1
|
Al Ojaimi Y, Blin T, Lamamy J, Gracia M, Pitiot A, Denevault-Sabourin C, Joubert N, Pouget JP, Gouilleux-Gruart V, Heuzé-Vourc'h N, Lanznaster D, Poty S, Sécher T. Therapeutic antibodies - natural and pathological barriers and strategies to overcome them. Pharmacol Ther 2021; 233:108022. [PMID: 34687769 PMCID: PMC8527648 DOI: 10.1016/j.pharmthera.2021.108022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 02/06/2023]
Abstract
Antibody-based therapeutics have become a major class of therapeutics with over 120 recombinant antibodies approved or under review in the EU or US. This therapeutic class has experienced a remarkable expansion with an expected acceleration in 2021-2022 due to the extraordinary global response to SARS-CoV2 pandemic and the public disclosure of over a hundred anti-SARS-CoV2 antibodies. Mainly delivered intravenously, alternative delivery routes have emerged to improve antibody therapeutic index and patient comfort. A major hurdle for antibody delivery and efficacy as well as the development of alternative administration routes, is to understand the different natural and pathological barriers that antibodies face as soon as they enter the body up to the moment they bind to their target antigen. In this review, we discuss the well-known and more under-investigated extracellular and cellular barriers faced by antibodies. We also discuss some of the strategies developed in the recent years to overcome these barriers and increase antibody delivery to its site of action. A better understanding of the biological barriers that antibodies have to face will allow the optimization of antibody delivery near its target. This opens the way to the development of improved therapy with less systemic side effects and increased patients' adherence to the treatment.
Collapse
Affiliation(s)
- Yara Al Ojaimi
- UMR 1253, iBrain, Inserm, 37000 Tours, France; University of Tours, 37000 Tours, France
| | - Timothée Blin
- University of Tours, 37000 Tours, France; UMR 1100, CEPR, Inserm, 37000 Tours, France
| | - Juliette Lamamy
- University of Tours, 37000 Tours, France; GICC, EA7501, 37000 Tours, France
| | - Matthieu Gracia
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier F-34298, France
| | - Aubin Pitiot
- University of Tours, 37000 Tours, France; UMR 1100, CEPR, Inserm, 37000 Tours, France
| | | | - Nicolas Joubert
- University of Tours, 37000 Tours, France; GICC, EA7501, 37000 Tours, France
| | - Jean-Pierre Pouget
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier F-34298, France
| | | | | | - Débora Lanznaster
- UMR 1253, iBrain, Inserm, 37000 Tours, France; University of Tours, 37000 Tours, France
| | - Sophie Poty
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier F-34298, France
| | - Thomas Sécher
- University of Tours, 37000 Tours, France; UMR 1100, CEPR, Inserm, 37000 Tours, France
| |
Collapse
|
2
|
Fieux M, Le Quellec S, Bartier S, Coste A, Louis B, Giroudon C, Nourredine M, Bequignon E. FcRn as a Transporter for Nasal Delivery of Biologics: A Systematic Review. Int J Mol Sci 2021; 22:6475. [PMID: 34204226 PMCID: PMC8234196 DOI: 10.3390/ijms22126475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022] Open
Abstract
FcRn plays a major role in regulating immune homeostasis, but it is also able to transport biologics across cellular barriers. The question of whether FcRn could be an efficient transporter of biologics across the nasal epithelial barrier is of particular interest, as it would allow a less invasive strategy for the administration of biologics in comparison to subcutaneous, intramuscular or intravenous administrations, which are often used in clinical practice. A focused systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. It was registered on the international prospective register of systematic reviews PROSPERO, which helped in identifying articles that met the inclusion criteria. Clinical and preclinical studies involving FcRn and the nasal delivery of biologics were screened, and the risk of bias was assessed across studies using the Oral Health Assessment Tool (OHAT). Among the 12 studies finally included in this systematic review (out of the 758 studies screened), 11 demonstrated efficient transcytosis of biologics through the nasal epithelium. Only three studies evaluated the potential toxicity of biologics' intranasal delivery, and they all showed that it was safe. This systematic review confirmed that FcRn is expressed in the nasal airway and the olfactory epithelium, and that FcRn may play a role in IgG and/or IgG-derived molecule-transcytosis across the airway epithelium. However, additional research is needed to better characterize the pharmacokinetic and pharmacodynamic properties of biologics after their intranasal delivery.
Collapse
Affiliation(s)
- Maxime Fieux
- Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Service d’ORL, D’otoneurochirurgie et de Chirurgie Cervico-Faciale, Pierre Bénite, CEDEX, F-69495 Lyon, France
- Université de Lyon, Université Lyon 1, F-69003 Lyon, France; (S.L.Q.); (M.N.)
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Créteil, France; (S.B.); (A.C.); (B.L.); (E.B.)
- CNRS ERL 7000, F-94010 Créteil, France
| | - Sandra Le Quellec
- Université de Lyon, Université Lyon 1, F-69003 Lyon, France; (S.L.Q.); (M.N.)
- Hospices Civils de Lyon, Hôpital Cardiologique Louis Pradel, Unité D’hémostase Clinique, CEDEX, F-69500 Bron, France
- EA 4609 Hémostase et Cancer, Université Claude Bernard Lyon 1, F-69372 Lyon, France
- Hospices Civils de Lyon, Centre de Biologie et de Pathologie Est, Service D’hématologie Biologique, CEDEX, F-69500 Bron, France
| | - Sophie Bartier
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Créteil, France; (S.B.); (A.C.); (B.L.); (E.B.)
- CNRS ERL 7000, F-94010 Créteil, France
- Service d’ORL, de Chirurgie Cervico Faciale, Hôpital Henri Mondor, Assistance Publique des Hôpitaux de Paris, F-94000 Créteil, France
| | - André Coste
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Créteil, France; (S.B.); (A.C.); (B.L.); (E.B.)
- CNRS ERL 7000, F-94010 Créteil, France
- Service d’ORL, de Chirurgie Cervico Faciale, Centre Hospitalier Intercommunal de Créteil, F-94010 Créteil, France
| | - Bruno Louis
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Créteil, France; (S.B.); (A.C.); (B.L.); (E.B.)
- CNRS ERL 7000, F-94010 Créteil, France
| | - Caroline Giroudon
- Hospices Civils de Lyon, Service de la Documentation Centrale, CEDEX, F-69424 Lyon, France;
| | - Mikail Nourredine
- Université de Lyon, Université Lyon 1, F-69003 Lyon, France; (S.L.Q.); (M.N.)
- Hospices Civils de Lyon, Service de Biostatistique et Bioinformatique, F-69003 Lyon, France
- CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR 5558, F-69100 Villeurbanne, France
| | - Emilie Bequignon
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Créteil, France; (S.B.); (A.C.); (B.L.); (E.B.)
