1
|
Zhu G, Zhang M, Bu Y, Lu L, Lou X, Zhu L. Enzyme-Embedded Metal-Organic Framework Colloidosomes via an Emulsion-Based Approach. Chem Asian J 2018; 13:2891-2896. [DOI: 10.1002/asia.201800976] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/28/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Guixian Zhu
- Beijing Key Laboratory for Optoelectronics Measurement Technology; Beijing Information Science and Technology University; No. 12, Xiaoying East Road Beijing 100016 China
| | - Mizhen Zhang
- Beijing Key Laboratory for Optoelectronics Measurement Technology; Beijing Information Science and Technology University; No. 12, Xiaoying East Road Beijing 100016 China
| | - Yang Bu
- College of Materials Sciences and Optoelectronics; University of Chinese Academy of Sciences; No. 19(A) Yuquan Road Beijing 100049 China
| | - Lidan Lu
- School of Precision Instrument and Opto-electronics Engineering; Tianjin University; No.92 Weijin Road Tianjin 300072 China
| | - Xiaoping Lou
- Beijing Key Laboratory for Optoelectronics Measurement Technology; Beijing Information Science and Technology University; No. 12, Xiaoying East Road Beijing 100016 China
| | - Lianqing Zhu
- Beijing Key Laboratory for Optoelectronics Measurement Technology; Beijing Information Science and Technology University; No. 12, Xiaoying East Road Beijing 100016 China
- School of Instrument and Opto-electronics Engineering; Hefei University of Technology; No.193 Xitun Road Anhui 230009 China
| |
Collapse
|
2
|
Budama-Kilinc Y, Cakir-Koc R, Kecel-Gunduz S, Kokcu Y, Bicak B, Mutlu H, E Ozel A. Novel NAC-loaded poly(lactide-co-glycolide acid) nanoparticles for cataract treatment: preparation, characterization, evaluation of structure, cytotoxicity, and molecular docking studies. PeerJ 2018; 6:e4270. [PMID: 29404207 PMCID: PMC5796282 DOI: 10.7717/peerj.4270] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 12/27/2017] [Indexed: 11/20/2022] Open
Abstract
Background N-acetylcarnosine (NAC), a dipeptide with powerful antioxidant properties that is extensively used as a pharmaceutical prodrug for the treatment of cataract and acute gastric disease, was investigated by molecular dynamics with the GROMACS program in order to understand the solvent effect on peptide conformation of the peptide molecule used as a component of a drug and which presents substantial information on where drug molecules bind and how they exert their effects. Besides, molecular docking simulation was performed by using the AutoDock Vina program which identify the kind of interaction between the drug and proteins. A delivery system based on poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) loaded with NAC (NAC-PLGA-NPs) for the treatment of cataract was prepared for the first time in this study in order to enhance drug bioavailability and biocompatibility. The objective of this work was to prepare and evaluate the structural formulation, characterization, and cytotoxicity studies of NAC-loaded NPs based on PLGA for cataract treatment. Methods PLGA and NAC-loaded PLGA NPs were prepared using the double emulsion (w/o/w) method, and characterizations of the NPs were carried out with UV-Vis spectrometer to determine drug concentration, the Zeta-sizer system to analyze size and zeta potential, FTIR spectrometer to determine the incorporation of drug and PLGA, and TEM analysis for morphological evaluation. Results NAC-loaded PLGA NPs were successfully obtained according to UV-Vis and FTIR spectroscopy, Zeta-sizer system. And it was clearly observed from the TEM analysis that the peptide-loaded NPs had spherical and non-aggregated morphology. Also, the NPs had low toxicity at lower concentrations, and toxicity was augmented by increasing the concentration of the drug. Discussion The NAC molecule, which has been investigated as a drug molecule due to its antioxidant and oxidative stress-reducing properties, especially in cataract treatment, was encapsulated with a PLGA polymer in order to increase drug bioavailability. This study may contribute to the design of drugs for cataract treatment with better reactivity and stability.
Collapse
Affiliation(s)
| | - Rabia Cakir-Koc
- Department of Bioengineering, Yildiz Technical University, Istanbul, Turkey
| | | | - Yagmur Kokcu
- Graduate School of Engineering and Sciences, Istanbul University, Istanbul, Turkey
| | - Bilge Bicak
- Graduate School of Engineering and Sciences, Istanbul University, Istanbul, Turkey
| | - Hande Mutlu
- Department of Bioengineering, Yildiz Technical University, Istanbul, Turkey
| | - Aysen E Ozel
- Physics Department, Istanbul University, Istanbul, Turkey
| |
Collapse
|
3
|
Wang P, Wang Q, Ren T, Gong H, Gou J, Zhang Y, Cai C, Tang X. Effects of Pluronic F127-PEG multi-gel-core on the release profile and pharmacodynamics of Exenatide loaded in PLGA microspheres. Colloids Surf B Biointerfaces 2016; 147:360-367. [DOI: 10.1016/j.colsurfb.2016.08.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/26/2016] [Accepted: 08/19/2016] [Indexed: 12/21/2022]
|
4
|
Nair MS, Lee MM, Bonnegarde-Bernard A, Wallace JA, Dean DH, Ostrowski MC, Burry RW, Boyaka PN, Chan MK. Cry protein crystals: a novel platform for protein delivery. PLoS One 2015; 10:e0127669. [PMID: 26030844 PMCID: PMC4451076 DOI: 10.1371/journal.pone.0127669] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 04/17/2015] [Indexed: 12/04/2022] Open
Abstract
Protein delivery platforms are important tools in the development of novel protein therapeutics and biotechnologies. We have developed a new class of protein delivery agent based on sub-micrometer-sized Cry3Aa protein crystals that naturally form within the bacterium Bacillus thuringiensis. We demonstrate that fusion of the cry3Aa gene to that of various reporter proteins allows for the facile production of Cry3Aa fusion protein crystals for use in subsequent applications. These Cry3Aa fusion protein crystals are efficiently taken up and retained by macrophages and other cell lines in vitro, and can be delivered to mice in vivo via multiple modes of administration. Oral delivery of Cry3Aa fusion protein crystals to C57BL/6 mice leads to their uptake by MHC class II cells, including macrophages in the Peyer’s patches, supporting the notion that the Cry3Aa framework can be used to stabilize cargo protein against degradation for delivery to gastrointestinal lymphoid tissues.
