1
|
Kusuma AB, Fenylestari G, Ammar F, Nououi I, Goodfellow M. Rhodococcus indonesiensis sp. nov. a new member of the Rhodococcus ruber lineage isolated from sediment of a neutral hot spring and reclassification of Rhodococcus electrodiphilus (Ramaprasad et al. 2018) as a later heterotypic synonym of Rhodococcus ruber (Kruse 1896) Goodfellow and Alderson 1977 (Approved Lists 1980). Int J Syst Evol Microbiol 2024; 74. [PMID: 38214280 DOI: 10.1099/ijsem.0.006236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Abstract
A polyphasic study was designed to determine the taxonomic status of isolate CSLK01-03T, which was recovered from an Indonesian neutral hot spring and provisionally assigned to the genus Rhodococcus. The isolate was found to have chemotaxonomic, cultural and morphological properties typical of rhodococci. It has a rod-coccus lifecycle and grows from 10 to 39 °C, from pH 6.5 to 8.0 and in the presence of 0-10 % (w/v) sodium chloride. Whole-organism hydrolysates contain meso-diaminopimelic acid, arabinose and galactose, the predominant menaquinone is MK-8 (H2), the polar lipid pattern consists of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol mannosides, phosphatidylmethylethanolamine and two unidentified components, it produces mycolic acids, and C16:0 is the major fatty acid. Whole-genome analyses show that the isolate and Rhodococcus electrodiphilus LMG 29881T (GenBank accession: JAULCK000000000) have genome sizes of 5.5 and 5.1 Mbp, respectively. These strains and Rhodococcus aetherivorans DSM 44752T and Rhodococcus ruber DSM 43338T form well-supported lineages in 16S rRNA and whole-genome trees that are close to sister lineages composed of the type strains of Rhodococcus rhodochrous and related Rhodococcus species. The isolate can be distinguished from its closest evolutionary neighbours using combinations of cultural and phenotypic features, and by low DNA-DNA hybridization values. Based on these data it is proposed that isolate CSLK01-03T (=CCMM B1310T=ICEBB-06T=NCIMB 15214T) be classified in the genus Rhodococcus as Rhodococcus indonesiensis sp. nov. The genomes of the isolate and its closest phylogenomic relatives are rich in biosynthetic gene clusters with the potential to synthesize new natural products, notably antibiotics. In addition, whole-genome-based taxonomy revealed that Rhodococcus electrodiphilus LMG 29881T and Rhodococcus ruber DSM 43338T belong to a single species. It is, therefore, proposed that R. electrodiphilus be recognized as a heterotypic synonym of R. ruber.
Collapse
Affiliation(s)
- Ali Budhi Kusuma
- School of Natural and Environmental Sciences, Ridley Building 2, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Indonesian Centre for Extremophile Bioresources and Biotechnology (ICEBB), Faculty of Life Sciences and Technology, Sumbawa University of Technology, Sumbawa Besar, 84371, Indonesia
- PT. Archipelago Biotechnology Indonesia (Archi Biotech), Sumbawa Besar, 84316, Indonesia
| | - Gita Fenylestari
- PT. Archipelago Biotechnology Indonesia (Archi Biotech), Sumbawa Besar, 84316, Indonesia
- Department of Research, Innovation and Development, Sumbawa Technopark (STP), Sumbawa Besar, 84371, Indonesia
| | - Fadhil Ammar
- PT. Archipelago Biotechnology Indonesia (Archi Biotech), Sumbawa Besar, 84316, Indonesia
- Department of Research, Innovation and Development, Sumbawa Technopark (STP), Sumbawa Besar, 84371, Indonesia
| | - Imen Nououi
- School of Natural and Environmental Sciences, Ridley Building 2, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Leibniz-Institut DSMZ - German Collection of Microorganisms and Cell Cultures, Imhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Ridley Building 2, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
2
|
Calderón Celis F, González-Álvarez I, Fabjanowicz M, Godin S, Ouerdane L, Lauga B, Łobiński R. Unveiling the Pool of Metallophores in Native Environments and Correlation with Their Potential Producers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17302-17311. [PMID: 37921623 DOI: 10.1021/acs.est.3c04582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
For many organisms, metallophores are essential biogenic ligands that ensure metal scavenging and acquisition from their environment. Their identification is challenging in highly organic matter rich environments like peatlands due to low solubilization and metal scarcity and high matrix complexity. In contrast to common approaches based on sample modification by spiking of metal isotope tags, we have developed a two-dimensional (2D) Solid-phase extraction-Liquid chromatography-mass spectrometry (SPE-LC-MS) approach for the highly sensitive (LOD 40 fmol per g of soil), high-resolution direct detection and identification of metallophores in both their noncomplexed (apo) and metal-complexed forms in native environments. The characterization of peat collected in the Bernadouze (France) peatland resulted in the identification of 53 metallophores by a database mass-based search, 36 among which are bacterial. Furthermore, the detection of the characteristic (natural) metal isotope patterns in MS resulted in the detection of both Fe and Cu potential complexes. A taxonomic-based inference method was implemented based on literature and public database (antiSMASH database version 3.0) searches, enabling to associate over 40% of the identified bacterial metallophores with potential producers. In some cases, low completeness with the MIBiG reference BCG might be indicative of alternative producers in the ecosystem. Thus, coupling of metallophore detection and producers' inference could pave a new way to investigate poorly documented environment searching for new metallophores and their producers yet unknown.