- CNRS ERL 7000, F-94010 Créteil, France
- Service d’ORL, de Chirurgie Cervico Faciale, Centre Hospitalier Intercommunal de Créteil, F-94010 Créteil, France
| |
Collapse
|
3
|
Abdel Hady M, Sayed OM, Akl MA. Brain uptake and accumulation of new levofloxacin-doxycycline combination through the use of solid lipid nanoparticles: Formulation; Optimization and in-vivo evaluation. Colloids Surf B Biointerfaces 2020; 193:111076. [PMID: 32408259 DOI: 10.1016/j.colsurfb.2020.111076] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 12/26/2022]
Abstract
The objective of this study is to investigate the feasibility of delivery of novel levofloxacin/ doxycycline (LEVO/DOX) combination to the brain by intranasal route to achieve a significant local concentration in the brain and a direct nose-to-brain pathway. Solid lipid nanoparticles (SLN) were selected as a drug carrier and employed Box-Behnken design for optimizing LEVO/DOX-SLN to achieve minimum particle size and maximum apparent entrapment efficiency (EE). SLNs were prepared by hot emulsification and characterized. In vitro release of optimized formulations showed prolonged drug release from the optimized formulation. The results of pharmacokinetic study of the optimized SLN-HPMC gel in plasma and brain revealed significant increase in the brain peak concentration (420, 315 ng/g), the AUC 0-360 min (57130 and 48693.13 ng. min/g) in comparison to intranasal LEVO/DOX free solution with the values of (160, 120) ng/g, (36850, 27637.5 ng⋅min/g) for LEVO and DOX, respectively. The optimized LD-SLN-HPMC gel gave a drug-targeting efficiency (DTE %) of 149.815 and 161.969 for LEVO and DOX, respectively, in comparison to the intravenous route. Moreover, the optimized formulation had a direct transport percentage (DTP %) of 33.285 and 40.236 for LEVO and DOX, respectively, which indicates a significant contribution of direct nose-to-brain pathway in brain drug delivery.
Collapse
Affiliation(s)
- Mayssa Abdel Hady
- Department of Pharmaceutical Technology, National Research Centre, Dokki, Cairo, Egypt
| | - Ossama M Sayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef City, Egypt.
| | - Mohamed A Akl
- Department of Pharmaceutics and Ind. Pharmacy, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
4
|
Khallaf RA, Aboud HM, Sayed OM. Surface modified niosomes of olanzapine for brain targeting via nasal route; preparation, optimization, andin vivoevaluation. J Liposome Res 2019; 30:163-173. [DOI: 10.1080/08982104.2019.1610435] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Rasha A. Khallaf
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Heba M. Aboud
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Ossama M. Sayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
5
|
Omori S, Kamiya Y, Yamaki T, Uchida M, Ohtake K, Kimura M, Natsume H. Enhancement Effect of Poly-L-ornithine on the Nasal Absorption of Water-Soluble Macromolecules in Rats. Biol Pharm Bull 2019; 42:144-148. [DOI: 10.1248/bpb.b18-00673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Shigehiro Omori
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| | - Yusuke Kamiya
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University
| | - Tsutomu Yamaki
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| | - Masaki Uchida
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| | - Kazuo Ohtake
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| | | | - Hideshi Natsume
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| |
Collapse
|
6
|
Al Bakri W, Donovan MD, Cueto M, Wu Y, Orekie C, Yang Z. Overview of intranasally delivered peptides: key considerations for pharmaceutical development. Expert Opin Drug Deliv 2018; 15:991-1005. [PMID: 30173579 DOI: 10.1080/17425247.2018.1517742] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Intranasal (IN) delivery for peptides provides unique advantages compared to other invasive systemic delivery routes. However, there still lacks a clear understanding on how to evaluate the potential of the peptides for nasal delivery and key considerations for the nasal formulation development. AREAS COVERED A retrospective analysis of intranasally delivered peptides was conducted. The goals of this undertaking were 1) to build a database of the key physicochemical and pharmacokinetic properties of peptides delivered by the nasal route, 2) to evaluate formulation attributes applied to IN peptide delivery systems, and 3) to provide key considerations for IN delivery of peptides. EXPERT OPINION/COMMENTARY Extensive data mining showed that peptides with molecular weights up to 6000 Da have been delivered intranasally. The high solubility of some peptides highlighted the possibility of delivering sufficient amounts of peptide in the limited volume available for nasal sprays. Permeation enhancers and mucoadhesives have shown promise in improving the IN bioavailability of peptides. Other formulation considerations, such as the type of formulation, pH, osmolality, as well as drug deposition, are reviewed herein. Based on this retrospective analysis, key considerations for nasal peptides formulations were proposed to guide drug discovery and development for IN delivery of peptides.
Collapse
Affiliation(s)
- Wisam Al Bakri
- a Department of Pharmaceutical Sciences and Experimental Therapeutics , The University of Iowa, College of Pharmacy , Iowa City
| | - Maureen D Donovan
- a Department of Pharmaceutical Sciences and Experimental Therapeutics , The University of Iowa, College of Pharmacy , Iowa City
| | - Maria Cueto
- b Pharmaceutical Science , Exploratory Products & Technology, Merck & Co., Inc ., Kenilworth , NJ , USA
| | - Yunhui Wu
- c Pharmaceutical Science , Biopharmaceutics and Specialty Dosage Form, Merck & Co., Inc ., Kenilworth , NJ , USA
| | - Chinedu Orekie
- c Pharmaceutical Science , Biopharmaceutics and Specialty Dosage Form, Merck & Co., Inc ., Kenilworth , NJ , USA
| | - Zhen Yang
- c Pharmaceutical Science , Biopharmaceutics and Specialty Dosage Form, Merck & Co., Inc ., Kenilworth , NJ , USA
| |
Collapse
|
7
|
Kumar NN, Lochhead JJ, Pizzo ME, Nehra G, Boroumand S, Greene G, Thorne RG. Delivery of immunoglobulin G antibodies to the rat nervous system following intranasal administration: Distribution, dose-response, and mechanisms of delivery. J Control Release 2018; 286:467-484. [PMID: 30081144 DOI: 10.1016/j.jconrel.2018.08.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/28/2018] [Accepted: 08/02/2018] [Indexed: 12/31/2022]
Abstract
The intranasal route has been hypothesized to circumvent the blood-brain and blood-cerebrospinal fluid barriers, allowing entry into the brain via extracellular pathways along olfactory and trigeminal nerves and the perivascular spaces (PVS) of cerebral blood vessels. We investigated the potential of the intranasal route to non-invasively deliver antibodies to the brain 30 min following administration by characterizing distribution, dose-response, and mechanisms of antibody transport to and within the brain after administering non-targeted radiolabeled or fluorescently-labeled full length immunoglobulin G (IgG) to normal adult female rats. Intranasal [125I]-IgG consistently yielded highest concentrations in the olfactory bulbs, trigeminal nerves, and leptomeningeal blood vessels with their associated PVS. Intranasal delivery also resulted in significantly higher [125I]-IgG concentrations in the CNS than systemic (intra-arterial) delivery for doses producing similar endpoint blood concentrations. Importantly, CNS targeting significantly increased with increasing dose only with intranasal administration, yielding brain concentrations that ranged from the low-to-mid picomolar range with tracer dosing (50 μg) up to the low nanomolar range at higher doses (1 mg and 2.5 mg). Finally, intranasal pre-treatment with a previously identified nasal permeation enhancer, matrix metalloproteinase-9, significantly improved intranasal [125I]-IgG delivery to multiple brain regions and further allowed us to elucidate IgG transport pathways extending from the nasal epithelia into the brain using fluorescence microscopy. The results show that it may be feasible to achieve therapeutic levels of IgG in the CNS, particularly at higher intranasal doses, and clarify the likely cranial nerve and perivascular distribution pathways taken by antibodies to reach the brain from the nasal mucosae.