Collapse
Affiliation(s)
- Manoj S. Nair
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States of America
| | - Marianne M. Lee
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States of America
| | - Astrid Bonnegarde-Bernard
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States of America
| | - Julie A. Wallace
- Department of Molecular and Cellular Biology, The Ohio State University, Columbus, OH, United States of America
- Tumor Microenvironment Program, The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Donald H. Dean
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States of America
| | - Michael C. Ostrowski
- Department of Molecular and Cellular Biology, The Ohio State University, Columbus, OH, United States of America
- Tumor Microenvironment Program, The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Richard W. Burry
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States of America
| | - Prosper N. Boyaka
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States of America
| | - Michael K. Chan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States of America
- * E-mail:
| |
Collapse
|
5
|
Huang SS, Li IH, Hong PD, Yeh MK. Development of Yersinia pestis F1 antigen-loaded microspheres vaccine against plague. Int J Nanomedicine 2014; 9:813-22. [PMID: 24550673 PMCID: PMC3926461 DOI: 10.2147/ijn.s56260] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Yersinia pestis F1 antigen-loaded poly(DL-lactide-co-glycolide)/polyethylene glycol (PEG) (PLGA/PEG) microspheres were produced using a water-in-oil-in-water emulsion/solvent extraction technique and assayed for their percent yield, entrapment efficiency, surface morphology, particle size, zeta potential, in vitro release properties, and in vivo animal protect efficacy. The Y. pestis F1 antigen-loaded microspheres (mean particle size 3.8 μm) exhibited a high loading capacity (4.5% w/w), yield (85.2%), and entrapment efficiency (38.1%), and presented a controlled in vitro release profile with a low initial burst (18.5%), then continued to release Y. pestis F1 antigen over 70 days. The distribution (%) of Y. pestis F1 on the microspheres surface, outer layer, and core was 3.1%, 28.9%, and 60.7%, respectively. A steady release rate was noticed to be 0.55 μg Y. pestis F1 antigen/mg microspheres/day of Y. pestis F1 antigen release maintained for 42 days. The cumulative release amount at the 1st, 28th, and 42nd days was 8.2, 26.7, and 31.0 μg Y. pestis F1 antigen/mg microspheres, respectively. The 100 times median lethal dose 50% (LD50) of Y. pestis Yokohama-R strain by intraperitoneal injection challenge in mice test, in which mice received one dose of 40 μg F1 antigen content of PLGA/PEG microspheres, F1 antigen in Al(OH)3, and in comparison with F1 antigen in Al(OH)3 vaccine in two doses, was evaluated after given by subcutaneous immunization of BALB/c mice. The study results show that the greatest survival was observed in the group of mice immunized with one dose of F1 antigen-loaded PLGA/PEG microspheres, and two doses of F1 antigen in Al(OH)3 vaccine (100%). In vivo vaccination studies also demonstrated that F1 vaccines microspheres had a protective ability; its steady-state IgG immune protection in mice plasma dramatic increased from 2 weeks (18,764±3,124) to 7 weeks (126,468±19,176) after vaccination. These findings strongly suggest that F1-antigen loaded microspheres vaccine offer a new therapeutic strategy in optimizing the vaccine incorporation and delivery properties of these potential vaccine targeting carriers.
Collapse
Affiliation(s)
- Shih-shiung Huang
- Biomedical Engineering Program, Graduate Institute of Engineering, Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, Republic of China
| | - I-Hsun Li
- School of Pharmacy, National Taiwan University of Science and Technology, Taipei, Taiwan, Republic of China ; Department of Pharmacy Practice, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Po-da Hong
- Biomedical Engineering Program, Graduate Institute of Engineering, Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, Republic of China
| | - Ming-kung Yeh
- Biomedical Engineering Program, Graduate Institute of Engineering, Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, Republic of China ; School of Pharmacy, National Taiwan University of Science and Technology, Taipei, Taiwan, Republic of China ; Food and Drug Administration, Ministry of Health and Welfare, Taipei, Taiwan, Republic of China
| |
Collapse
|
6
|
Huang SS, Li IH, Hong PD, Yeh MK. Evaluation of protective efficacy using a nonstructural protein NS1 in DNA vaccine-loaded microspheres against dengue 2 virus. Int J Nanomedicine 2013; 8:3161-9. [PMID: 23990724 PMCID: PMC3753149 DOI: 10.2147/ijn.s49972] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dengue virus results in dengue fever or severe dengue hemorrhagic fever/dengue shock syndrome in humans. The purpose of this work was to develop an effective antidengue virus delivery system, by designing poly (dl-lactic-co-glycolic) acid/polyethylene glycol (PLGA/PEG) microspheres using a double-emulsion solvent extraction method, for vaccination therapy based on locally and continuously sustained biological activity. Nonstructural protein 1 (NS1) in deoxyribonucleic acid (DNA) vaccine–loaded PLGA/PEG microspheres exhibited a high loading capacity (4.5% w/w), yield (85.2%), and entrapment efficiency (39%), the mean particle size 4.8 μm, and a controlled in vitro release profile with a low initial burst (18.5%), lag time (4 days), and continued released protein over 70 days. The distribution of protein on the microspheres surface, outer layer, and core were 3.0%, 28.5%, and 60.7%, respectively. A release rate was noticed to be 1.07 μg protein/mg microspheres/day of protein release, maintained for 42 days. The cumulative release amount at Days 1, 28, and 42 was 18.5, 53.7, and 62.66 μg protein/mg microspheres, respectively. The dengue virus challenge in mice test, in which mice received one dose of 20 μg NS1 protein content of microspheres, in comparison with NS1 protein in Al(OH)3 or PBS solution, was evaluated after intramuscular immunization of BALB/c mice. The study results show that the greatest survival was observed in the group of mice immunized with NS1 protein–loaded PLGA/PEG microspheres (100%). In vivo vaccination studies also demonstrated that NS1 protein–loaded PLGA/PEG microspheres had a protective ability; its steady-state immune protection in rat plasma changed from 4,443 ± 1,384 pg/mL to 10,697 ± 3,197 pg/mL, which was 2.5-fold higher than that observed for dengue virus in Al(OH)3 at 21 days. These findings strongly suggest that NS1 protein–loaded PLGA/PEG microspheres offer a new therapeutic strategy in optimizing the vaccine incorporation and delivery properties of these potential vaccine targeting carriers.
