390/ijms21010021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 01/12/2023] Open
Abstract
Hemophilia B is a severe blood clotting disorder caused by the deficiency of factor IX (FIX). FIX is not bioavailable when given orally due to poor stability and permeability in the gastrointestinal tract. The feasibility of fusing FIX with transferrin (Tf) to enhance the oral bioavailability of FIX is explored. Seven recombinant fusion proteins (rFIX-Tf) with different linkers were constructed and expressed in HEK293 cells and characterized by in vitro transcytosis and transferrin receptor (TfR) binding assay in Caco-2 cells and a one-stage clotting assay. The in vivo efficacy study was performed using a tail-bleeding model in hemophilia B mice. Fusion proteins rFIX-Tf/G2 and rFIX-Tf/SVSQ were most permeable and showed a specific binding ability to TfR in Caco-2 cells. Both proteins retained FIX activity in clotting generation. The in vivo efficacy study showed that both proteins by intravenous injection significantly reduced blood loss. Most significantly, rFIX-Tf/G2 demonstrated anti-bleeding activity when administered orally. Our results showed that the fusion protein technique with Tf could be potentially used for oral delivery of FIX and the linker between FIX and Tf in the fusion protein is crucial. rFIX-Tf/G2 appears to be the most promising fusion protein as potential oral therapeutics for hemophilia B.
Collapse
|
6
|
Harloff-Helleberg S, Nielsen LH, Nielsen HM. Animal models for evaluation of oral delivery of biopharmaceuticals. J Control Release 2017; 268:57-71. [DOI: 10.1016/j.jconrel.2017.09.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/06/2017] [Accepted: 09/15/2017] [Indexed: 12/20/2022]
|
7
|
Malhaire H, Gimel JC, Roger E, Benoît JP, Lagarce F. How to design the surface of peptide-loaded nanoparticles for efficient oral bioavailability? Adv Drug Deliv Rev 2016; 106:320-336. [PMID: 27058155 DOI: 10.1016/j.addr.2016.03.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 03/17/2016] [Accepted: 03/28/2016] [Indexed: 01/22/2023]
Abstract
The oral administration of proteins is a current challenge to be faced in the field of therapeutics. There is currently much interest in nanocarriers since they can enhance oral bioavailability. For lack of a clear definition, the key characteristics of nanoparticles have been highlighted. Specific surface area is one of these characteristics and represents a huge source of energy that can be used to control the biological fate of the carrier. The review discusses nanocarrier stability, mucus interaction and absorption through the intestinal epithelium. The protein corona, which has raised interest over the last decade, is also discussed. The universal ideal surface is a myth and over-coated carriers are not a solution either. Besides, common excipients can be useful on several targets. The suitable design should rather take into account the composition, structure and behavior of unmodified nanomaterials.
Collapse
|
8
|
Kaklotar D, Agrawal P, Abdulla A, Singh RP, Mehata AK, Singh S, Mishra B, Pandey BL, Trigunayat A, Muthu MS. Transition from passive to active targeting of oral insulin nanomedicines: enhancement in bioavailability and glycemic control in diabetes. Nanomedicine (Lond) 2016; 11:1465-86. [DOI: 10.2217/nnm.16.43] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Oral insulin nanomedicines are effective tools for therapy and management of both Type I and Type II diabetes. This review summarizes the various nanocarriers developed so far in the literature for oral delivery of insulin. It includes lipid-based (i.e., solid lipid nanoparticles and liposomes) and polymeric-based insulin nanomedicines (i.e., chitosan nanoparticles, alginate nanoparticles, dextran nanoparticles and nanoparticles of synthetic polymers) for sustained, controlled and targeted oral delivery of insulin. Mainly, goblet cell-targeting, vitamin B12 receptor-targeting, folate receptor-targeting and transferrin receptor-targeting aspects were focused. Currently, passive and active targeting approaches of oral insulin nanomedicines have improved the oral absorption of insulin and its bioavailability (up to 14%) that produced effective glycaemic control in in vivo models. These results indicate a promising future of oral insulin nanomedicines for the treatment of diabetes.