Collapse
Affiliation(s)
- Niyanta N Kumar
- Pharmaceutical Sciences Division, University of Wisconsin-Madison School of Pharmacy, Madison, WI 53705, United States
| | - Jeffrey J Lochhead
- Pharmaceutical Sciences Division, University of Wisconsin-Madison School of Pharmacy, Madison, WI 53705, United States
| | - Michelle E Pizzo
- Pharmaceutical Sciences Division, University of Wisconsin-Madison School of Pharmacy, Madison, WI 53705, United States; Clinical Neuroengineering Training Program, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Geetika Nehra
- Pharmaceutical Sciences Division, University of Wisconsin-Madison School of Pharmacy, Madison, WI 53705, United States
| | - Sam Boroumand
- Pharmaceutical Sciences Division, University of Wisconsin-Madison School of Pharmacy, Madison, WI 53705, United States
| | - Gretchen Greene
- Pharmaceutical Sciences Division, University of Wisconsin-Madison School of Pharmacy, Madison, WI 53705, United States
| | - Robert G Thorne
- Pharmaceutical Sciences Division, University of Wisconsin-Madison School of Pharmacy, Madison, WI 53705, United States; Clinical Neuroengineering Training Program, University of Wisconsin-Madison, Madison, WI 53705, United States; Neuroscience Training Program & Center for Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, United States; Cellular and Molecular Pathology Graduate Training Program, University of Wisconsin-Madison, Madison, WI 53705, United States.
| |
Collapse
|
8
|
Sherje AP, Londhe V. Development and Evaluation of pH-Responsive Cyclodextrin-Based in situ Gel of Paliperidone for Intranasal Delivery. AAPS PharmSciTech 2018; 19:384-394. [PMID: 28748368 DOI: 10.1208/s12249-017-0844-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/04/2017] [Indexed: 12/30/2022] Open
Abstract
Paliperidone (PLPD) is approved for treatment and management of schizophrenia. The current study demonstrates the potential of in situ gel of PLPD for nasal delivery. The permeation of drug through sheep nasal mucosa was analyzed since the nose-to-brain pathway has been indicated for delivering drugs to the brain. The carbopol 934 (CP)- and hydroxypropyl methyl cellulose K4M (HPMC)-based in situ gels containing 0.2% CP and 0.4% w/v HPMC were optimized using experimental design software. The use of hydroxypropyl-β-cyclodextrin (HP-β-CD) in nasal permeation of drug was investigated. Transmucosal permeation of PLPD was examined using sheep nasal mucosa. The in situ gels of PLPD exhibited satisfactory mucoadhesion and showed sustained drug release. The mucocilliary toxicity and histopathological examination confirmed that the nasal mucosa architecture remains unaffected after treatment with PLPD in situ gel. The formulation containing HP-β-CD complex of PLPD exhibited higher rate of drug permeation through sheep nasal mucosa revealing the role of HP-β-CD as nasal absorption enhancer. Thus, CP- and HPMC-based pH-triggered in situ gel containing HP-β-CD-drug inclusion complex demonstrates a novel nasal delivery of PLPD.
Collapse
|
9
|
Kalita B, Das MK. Rutin-phospholipid complex in polymer matrix for long-term delivery of rutin via skin for the treatment of inflammatory diseases. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:41-56. [PMID: 29226739 DOI: 10.1080/21691401.2017.1411931] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The drug with poor oral bioavailability necessitates the development of novel carrier for efficient drug delivery. This paper reports the rutin-phospholipid complex in polymer matrix for sustained delivery of rutin via the skin for the treatment of acute and chronic inflammatory diseases. Rutin in phospholipid complex (RNPs) are better soluble and permeable than the free rutin. The RNPs-loaded polymeric matrix patch with moderate adhesiveness was developed for convenient means of long term drug application on the skin. The patch was analysed for physicochemical properties, ex vivo skin permeability and in vivo efficacy in rat paw oedema model. The skin targeting efficacy was analysed by CLSM study. Optimized formulation (F2) showed 31 ± 2.32% and 26.56 ± 5.52% skin permeation at 24 h across excised rat skin and human cadaver skin, respectively. The sustained anti-inflammatory effect of the patch formulation in rat paw oedema model confirmed its unique in vivo efficacy over the conventional diclofenac gel. The CLSM study confirmed the localization of RNPs in the dermis for sustained anti-inflammatory effect. Our results suggest that the developed patch has a potential for long term site specific delivery of rutin in arthritic patients.
Collapse
Affiliation(s)
- Bhupen Kalita
- a Department of Pharmaceutical Sciences , Dibrugarh University , Dibrugarh , India.,b Girijananda Chowdhury Institute of Pharmaceutical Science , Guwahati , India
| | - Malay K Das
- a Department of Pharmaceutical Sciences , Dibrugarh University , Dibrugarh , India
| |
Collapse
|
10
|
Aboud HM, El komy MH, Ali AA, El Menshawe SF, Abd Elbary A. Development, Optimization, and Evaluation of Carvedilol-Loaded Solid Lipid Nanoparticles for Intranasal Drug Delivery. AAPS PharmSciTech 2016; 17:1353-1365. [PMID: 26743643 DOI: 10.1208/s12249-015-0440-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/19/2015] [Indexed: 11/30/2022] Open
Abstract
Carvedilol, a beta-adrenergic blocker, suffers from poor systemic availability (25%) due to first-pass metabolism. The aim of this work was to improve carvedilol bioavailability through developing carvedilol-loaded solid lipid nanoparticles (SLNs) for nasal administration. SLNs were prepared by emulsion/solvent evaporation method. A 23 factorial design was employed with lipid type (Compritol or Precirol), surfactant (1 or 2% w/v poloxamer 188), and co-surfactant (0.25 or 0.5% w/v lecithin) concentrations as independent variables, while entrapment efficiency (EE%), particle size, and amount of carvedilol permeated/unit area in 24 h (Q 24) were the dependent variables. Regression analysis was performed to identify the optimum formulation conditions. The in vivo behavior was evaluated in rabbits comparing the bioavailability of carvedilol after intravenous, nasal, and oral administration. The results revealed high drug EE% ranging from 68 to 87.62%. Carvedilol-loaded SLNs showed a spherical shape with an enriched core drug loading pattern having a particle size in the range of 66 to 352 nm. The developed SLNs exhibited significant high amounts of carvedilol permeated through the nasal mucosa as confirmed by confocal laser scanning microscopy. The in vivo pharmacokinetic study revealed that the absolute bioavailability of the optimized intranasal SLNs (50.63%) was significantly higher than oral carvedilol formulation (24.11%). Hence, we conclude that our developed SLNs represent a promising carrier for the nasal delivery of carvedilol.
Collapse
|
11
|
Zhang H, Huang X, Sun Y, Lu G, Wang K, Wang Z, Xing J, Gao Y. Improvement of pulmonary absorption of poorly absorbable macromolecules by hydroxypropyl-β-cyclodextrin grafted polyethylenimine (HP-β-CD-PEI) in rats. Int J Pharm 2015; 489:294-303. [DOI: 10.1016/j.ijpharm.2015.05.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/16/2015] [Accepted: 05/06/2015] [Indexed: 11/26/2022]
|
12
|
Salama AH, Aburahma MH. Ufasomes nano-vesicles-based lyophilized platforms for intranasal delivery of cinnarizine: preparation, optimization, ex-vivo histopathological safety assessment and mucosal confocal imaging. Pharm Dev Technol 2015; 21:706-15. [PMID: 25996631 DOI: 10.3109/10837450.2015.1048553] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To circumvent the low and erratic absorption of orally administrated cinnarizine (CN), intranasal lyophilized gels containing unsaturated fatty acid liposomes (ufasomes) and encapsulating CN were prepared from oleic acid using a simple assembling strategy. The effects of varying drug concentration and cholesterol percentage on ufasomes size, polydispersity index and entrapment efficiency were investigated using 3(1)4(1) full factorial design. The optimized ufasomes that contained 14% cholesterol relative to oleic acid displayed spherical morphology with average size of 788 nm and entrapment efficiency of 80.49%. To overcome the colloidal instability of CN-loaded ufasomes dispersions and their short residence time in the nasal cavity, the ufasomes were incorporated into mucoadhesive hydrogels that were lyophilized into unit dosage forms for accurate dosing. Scanning electron micrographs of the lyophilized gel revealed that the included ufasomes were intact, non-aggregating and maintained their spherical morphology. Rheological characterization of reconstituted ufasomal lyophilized gel ensured ease of application. Furthermore, the gel induced minor histopathological alterations in sheeps' nasal mucosa. Ex-vivo confocal laser imaging confirmed the ability of ufasomes to penetrate deep through nasal mucosa layers. The results highlighted in the current work confirm the feasibility of using CN-loaded ufasomal gels for intranasal drug delivery.