Collapse
Affiliation(s)
- Shih-shiung Huang
- Biomedical Engineering Program, graduate Institute of Applied Science and Technology, and Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taiwan
| | | | | | | |
Collapse
|
7
|
Pandey SK, Haldar C, Patel DK, Maiti P. Biodegradable Polymers for Potential Delivery Systems for Therapeutics. MULTIFACETED DEVELOPMENT AND APPLICATION OF BIOPOLYMERS FOR BIOLOGY, BIOMEDICINE AND NANOTECHNOLOGY 2013. [DOI: 10.1007/12_2012_198] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
8
|
Steele TWJ, Huang CL, Kumar S, Irvine S, Boey FYC, Loo JSC, Venkatraman SS. Novel gradient casting method provides high-throughput assessment of blended polyester poly(lactic-co-glycolic acid) thin films for parameter optimization. Acta Biomater 2012; 8:2263-70. [PMID: 22293582 DOI: 10.1016/j.actbio.2012.01.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 12/07/2011] [Accepted: 01/10/2012] [Indexed: 11/16/2022]
Abstract
Pure polymer films cannot meet the diverse range of controlled release and material properties demanded for the fabrication of medical implants or other devices. Additives are added to modulate and optimize thin films for the desired qualities. To characterize the property trends that depend on additive concentration, an assay was designed which involved casting a single polyester poly(lactic-co-glycolic acid) (PLGA) film that blends a linear gradient of any PLGA-soluble additive desired. Four gradient PLGA films were produced by blending polyethylene glycol or the more hydrophobic polypropylene glycol. The films were made using a custom glass gradient maker in conjunction with a 180 cm film applicator. These films were characterized in terms of thickness, percent additive, total polymer (PLGA+additive), and controlled drug release using drug-like fluorescent molecules such as coumarin 6 (COU) or fluorescein diacetate (FDAc). Material properties of elongation and modulus were also accessed. Linear gradients of additives were readily generated, with phase separation being the limiting factor. Additive concentration had a Pearson's correlation factor (R) of >0.93 with respect to the per cent total release after 30 days for all gradients characterized. Release of COU had a near zero-order release over the same time period, suggesting that coumarin analogs may be suitable for use in PLGA/polyethylene glycol or PLGA/polypropylene glycol matrices, with each having unique material properties while allowing tuneable drug release. The gradient casting method described has considerable potential in offering higher throughput for optimizing film or coating material properties for medical implants or other devices.
Collapse
Affiliation(s)
- Terry W J Steele
- Nanyang Technological University, Materials and Science Engineering, Division of Materials Technology, Singapore 639798, Singapore
| | | | | | | | | | | | | |
Collapse
|
9
|
Kiss É, Schnöller D, Pribranská K, Hill K, Pénzes CB, Horváti K, Bősze S. Nanoencapsulation of Antitubercular Drug Isoniazid and Its Lipopeptide Conjugate. J DISPER SCI TECHNOL 2011. [DOI: 10.1080/01932691.2011.616128] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
10
|
Protein-loaded PLGA–PEO blend nanoparticles: encapsulation, release and degradation characteristics. Colloid Polym Sci 2009. [DOI: 10.1007/s00396-009-2131-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Yeh MK, Chen JL, Chiang CH, Chang ZY. The preparation of sustained release erythropoietin microparticle. J Microencapsul 2008; 24:82-93. [PMID: 17438944 DOI: 10.1080/02652040601058533] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE Protein microencapsulation in biodegradable polymers is a promising route to provide for sustained release. The erythropoietin (EPO) microparticles are using human serum albumin (HSA) and poly-L-lysine (PK) as the protection complex to increased EPO integrity, entrapped efficiency and active EPO release by w/o/w solvent evaporation techniques. The optimum formulation development process was also reported by using FITC-OVA as a model protein. METHODS The model protein FITC-ovalbumin and EPO are protected by human serum albumin and poly-L-lysine complex and encapsulated in 50:50 poly(DL-lactide-co-glycolide) by a w/o/w solvent evaporation method. Protein active integrity and degradation compound is measured by size-exclusion chromatography. Protein-loaded microparticle physical properties and in vitro active and degradation compounds release profile are characterized. RESULTS High active integrity protein loading efficiency and particle yield of EPO or OVA-HSA/PK-loaded PLG microparticles are successfully produced by a w/o/w solvent evaporation method. Varied protection protein complex formulations and encapsulation processes are investigated. The high OVA model protein loading efficiency (80.2%), FITC-OVA content (0.24 microg mg(-1)) and yield (72.4%) are obtained by adding 100 microg mL(-1) FITC-OVA complex with 10% HSA/0.05% PK (Mw 1.5-3 kD) in the initial solution to protect the model protein. In vitro release profiles show more active OVA release from HSA/PK OVA-loaded than OVA-loaded only microparticles and also the amount of degraded protein that comes out after 3 weeks incubated in the PBS medium for OVA-loaded only microparticles is observed. The same formulation and preparation process resulted in EPO loading efficiency (68.4%), EPO content (0.23 microg mg(-1)) and yield (76.1%) for HSA/PK EPO-loaded microparticles. In vitro release profiles show active EPO sustained release over 7 days. Using HSA/PK as carried in the primary emulsion of EPO-loaded microparticles resulted in less burst release% than EPO-loaded only microparticles.
Collapse
Affiliation(s)
- Ming-Kung Yeh
- Department of Clinical Pharmacy, Tri-service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| | | | | | | |
Collapse
|
12
|
Kim BK, Kim D, Cho SH, Yuk SH. Hydrophilized poly(lactide-co-glycolide) nanospheres with poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer. J Microencapsul 2008; 21:697-707. [PMID: 15799220 DOI: 10.1080/02652040400000520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A novel method for preparing the PLGA nanospheres with hydrophilic surface has been designed and characterized. Because of good solubility of tetraglycol in water, PLGA (poly(lactide-co-glycolide)) nanospheres were formed by spraying the PLGA/tetraglycol solution into water. The size of PLGA nanospheres was manipulated by changing the concentration of PLGA/tetraglycol solution. Based on the hydrophobic interaction between PLGA and poly(propylene oxide) domain of F-127 (one of Pluronics, poly(ethylene oxide)-poly(propylene oxide)poly(ethylene oxide) triblock copolymer, F-127-coated PLGA nanospheres was prepared to enhance the stability of PLGA nanospheres in the aqueous media. For the application as a drug delivery vehicle, it was characterized by measuring the loading amount, the encapsulation efficiency and the release pattern of drug. Paclitaxel used as a potent anti-cancer drug was selected as a model drug.