Collapse
Affiliation(s)
- Dhansukh Kaklotar
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Poornima Agrawal
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Allabakshi Abdulla
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Rahul P Singh
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Abhishesh K Mehata
- Department of Pharmaceutics, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Sanjay Singh
- Department of Pharmaceutics, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Brahmeshwar Mishra
- Department of Pharmaceutics, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Bajarangprasad L Pandey
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Anshuman Trigunayat
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Madaswamy S Muthu
- Department of Pharmaceutics, Indian Institute of Technology (BHU), Varanasi 221005, India
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
9
|
Heinzelman P, Priebe MC. Engineering superactive granulocyte macrophage colony-stimulating factor transferrin fusion proteins as orally-delivered candidate agents for treating neurodegenerative disease. Biotechnol Prog 2015; 31:668-77. [PMID: 25737095 DOI: 10.1002/btpr.2071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 02/18/2015] [Indexed: 11/07/2022]
Abstract
Intravenously injected granulocyte macrophage colony-stimulating factor (GM-CSF) has shown efficacy in Alzheimer's Disease (AD) and Parkinson's Disease (PD) animal studies and is undergoing clinical evaluation. The likely need for dosing of GM-CSF to patients over months or years motivates pursuit of avenues for delivering GM-CSF to circulation via oral administration. Flow cytometric screening of 37 yeast-displayed GM-CSF saturation mutant libraries revealed residues P12, H15, R23, R24, and K72 as key determinants of GM-CSF's CD116 and CD131 GM-CSF receptor (GM-CSFR) subunit binding affinity. Screening combinatorial GM-CSF libraries mutated at positions P12, H15, and R23 yielded variants with increased affinities toward both CD116 and CD131. Genetic fusion of GM-CSF to human transferrin (Trf), a strategy that enables oral delivery of other biopharmaceuticals in animals, yielded bioactive wild type and variant cytokines upon secretion from cultured Human Embryonic Kidney cells. Surface plasmon resonance (SPR) measurements showed that all evaluated variants possess decreases in CD116 and CD131 binding KD values of up to 2.5-fold relative to wild type. Improved affinity led to increased in vitro bioactivity; the most bioactive variant, P12D/H15L/R23L, had a leukocyte proliferation assay EC50 value 3.5-fold lower than the wild type GM-CSF/Trf fusion. These outcomes are important first steps toward our goal of developing GM-CSF/Trf fusions as orally available AD and PD therapeutics.
Collapse
Affiliation(s)
- Pete Heinzelman
- Dept. of Chemical, Biological & Materials Engineering, University of Oklahoma, Norman, Oklahoma, 73019
| | - Molly C Priebe
- Dept. of Chemical, Biological & Materials Engineering, University of Oklahoma, Norman, Oklahoma, 73019
| |
Collapse
|
10
|
Korneychuk N, Meresse B, Cerf-Bensussan N. Lessons from rodent models in celiac disease. Mucosal Immunol 2015; 8:18-28. [PMID: 25354320 DOI: 10.1038/mi.2014.102] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/23/2014] [Indexed: 02/04/2023]
Abstract
Over the past 25 years, studies led in humans have considerably improved our understanding of celiac disease, a complex disease that is generally defined as an autoimmune-like enteropathy induced by dietary gluten in genetically predisposed individuals. Recently, large efforts were also invested in the development of mouse models in order to explore pathogenic hypotheses, and also with the goal to design pretherapeutic models that could be used to test innovative therapies. Yet, modeling this complex multifactorial disease has been a very challenging task. Herein, we review how approaches in rodents have provided insight into celiac disease pathophysiology and also highlight the difficulties met to fully recapitulate the human disease.
Collapse
Affiliation(s)
- N Korneychuk
- 1] INSERM UMR1163, Laboratory of Intestinal Immunity, Institut Imagine, Paris, France [2] Université Paris Descartes-Sorbonne Paris Cité and Institut Imagine, Paris, France
| | - B Meresse
- 1] INSERM UMR1163, Laboratory of Intestinal Immunity, Institut Imagine, Paris, France [2] Université Paris Descartes-Sorbonne Paris Cité and Institut Imagine, Paris, France
| | - N Cerf-Bensussan
- 1] INSERM UMR1163, Laboratory of Intestinal Immunity, Institut Imagine, Paris, France [2] Université Paris Descartes-Sorbonne Paris Cité and Institut Imagine, Paris, France
| |
Collapse
|
11
|
Abnormal apical-to-basal transport of dietary ovalbumin by secretory IgA stimulates a mucosal Th1 response. Mucosal Immunol 2014; 7:315-24. [PMID: 23839063 DOI: 10.1038/mi.2013.49] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 06/06/2013] [Indexed: 02/04/2023]
Abstract
In celiac disease, enhanced permeability to gliadin peptides can result from their apico-basal transport by secretory immunoglobulin A1 (SIgA1) binding to the CD71 receptor ectopically expressed at the gut epithelial surface. Herein, we have established a mouse model in which there is apico-basal transport of the model antigen ovalbumin (OVA) by specific SIgA1 and have analyzed local T-cell activation. Transgenic DO11.10 mice were grafted with a hybridoma-secreting OVA-specific humanized IgA1, which could bind mouse CD71 and which were released in the intestinal lumen as SIgA. CD71 expression was induced at the gut apical surface by treating the mice with tyrphostin A8. Following gavage of the mice with OVA, OVA-specific CD4⁺ T cells isolated from the mesenteric lymph nodes displayed higher expression of the activation marker CD69 and produced more interferon gamma in mice bearing the hybridoma-secreting OVA-specific IgA1, than in ungrafted mice or in mice grafted with an irrelevant hybridoma. These results indicate that the protective role of SIgA1 might be jeopardized in human pathological conditions associated with ectopic expression of CD71 at the gut surface.