Collapse
Affiliation(s)
- Alaa Hamed Salama
- a Department of Pharmaceutical Technology , National Research Center , Dokki , Cairo , Egypt and
| | - Mona Hassan Aburahma
- b Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Cairo University , Cairo , Egypt
| |
Collapse
|
13
|
Rapid transport within cerebral perivascular spaces underlies widespread tracer distribution in the brain after intranasal administration. J Cereb Blood Flow Metab 2015; 35:371-81. [PMID: 25492117 PMCID: PMC4348383 DOI: 10.1038/jcbfm.2014.215] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/17/2014] [Accepted: 11/04/2014] [Indexed: 11/09/2022]
Abstract
The intranasal administration route is increasingly being used as a noninvasive method to bypass the blood-brain barrier because evidence suggests small fractions of nasally applied macromolecules may reach the brain directly via olfactory and trigeminal nerve components present in the nasal mucosa. Upon reaching the olfactory bulb (olfactory pathway) or brainstem (trigeminal pathway), intranasally delivered macromolecules appear to rapidly distribute within the brains of rodents and primates. The mechanisms responsible for this distribution have yet to be fully characterized. Here, we have used ex vivo fluorescence imaging to show that bulk flow within the perivascular space (PVS) of cerebral blood vessels contributes to the rapid central distribution of fluorescently labeled 3 and 10 kDa dextran tracers after intranasal administration in anesthetized adult rats. Comparison of tracer plasma levels and fluorescent signal distribution associated with the PVS of surface arteries and internal cerebral vessels showed that the intranasal route results in unique central access to the PVS not observed after matched intravascular dosing in separate animals. Intranasal targeting to the PVS was tracer size dependent and could be regulated by modifying nasal epithelial permeability. These results suggest cerebral perivascular convection likely has a key role in intranasal drug delivery to the brain.
Collapse
|
14
|
Aboud HM, Ali AA, El-Menshawe SF, Elbary AA. Nanotransfersomes of carvedilol for intranasal delivery: formulation, characterization and in vivo evaluation. Drug Deliv 2015; 23:2471-2481. [DOI: 10.3109/10717544.2015.1013587] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Heba M. Aboud
- Department of Pharmaceutics, Faculty of Pharmacy, Beni Suef University, Beni Suef, Egypt and
| | - Adel Ahmed Ali
- Department of Pharmaceutics, Faculty of Pharmacy, Beni Suef University, Beni Suef, Egypt and
| | - Shahira F. El-Menshawe
- Department of Pharmaceutics, Faculty of Pharmacy, Beni Suef University, Beni Suef, Egypt and
| | - Ahmed Abd Elbary
- Department of Pharmaceutics, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
15
|
Wei H, Zheng W, Diakur J, Wiebe LI. Confocal laser scanning microscopy (CLSM) based evidence for cell permeation by mono-4-(N-6-deoxy-6-amino-β-cyclodextrin)-7-nitrobenzofuran (NBD-β-CyD). Int J Pharm 2010; 403:15-22. [PMID: 20933067 DOI: 10.1016/j.ijpharm.2010.09.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 09/07/2010] [Accepted: 09/27/2010] [Indexed: 11/20/2022]
Abstract
Beta-cyclodextrin (β-CyD), amantadine and glucose were fluorescently tagged with 4-chloro-7-nitrobenz-2-oxa-1,3-diazole (NBD chloride) to afford NBD-β-CyD, NBD-amantadine and NBD-glucose, respectively. NBD-β-CyD/amantadine and β-CyD/NBD-amantadine inclusion complexes were prepared. Fluorescence emission maxima (λ(max) 544nm) and relative fluorescence intensities for NBD-β-CyD and NBD-β-CyD/amantadine were virtually identical, precluding the use of emission spectrum shifts for distinguishing free NBD-β-CyD from the complex. Intracellular accumulation of NBD-β-CyD was studied in HepG2 and SK-MEL-24 cells using confocal laser scanning microscopy (CLSM). No major differences were observed between uptake of NBD-β-CyD and NBD-β-CyD/amantadine. Serum proteins did not perturb uptake, whereas temperature-dependent uptake, indicative of cell entry via diffusion, was observed. Intracellular distribution favoured mitochondria, with less fluorescent material present in cytoplasm and none in cell nuclei. No experimental evidence of NBD-β-CyD breakdown to NBD-glucose was found upon chromatographic analysis of incubation mixtures, providing additional evidence of intact NBD-β-CyD entry into these cells. Endocytosis and/or cholesterol-independent membrane modulation are discussed as possible mechanisms for the transmembrane passage of NBD-β-CyD.
Collapse
Affiliation(s)
- Hai Wei
- Shanghai University of Traditional Chinese Medicine, Shanghai, China. wei
| | | | | | | |
Collapse
|
16
|
Hassan N, Ahad A, Ali M, Ali J. Chemical permeation enhancers for transbuccal drug delivery. Expert Opin Drug Deliv 2009; 7:97-112. [DOI: 10.1517/17425240903338758] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
Koo CK, Wong KL, Man CWY, Tam HL, Tsao SW, Cheah KW, Lam MHW. Two-Photon Plasma Membrane Imaging in Live Cells by an Amphiphilic, Water-Soluble Cyctometalated Platinum(II) Complex. Inorg Chem 2009; 48:7501-3. [DOI: 10.1021/ic9007679] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chi-Kin Koo
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong SAR
| | - Ka-Leung Wong
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong SAR
| | | | - Hoi-Lam Tam
- Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR
| | - Sai-Wah Tsao
- Department of Anatomy, The University of Hong Kong, Sasson Road, Hong Kong SAR
| | - Kok-Wai Cheah
- Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR
| | - Michael Hon-Wah Lam
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong SAR
| |
Collapse
|
18
|
Mei D, Mao S, Sun W, Wang Y, Kissel T. Effect of chitosan structure properties and molecular weight on the intranasal absorption of tetramethylpyrazine phosphate in rats. Eur J Pharm Biopharm 2008; 70:874-81. [PMID: 18656537 DOI: 10.1016/j.ejpb.2008.06.031] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 06/13/2008] [Accepted: 06/23/2008] [Indexed: 11/17/2022]
Abstract
The objective of this work was to assess and compare the absorption promoting effect of different molecular-weight chitosans, trimethyl chitosans and thiolated chitosans for intranasal absorption of 2,3,5,6-tetramethylpyrazine phosphate (TMPP). An in situ nasal perfusion technique in rats was utilized to test the rate and extent of TMPP absorption in situ. In vivo studies were carried out in rats and the pharmacokinetic parameters were calculated and compared with that of intravenous injection. All the chitosan derivatives investigated could enhance the intranasal absorption of TMPP significantly. However, thiolation could not improve the absorption-enhancing capacity of chitosan remarkably even when the thiolation ratio was as high as 152 micromol/g. In contrast, trimethylated chitosan exhibited stronger absorption-enhancing ability than the homopolymer chitosan. The permeation enhancing effect of chitosan increased with increasing molecular weight up to M(w) 100 kDa. In vivo studies indicated that chitosan 100 kDa and TMC 50 kDa had comparable absorption-enhancing effect but chitosan 100 kDa functioned for more than 120 min versus 90 min for TMC. A good correlation was found between the in situ absorption data and plasma concentration in vivo for the polymers investigated. This study demonstrated that both chitosan structural features and chitosan molecular weight play a key role on promoting the intranasal absorption of TMPP. Taking safety reason into account, chitosan 100 kDa is the most promising as an intranasal absorption enhancer.