Collapse
Affiliation(s)
- B K Kim
- Department of Polymer Science and Engineering, Hannam University, Daedeog Ku, Taejeon, Korea 306-791
| | | | | | | |
Collapse
|
13
|
Giteau A, Venier-Julienne M, Aubert-Pouëssel A, Benoit J. How to achieve sustained and complete protein release from PLGA-based microparticles? Int J Pharm 2008; 350:14-26. [DOI: 10.1016/j.ijpharm.2007.11.012] [Citation(s) in RCA: 192] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 11/06/2007] [Accepted: 11/08/2007] [Indexed: 10/22/2022]
|
14
|
Davis SS. The use of soluble polymers and polymer microparticles to provide improved vaccine responses after parenteral and mucosal delivery. Vaccine 2006; 24 Suppl 2:S2-7-10. [PMID: 16823907 DOI: 10.1016/j.vaccine.2005.01.102] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
It is important when developing new vaccine systems to give proper attention to the question of delivery. In some cases the judicious choice of a delivery system can provide a greatly enhanced immune response and avoid the need to use a vaccine adjuvant. Delivery systems that have been developed originally for the administration of challenging drug can be used with success for vaccines. Polymer microspheres and lamellar particle based on the biodegradable materials polylactide and polylactide co-glycolide can be employed for the improved parenteral and mucosal administration of antigens. Likewise soluble biopolymers such as chitosan can be used for the improved nasal delivery of various antigens as well as DNA. Results from animal studies and recent clinical trials are provided.
Collapse
Affiliation(s)
- Stanley S Davis
- Institute of Pharmaceutical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| |
Collapse
|
15
|
Dong Y, Feng SS. Nanoparticles of poly(D,L-lactide)/methoxy poly(ethylene glycol)-poly(D,L-lactide) blends for controlled release of paclitaxel. J Biomed Mater Res A 2006; 78:12-9. [PMID: 16596586 DOI: 10.1002/jbm.a.30684] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Paclitaxel is one of the best antineoplastic drugs found in nature in the past decades, which has excellent therapeutic effects against a wide spectrum of cancers. Because of its high hydrophobicity, Cremophor EL has to be used as adjuvant in its clinical dosage form (Taxol), which has been found to cause serious side effects. Nanoparticles of biodegradable polymers may provide an ideal solution. In this research, paclitaxel-loaded nanoparticles of poly(D,L-lactide)/methoxy poly(ethylene glycol)-polylactide (PLA/MPEG-PLA) blends of various blend ratio 100/0, 75/25, 50/50, 25/75, and 0/100 were formulated by the nanoprecipitation method for controlled release of paclitaxel. It was found that increasing the proportion of MPEG-PLA component in the blend from 0 to 100% resulted in a progressive decrease of the particle size from 230.6+/-11.1 nm to 74.8+/-14.0 nm. The zeta potential of the drug-loaded nanoparticles was increased accordingly from -19.60+/-1.13 mV to a nearly neutral, that is, -0.33+/-0.28 mV, which indicates the gradual enrichment of PEG segments on the particle surface. The findings were further confirmed by X-Ray Photoelectron Spectroscopy (XPS) analysis. Differential scanning calorimetry (DSC) analysis showed that the glass transition temperature of PLA was significantly decreased from 58.7 to 52.1 degrees C with an increase of MPEG-PLA proportion from 0 to 75%, suggesting the miscibility of PLA and MPEG-PLA. The pure PLA nanoparticles (100/0) exhibited the slowest drug-release rate with 37.3% encapsulated drug released from the nanoparticles for 14 days while the MPEG-PLA nanoparticles (0/100) achieved the fastest drug release with 95.9% drug release in the same period.
Collapse
Affiliation(s)
- Yuancai Dong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260
| | | |
Collapse
|
16
|
Leo E, Ruozi B, Tosi G, Vandelli MA. PLA-microparticles formulated by means a thermoreversible gel able to modify protein encapsulation and release without being co-encapsulated. Int J Pharm 2006; 323:131-8. [PMID: 16815657 DOI: 10.1016/j.ijpharm.2006.05.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 05/18/2006] [Accepted: 05/24/2006] [Indexed: 11/27/2022]
Abstract
The aim of this work was to develop a novel strategy for the formulation of biodegradable PLA microspheres as delivery systems for proteins or peptides. The strategy is based on the exploitation of the gel-sol transition of the thermoreversible Pluronic F127 gel. The gel allows the formation of the particles without be co-entrapped in the matrix. The microspheres prepared using the novel technique (TG-Ms, or thermoreversible gel-method microspheres) were characterized in vitro (as concerns the size, the morphology, the protein encapsulation, the release and the protein distribution in the polymer matrix), in comparison with microspheres prepared using the classical double emulsion/solvent evaporation method (w/o/w-Ms). Two types of bovine serum albumin (BSA), with different water solubility, were used as model proteins. TG-Ms exhibited small size (7-50 m) and high protein content (8.6%, w/w) regardless of the BSA water solubility, in contrast with w/o/w-Ms, which revealed a size range of 100-130 microm and a protein content related to the BSA water solubility. TG-Ms, in spite of their smaller size respect of the w/o/w-Ms, displayed a reduced initial burst effect and a higher rate in the second release phase that resulted in a quasi-constant profile. The release behavior of the TG-Ms may be attributable to both the localization of the protein in the particle core, as shown by the confocal laser scanning microscopy analysis on labeled-BSA loaded microspheres, and the few pores in the matrix, as shown by the scanning electron microscopy. A working hypothesis about the mechanism of the particle formation was also discussed.
Collapse
Affiliation(s)
- Eliana Leo
- Department of Pharmaceutical Science, University of Modena and Reggio Emilia, Via Campi, 183, Modena 41100, Italy
| | | | | | | |
Collapse
|
17
|
Raiche AT, Puleo DA. Modulated release of bioactive protein from multilayered blended PLGA coatings. Int J Pharm 2006; 311:40-9. [PMID: 16434156 DOI: 10.1016/j.ijpharm.2005.12.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Revised: 12/05/2005] [Accepted: 12/05/2005] [Indexed: 10/25/2022]
Abstract
The objective of this study was to develop a poly(D,L-lactic-co-glycolic acid) (PLGA)-based coating system for producing biologically-inspired delivery profiles. Protein-loaded microspheres were made from PLGA (50:50) terminated with carboxylic acid groups (PLGA-2A) blended either with more hydrophobic PLGA (50:50) having lauryl ester endcaps (PLGA-LE) or with the more hydrophilic Pluronic F-127 (PF-127). Dense coatings were formed by pressure-sintering the microspheres. Altering hydrophobicity changed the water concentration within coatings, and consequently the time to onset of polymer degradation and protein release was modulated. After blending up to 8% Pluronic, degradation by-products began accumulating immediately upon incubation in saline, whereas, degradation was delayed for up to 14 days with blending of up to 30% PLGA-LE. Primary protein release peaks from one-layer coatings could be created from 7 to 20 days using 8% PF-127 or 30% PLGA-LE blends, respectively. Multilayered coatings of different blends generated several release peaks, with their temporal occurrence remaining approximately the same when layers of other hydrophobicity were added above or below. To allow design of coatings for future use, results were used to construct a model based on Fourier analysis. This polymer blend system and model can be used to mimic temporally varying profiles of protein expression.