Collapse
Affiliation(s)
| | | | - Magdalena Fabjanowicz
- Faculty of Chemistry, Department of Analytical Chemistry, Gdańsk University of Technology, ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Simon Godin
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l'Adour, 64000 Pau, France
| | - Laurent Ouerdane
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l'Adour, 64000 Pau, France
| | - Béatrice Lauga
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l'Adour, 64000 Pau, France
| | - Ryszard Łobiński
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l'Adour, 64000 Pau, France
- Chair of Analytical Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| |
Collapse
|
3
|
Song X, Zhang G, Zhou Y, Li W. Behaviors and mechanisms of microbially-induced corrosion in metal-based water supply pipelines: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165034. [PMID: 37355127 DOI: 10.1016/j.scitotenv.2023.165034] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/14/2023] [Accepted: 06/18/2023] [Indexed: 06/26/2023]
Abstract
Microbially-induced corrosion (MIC) is unstoppable and extensively spread throughout drinking water distribution systems (DWDSs) as the cause of pipe leakage and deteriorating water quality. For maintaining drinking water safety and reducing capital inputs in pipe usage, the possible consequences from MIC in DWDSs is still a research hotspot. Although most studies have investigated the effects of changing environmental factors on MIC corrosion, the occurrence of MIC in DWDSs has not been discussed sufficiently. This review aims to fill this gap by proposing that the formation of deposits with microbial capture may be a source of MIC in newly constructed DWDSs. The microbes early attaching to the rough pipe surface, followed by chemically and microbially-induced mineral deposits which confers resistance to disinfectants is ascribed as the first step of MIC occurrence. MIC is then activated in the newly-built, viable, and accessible microenvironment while producing extracellular polymers. With longer pipe service, oligotrophic microbes slowly grow, and metal pipe materials gradually dissolve synchronously with electron release to microbes, resulting in pipe-wall damage. Different corrosive microorganisms using pipe material as a reaction substrate would directly or indirectly cause different types of corrosion. Correspondingly, the formation of scale layers may reflect the distribution of microbial species and possibly biogenic products. It is therefore assumed that the porous and loose layer is an ideal microbial-survival environment, capable of providing diverse and sufficient ecological niches. The usage and chelation of metabolic activities and metabolites, such as acetic, oxalic, citric and glutaric acids, may lead to the formation of a porous scale layer. Therefore, the microbial interactions within the pipe scale reinforce the stability of microbial communities and accelerate MIC. Finally, a schematic model of the MIC process is presented to interpret MIC from its onset to completion.