Collapse
|
12
|
Inoue S, Patil R, Portilla-Arias J, Ding H, Konda B, Espinoza A, Mongayt D, Markman JL, Elramsisy A, Phillips HW, Black KL, Holler E, Ljubimova JY. Nanobiopolymer for direct targeting and inhibition of EGFR expression in triple negative breast cancer. PLoS One 2012; 7:e31070. [PMID: 22355336 PMCID: PMC3280290 DOI: 10.1371/journal.pone.0031070] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 01/02/2012] [Indexed: 12/31/2022] Open
Abstract
Treatment options for triple negative breast cancer (TNBC) are generally limited to cytotoxic chemotherapy. Recently, anti-epidermal growth factor receptor (EGFR) therapy has been introduced for TNBC patients. We engineered a novel nanobioconjugate based on a poly(β-L-malic acid) (PMLA) nanoplatform for TNBC treatment. The nanobioconjugate carries anti-tumor nucleosome-specific monoclonal antibody (mAb) 2C5 to target breast cancer cells, anti-mouse transferrin receptor (TfR) antibody for drug delivery through the host endothelial system, and Morpholino antisense oligonucleotide (AON) to inhibit EGFR synthesis. The nanobioconjugates variants were: (1) P (BioPolymer) with AON, 2C5 and anti-TfR for tumor endothelial and cancer cell targeting, and EGFR suppression (P/AON/2C5/TfR), and (2) P with AON and 2C5 (P/AON/2C5). Controls included (3) P with 2C5 but without AON (P/2C5), (4) PBS, and (5) P with PEG and leucine ester (LOEt) for endosomal escape (P/mPEG/LOEt). Drugs were injected intravenously to MDA-MB-468 TNBC bearing mice. Tissue accumulation of injected nanobioconjugates labeled with Alexa Fluor 680 was examined by Xenogen IVIS 200 (live imaging) and confocal microscopy of tissue sections. Levels of EGFR, phosphorylated and total Akt in tumor samples were detected by western blotting. In vitro western blot showed that the leading nanobioconjugate P/AON/2C5/TfR inhibited EGFR synthesis significantly better than naked AON. In vivo imaging revealed that 2C5 increased drug-tumor accumulation. Significant tumor growth inhibition was observed in mice treated with the lead nanobioconjugate (1) [P = 0.03 vs. controls; P<0.05 vs. nanobioconjugate variant (2)]. Lead nanobioconjugate (1) also showed stronger inhibition of EGFR expression and Akt phosphorylation than other treatments. Treatment of TNBC with the new nanobioconjugate results in tumor growth arrest by inhibiting EGFR and its downstream signaling intermediate, phosphorylated Akt. The nanobioconjugate represents a new generation of nanodrugs for treatment of TNBC.
Collapse
Affiliation(s)
- Satoshi Inoue
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Rameshwar Patil
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Jose Portilla-Arias
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Hui Ding
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Bindu Konda
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Andres Espinoza
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Dmitriy Mongayt
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, Massachusetts, United States of America
| | - Janet L. Markman
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Adam Elramsisy
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - H. Westley Phillips
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Keith L. Black
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Eggehard Holler
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Julia Y. Ljubimova
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
13
|
Zhang L, Zhu W, Yang C, Guo H, Yu A, Ji J, Gao Y, Sun M, Zhai G. A novel folate-modified self-microemulsifying drug delivery system of curcumin for colon targeting. Int J Nanomedicine 2012; 7:151-62. [PMID: 22275831 PMCID: PMC3263408 DOI: 10.2147/ijn.s27639] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background The objective of this study was to prepare, characterize, and evaluate a folate-modified self-microemulsifying drug delivery system (FSMEDDS) with the aim to improve the solubility of curcumin and its delivery to the colon, facilitating endocytosis of FSMEDDS mediated by folate receptors on colon cancer cells. Methods Ternary phase diagrams were constructed in order to obtain the most efficient self-emulsification region, and the formulation of curcumin-loaded SMEDDS was optimized by a simplex lattice experiment design. Then, three lipophilic folate derivatives (folate-polyethylene glycol-distearoylphosphatidylethanolamine, folate-polyethylene glycol-cholesteryl hemisuccinate, and folate-polyethylene glycol-cholesterol) used as a surfactant were added to curcumin-loaded SMEDDS formulations. An in situ colon perfusion method in rats was used to optimize the formulation of FSMEDDS. Curcumin-loaded FSMEDDS was then filled into colon-targeted capsules and the in vitro release was