Collapse
Affiliation(s)
- A T Raiche
- Center for Biomedical Engineering, University of Kentucky, Lexington, KY 40506, USA
| | | |
Collapse
|
18
|
Kabanov A, Zhu J, Alakhov V. Pluronic Block Copolymers for Gene Delivery. NON-VIRAL VECTORS FOR GENE THERAPY, SECOND EDITION: PART 1 2005; 53PA:231-261. [PMID: 16243066 DOI: 10.1016/s0065-2660(05)53009-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amphiphilic block copolymers of poly(ethylene oxide) and poly(propylene oxide) called Pluronic or poloxamer are commercially available pharmaceutical excipients. They recently attracted considerable attention in gene delivery applications. First, they were shown to increase the transfection with adenovirus and lentivirus vectors. Second, they were shown to increase expression of genes delivered into cells using non-viral vectors. Third, the conjugates of Pluronic with polycations, were used as DNA-condensing agents to form polyplexes. Finally, it was demonstrated that they can increase regional expression of the naked DNA after its injection in the skeletal and cardiac muscles or tumor. Therefore, there is substantial evidence that Pluronic block copolymers can improve gene expression with different delivery routes and different types of vectors, including naked DNA. These results and possible mechanisms of Pluronic effects are discussed. At least in some cases, Pluronic can act as biological adjuvants by activating selected signaling pathways, such as NF-kappaB, and upregulating the transcription of the genes.
Collapse
Affiliation(s)
- Alexander Kabanov
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, College of Pharmacy, University of Nebraska Medical Center Omaha, Nebraska 68198
| | | | | |
Collapse
|
19
|
Graves RA, Pamujula S, Moiseyev R, Freeman T, Bostanian LA, Mandal TK. Effect of different ratios of high and low molecular weight PLGA blend on the characteristics of pentamidine microcapsules. Int J Pharm 2004; 270:251-62. [PMID: 14726140 DOI: 10.1016/j.ijpharm.2003.10.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two different PLGA samples (Resomer 502 and Resomer 506), either alone or in combinations, were used to prepare microcapsules. Microcapsules were prepared using a double emulsion solvent evaporation technique. The efficiency of encapsulation increased significantly when a mixture of 1 part Resomer 506 and 7 parts Resomer 502 was used to prepare the microcapsules. The efficiency of encapsulation of this batch was 23.7%, whereas the efficiency of encapsulations was only 13.9 and 9.8%, respectively, when the microcapsules were prepared with 100% Resomer 502 or 100% Resomer 506. In contrast, irrespective of the relative ratio of Resomer 502/Resomer 506, the median particle size of the microcapsules showed similar distribution pattern with the median size lies between 49 and 83microm. The glass transition temperature (T(g)) decreased significantly (44.6-25.5 degrees C) as the amount of Resomer 502 was increased in the formulation. The presence of Resomer 502 at lower concentration, along with Resomer 506, initially reduced the "burst effect." However, incorporation of a higher amount of Resomer 502 increased the "burst effect." Drug release from these microcapsules continued over 80 days. In conclusion, efficiency of encapsulation increased significantly when Resomer 506 was mixed with Resomer 502 at a ratio of 1:7. Blending of Resomer 502 with Resomer 506 reduced the glass transition temperature, which resulted in higher amount of drug release throughout the dissolution study.
Collapse
Affiliation(s)
- Richard A Graves
- College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125-1098, USA
| | | | | | | | | | | |
Collapse
|
20
|
Murillo M, Irache JM, Estevan M, Goñi MM, Blasco JM, Gamazo C. Influence of the co-encapsulation of different excipients on the properties of polyester microparticle-based vaccine against brucellosis. Int J Pharm 2004; 271:125-35. [PMID: 15129979 DOI: 10.1016/j.ijpharm.2003.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This work evaluates the influence of different pharmaceutical auxiliaries (Pluronic F68, polyvinylpyrrolidone [PVP] or Tween 20), when mixed with an antigenic extract from Brucella ovis (hot saline; HS), on the characteristics of the resulting poly(epsilon-caprolactone) (PEC) and poly(lactide-co-glycolide) (PLGA) microparticles. In all cases, PEC microparticles were smaller than PLGA ones. Concerning the HS loading, PLGA microparticles were highly dependent on the type of the excipient used, whereas all the PEC formulations displayed similar encapsulation efficiencies. For both types of microparticles, the presence of PVP induced a burst release effect. On the contrary, the use of Tween 20 or Pluronic F68 dramatically modified this profile. For PLGA-Tween 20 and PEC-Pluronic F68 microparticles, the HS was released in a pulsatil way during the first 7 days followed by a continuous release for at least 3 weeks. The antigenicity of the HS components was kept in all cases. Phagocytosis by murine monocytes showed a clear difference based just on the hydrophobicity of the polymer, being PEC microparticles better engulfed. Cell activation quantified by the release of H2O2 did not showed major differences between batches, however, microparticles of PEC and Pluronic F68 induced the highest nitric oxide production. Together, these results confirm the advantageous qualities of the "HS-PEC-Pluronic F68 microparticles" as favorable candidate for vaccine purposes against brucellosis.