Collapse
Affiliation(s)
- Xin Song
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Guosheng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yu Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Weiying Li
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
4
|
Jewula P, Grandmougin M, Choppin M, Tivelli AMC, Amati A, Rousselin Y, Karmazin L, Chambron J, Meyer M. Complexes of Fe(III) and Ga(III) Derived from the Cyclic 6‐ and 7‐Membered Hydroxamic Acids Found in Mixed Siderophores. Eur J Inorg Chem 2023. [DOI: 10.1002/ejic.202300038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Affiliation(s)
- Pawel Jewula
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB) UMR 6302 CNRS Université de Bourgogne 9 avenue Alain Savary, BP 47870 21078 Dijon Cedex France
| | - Mickaël Grandmougin
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB) UMR 6302 CNRS Université de Bourgogne 9 avenue Alain Savary, BP 47870 21078 Dijon Cedex France
| | - Mélanie Choppin
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB) UMR 6302 CNRS Université de Bourgogne 9 avenue Alain Savary, BP 47870 21078 Dijon Cedex France
| | - Anna Maria Chiara Tivelli
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB) UMR 6302 CNRS Université de Bourgogne 9 avenue Alain Savary, BP 47870 21078 Dijon Cedex France
| | - Agnese Amati
- Institut de Chimie de Strasbourg UMR 7177 CNRS Université de Strasbourg 1 rue Blaise Pascal, BP 296 R 8 67008 Strasbourg Cedex France
| | - Yoann Rousselin
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB) UMR 6302 CNRS Université de Bourgogne 9 avenue Alain Savary, BP 47870 21078 Dijon Cedex France
| | - Lydia Karmazin
- Institut de Chimie de Strasbourg UMR 7177 CNRS Université de Strasbourg 1 rue Blaise Pascal, BP 296 R 8 67008 Strasbourg Cedex France
| | - Jean‐Claude Chambron
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB) UMR 6302 CNRS Université de Bourgogne 9 avenue Alain Savary, BP 47870 21078 Dijon Cedex France
- Institut de Chimie de Strasbourg UMR 7177 CNRS Université de Strasbourg 1 rue Blaise Pascal, BP 296 R 8 67008 Strasbourg Cedex France
| | - Michel Meyer
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB) UMR 6302 CNRS Université de Bourgogne 9 avenue Alain Savary, BP 47870 21078 Dijon Cedex France
| |
Collapse
|
5
|
Narh Mensah DL, Wingfield BD, Coetzee MPA. Nonribosomal peptide synthetase gene clusters and characteristics of predicted NRPS-dependent siderophore synthetases in Armillaria and other species in the Physalacriaceae. Curr Genet 2023; 69:7-24. [PMID: 36369495 DOI: 10.1007/s00294-022-01256-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/13/2022]
Abstract
Fungal secondary metabolites are often pathogenicity or virulence factors synthesized by genes contained in secondary metabolite gene clusters (SMGCs). Nonribosomal polypeptide synthetase (NRPS) clusters are SMGCs which produce peptides such as siderophores, the high affinity ferric iron chelating compounds required for iron uptake under aerobic conditions. Armillaria spp. are mostly facultative necrotrophs of woody plants. NRPS-dependent siderophore synthetase (NDSS) clusters of Armillaria spp. and selected Physalacriaceae were investigated using a comparative genomics approach. Siderophore biosynthesis by strains of selected Armillaria spp. was evaluated using CAS and split-CAS assays. At least one NRPS cluster and other clusters were detected in the genomes studied. No correlation was observed between the number and types of SMGCs and reported pathogenicity of the species studied. The genomes contained one NDSS cluster each. All NDSSs were multi-modular with the domain architecture (ATC)3(TC)2. NDSS clusters of the Armillaria spp. showed a high degree of microsynteny. In the genomes of Desarmillaria spp. and Guyanagaster necrorhizus, NDSS clusters were more syntenic with NDSS clusters of Armillaria spp. than to those of the other Physalacriaceae species studied. Three A-domain orthologous groups were identified in the NDSSs, and atypical Stachelhaus codes were predicted for the A3 orthologous group. In vitro biosynthesis of mainly hydroxamate and some catecholate siderophores was observed. Hence, Armillaria spp. generally contain one highly conserved, NDSS cluster although some interspecific variations in the products of these clusters is expected. Results from this study lays the groundwork for future studies to elucidate the molecular biology of fungal phyto-pathogenicity.