investigated. Cytotoxicity studies and cellular uptake studies was used in this research. Results The optimal formulation of FSMEDDS obtained with the established in situ colon perfusion method in rats was comprised of 57.5% Cremophor® EL, 32.5% Transcutol® HP, 10% Capryol™ 90, and a small amount of folate-polyethylene glycol-cholesteryl hemisuccinate (the weight ratio of folate materials to Cremophor EL was 1:100). The in vitro release results indicated that the obtained formulation of curcumin could reach the colon efficiently and release the drug immediately. Cellular uptake studies analyzed with fluorescence microscopy and flow cytometry indicated that the FSMEDDS formulation could efficiently bind with the folate receptors on the surface of positive folate receptors cell lines. In addition, FSMEDDS showed greater cytotoxicity than SMEDDS in the above two cells. Conclusion FSMEDDS-filled colon-targeted capsules are a potential carrier for colon delivery of curcumin.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Pharmaceutical Engineering, College of Pharmacy, Shandong University, Jinan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Khafagy ES, Morishita M, Onuki Y, Takayama K. Current challenges in non-invasive insulin delivery systems: a comparative review. Adv Drug Deliv Rev 2007; 59:1521-46. [PMID: 17881081 DOI: 10.1016/j.addr.2007.08.019] [Citation(s) in RCA: 289] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Accepted: 08/16/2007] [Indexed: 11/22/2022]
Abstract
The quest to eliminate the needle from insulin delivery and to replace it with non- or less-invasive alternative routes has driven rigorous pharmaceutical research to replace the injectable forms of insulin. Recently, various approaches have been studied involving many strategies using various technologies that have shown success in delivering insulin, which are designed to overcome the inherent barriers for insulin uptake across the gastrointestinal tract, mucosal membranes and skin. This review examines some of the many attempts made to develop alternative, more convenient routes for insulin delivery to avoid existing long-term dependence on multiple subcutaneous injections and to improve the pharmacodynamic properties of insulin. In addition, this article concentrates on the successes in this new millennium in developing potential non-invasive technologies and devices, and on major new milestones in modern insulin delivery for the effective treatment of diabetes.
Collapse
Affiliation(s)
- El-Sayed Khafagy
- Department of Pharmaceutics, Hoshi University, Ebara 2-4-41, Shinagawa, Tokyo 142-8501, Japan
| | | | | | | |
Collapse
|
16
|
Norouziyan F, Shen WC, Hamm-Alvarez SF. Tyrphostin A8 stimulates a novel trafficking pathway of apically endocytosed transferrin through Rab11-enriched compartments in Caco-2 cells. Am J Physiol Cell Physiol 2007; 294:C7-21. [PMID: 17959726 DOI: 10.1152/ajpcell.00372.2006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The potential application of transferrin receptors as delivery vehicles for transport of macromolecular drugs across intestinal epithelial cells is limited by several factors, including the low level of transferrin receptor-mediated transcytosis, particularly in the apical-to-basolateral direction. The GTPase inhibitor, AG10 (tyrphostin A8), has been shown previously to increase the apical-to-basolateral transcytosis of transferrin in Caco-2 cells. However, the mechanism of the increased transcytosis has not been established. In this report, the effect of AG10 on the trafficking of endocytosed transferrin among different endosomal compartments as well as the involvement of Rab11 in the intracellular trafficking of transferrin was investigated. Confocal microscopy studies showed a high level of colocalization of FITC-transferrin with Rab5 and Rab11 in Caco-2 cells pulsed at 16 degrees C and 37 degrees C, which indicated the presence of apically endocytosed FITC-transferrin in early endosomes and apical recycling endosomes at 16 degrees C and 37 degrees C, respectively. The effect of AG10 on the accumulation of transferrin within different endosomal compartment was studied, and an increase in the transcytosis and recycling of internalized (125)I-labeled transferrin, as well as a decrease in cell-associated (125)I-labeled transferrin, was observed in AG10-treated Caco-2 cells pulsed at 37 degrees C for 30 min and chased for 30 min. Moreover, confocal microscopy showed that FITC-transferrin exhibited an increased level of colocalization with Rab11, but not with Rab5, in the presence of AG10. These results suggest an effect of AG10 on the later steps of transferrin receptor trafficking, which are involved in subsequent recycling, and possibly transcytosis, of endocytosed transferrin in Caco-2 cells.