Collapse
Affiliation(s)
- Dan Mei
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | | | | | | | | |
Collapse
|
19
|
Delivery of interferon-beta to the monkey nervous system following intranasal administration. Neuroscience 2008; 152:785-97. [PMID: 18304744 DOI: 10.1016/j.neuroscience.2008.01.013] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 12/12/2007] [Accepted: 02/01/2008] [Indexed: 12/25/2022]
Abstract
We determined the nervous system targeting of interferon-beta1b (IFN-beta1b), a 20 kDa protein used to treat the relapsing-remitting form of multiple sclerosis, following intranasal administration in anesthetized, adult cynomolgus monkeys. Five animals received an intranasal bolus of [(125)I]-labeled IFN-beta1b, applied bilaterally to the upper nasal passages. Serial blood samples were collected for 45 min, after which the animals were euthanized by transcardial perfusion-fixation. High resolution phosphor imaging of tissue sections and gamma counting of microdissected tissue were used to obtain the distribution and concentration profiles of [(125)I]-IFN-beta1b in central and peripheral tissues. Intranasal administration resulted in rapid, widespread targeting of nervous tissue. The olfactory bulbs and trigeminal nerve exhibited [(125)I]-IFN-beta1b levels significantly greater than in peripheral organs and at least one order of magnitude higher than any other nervous tissue area sampled. The basal ganglia exhibited highest [(125)I]-IFN-beta1b levels among CNS regions other than the olfactory bulbs. Preferential IFN-beta1b distribution to the primate basal ganglia is a new finding of possible clinical importance. Our study suggests both IFN-beta and IFN-alpha, which share the same receptor, may be bound with relatively high affinity in these structures, possibly offering new insight into a neurovegetative syndrome induced by IFN-alpha therapy and suspected to involve altered dopamine neurotransmission in the basal ganglia. Most importantly, our results suggest intranasally applied macromolecules may bypass the blood-brain barrier and rapidly enter the primate CNS along olfactory- and trigeminal-associated extracellular pathways, as shown previously in the rat. This is the first study to finely detail the central distribution of a labeled protein after intranasal administration in non-human primates.
Collapse
|
20
|
Pygall SR, Whetstone J, Timmins P, Melia CD. Pharmaceutical applications of confocal laser scanning microscopy: the physical characterisation of pharmaceutical systems. Adv Drug Deliv Rev 2007; 59:1434-52. [PMID: 17945376 DOI: 10.1016/j.addr.2007.06.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Accepted: 06/10/2007] [Indexed: 11/27/2022]
Abstract
The application of confocal laser scanning microscopy (CLSM) to the physicochemical characterisation of pharmaceutical systems is not as widespread as its application within the field of cell biology. However, methods have been developed to exploit the imaging capabilities of CLSM to study a wide range of pharmaceutical systems, including phase-separated polymers, colloidal systems, microspheres, pellets, tablets, film coatings, hydrophilic matrices, and chromatographic stationary phases. Additionally, methods to measure diffusion in gels, bioadhesives, and for monitoring microenvironmental pH change within dosage forms have been utilised. CLSM has also been used in the study of the physical interaction of dosage forms with biological barriers such as the eye, skin and intestinal epithelia, and in particular, to determine the effectiveness of a plethora of pharmaceutical systems to deliver drugs through these barriers. In the future, there is continuing scope for wider exploitation of existing techniques, and continuing advancements in instrumentation.
Collapse
Affiliation(s)
- Samuel R Pygall
- Formulation Insights, School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | | | | | | |
Collapse
|
21
|
Abstract
Drug delivery systems (DDS) using liposomes as drug carriers for targeting to macrophages have been developed for the treatment of diseases that macrophages are related to their progress. Initially, DDS for the treatment of atherosclerosis are described. The influence of particle size on the drug delivery to atherosclerotic lesions that macrophages are richly present and antiatherosclerotic effects following intravenous administration of liposomes containing dexamethasone (DXM-liposomes) was investigated in atherogenic mice. Both the drug delivery efficacy of DXM-liposomes (particle size, 200 nm) to atherosclerotic lesions and their antiatherosclerotic effects were greater than those of 70 and 500 nm. These results indicate that there is an optimal particle size for drug delivery to atherosclerotic lesions. DDS for the treatment of respiratory infections are then described. The influence of particle size and surface mannosylation on the drug delivery to alveolar macrophages (AMs) and antibacterial effects following pulmonary administration of liposomes containing ciprofloxacin (CPFX-liposomes) was investigated in rats. The drug delivery efficacy of CPFX-liposomes to AMs was particle size-dependent over the range 100-1000 nm and then became constant at over 1000 nm. These results indicate that the most effective size is 1000 nm. Both the drug delivery efficacy of mannosylated CPFX-liposomes (particle size, 1000 nm) to AMs and their antibacterial effects were significantly greater than those of unmodified CPFX-liposomes. These results indicate that the surface mannosylation is useful method for drug delivery to AMs. This review provides useful information to help in the development of novel pharmaceutical formulations aimed at drug targeting to macrophages.
Collapse
Affiliation(s)
- Sumio Chono
- Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Hokkaido Pharmaceutical University, Otaru City, Japan.
| |
Collapse
|
22
|
Sugita Y, Takao K, Toyama Y, Shirahata A. Enhancement of intestinal absorption of macromolecules by spermine in rats. Amino Acids 2007; 33:253-60. [PMID: 17653818 DOI: 10.1007/s00726-007-0532-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Accepted: 02/01/2007] [Indexed: 10/23/2022]
Abstract
The aim of this study was to investigate the enhancing effect of polyamines on intestinal absorption of fluorescein isothiocyanate-labeled dextran (MW 4400, FD-4) in the in situ loop study and in vivo oral absorption study. Absorption of FD-4 from the jejunum was significantly enhanced by 5 mM spermine without serious membrane damage in the jejunum. An in vivo oral absorption study was also performed, and plasma FD-4 levels increased significantly after co-administration of 30 mM spermine. In the in vitro transport studies with Caco-2 cells, prolonged incubation with spermine resulted in a gradual decrease in transepithelial electrical resistance. This finding suggests that the absorption-enhancing mechanism of spermine partly includes opening the tight junctions of the epithelium via the paracellular route. These results indicate that excess oral ingestion of polyamines may have widespread health effects via the modulation of the intestinal epithelial barrier function.
Collapse
Affiliation(s)
- Y Sugita
- Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama, Japan.
| | | | | | | |
Collapse
|
23
|
Costantino HR, Illum L, Brandt G, Johnson PH, Quay SC. Intranasal delivery: physicochemical and therapeutic aspects. Int J Pharm 2007; 337:1-24. [PMID: 17475423 DOI: 10.1016/j.ijpharm.2007.03.025] [Citation(s) in RCA: 381] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Revised: 03/19/2007] [Accepted: 03/22/2007] [Indexed: 12/22/2022]
Abstract
Interest in intranasal (IN) administration as a non-invasive route for drug delivery continues to grow rapidly. The nasal mucosa offers numerous benefits as a target issue for drug delivery, such as a large surface area for delivery, rapid drug onset, potential for central nervous system delivery, and no first-pass metabolism. A wide variety of therapeutic compounds can be delivered IN, including relatively large molecules such as peptides and proteins, particularly in the presence of permeation enhancers. The current review provides an in-depth discussion of therapeutic aspects of IN delivery including consideration of the intended indication, regimen, and patient population, as well as physicochemical properties of the drug itself. Case examples are provided to illustrate the utility of IN dosing. It is anticipated that the present review will prove useful for formulation scientists considering IN delivery as a delivery route.