Collapse
Affiliation(s)
- Deborah L Narh Mensah
- Departments of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa.,Council for Scientific and Industrial Research-Food Research Institute (CSIR-FRI), P. O. Box M20, Accra, Ghana
| | - Brenda D Wingfield
- Departments of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Martin P A Coetzee
- Departments of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
6
|
Phithakrotchanakoon C, Mayteeworakoon S, Siriarchawatana P, Kitikhun S, Harnpicharnchai P, Wansom S, Eurwilaichitr L, Ingsriswang S. Beneficial bacterial- Auricularia cornea interactions fostering growth enhancement identified from microbiota present in spent mushroom substrate. Front Microbiol 2022; 13:1006446. [PMID: 36299733 PMCID: PMC9589457 DOI: 10.3389/fmicb.2022.1006446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Complex dynamic bacterial-fungal interactions play key roles during mushroom growth, ranging from mutualism to antagonism. These interactions convey a large influence on mushroom's mycelial and fruiting body formation during mushroom cultivation. In this study, high-throughput amplicon sequencing was conducted to investigate the structure of bacterial communities in spent mushroom substrates obtained from cultivation of two different groups of Auricularia cornea with (A) high yield and (B) low yield of fruiting body production. It was found that species richness and diversity of microbiota in group (A) samples were significantly higher than in group (B) samples. Among the identified 765 bacterial OTUs, 5 bacterial species found to exhibit high differential abundance between group (A) and group (B) were Pseudonocardia mangrovi, Luteimonas composti, Paracoccus pantotrophus, Sphingobium jiangsuense, and Microvirga massiliensis. The co-cultivation with selected bacterial strains showed that A. cornea TBRC 12900 co-cultivated with P. mangrovi TBRC-BCC 42794 promoted a high level of mycelial growth. Proteomics analysis was performed to elucidate the biological activities involved in the mutualistic association between A. cornea TBRC 12900 and P. mangrovi TBRC-BCC 42794. After co-cultivation of A. cornea TBRC 12900 and P. mangrovi TBRC-BCC 42794, 1,616 proteins were detected including 578 proteins of A. cornea origin and 1,038 proteins of P. mangrovi origin. Functional analysis and PPI network construction revealed that the high level of mycelial growth in the co-culture condition most likely resulted from concerted actions of (a) carbohydrate-active enzymes including hydrolases, glycosyltransferases, and carbohydrate esterases important for carbohydrate metabolism and cell wall generation/remodeling, (b) peptidases including cysteine-, metallo-, and serine-peptidases, (c) transporters including the ABC-type transporter superfamily, the FAT transporter family, and the VGP family, and (d) proteins with proposed roles in formation of metabolites that can act as growth-promoting molecules or those normally contain antimicrobial activity (e.g., indoles, terpenes, β-lactones, lanthipeptides, iturins, and ectoines). The findings will provide novel insights into bacterial-fungal interactions during mycelial growth and fruiting body formation. Our results can be utilized for the selection of growth-promoting bacteria to improve the cultivation process of A. cornea with a high production yield, thus conveying potentially high socio-economic impact to mushroom agriculture.
Collapse
Affiliation(s)
- Chitwadee Phithakrotchanakoon
- Microbial Systems and Computational Biology Research Team, Thailand Bioresource Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sermsiri Mayteeworakoon
- Microbial Systems and Computational Biology Research Team, Thailand Bioresource Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Paopit Siriarchawatana
- Microbial Systems and Computational Biology Research Team, Thailand Bioresource Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Supattra Kitikhun
- Microbial Systems and Computational Biology Research Team, Thailand Bioresource Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Piyanun Harnpicharnchai
- Microbial Systems and Computational Biology Research Team, Thailand Bioresource Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Supaporn Wansom
- National Energy Technology Center, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Lily Eurwilaichitr
- National Energy Technology Center, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Supawadee Ingsriswang
- Microbial Systems and Computational Biology Research Team, Thailand Bioresource Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| |
Collapse
|
7
|
Zhang H, Liu D, Zhao L, Wang J, Xie S, Liu S, Lin P, Zhang X, Chen C. Review on corrosion and corrosion scale formation upon unlined cast iron pipes in drinking water distribution systems. J Environ Sci (China) 2022; 117:173-189. [PMID: 35725069 DOI: 10.1016/j.jes.2022.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
The qualified finished water from water treatment plants (WTPs) may become discolored and deteriorated during transportation in drinking water distribution systems (DWDSs), which affected tap water quality seriously. This water stability problem often occurs due to pipe corrosion and the destabilization of corrosion scales. This paper provides a comprehensive review of pipe corrosion in DWDSs, including corrosion process, corrosion scale formation, influencing factors and monitoring technologies utilized in DWDSs. In terms of corrosion process, corrosion occurrence, development mechanisms, currently applied assays, and indices used to determine the corrosion possibility are summarized, as well as the chemical and bacterial influences. In terms of scale formation, explanations for the nature of corrosion and scale formation mechanisms are discussed and its typical multilayered structure is illustrated. Furthermore, the influences of water quality and microbial activity on scale transformation are comprehensively discussed. Corrosion-related bacteria at the genus level and their associated corrosion mechanism are also summarized. This review helps deepen the current understanding of pipe corrosion and scale formation in DWDSs, providing guidance for water supply utilities to ensure effective measures to maintain water quality stability and guarantee drinking water safety.