Collapse
Affiliation(s)
- Fariba Norouziyan
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90033, USA
| | | | | |
Collapse
|
17
|
Lim CJ, Norouziyan F, Shen WC. Accumulation of transferrin in Caco-2 cells: a possible mechanism of intestinal transferrin absorption. J Control Release 2007; 122:393-8. [PMID: 17586083 PMCID: PMC2128747 DOI: 10.1016/j.jconrel.2007.03.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 03/25/2007] [Accepted: 03/30/2007] [Indexed: 11/18/2022]
Abstract
Transferrin receptor (TfR)-mediated endocytosis and transcytosis in enterocyte-like Caco-2 cells was investigated in order to elucidate the transport mechanism of orally administered Tf-fusion proteins. Cellular uptake and pulse chase studies were performed in Caco-2, MCF-7 and bladder carcinoma (5637) cells using 125I-labeled Tf (125I-Tf). Co-localization studies of Rab 11 and FITC-Tf endocytosed at either the apical or basolateral membrane were performed in polarized Caco-2 cells grown on Transwells, using confocal laser scanning microscopy (LSM510, Zeiss). Unlike in MCF-7 or 5637 cells, where rapid recycling of Tf was observed, a significant amount of endocytosed 125I-Tf accumulated in Caco-2 cells. This accumulation was especially noticeable with the internalization of 125I-Tf from the apical membrane of polarized Caco-2 cells. Confocal microscopy studies showed that apically, but not basolaterally, endocytosed FITC-Tf was delivered to a Rab11-positive compartment. Our results suggest that a significant amount of apically endocytosed Tf in intestinal epithelial cells is transported to a Rab11-positive compartment, possibly a late endosomal and slow recycling compartment. The Rab11-positive compartment may control the release of apically internalized Tf for either slow recycling to apical membrane or processing to transcytotic compartments.
Collapse
Affiliation(s)
- Ching-Jou Lim
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90033, USA
| | | | | |
Collapse
|
18
|
Bai Y, Shen WC. Improving the Oral Efficacy of Recombinant Granulocyte Colony-Stimulating Factor and Transferrin Fusion Protein by Spacer Optimization. Pharm Res 2006; 23:2116-21. [PMID: 16952003 DOI: 10.1007/s11095-006-9059-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2006] [Accepted: 05/08/2006] [Indexed: 10/24/2022]
Abstract
PURPOSE To improve the oral efficacy of the recombinant fusion protein containing granulocyte colony-stimulating factor (G-CSF) and transferrin (Tf) by inserting a linker between the two protein domains. MATERIALS AND METHODS Oligonucleotides encoding flexible and helix-forming peptides were inserted to the recombinant plasmids. The fusion protein without linker insertion was used for comparison. The G-CSF cell-proliferation and Tf receptor-binding activities of the fusion proteins were tested in NFS-60 cells and Caco-2 cells, respectively, and in vivo myelopoietic assay with both subcutaneous and oral administration was performed in BDF1 mice. RESULTS All fusion proteins produced from transfected HEK293 cells were positive in Western-blotting assay with anti-G-CSF and anti-Tf antibodies. Among them, the fusion protein with a long helical (H4-2) linker showed the highest activity in NFS-60 cell proliferation assay, with an EC50 about ten-fold lower than that of the non-linker fusion protein. The fusion protein with H4-2 linker also showed a significantly higher myelopoietic effect when administered either subcutaneously or orally in BDF1 mice. CONCLUSION The insertion of a linker peptide, such as the helix linker H4-2, between G-CSF and Tf domains in the recombinant fusion protein can improve significantly both in vitro and in vivo myelopoietic activity over the non-linker fusion protein.
Collapse
Affiliation(s)
- Yun Bai
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90033, USA
| | | |
Collapse
|
19
|
Moriya M, Linder MC. Vesicular transport and apotransferrin in intestinal iron absorption, as shown in the Caco-2 cell model. Am J Physiol Gastrointest Liver Physiol 2006; 290:G301-9. [PMID: 16179601 DOI: 10.1152/ajpgi.00029.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The potential roles of vesicular transport and apotransferrin (entering from the blood) in intestinal Fe absorption were investigated using Caco-2 cell monolayers with tight junctions in bicameral chambers as a model. As shown previously, addition of 39 microM apotransferrin (apoTf) to the basolateral fluid during absorption studies markedly stimulated overall transport of 1 microM (59)Fe from the apical to the basal chamber and stimulated its basolateral release from prelabeled cells, implicating endo- and exocytosis. Rates of transport more than doubled. Uptake was also stimulated, but only 20%. Specific inhibitors of aspects of vesicular trafficking were applied to determine their potential effects on uptake, retention, and basolateral (overall) transport of (59)Fe. Nocodazole and 5'-(4-fluorosulfonylbenzoyl)-adenosine each reduced uptake and basolateral transport up to 50%. Brefeldin A inhibited about 10%. Tyrphostin A8 (AG10) reduced uptake 35% but markedly stimulated basolateral efflux, particularly that dependent on apoTf. Cooling of cells to 4 degrees C (which causes depolymerization of microtubules and lowers energy availability) profoundly inhibited uptake and basolateral transfer of Fe (7- to 12-fold). Apical efflux (which was substantial) was not temperature affected. Our results support the involvement of apoTf cycling in intestinal Fe absorption and indicate that as much as half of the iron uses apoTf and non-apoTf-dependent vesicular pathways to cross the basolateral membrane and brush border of enterocytes.