Collapse
Affiliation(s)
- M Murillo
- Department of Pharmaceutical Technology, University of Navarra, 31008 Pamplona, Spain
| | | | | | | | | | | |
Collapse
|
21
|
Mu L, Feng SS. A novel controlled release formulation for the anticancer drug paclitaxel (Taxol): PLGA nanoparticles containing vitamin E TPGS. J Control Release 2003; 86:33-48. [PMID: 12490371 DOI: 10.1016/s0168-3659(02)00320-6] [Citation(s) in RCA: 464] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Paclitaxel (Taxol) is one of the best antineoplastic drugs found from nature in the past decades. Like many other anticancer drugs, there are difficulties in its clinical administration due to its poor solubility. Therefore an adjuvant called Cremophor EL has to be employed, but this has been found to cause serious side-effects. However, nanoparticles of biodegradable polymers can provide an ideal solution to the adjuvant problem and realise a controlled and targeted delivery of the drug with better efficacy and fewer side-effects. The present research proposes a novel formulation for fabrication of nanoparticles of biodegradable polymers containing d-alpha-tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS or TPGS) to replace the current method of clinical administration and, with further modification, to provide an innovative solution for oral chemotherapy. In the modified solvent extraction/evaporation technique employed in this research, the emulsifier/stabiliser/additive and the matrix material can play a key role in determining the morphological, physicochemical and pharmaceutical properties of the produced nanoparticles. We found that vitamin E TPGS could be a novel surfactant as well as a matrix material when blended with other biodegradable polymers. The nanoparticles composed of various formulations and manufactured under various conditions were characterised by laser light scattering (LLS) for size and size distribution, scanning electron microscopy (SEM) and atomic force microscopy (AFM) for morphological properties, X-ray photoelectron spectroscopy (XPS) for surface chemistry and differential scanning calorimetry (DSC) for thermogram properties. The drug encapsulation efficiency (EE) and the drug release kinetics under in vitro conditions were measured by high performance liquid chromatography (HPLC). It was concluded that vitamin E TPGS has great advantages for the manufacture of polymeric nanoparticles for controlled release of paclitaxel and other anti-cancer drugs. Nanoparticles of nanometer size with narrow distribution can be obtained. A drug encapsulation efficiency as high as 100% can be achieved and the release kinetics can be controlled.
Collapse
Affiliation(s)
- L Mu
- Division of Bioengineering, The National University of Singapore, 9 Engineering Drive 1, 117576, Singapore, Singapore
| | | |
Collapse
|
22
|
Lee KE, Kim BK, Yuk SH. Biodegradable polymeric nanospheres formed by temperature-induced phase transition in a mixture of poly(lactide-co-glycolide) and poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer. Biomacromolecules 2002; 3:1115-9. [PMID: 12217061 DOI: 10.1021/bm020066h] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mixture of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer(F-127) and PLGA (poly(lactide-co-gycolide)) forms a liquid state above their phase transition temperatures, and the phase-separated state is induced by decreasing the temperature below the phase transition temperature. On the basis of the temperature-induced phase transition behavior in the mixture of F-127 and PLGA, a novel method for the preparation of drug-loaded PLGA nanospheres was designed and characterized by measuring the loading amount, the encapsulation efficiency, and the drug release pattern. Paclitaxel, used as a potent anticancer drug, was selected as a model drug.
Collapse
Affiliation(s)
- Ka Eul Lee
- Department of Polymer Science and Engineering, Hannam University, 133 Ojeong Dong, Daedeog Ku, Taejeon 306-791, Korea
| | | | | |
Collapse
|
23
|
Pérez C, Castellanos IJ, Costantino HR, Al-Azzam W, Griebenow K. Recent trends in stabilizing protein structure upon encapsulation and release from bioerodible polymers. J Pharm Pharmacol 2002; 54:301-13. [PMID: 11902796 DOI: 10.1211/0022357021778448] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Sustained release of pharmaceutical proteins from biocompatible polymers offers new opportunities in the treatment and prevention of disease. The manufacturing of such sustained-release dosage forms, and also the release from them, can impose substantial stresses on the chemical integrity and native, three-dimensional structure of proteins. Recently, novel strategies have been developed towards elucidation and amelioration of these stresses. Non-invasive technologies have been implemented to investigate the complex destabilization pathways that can occur. Such insights allow for rational approaches to protect proteins upon encapsulation and release from bioerodible systems. Stabilization of proteins when utilizing the most commonly employed procedure, the water-in-oil-in-water (w/o/w) double emulsion technique, requires approaches that are based mainly on either increasing the thermodynamic stability of the protein or preventing contact of the protein with the destabilizing agent (e.g. the water/oil interface) by use of various additives. However, protein stability is still often problematic when using the w/o/w technique, and thus alternative methods have become increasingly popular. These methods, such as the solid-in-oil-in-oil (s/o/o) and solid-in-oil-in-water (s/o/w) techniques, are based on the suspension of dry protein powders in an anhydrous organic solvent. It has become apparent that protein structure in the organic phase is stabilized because the protein is "rigidified" and therefore unfolding and large protein structural perturbations are kinetically prohibited. This review focuses on strategies leading to the stabilization of protein structure when employing these different encapsulation procedures.
Collapse
Affiliation(s)
- Caroline Pérez
- University of Puerto Rico, Department of Chemistry, San Juan 00931-3346, USA
| | | | | | | | | |
Collapse
|
24
|
|
25
|
MacLean DS, Robertson JD, Jay M. Monitoring the retention of a protein antigen in complete Freund's adjuvant, alum, and pluronic F-127 gel formulations by X-ray fluorescence. Pharm Dev Technol 2001; 6:241-6. [PMID: 11416998 DOI: 10.1081/pdt-100002200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Adjuvants function by protecting antigens from rapid degradation or dispersal. The effectiveness of experimental adjuvants can be assessed by measuring antibody titers to the antigen of interest or, less frequently, by evaluating the retention and distribution of antigen at the application site. In this study, we used X-ray fluorescence (XRF) to monitor the release of an iodinated protein (I-bovine serum albumin) from several adjuvant formulations after its subcutaneous injection in rats. The interaction of the tagged antigen with an external Am-241 source leads to the emission of iodine X-rays from the application site; the number of these X-rays is proportional to the concentration of the protein remaining at the injection site. The disappearance of the iodine X-rays, and hence the antigen, from the injection site followed first-order kinetics for all adjuvant formulations tested; mean half-life values were as follows: in 50% Freund's adjuvant, 17.1 +/- 1.1 h; in 4-hour-old 25% Alum, 11.78 +/- 0.08 h; in 4-h-old 50% Alum, 13.2 +/- 2 h; in 3-day-old 50% Alum, 15.8 +/- 1.5 h; and in 240 mg/mL Pluronic F-127, 7.9 +/- 0.7 h. We conclude that XRF is an easy, reliable, noninvasive method to monitor the retention of antigens in these adjuvant solutions.