Collapse
Affiliation(s)
- Haiya Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Dibo Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Lvtong Zhao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jun Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou 215163, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shuming Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Pengfei Lin
- Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou 215163, China
| | - Xiaojian Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou 215163, China
| | - Chao Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou 215163, China.
| |
Collapse
|
8
|
Pu H, Jiang T, Peng D, Xia J, Gao J, Wang Y, Yan X, Huang X, Duan Y, Huang Y. Degradation of mirubactin to multiple siderophores with varying Fe(III) chelation properties. Org Biomol Chem 2022; 20:5066-5070. [PMID: 35703354 DOI: 10.1039/d2ob00942k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Three siderophores mirubactins B-D (4-6) were identified as the degradation products of previously isolated mirubactin (1). Their structures were revealed by HR-ESI-MS/MS, NMR analyses, and density functional calculations, among which 4 contains an unusual cyclic amidine functionality. Cyclic voltammetry showed that 5 and 6 have reduced iron complexing capacity. Mirubactin (1) and Fe(III) could also form a stable complex, which may be an ingenious approach to compete for iron acquisition by the producing organisms.
Collapse
Affiliation(s)
- Hong Pu
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, 410013, P. R. China. .,Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan, 418000, P. R. China
| | - Ting Jiang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, 410013, P. R. China. .,Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan, 418000, P. R. China
| | - Dian Peng
- School of Pharmacy, Changsha Health Vocational College, Changsha, Hunan, 410100, P. R. China
| | - Juanjuan Xia
- School of Pharmacy, Changsha Health Vocational College, Changsha, Hunan, 410100, P. R. China
| | - Juan Gao
- School of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410017, P. R. China
| | - Yeji Wang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, 410013, P. R. China.
| | - Xiaohui Yan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P. R. China
| | - Xueshuang Huang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan, 418000, P. R. China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, 410013, P. R. China. .,Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discover, Changsha, Hunan, 410011, P. R. China.,National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan, 410011, P. R. China
| | - Yong Huang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, 410013, P. R. China. .,National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan, 410011, P. R. China
| |
Collapse
|
9
|
Kuhl T, Chowdhury SP, Uhl J, Rothballer M. Genome-Based Characterization of Plant-Associated Rhodococcus qingshengii RL1 Reveals Stress Tolerance and Plant-Microbe Interaction Traits. Front Microbiol 2021; 12:708605. [PMID: 34489897 PMCID: PMC8416521 DOI: 10.3389/fmicb.2021.708605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/26/2021] [Indexed: 11/24/2022] Open
Abstract
Stress tolerant, plant-associated bacteria can play an important role in maintaining a functional plant microbiome and protecting plants against various (a)biotic stresses. Members of the stress tolerant genus Rhodococcus are frequently found in the plant microbiome. Rhodococcus qingshengii RL1 was isolated from Eruca sativa and the complete genome was sequenced, annotated and analyzed using different bioinformatic tools. A special focus was laid on functional analyses of stress tolerance and interactions with plants. The genome annotation of RL1 indicated that it contains a repertoire of genes which could enable it to survive under different abiotic stress conditions for e.g., elevated mercury concentrations, to interact with plants via root colonization, to produce phytohormones and siderophores, to fix nitrogen and to interact with bacterial signaling via a LuxR-solo and quorum quenching. Based on the identified genes, functional analyses were performed in vitro with RL1 under different growth conditions. The R. qingshengii type strain djl6 and a closely related Rhodococcus erythropolis BG43 were included in the experiments to find common and distinct traits between the strains. Genome based phylogenetic analysis of 15 available and complete R. erythropolis and R. qingshengii genome sequences revealed a separation of the R. erythropolis clade in two subgroups. First one harbors only R. erythropolis strains including the R. erythropolis type strain. The second group consisted of the R. qingshengii type strain and a mix of R. qingshengii and R. erythropolis strains indicating that some strains of the second group should be considered for taxonomic re-assignment. However, BG43 was clearly identified as R. erythropolis and RL1 clearly as R. qingshengii and the strains had most tested traits in common, indicating a close functional overlap of traits between the two species.