Collapse
Affiliation(s)
- Mizue Moriya
- Department of Chemistry and Biochemistry, California State University, Fullerton, CA 91834-6866, USA
| | | |
Collapse
|
20
|
Lim CJ, Shen WC. Comparison of monomeric and oligomeric transferrin as potential carrier in oral delivery of protein drugs. J Control Release 2005; 106:273-86. [PMID: 15964654 DOI: 10.1016/j.jconrel.2005.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Revised: 05/03/2005] [Accepted: 05/04/2005] [Indexed: 12/20/2022]
Abstract
Oligomeric transferrin (Tf) was used to investigate the effect that cross-linking of transferrin receptors (TfR) has on intracellular trafficking of the Tf-TfR complex and to determine whether or not the Tf-oligomer would be a better carrier than monomeric Tf for the oral delivery of protein drugs. The intracellular retention and transcytosis of the Tf-oligomer was determined by performing pulse chase studies on enterocyte-like Caco-2 cells. The intracellular retention of the Tf-oligomer was 2-fold higher than that of monomeric Tf while there was no significant difference in transcytosis. However, in vivo studies in CF-1 mice showed that the plasma concentrations of Tf from the orally administered Tf-oligomer were approximately 2-, 3- and 60-fold higher than that of orally administered monomeric Tf at 24, 48 and 72 h post-administration, respectively. In addition, the retention of the Tf-oligomer in the intestine was higher than that of monomeric Tf, which was consistent with in vitro studies. Insulin (In), when conjugated to the Tf-oligomer (Agg-Tf-S-S-In), was more effective than monomeric Tf-In conjugate (Mono-Tf-S-S-In) in reducing blood glucose levels when orally administered to streptozotocin (STZ)-induced diabetic rats. Post-oral administration of Agg-Tf-In, a delayed onset and prolonged hypoglycemic effect was observed. These results demonstrate that the cross-linking of TfR induced by the binding of the oligomeric Tf alters the intracellular trafficking and increases the intracellular retention of Tf-TfR complexes in polarized Caco-2 cells. The alteration of TfR trafficking could conceivably have caused the increase of insulin transport across the intestinal barrier when Agg-Tf-S-S-In was administered orally to STZ-induced diabetic rats. The delayed onset and prolonged effect of Agg-Tf-S-S-In in hypoglycemia strongly suggests that the Tf-oligomer can act as a sustained release carrier in the oral delivery of protein and peptide drugs.
Collapse
Affiliation(s)
- Ching-Jou Lim
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | | |
Collapse
|
21
|
Bai Y, Ann DK, Shen WC. Recombinant granulocyte colony-stimulating factor-transferrin fusion protein as an oral myelopoietic agent. Proc Natl Acad Sci U S A 2005; 102:7292-6. [PMID: 15870205 PMCID: PMC1129103 DOI: 10.1073/pnas.0500062102] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An expression construct harboring granulocyte colony-stimulating factor (G-CSF)-transferrin (Tf) fusion protein (G-CSF-Tf) was engineered by fusing human cDNAs encoding G-CSF and Tf to explore the feasibility of using Tf as a carrier moiety for oral delivery of therapeutic proteins. The recombinant protein, G-CSF-Tf, was harvested from protein-free, conditioned medium of transfected HEK293 cells. The in vitro studies demonstrated that the purified G-CSF-Tf fusion protein possesses the activity of both Tf receptor (TfR) binding in Caco-2 cells and G-CSF-dependent stimulation of NFS-60 cell proliferation. Subcutaneous administration of G-CSF-Tf fusion protein to BDF1 mice demonstrated a pharmacological effect comparable to the commercial G-CSF on the increase of absolute neutrophil counts (ANC). However, the fusion protein elicited a significant increase in ANC upon oral administration to BDF1 mice, whereas G-CSF had no effect. This study also showed that orally administered G-CSF-Tf elicits a sustained myelopoietic effect up to 3 days, whereas the s.c. administered G-CSF or G-CSF-Tf lasts only 1 day. Furthermore, coadministration of free Tf abolished the increase of ANC by orally delivered G-CSF-Tf, suggesting that the recombinant protein is absorbed via a TfR-mediated process in the gastrointestinal tract. Taken together, we conclude that the Tf-based recombinant fusion protein technology represents a promising approach for future development of orally effective peptide and protein drugs.