Collapse
Affiliation(s)
- D S MacLean
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | | | | |
Collapse
|
26
|
Carrasquillo KG, Stanley AM, Aponte-Carro JC, De Jésus P, Costantino HR, Bosques CJ, Griebenow K. Non-aqueous encapsulation of excipient-stabilized spray-freeze dried BSA into poly(lactide-co-glycolide) microspheres results in release of native protein. J Control Release 2001; 76:199-208. [PMID: 11578736 DOI: 10.1016/s0168-3659(01)00430-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Encapsulation of the model protein bovine serum albumin (BSA) into poly(D,L lactide-co-glycolide) (PLG) microspheres was performed by a non-aqueous oil-in-oil (o/o) methodology. Powder formulations of BSA obtained by spray-freeze drying were first suspended in methylene chloride containing PLG followed by coacervation by adding silicon oil and microsphere hardening in heptane. The secondary structure of BSA was determined at relevant steps of the encapsulation procedure by employing Fourier-transform infrared (FTIR) spectroscopy. This fast and non-invasive method demonstrated the potential to rapidly screen pharmaceutically relevant protein delivery systems for their suitability. Structural perturbations in BSA were reduced during the spray-freeze drying step by employing the excipient trehalose. The protein was then encapsulated into PLG microspheres under various conditions without inducing significant structural perturbations. BSA released from these microspheres had a similar monomer content as unencapsulated BSA and also the same secondary structure. Upon blending of a poloxamer (Pluronic F-68) with the polymer phase, in vitro release was characterized by a small initial release and a prolonged and continuous sustained phase. In conclusion, the developed o/o methodology coupled with FTIR spectroscopic monitoring of protein structure is a powerful approach for the development of sustained release microspheres.
Collapse
Affiliation(s)
- K G Carrasquillo
- University of Puerto Rico, Department of Chemistry, Río Piedras Campus, P.O. Box 23346, San Juan, Puerto Rico 00931-3346, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Jiang W, Schwendeman SP. Stabilization and controlled release of bovine serum albumin encapsulated in poly(D, L-lactide) and poly(ethylene glycol) microsphere blends. Pharm Res 2001; 18:878-85. [PMID: 11474795 DOI: 10.1023/a:1011009117586] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE The acidic microclimate in poly(D, L-lactide-co-glycolide) 50/50 microspheres has been previously demonstrated by our group as the primary instability source of encapsulated bovine serum albumin (BSA). The objectives of this study were to stabilize the encapsulated model protein, BSA, and to achieve continuous protein release by using a blend of: slowly degrading poly(D, L-lactide) (PLA), to reduce the production of acidic species during BSA release; and pore-forming poly(ethylene glycol) (PEG), to increase diffusion of BSA and polymer degradation products out of the polymer. METHODS Microspheres were formulated from blends of PLA (Mw 145,000) and PEG (Mw 10,000 or 35,000) by using an anhydrous oil-in-oil emulsion and solvent extraction (O/O) method. The polymer blend composition and phase miscibility were examined by FTIR and DSC, respectively. Microsphere surface morphology, water uptake, and BSA release kinetics were also investigated. The stability of BSA encapsulated in microspheres was examined by losses in protein solubility, SDS-PAGE, IEF, CD, and fluorescence spectroscopy, RESULTS PEG was successfully incorporated in PLA microspheres and shown to possess partial miscibility with PLA. A protein loading level of 5% (w/w) was attained in PLA/PEG microspheres with a mean diameter of approximately 100 microm. When PEG content was less than 20% in the blend, incomplete release of BSA was observed with the formation of insoluble, and primarily non-covalent aggregates. When 20%-30% PEG was incorporated in the blend formulation, in vitro continuous protein release over 29 days was exhibited. Unreleased BSA in these formulations was water-soluble and structurally intact. CONCLUSIONS Stabilization and controlled relaease of BSA from PLA/PEG microspheres was achieved due to low acid and high water content in the blend formulation.
Collapse
Affiliation(s)
- W Jiang
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus 43210, USA
| | | |
Collapse
|
28
|
Klinge U, Schumpelick V, Klosterhalfen B. Functional assessment and tissue response of short- and long-term absorbable surgical meshes. Biomaterials 2001; 22:1415-24. [PMID: 11336316 DOI: 10.1016/s0142-9612(00)00299-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Within the last few years meshes have become essential for the temporary closure of the abdominal cavity to avoid the development of an intra-abdominal compartment syndrome. The interposition of a mesh as an inlay reduces the intra-abdominal pressure and improves markedly the blood circulation, particularly for the intestines and kidneys. Whereas non-absorbable meshes usually tend to produce fistulas in direct contact to the bowels, the interposition of short-term absorbable meshes result in large incisional hernias in almost all cases. In the following study we investigated the functional and histological consequences of a short-term absorbable mesh (polyglactin 910, Vicryl, loss of 50% of its mechanical stability within 3 weeks) and a long-term absorbable mesh (polylactide, LTS, preserved >50% of its mechanical stability for over 1 year). The mesh-modifications were both tested with the aid of three-dimensional stereography, tensiometry, light- (LM) and transmission electron microscopy (TEM) as well as morphometry after implantation intervals of 3, 7, 14, 21, 45, 90, 135 and 180 days in a standardised rat model. The PG-mesh initially revealed a pronounced inflammatory reaction and a significantly increased formation of connective tissue. The extensive arrangement of connective tissue in the interface mesh/recipient tissues correlated to an increased stiffness of the abdominal wall compared to the sham-group. However, a loss of mechanical stability and an increase of elasticity could be detected after 3 weeks of implantation which may be explained by the rapid absorption of the mesh material. In contrast to PG, the LTS-mesh indicated a decreased but persisting inflammatory reaction in the interface mesh-fibres/recipient tissues and a significantly reduced induction of connective tissue. Although, the formation of scar-tissue was diminished compared to PG the LTS-mesh preserved its mechanical stability after 180 days. The results indicate that the frequent development of incisional hernias with short-term absorbable meshes (PG) might be due to the decreased mechanical stability and dilatation of the newly formed connective tissue after 2-3 weeks. Moreover, extensive scar tissue development may promote adhesion formation. The implantation of the long-term absorbable LTS-mesh seems to be favourable with respect to its long-term mechanical stability and the decreased connective tissue formation.
Collapse
Affiliation(s)
- U Klinge
- The Department of Surgery, The Technical University of Aachen, Germany
| | | | | |
Collapse
|
29
|
Jain RA. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 2000; 21:2475-90. [PMID: 11055295 DOI: 10.1016/s0142-9612(00)00115-0] [Citation(s) in RCA: 1396] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A considerable research has been conducted on drug delivery by biodegradable polymeric devices, following the entry of bioresorbable surgical sutures in the market about two decades ago. Amongst the different classes of biodegradable polymers, the thermoplastic aliphatic poly(esters) like poly(lactide) (PLA), poly(glycolide) (PGA), and especially the copolymer of lactide and glycolide, poly(lactide-co-glycolide) (PLGA) have generated immense interest due to their favorable properties such as good biocompatibility, biodegradability, and mechanical strength. Also, they are easy to formulate into different devices for carrying a variety of drug classes such as vaccines, peptides, proteins, and micromolecules. Also, they have been approved by the Food and Drug Administration (FDA) for drug delivery. This review discusses the various traditional and novel techniques (such as in situ microencapsulation) of preparing various drug loaded PLGA devices, with emphasis on preparing microparticles. Also, certain issues about other related biodegradable polyesters are discussed.