Collapse
Affiliation(s)
- Theresa Kuhl
- Institute for Network Biology, Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Soumitra Paul Chowdhury
- Institute for Network Biology, Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Jenny Uhl
- Research Unit Analytical Biogeochemistry, Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Michael Rothballer
- Institute for Network Biology, Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| |
Collapse
|
10
|
Engelbrecht A, Saad H, Gross H, Kaysser L. Natural Products from Nocardia and Their Role in Pathogenicity. Microb Physiol 2021; 31:217-232. [PMID: 34139700 DOI: 10.1159/000516864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/26/2021] [Indexed: 11/19/2022]
Abstract
Nocardia spp. are filamentous Actinobacteria of the order Corynebacteriales and mostly known for their ability to cause localized and systemic infections in humans. However, the onset and progression of nocardiosis is only poorly understood, in particular the mechanisms of strain-specific presentations. Recent genome sequencing has revealed an extraordinary capacity for the production of specialized small molecules. Such secondary metabolites are often crucial for the producing microbe to survive the challenges of different environmental conditions. An interesting question thus concerns the role of these natural products in Nocardia-associated pathogenicity and immune evasion in a human host. In this review, a summary and discussion of Nocardia metabolites is presented, which may play a part in nocardiosis because of their cytotoxic, immunosuppressive and metal-chelating properties or otherwise vitally important functions. This review also contains so far unpublished data concerning the biosynthesis of these molecules that were obtained by detailed bioinformatic analyses.
Collapse
Affiliation(s)
- Alicia Engelbrecht
- Department of Pharmaceutical Biology, University of Tübingen, Tübingen, Germany
| | - Hamada Saad
- Department of Pharmaceutical Biology, University of Tübingen, Tübingen, Germany.,Department of Phytochemistry and Plant Systematics, Division of Pharmaceutical Industries, National Research Centre, Cairo, Egypt
| | - Harald Gross
- Department of Pharmaceutical Biology, University of Tübingen, Tübingen, Germany
| | - Leonard Kaysser
- Department of Pharmaceutical Biology, University of Tübingen, Tübingen, Germany.,Institute for Drug Discovery, University of Leipzig, Leipzig, Germany
| |
Collapse
|
11
|
Bio-Guided Isolation of Antimalarial Metabolites from the Coculture of Two Red Sea Sponge-Derived Actinokineospora and Rhodococcus spp. Mar Drugs 2021; 19:md19020109. [PMID: 33673168 PMCID: PMC7918646 DOI: 10.3390/md19020109] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/19/2022] Open
Abstract
Coculture is a productive technique to trigger microbes’ biosynthetic capacity by mimicking the natural habitats’ features principally by competition for food and space and interspecies cross-talks. Mixed cultivation of two Red Sea-derived actinobacteria, Actinokineospora spheciospongiae strain EG49 and Rhodococcus sp. UR59, resulted in the induction of several non-traced metabolites in their axenic cultures, which were detected using LC–HRMS metabolomics analysis. Antimalarial guided isolation of the cocultured fermentation led to the isolation of the angucyclines actinosporins E (1), H (2), G (3), tetragulol (5) and the anthraquinone capillasterquinone B (6), which were not reported under axenic conditions. Interestingly, actinosporins were previously induced when the axenic culture of the Actinokineospora spheciospongiae strain EG49 was treated with signalling molecule N-acetyl-d-glucosamine (GluNAc); this finding confirmed the effectiveness of coculture in the discovery of microbial metabolites yet to be discovered in the axenic fermentation with the potential that could be comparable to adding chemical signalling molecules in the fermentation flask. The isolated angucycline and anthraquinone compounds exhibited in vitro antimalarial activity and good biding affinity against lysyl-tRNA synthetase (PfKRS1), highlighting their potential developability as new antimalarial structural motif.