Collapse
|
24
|
Amidi M, Romeijn SG, Borchard G, Junginger HE, Hennink WE, Jiskoot W. Preparation and characterization of protein-loaded N-trimethyl chitosan nanoparticles as nasal delivery system. J Control Release 2006; 111:107-16. [PMID: 16380189 DOI: 10.1016/j.jconrel.2005.11.014] [Citation(s) in RCA: 279] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 11/16/2005] [Accepted: 11/21/2005] [Indexed: 11/17/2022]
Abstract
In this study, the potential of N-trimethyl chitosan (TMC) nanoparticles as a carrier system for the nasal delivery of proteins was investigated. TMC nanoparticles were prepared by ionic crosslinking of TMC solution (with or without ovalbumin) with tripolyphosphate, at ambient temperature while stirring. The size, zeta-potential and morphology of the nanoparticles were investigated as a function of the preparation conditions. Protein loading, protein integrity and protein release were studied. The toxicity of the TMC nanoparticles was tested by ciliary beat frequency measurements of chicken embryo trachea and in vitro cytotoxicity assays. The in vivo uptake of FITC-albumin-loaded TMC nanoparticles by nasal epithelia tissue in rats was studied by confocal laser scanning microscopy. The nanoparticles had an average size of about 350 nm and a positive zeta-potential. They showed a loading efficiency up to 95% and a loading capacity up to 50% (w/w). The integrity of the entrapped ovalbumin was preserved. Release studies showed that more than 70% of the protein remained associated with the TMC nanoparticles for at least 3 h on incubation in PBS (pH 7.4) at 37 degrees C. Cytotoxicity tests with Calu-3 cells showed no toxic effects of the nanoparticles, whereas a partially reversible cilio-inhibiting effect on the ciliary beat frequency of chicken trachea was observed. In vivo uptake studies indicated the transport of FITC-albumin-associated TMC nanoparticles across the nasal mucosa. In conclusion, TMC nanoparticles are a potential new delivery system for transport of proteins through the nasal mucosa.
Collapse
Affiliation(s)
- Maryam Amidi
- Department of Pharmaceutical Technology, Leiden/Amsterdam Center for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
25
|
Chang MH, Karasov WH. Absorption and paracellular visualization of fluorescein, a hydrosoluble probe, in intact house sparrows (Passer domesticus). ZOOLOGY 2006; 107:121-33. [PMID: 16351933 DOI: 10.1016/j.zool.2004.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Accepted: 03/05/2004] [Indexed: 11/18/2022]
Abstract
We describe a method to visualize the cellular location of compounds during absorption by the small intestine in intact animals. First, we employed pharmacokinetic methodology to measure the fractional absorption of sodium fluorescein, a small (MW = 376) water-soluble molecule that is widely used as hydrophilic marker molecule for paracellular permeability studies. Based on the hypothesis that the paracellular pathway acts as a sieve, we predicted that fluorescein absorption would be considerable, but less than that of passively absorbed L-glucose which is a smaller molecule (MW = 180). When the two compounds were gavaged into house sparrows simultaneously, the birds absorbed significantly less fluorescein (42 +/- 8%) than L-glucose (82 +/- 7%), as predicted, and absorptions of the two were correlated as one would predict if they shared the same pathway. We removed intestinal tissue 10 min after gavage with sodium fluorescein and determined the cellular location of the compound's fluorescence using confocal laser microscopy. The fluorescent signal was found primarily in the paracellular space. In contrast, in the same type of experiment using instead the similar-sized fluorescent lipophilic compound rhodamine 123 (MW = 381), most fluorescence appeared inside enterocytes, as expected for a compound that diffuses across the apical membrane. Thus, results from all the experiments are consistent with the hypothesis that hydrophilic fluorescein is absorbed primarily via a paracellular pathway. These methods could be applied to visualize absorption pathways of other compounds in other intact animals.
Collapse
Affiliation(s)
- Min-Hwang Chang
- Department of Zoology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
26
|
Zhang YJ, Ma CH, Lu WL, Zhang X, Wang XL, Sun JN, Zhang Q. Permeation-enhancing effects of chitosan formulations on recombinant hirudin-2 by nasal delivery in vitro and in vivo. Acta Pharmacol Sin 2005; 26:1402-8. [PMID: 16225765 DOI: 10.1111/j.1745-7254.2005.00174.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM To investigate the enhancing effects of chitosan with or without enhancers on nasal recombinant hirudin-2 (rHV2) delivery in vitro and in vivo, and to evaluate the ciliotoxicity of these formulations. METHODS The permeation-enhancing effect of various chitosan formulations was estimated by using the permeation coefficient of fluorescein isothiocyanate recombinant hirudin-2 (FITC-rHV2) across the excited rabbit nasal epithelium in vitro. The effect was further evaluated by measuring the blood concentration level after nasal absorption of FITC-rHV2 in rats. The mucosal ciliotoxicity of different formulations was evaluated with an in situ toad palate model. RESULTS Chitosan at a concentration of 0.5% with or without various enhancers significantly increased the permeability coefficient (P) and relative bioavailability (Fr) of FITC-rHV2 compared with the blank control. The addition of 1% sodium dodecylsulfate, 5% Brij35, 5% Tween 80, 1.5% menthol, 1% glycyrrhizic acid monoammonium salt (GAM) or 4% Azone into the 0.5% chitosan solution resulted in a further increase in absorption (P<0.05) compared with 0.5% chitosan alone. But co-administration of chitosan with 5% hydroxyl-propyl-beta-cyclodextrin (HP-beta-CD), 5% lecithin or 0.1% ethylenediamine tetraacetic acid (EDTA) was not more effective than using the 0.5% chitosan solution alone. Chitosan alone and with 5% HP-beta-CD, 0.1% EDTA, 1% GAM or 5% Tween 80 was relatively less ciliotoxic. CONCLUSION Chitosan with or without some enhancers was able to effectively promote the nasal absorption of recombinant hirudin, while not resulting in severe mucosal ciliotoxicity. A chitosan formulation system would be a useful approach for the nasal delivery of recombinant hirudin.
Collapse
Affiliation(s)
- Yu-jie Zhang
- School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100083, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Jansson B, Hägerström H, Fransén N, Edsman K, Björk E. The influence of gellan gum on the transfer of fluorescein dextran across rat nasal epithelium in vivo. Eur J Pharm Biopharm 2005; 59:557-64. [PMID: 15760737 DOI: 10.1016/j.ejpb.2004.10.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Revised: 09/27/2004] [Accepted: 10/06/2004] [Indexed: 10/26/2022]
Abstract
The nasal uptake of a 3000 Da fluorescein dextran (FD3) was investigated in rats, using fluorescence microscopy. The uptake from a formulation containing deacetylated gellan gum, an in situ gelling agent, was compared to that from a mannitol solution. Additionally, the rheological behavior of the gellan gum in water and saline was studied. It was shown that the gellan gum solution was easily administered owing to its low viscosity, and upon contact with the mucosa, a gel was formed. The epithelial uptake and transfer of FD3 appeared to be increased and prolonged using the gellan gum formulation. This increase was not accompanied by qualitative changes of the epithelial FD3 distribution or any visible harmful effects.