Collapse
Affiliation(s)
- Yun Bai
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | | | | |
Collapse
|
22
|
Blanchette J, Kavimandan N, Peppas NA. Principles of transmucosal delivery of therapeutic agents. Biomed Pharmacother 2004; 58:142-51. [PMID: 15082336 DOI: 10.1016/j.biopha.2004.01.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Indexed: 11/16/2022] Open
Abstract
Recent advances in medicine have led to new treatment options for patients and physicians as a more developed understanding of the molecular basis of disease states is translated into new therapeutic agents. Many of these new agents are compounds that are not able to reach the bloodstream when administered by the oral route preventing the ability to enjoy the benefits this delivery route provides such as lower cost and increased quality of life. Our laboratory has focused on the use of hydrogel carriers to increase the bioavailability of orally administered therapeutic agents ranging from proteins such as insulin to chemotherapeutics like bleomycin. The foundations of this research as well as recent advances are reviewed along with a discussion of the challenges of oral administration and other emerging strategies for oral administration.
Collapse
Affiliation(s)
- James Blanchette
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | | | | |
Collapse
|
23
|
Gabor F, Bogner E, Weissenboeck A, Wirth M. The lectin-cell interaction and its implications to intestinal lectin-mediated drug delivery. Adv Drug Deliv Rev 2004; 56:459-80. [PMID: 14969753 DOI: 10.1016/j.addr.2003.10.015] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2003] [Accepted: 10/14/2003] [Indexed: 01/09/2023]
Abstract
Based on the fact that oligosaccharides encode biological information, the biorecognition between lectinised drug delivery systems and glycosylated structures in the intestine can be exploited for improved peroral therapy. Basic research revealed that some lectins can mediate mucoadhesion, cytoadhesion, and cytoinvasion of drugs. Entering the vesicular pathway by receptor mediated endocytosis, part of the conjugated drug is accumulated within the lysosomes. Additionally, part of the drug is supposed to be transported across the epithelium. Moreover, factors probably adversely influencing feasibility of the concept such as toxicity, immunogenicity, and intestinal stability of plant lectins are discussed. As exemplified by lectin-grafted prodrug and carrier systems, this strategy is expected to improve absorption and probably bioavailability of poorly absorbable drugs, peptides and proteins as well as therapeutic DNA.
Collapse
Affiliation(s)
- Franz Gabor
- Institute of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria.
| | | | | | | |
Collapse
|
24
|
Widera A, Norouziyan F, Shen WC. Mechanisms of TfR-mediated transcytosis and sorting in epithelial cells and applications toward drug delivery. Adv Drug Deliv Rev 2003; 55:1439-66. [PMID: 14597140 DOI: 10.1016/j.addr.2003.07.004] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Transferrin receptor has been an important protein for many of the advances made in understanding the intricacies of the intramolecular sorting pathways of endocytosed molecules. The unique internalization and recycling functions of transferrin receptor have also made it an attractive choice for drug targeting and delivery of large protein-based therapeutics and toxins. Recent advances in elucidating the role of the intracellular controllers of transferrin recycling and sorting, such as Rab proteins and their effectors, have led to enhancement of transferrin receptor as a drug delivery vehicle. This review focuses on the use of transferrin receptor as an agent for facilitating drug delivery and targeting, and the role that mechanisms of transferrin receptor sorting and transcytosis play in these events.
Collapse
Affiliation(s)
- A Widera
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, PSC 404B, 1985 Zonal Avenue, Los Angeles, CA 90033, USA
| | | | | |
Collapse
|
25
|
Widera A, Kim KJJ, Crandall ED, Shen WC. Transcytosis of GCSF-transferrin across rat alveolar epithelial cell monolayers. Pharm Res 2003; 20:1231-8. [PMID: 12948021 DOI: 10.1023/a:1025005232421] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE The purpose of this study was to use primary cultured rat alveolar epithelial cell monolayers to examine the potential of using transferrin receptor (TfR)-mediated transcytosis for noninvasive systemic protein drug delivery via the pulmonary route. METHODS Freshly isolated rat type II pneumocytes were plated onto tissue culture-treated polycarbonate 12-mm Transwells. AEC monolayers (> or = 2500 omega(cm2)) were treated with keratinocyte growth factor (10 ng/mL) for maintenance of type II cell-like characteristics. Filgrastim (GCSF)-Tf conjugates were prepared using the linkers SPDP and DPDPB. TfR-specific binding and uptake were determined using 125I-Tf and 59Fe-Tf treatment, respectively. Apical-to-basolateral (A-to-B) transferrin receptor (TfR)-mediated transcytosis was determined by dosing the apical compartment with 1.5 microg/mL of 125I-Tf or 125I-GCSF-Tf. Nonspecific TfR-independent