Collapse
|
12
|
Crits-Christoph A, Bhattacharya N, Olm MR, Song YS, Banfield JF. Transporter genes in biosynthetic gene clusters predict metabolite characteristics and siderophore activity. Genome Res 2021; 31:239-250. [PMID: 33361114 PMCID: PMC7849407 DOI: 10.1101/gr.268169.120] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/16/2020] [Indexed: 12/27/2022]
Abstract
Biosynthetic gene clusters (BGCs) are operonic sets of microbial genes that synthesize specialized metabolites with diverse functions, including siderophores and antibiotics, which often require export to the extracellular environment. For this reason, genes for transport across cellular membranes are essential for the production of specialized metabolites and are often genomically colocalized with BGCs. Here, we conducted a comprehensive computational analysis of transporters associated with characterized BGCs. In addition to known exporters, in BGCs we found many importer-specific transmembrane domains that co-occur with substrate binding proteins possibly for uptake of siderophores or metabolic precursors. Machine learning models using transporter gene frequencies were predictive of known siderophore activity, molecular weights, and a measure of lipophilicity (log P) for corresponding BGC-synthesized metabolites. Transporter genes associated with BGCs were often equally or more predictive of metabolite features than biosynthetic genes. Given the importance of siderophores as pathogenicity factors, we used transporters specific for siderophore BGCs to identify both known and uncharacterized siderophore-like BGCs in genomes from metagenomes from the infant and adult gut microbiome. We find that 23% of microbial genomes from premature infant guts have siderophore-like BGCs, but only 3% of those assembled from adult gut microbiomes do. Although siderophore-like BGCs from the infant gut are predominantly associated with Enterobacteriaceae and Staphylococcus, siderophore-like BGCs can be identified from taxa in the adult gut microbiome that have rarely been recognized for siderophore production. Taken together, these results show that consideration of BGC-associated transporter genes can inform predictions of specialized metabolite structure and function.
Collapse
Affiliation(s)
- Alexander Crits-Christoph
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
- Innovative Genomics Institute, Berkeley, California 94720, USA
| | - Nicholas Bhattacharya
- Department of Mathematics, University of California, Berkeley, California 94720, USA
| | - Matthew R Olm
- Department of Microbiology and Immunology, Stanford University, California 94305, USA
| | - Yun S Song
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, USA
- Department of Statistics, University of California, Berkeley, California 94720, USA
- Chan Zuckerberg Biohub, San Francisco, California 94158, USA
| | - Jillian F Banfield
- Innovative Genomics Institute, Berkeley, California 94720, USA
- Department of Microbiology and Immunology, Stanford University, California 94305, USA
- Chan Zuckerberg Biohub, San Francisco, California 94158, USA
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, USA
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
13
|
Isolation and characterization of arsenic-binding siderophores from Rhodococcus erythropolis S43: role of heterobactin B and other heterobactin variants. Appl Microbiol Biotechnol 2021; 105:1731-1744. [PMID: 33511442 DOI: 10.1007/s00253-021-11123-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/05/2021] [Accepted: 01/16/2021] [Indexed: 10/22/2022]
Abstract
Rhodococcus erythropolis S43 is an arsenic-tolerant actinobacterium isolated from an arsenic contaminated soil. It has been shown to produce siderophores when exposed to iron-depleting conditions. In this work, strain S43 was shown to have the putative heterobactin production cluster htbABCDEFGHIJ(K). To induce siderophore production, the strain was cultured in iron-depleted medium in presence and absence of sodium arsenite. The metabolites produced by S43 in the colorimetric CAS and As-mCAS assays, respectively, showed iron- and arsenic-binding properties reaching a chelating activity equivalent to 1.6 mM of desferroxamine B in the supernatant of the culture without arsenite. By solid-phase extraction and two subsequent HPLC separations from both cultures, several fractions were obtained, which contained CAS and As-mCAS activity and which were submitted to LC-MS analyses including fragmentation of the major peaks. The mixed-type siderophore heterobactin B occurred in all analyzed fractions, and the mass of the "Carrano heterobactin A" was detected as well. In addition, generation of a molecular network based on fragment spectra revealed the occurrence of several other compounds with heterobactin-like structures, among them a heterobactin B variant with an additional CH2O moiety. 1H NMR analyses obtained for preparations from the first HPLC step showed signals of heterobactin B and of "Carrano heterobactin A" with different relative amounts in all three samples. In summary, our results reveal that in R. erythropolis S43, a pool of heterobactin variants is responsible for the iron- and arsenic-binding activities. KEY POINTS: • Several heterobactin variants are the arsenic-binding compounds in Rhodococcus erythropolis S43. • Heterobactin B and the compound designated heterobactin A by Carrano are of importance. • In addition, other heterobactins with ornithine in the backbone exist, e.g., the new heterobactin C.