Collapse
Affiliation(s)
- R A Jain
- NanoSystems, a Division of Elan Pharmaceutical Technologies, King of Prussia, PA 19406, USA.
| |
Collapse
|
30
|
Yeh MK. The stability of insulin in biodegradable microparticles based on blends of lactide polymers and polyethylene glycol. J Microencapsul 2000; 17:743-56. [PMID: 11063421 DOI: 10.1080/02652040050161738] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Insulin-loaded microparticles were produced from blends of poly(ethylene glycol) (PEG) with poly (L-lactide) (PLA) homopolymer and poly (DL-lactide co-glycolide) copolymers (PLG) using a water-in-oil solvent extraction method. The dispersed phase was composed of PLG/PEG or PLA/PEG dissolved in dichloromethane, and the continuous phase was methanol containing 10% PVP. Characteristics, including particle size distribution, insulin loading capacity and efficiencies, in vitro release, degradation and stability, were investigated. The stability of insulin associated with microparticles prepared using PEG and 50:50 PLG and PLA was analysed by HPSEC and quantified by peak area following incubation in PBS at 37 degrees C for up to 1 month. Insulin was successfully entrapped in the PLG/PEG and PLA/PEG microparticles with trapping efficiencies up to 56 and 48%, loading levels 17.8 and 10.6% w/w, and particle sizes 8 and 3 microm, respectively. The insulin-loaded PLG/PEG and PLA/PEG microparticles were capable of controlling the release of insulin over 28 days with in vitro delivery rates of 0.94 and 0.65 microg insulin/mg particles/day in the first 4 days and a steady release with rate of 0.4 and 0.43 microg insulin/mg particles/day over the following 4 weeks, respectively. Extensive degradation of the PLG/PEG microparticles also occurred over 4 weeks, whereas the use of PLA/PEG blends resulted in a stable microparticle morphology and much reduced fragmentation and aggregation of the associated insulin.
Collapse
Affiliation(s)
- M K Yeh
- Department of Clinical Pharmacy, Tri-service General Hospital, Taipei, Taiwan.
| |
Collapse
|
31
|
Mi Z, Mai J, Lu X, Robbins PD. Characterization of a class of cationic peptides able to facilitate efficient protein transduction in vitro and in vivo. Mol Ther 2000; 2:339-47. [PMID: 11020349 DOI: 10.1006/mthe.2000.0137] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Protein transduction domains (PTDs), such as the third helix of the Drosophila Antennapedia homeobox gene (Antp) and the HIV TAT PTD, possess a characteristic positive charge on the basis of their enrichment for arginine and lysine residues. To determine whether cationic peptides are able to function as protein transduction domains, 12-mer peptide sequences from an M13 phage library were selected for synthesis on the basis of their varying cationic charge content. In addition, polylysine and polyarginine peptides were synthesized in order to assess the effect of charge contribution in protein transduction. Coupling of the biotinylated peptides to avidin-beta-galactosidase facilitated transduction in a wide variety of cell lines and primary cells, including islet beta-cells, synovial cells, polarized airway epithelial cells, dendritic cells, myoblasts, and tumor cells. Two of the peptides, PTD-4 and PTD-5, mediated transduction nearly 600-fold more efficiently than a random control peptide, but with an efficiency similar to the TAT PTD and the 12 mers of polylysine and polyarginine. Furthermore, confocal analysis of biotinylated peptide-streptavidin-Cy3 conjugates demonstrated that the internalized PTDs are found in both the nuclei and the cytoplasm of treated cells. When tested in vivo, the PTDs were able to facilitate efficient and rapid protein delivery into rabbit synovium and mouse solid tumors following intraarticular and intratumoral administration, respectively. These novel PTDs can be used to transfer therapeutic proteins and DNA for the treatment of a wide variety of diseases, including arthritis and cancer.
Collapse
Affiliation(s)
- Z Mi
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
32
|
Cho SW, Song SH, Choi YW. Effects of solvent selection and fabrication method on the characteristics of biodegradable poly(lactide-co-glycolide) microspheres containing ovalbumin. Arch Pharm Res 2000; 23:385-90. [PMID: 10976588 DOI: 10.1007/bf02975452] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To demonstrate the effect of formulation conditions on the controlled release of protein from poly(lactide-co-glycolide) (PLGA) microspheres for use as a parenteral drug carrier, ovalbumin (OVA) microspheres were prepared using the W/O/W multiple emulsion solvent evaporation and extraction method. Methylene chloride or ethyl acetate was applied as an organic phase and poly(vinyl alcohol) as a secondary emulsion stabilizer. Low loading efficiencies of less than 20% were observed and the in vitro release of OVA showed a burst effect in all batches of different microspheres, followed by a gradual release over the next 6 weeks. Formulation processes affected the size and morphology, drug content, and the controlled release of OVA from PLGA microspheres.
Collapse
Affiliation(s)
- S W Cho
- Department of Pharmaceutics, College of Pharmacy, Chung-Ang University, Seoul, Korea
| | | | | |
Collapse
|
33
|
Jain R, Shah NH, Malick AW, Rhodes CT. Controlled drug delivery by biodegradable poly(ester) devices: different preparative approaches. Drug Dev Ind Pharm 1998; 24:703-27. [PMID: 9876519 DOI: 10.3109/03639049809082719] [Citation(s) in RCA: 191] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
There has been extensive research on drug delivery by biodegradable polymeric devices since bioresorbable surgical sutures entered the market two decades ago. Among the different classes of biodegradable polymers, the thermoplastic aliphatic poly(esters) such as poly(lactide) (PLA), poly(glycolide) (PGA), and especially the copolymer of lactide and glycolide referred to as poly(lactide-co-glycolide) (PLGA) have generated tremendous interest because of their excellent biocompatibility, biodegradability, and mechanical strength. They are easy to formulate into various devices for carrying a variety of drug classes such as vaccines, peptides, proteins, and micromolecules. Most importantly, they have been approved by the United States Food and Drug Administration (FDA) for drug delivery. This review presents different preparation techniques of various drug-loaded PLGA devices, with special emphasis on preparing microparticles. Certain issues about other related biodegradable polyesters are discussed.
Collapse
Affiliation(s)
- R Jain
- Department of Applied Pharmaceutical Sciences, The University of Rhode Island, Kingston 02881, USA.
| | | | | | | |
Collapse
|