transport of 125I-Tf and 125I-GCSF-Tf was determined in parallel by including 150 microg/mL of nonradiolabeled Tf. Basolateral samples (500 microL) were taken at 2, 4, and 6 h post-dosing, subjected to 15% trichloroacetic acid precipitation, and assayed in a Packard gamma counter. TfR-specific transport was determined as the difference between total and nonspecifc transport. The effects of brefeldin-A (BFA) on TfR distribution and (A-to-B) transport of 125I-Tf, 125I-GCSF and 125I-GCSF-Tf was studied by including the agent in the apical fluid at 1 microg/mL. RESULTS BFA treatment resulted in a small significant reduction in TfR at the basolateral surface of type II cell-like monolayers, while it had no effect on TfR distribution in type I cell-like monolayers. In contrast, BFA treatment significantly altered the endocytosis of TfR, reducing the basolateral uptake of 59Fe-Tf while greatly increasing the apical uptake of 59Fe-Tf. BFA treatment, however, did not affect the TfR-specific uptake of 59Fe-Tf in type I cell-like monolayers. TfR-specific apical-to-basolateral transcytosis of 125I-Tf and 126I-GCSF-Tf conjugates was significantly enhanced in the presence of BFA in type II cell-like monolayers, whereas it had no effect on apical-to-basolateral transport of 125I-GCSF. BFA-enhanced transport of 125I-GCSF-Tf was approximately 3-fold higher than that of 125I-GCSF in the presence or absence of BFA. Moreover, 125I-GCSF transport in the presence of BFA was not significantly different from non-specific 125I-GCSF-Tf transport. Chromatographic analyses and bio-assays revealed that GCSF-Tf was not degraded during transport via TfR-specific processes, and that GCSF retained biologic activity when liberated from the conjugate via dithiothreitol reduction. CONCLUSION This study suggests the possibility of using TfR-mediated transcytosis for systemic delivery of therapeutic proteins via the alveolar epithelium.
Collapse
Affiliation(s)
- Adam Widera
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | |
Collapse
|
26
|
Abstract
Transcytosis, the vesicular transport of macromolecules from one side of a cell to the other, is a strategy used by multicellular organisms to selectively move material between two environments without altering the unique compositions of those environments. In this review, we summarize our knowledge of the different cell types using transcytosis in vivo, the variety of cargo moved, and the diverse pathways for delivering that cargo. We evaluate in vitro models that are currently being used to study transcytosis. Caveolae-mediated transcytosis by endothelial cells that line the microvasculature and carry circulating plasma proteins to the interstitium is explained in more detail, as is clathrin-mediated transcytosis of IgA by epithelial cells of the digestive tract. The molecular basis of vesicle traffic is discussed, with emphasis on the gaps and uncertainties in our understanding of the molecules and mechanisms that regulate transcytosis. In our view there is still much to be learned about this fundamental process.
Collapse
Affiliation(s)
- Pamela L Tuma
- Hunterian 119, Department of Cell Biology, 725 N Wolfe St, Baltimore, MD 21205, USA
| | | |
Collapse
|
27
|
Gabor F, Schwarzbauer A, Wirth M. Lectin-mediated drug delivery: binding and uptake of BSA-WGA conjugates using the Caco-2 model. Int J Pharm 2002; 237:227-39. [PMID: 11955820 DOI: 10.1016/s0378-5173(02)00049-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To examine whether the dietary lectin wheat germ agglutinin (WGA) can facilitate binding and uptake of protein drugs due to its cytoadhesive and cytoinvasive properties, conjugates were prepared by covalent coupling of fluorescein-labeled bovine serum albumin (F-BSA) to WGA using divinylsulfone for crosslinking. Increasing the molar ratio of F-BSA/WGA resulted in 2.6-8.7 times higher Caco-2 binding as compared with glycyl-F-BSA. About 75% of F-BSA-WGA were bound specifically to Caco-2 cells according to inhibition studies in presence of the complementary carbohydrate. The Caco-2 association of F-BSA-WGA was temperature-dependent indicating active uptake of membrane bound conjugate, which was confirmed by confocal microscopy. The conjugate accumulated within lysosomal compartments followed by proteolytic degradation of F-BSA-WGA 1-4 h after conjugate loading as observed by equilibrating the intracellular pH with monensin. Finally low molecular weight degradation products of the proteinaceous prodrug appear in the extracellular medium. Contrary to Caco-2 single cells, a minor part of the conjugate is degraded by brush border proteases already 30 min after exposure to Caco-2 monolayers. But most of the conjugate is taken up into differentiated cells and processed as in single cells. Though the enzymic barrier remains to be surmounted, WGA-mediated drug delivery is a promising strategy for peroral delivery of even high molecular weight drugs to overcome the mucosal barrier.
Collapse
Affiliation(s)
- Franz Gabor
- Institute of Pharmaceutical Technology and Biopharmaceutics, The University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | | | | |
Collapse
|