Collapse
Affiliation(s)
- Björn Jansson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
28
|
Yang T, Hussain A, Paulson J, Abbruscato TJ, Ahsan F. Cyclodextrins in nasal delivery of low-molecular-weight heparins: in vivo and in vitro studies. Pharm Res 2005; 21:1127-36. [PMID: 15290851 DOI: 10.1023/b:pham.0000032998.84488.7a] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE To test the hypothesis that cyclodextrins reversibly enhance nasal absorption of low-molecular-weight heparins (LMWHs) and to investigate the mechanisms by which cyclodextrins enhance LMWH absorption via the nose. METHODS Absorption of LMWHs was studied by measuring plasma anti-factor Xa activity after nasal administration of various LMWH formulations to anesthetized rats. In vivo reversibility studies were performed to investigate if the effects of cyclodextrins are reversible and diminish with time. The absorption-enhancing mechanisms of cyclodextrins were investigated in cell culture model. The transport of enoxaparin and mannitol, changes in transepithelial electrical resistance (TEER), and distribution of tight junction protein ZO-1 were investigated. RESULTS Formulations containing 5% dimethyl-beta-cyclodextrin (DMbetaCD) produced the highest increase in the bioavailability of LMWH preparations tested. In vivo reversibility studies with 5% DMbetaCD showed that the effect of the absorption enhancer at the site of administration diminished with time. Transport studies using 16HBE14o(-) cells demonstrated that the increase in the permeability of enoxaparin and mannitol, reduction in TEER, and the changes in the tight junction protein ZO-1 distribution produced by 5% DMbetaCD were much greater than those produced by beta-cyclodextrin (betaCD) or hydroxyl-propyl-beta-cyclodextrin (HPbetaCD). CONCLUSIONS Of the cyclodextrins tested, DMbetaCD was the most efficacious in enhancing absorption of LMWHs both in vivo and in vitro. The study also suggests that cyclodextrins enhance nasal drug absorption by opening of cell-cell tight junctions.
Collapse
Affiliation(s)
- Tianzhi Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, USA
| | | | | | | | | |
Collapse
|
29
|
Birudaraj R, Berner B, Shen S, Li X. Buccal Permeation of Buspirone: Mechanistic Studies on Transport Pathways. J Pharm Sci 2005; 94:70-8. [PMID: 15761931 DOI: 10.1002/jps.20208] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The transport of buspirone across porcine buccal mucosa in vitro was investigated to elucidate the mechanisms of transport and permeation enhancement. The apparent permeability increased with an increase in pH to a lesser degree than the dependence of the partition coefficient. Whereas the lipophilic or apparent transcellular pathway was found to be the dominant buccal transport route for buspirone, ionized species contributed significantly to transport at acidic pH. At neutral pH, bile salts did not increase the flux of the lipophilic species of buspirone, and in contrast to its effect on stratum corneum, aqueous propylene glycol alone did enhance the flux of buspirone across buccal mucosa in vitro. The use of an enhancer combination containing 5% oleic acid, 40% propylene glycol in buffer resulted in the greatest flux, and this was consistent with the effect of this combined enhancer on the flux of lipophilic drugs across stratum corneum and the dominance of the transcellular pathway for buspirone at neutral pH.
Collapse
Affiliation(s)
- Raj Birudaraj
- Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, California 95211, USA
| | | | | | | |
Collapse
|
30
|
Yoo JW, Kim YS, Lee SH, Lee MK, Roh HJ, Jhun BH, Lee CH, Kim DD. Serially passaged human nasal epithelial cell monolayer for in vitro drug transport studies. Pharm Res 2004; 20:1690-6. [PMID: 14620527 DOI: 10.1023/a:1026112107100] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE To evaluate the feasibility of using a serially passaged culture of human nasal epithelial cell monolayers on a permeable support for in vitro drug transport studies. The optimum conditions for passaged culture as well as the correlation between the transepithelial electrical resistance (TEER) value and drug permeability (Papp) were evaluated. METHODS Fresh human nasal epithelial cells were collected from normal inferior turbinates and were subcultured repeatedly in serum-free bronchial epithelial cell growth media (BEGM) in petri dishes. The subcultured cells of each passage were seeded onto permeable supports at 5 x 10(5) cells/cm2 and grown in Dulbecco's modified Eagle medium (DMEM). Morphologic characteristics were observed by scanning electron microscopy (SEM). To verify the formation of tight junctions, actin staining and transmission electron microscopy (TEM) studies were conducted. In the drug transport study, [14C]mannitol and budesonide were selected as the paracellular and the transcellular route markers, respectively. RESULTS Serially passaged cells were successfully cultured on a permeable support and showed significantly high TEER values up to passage 4. After 14 days of seeding, SEM showed microvilli, and protrusions of cilia and mucin granules were detected by TEM. The paracellular marker [14C]mannitol showed a nearly constant permeability coefficient (Papp) when the TEER value exceeded 500 omega x cm2 regardless of the passage number. However, as expected, budesonide showed a higher permeability coefficient compared to [14C]mannitol and was less affected by the TEER value. CONCLUSIONS Human nasal epithelial cell monolayers were successfully subcultured on a permeable support up to passage 4. These cell culture methods may be useful in high-throughput screening of in vitro nasal transport studies of various drugs.
Collapse
Affiliation(s)
- Jin-Wook Yoo
- College of Pharmacy, Pusan National University, Pusan 609-735, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Wattanakumtornkul S, Pinto AB, Williams DB. Intranasal hormone replacement therapy. Menopause 2003; 10:88-98. [PMID: 12544682 DOI: 10.1097/00042192-200310010-00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although the optimal route of delivery for hormone replacement therapy has not yet been determined, desirable qualities would include good efficacy, easy administration, minimal side effects, and optimal therapeutic profile. This would potentially serve to improve patient compliance and satisfaction. The intranasal route has been evaluated for the administration of menopausal hormones and seems to fulfill these requirements. The intranasal route would also seem to be a viable alternative for drugs that are poorly absorbed after ingestion by avoiding hepatic first-pass elimination. The intranasal route is, therefore, innovative for the delivery of natural sex steroids in postmenopausal women receiving hormone replacement therapy. Early studies demonstrate that it is safe, effective, and acceptable to postmenopausal women. In addition, the nasal administration of a combination of estradiol and progesterone would seem to be an attractive way to deliver hormones to nonhysterectomized postmenopausal women. Providing alternative routes of administration may also enhance compliance.
Collapse
Affiliation(s)
- Saranya Wattanakumtornkul
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | | | | |
Collapse
|
33
|
Nakamura K, Maitani Y, Takayama K. The enhancing effect of nasal absorption of FITC-dextran 4,400 by beta-sitosterol beta-D-glucoside in rabbits. J Control Release 2002; 79:147-55. [PMID: 11853926 DOI: 10.1016/s0168-3659(01)00540-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effect and mechanism of action of beta-sitosterol beta-D-glucoside (Sit-G) on the in vitro and in vivo nasal absorption of FITC-dextran (molecular weight, 4400; FD-4) in rabbits were studied in comparison with beta-sitosterol (Sit). The FD-4 permeation in the powder dosage form was increased by Sit-G and Sit and related to the uptake of Sit-G and Sit with no changes in the amount of cholesterol in the excised nasal mucosa. The application of Sit and Sit-G increased FD-4 permeation with and without a decrease in transepithelial resistance (TEER), respectively. These results suggested that the mechanism of the enhancement by Sit-G was different from those of Sit and sodium caprate; Sit-G may exert its effects mainly via the transcellular pathway due to perturbation of the mucosal membrane.
Collapse
Affiliation(s)
- K Nakamura
- Department of Pharmaceutics, Hoshi University, 2-4-41 Ebara, Shinagawa, 142-8501, Tokyo, Japan
| | | | | |
Collapse
|
34
|
Miyamoto M, Natsume H, Iwata S, Ohtake K, Yamaguchi M, Kobayashi D, Sugibayashi K, Yamashina M, Morimoto Y. Improved nasal absorption of drugs using poly-L-arginine: effects of concentration and molecular weight of poly-L-arginine on the nasal absorption of fluorescein isothiocyanate-dextran in rats. Eur J Pharm Biopharm 2001; 52:21-30. [PMID: 11438420 DOI: 10.1016/s0939-6411(01)00149-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The effects of the concentration and molecular weight of poly-L-arginine (poly-L-Arg) on the in vivo nasal absorption of fluorescein isothiocyanate-labeled dextran (MW, 4 kDa, FD-4) in rats were studied. When poly-L-Arg with a range of different molecular weights (MW, 8.9, 45.5 and 92.0 kDa) was applied intranasally at various concentrations, the bioavailability (F(0-9 h)) of FD-4 increased with the increasing concentration of poly-L-Arg. The enhanced absorption was also dependent on the molar concentration, in that the poly-L-Arg with a higher molecular weight increased F(0-9 h) at a lower molar concentration. In addition, for each applied concentration, the poly-L-Arg exhibited a molecular weight-dependence as far as the enhancement of FD-4 absorption was concerned. On the other hand, the maximum absorption rate (MAR) of FD-4, calculated by means of a deconvolution method, tended to reach a maximum plateau level at a lower applied concentration for the poly-L-Arg with the highest molecular weight, but this plateau level was almost the same for poly-L-Arg with molecular weights of 45.5 and 92.0 kDa. Moreover, the simulated absorption profiles of FD-4 indicate that the degree of enhancement (the level of MAR and the subsequent reduction in the absorption rate) was dependent on the molecular weight of poly-L-Arg, while the effect of poly-L-Arg was maintained for a longer period, depending on the applied concentration, although the MAR was relatively similar. These results indicate that the molecular weight of poly-L-Arg appears to affect both the enhancing efficiency (absorption rate) and the time-frame of this enhancing effect, whereas the concentrations of each poly-L-Arg system applied only have an effect on the time-frame. These effects may also be associated with the charge density of a poly-L-Arg molecule.
Collapse
Affiliation(s)
- M Miyamoto
- Analytical Division, Nissan Chemical Co. Ltd., Chiba, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Natsume H, Iwata S, Ohtake K, Miyamoto M, Yamaguchi M, Hosoya K, Kobayashi D, Sugibayashi K, Morimoto Y. Screening of cationic compounds as an absorption enhancer for nasal drug delivery. Int J Pharm 1999; 185:1-12. [PMID: 10425360 DOI: 10.1016/s0378-5173(99)00100-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Several cationic compounds were screened as potential nasal absorption enhancers to increase intranasal absorption of a model drug, fluorescein isothiocyanate labeled dextran (MW 4.4 kDa, FD-4), without nasal membrane damage in rats. Their effects were compared with those of classical enhancers. Various cationic compounds (poly-L-arginines with different molecular weights (MW 8.9, 45.5 and 92.0 kDa, poly-L-Arg (10), (50) and (100), respectively), L-arginine (L-Arg), L-lysine (L-Lys), and cetylpyridinium chloride (CPCL) were evaluated. Of the cationic compounds, poly-L-Arg and CPCL greatly enhanced the intranasal absorption of FD-4, as did chitosan, a cationic polysaccharide which has been reported to show a great effect on the transnasal delivery of peptide and protein drugs. The enhancing intensity by poly-L-Arg was dependent on its molecular weight. Rank order of the enhancing ratio, calculated from the AUC ratio for the enhancer treatment against the untreatment, was 0.5% poly-L-Arg (100) congruent with0.5% sodium dodecylsulfate congruent with0.5% CPCL?0.5% poly-L-Arg (50)?0.5% sodium deoxycholate congruent with0.5% sodium taurodihydrofusidate?0.5% polyoxyethylene-9-lauryl ether congruent with0.5% lysophosphatidylcholine?0.5% chitosan congruent with0.5% poly-L-Arg (10)>/=10% L-Arg congruent with10% L-Lys?0.5% sodium glycocholate congruent with0.5% sodium taurocholate congruent with0.5% EDTA. Only the poly-L-Args represented almost the same degree of hemolysis of cationic compounds compared with pH 7.0 phosphate buffered saline in the rat erythrocyte lysis experiment. The enhancing ratio by classical enhancers correlated with leaching of protein, phospholipids and LDH from isolated rabbit nasal mucosa. CPCL also fell on the regression lines between the enhancing ratio and their degree of leaching from classical enhancers. In contrast, the enhancing intensities by poly-L-Arg (10), (50) and (100) were greatly shifted from the regression line: the amount of leaching was markedly low in spite of a great enhancement of FD-4 absorption. These findings suggest that of the assessed enhancers only the poly-L-Args enhance the transnasal delivery of high molecular substances without severe damage to the nasal mucosal membrane. Poly-L-Arg is therefore a promising candidate having a good balance between enhancing activity and safety for nasal peptide and protein delivery.
Collapse
Affiliation(s)
- H Natsume
- Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Marttin E, Verhoef JC, Merkus FW. Efficacy, safety and mechanism of cyclodextrins as absorption enhancers in nasal delivery of peptide and protein drugs. J Drug Target 1998; 6:17-36. [PMID: 9769018 DOI: 10.3109/10611869808997878] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cyclodextrins are used in nasal drug delivery as absorption enhancing compounds to increase the intranasal bioavailability of peptide and protein drugs. The most effective cyclodextrins in animal experiments are the methylated derivatives, dimethyl-beta-cyclodextrin and randomly methylated beta-cyclodextrin, which are active at low concentrations ranging between 2% and 5%. However, large species differences between rats, rabbits and humans exist for the nasal absorption enhancement by cyclodextrins. Based on toxicological studies of the local effects of cyclodextrins on the nasal mucosa dimethyl-beta-cyclodextrin and randomly methylated beta-cyclodextrin are considered safe nasal absorption enhancers. Their effects were quite similar to controls (physiological saline), but smaller than those of the preservative benzalkonium chloride in histological and ciliary beat frequency studies. In these studies, and in a study of the release of marker compounds after nasal administration, methylated beta-cyclodextrins were less toxic than sodium glycocholate, sodium taurodihydrofusidate, laureth-9 and L-alpha-phosphatidylcholine. Systemic toxicity after nasal cyclodextrin administration is not expected, because very low doses of cyclodextrins are administered and only very small amounts are absorbed. The mechanism of action of cyclodextrins may be explained by their interaction with the nasal epithelial membranes and their ability to transiently open tight junctions.
Collapse
Affiliation(s)
- E Marttin
- Department of Pharmaceutical Technology and Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Leiden, The Netherlands
| | | | | |
Collapse
|
38
|
Affiliation(s)
- Kaneto Uekama
- Faculty of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Kumamoto 862-0973, Japan
| | | | | |
Collapse
|
39
|
Jain K. Strategies and technologies for drug delivery systems. Trends Pharmacol Sci 1998. [DOI: 10.1016/s0165-6147(98)01196-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Laser literature watch. JOURNAL OF CLINICAL LASER MEDICINE & SURGERY 1997; 15:309-17. [PMID: 9641089 DOI: 10.1089/clm.1997.15.309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|