Collapse
|
14
|
Hofmann M, Heine T, Malik L, Hofmann S, Joffroy K, Senges CHR, Bandow JE, Tischler D. Screening for Microbial Metal-Chelating Siderophores for the Removal of Metal Ions from Solutions. Microorganisms 2021; 9:microorganisms9010111. [PMID: 33466508 PMCID: PMC7824959 DOI: 10.3390/microorganisms9010111] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 12/30/2020] [Indexed: 11/17/2022] Open
Abstract
To guarantee the supply of critical elements in the future, the development of new technologies is essential. Siderophores have high potential in the recovery and recycling of valuable metals due to their metal-chelating properties. Using the Chrome azurol S assay, 75 bacterial strains were screened to obtain a high-yield siderophore with the ability to complex valuable critical metal ions. The siderophore production of the four selected strains Nocardioides simplex 3E, Pseudomonas chlororaphis DSM 50083, Variovorax paradoxus EPS, and Rhodococcus erythropolis B7g was optimized, resulting in significantly increased siderophore production of N. simplex and R. erythropolis. Produced siderophore amounts and velocities were highly dependent on the carbon source. The genomes of N. simplex and P. chlororaphis were sequenced. Bioinformatical analyses revealed the occurrence of an achromobactin and a pyoverdine gene cluster in P. chlororaphis, a heterobactin and a requichelin gene cluster in R. erythropolis, and a desferrioxamine gene cluster in N. simplex. Finally, the results of the previous metal-binding screening were validated by a proof-of-concept development for the recovery of metal ions from aqueous solutions utilizing C18 columns functionalized with siderophores. We demonstrated the recovery of the critical metal ions V(III), Ga(III), and In(III) from mixed metal solutions with immobilized siderophores of N. simplex and R. erythropolis.
Collapse
Affiliation(s)
- Marika Hofmann
- Institute of Biosciences, TU Bergakademie Freiberg, 09599 Freiberg, Germany; (T.H.); (L.M.); (S.H.); (K.J.)
- Correspondence: (M.H.); (D.T.)
| | - Thomas Heine
- Institute of Biosciences, TU Bergakademie Freiberg, 09599 Freiberg, Germany; (T.H.); (L.M.); (S.H.); (K.J.)
| | - Luise Malik
- Institute of Biosciences, TU Bergakademie Freiberg, 09599 Freiberg, Germany; (T.H.); (L.M.); (S.H.); (K.J.)
| | - Sarah Hofmann
- Institute of Biosciences, TU Bergakademie Freiberg, 09599 Freiberg, Germany; (T.H.); (L.M.); (S.H.); (K.J.)
| | - Kristin Joffroy
- Institute of Biosciences, TU Bergakademie Freiberg, 09599 Freiberg, Germany; (T.H.); (L.M.); (S.H.); (K.J.)
| | - Christoph Helmut Rudi Senges
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, 44780 Bochum, Germany; (C.H.R.S.); (J.E.B.)
| | - Julia Elisabeth Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, 44780 Bochum, Germany; (C.H.R.S.); (J.E.B.)
| | - Dirk Tischler
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, 44780 Bochum, Germany
- Correspondence: (M.H.); (D.T.)
| |
Collapse
|
15
|
Khilyas IV, Sorokina AV, Markelova MI, Belenikin M, Shafigullina L, Tukhbatova RI, Shagimardanova EI, Blom J, Sharipova MR, Cohen MF. Genomic and phenotypic analysis of siderophore-producing Rhodococcus qingshengii strain S10 isolated from an arid weathered serpentine rock environment. Arch Microbiol 2020; 203:855-860. [PMID: 33025059 DOI: 10.1007/s00203-020-02057-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/08/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022]
Abstract
The success of members of the genus Rhodococcus in colonizing arid rocky environments is owed in part to desiccation tolerance and an ability to extract iron through the secretion and uptake of siderophores. Here, we report a comprehensive genomic and taxonomic analysis of Rhodococcus qingshengii strain S10 isolated from eathered serpentine rock at the arid Khalilovsky massif, Russia. Sequence comparisons of whole genomes and of selected marker genes clearly showed strain S10 to belong to the R. qingshengii species. Four prophage sequences within the R. qingshengii S10 genome were identified, one of which encodes for a putative siderophore-interacting protein. Among the ten non-ribosomal peptides synthase (NRPS) clusters identified in the strain S10 genome, two show high homology to those responsible for siderophore synthesis. Phenotypic analyses demonstrated that R. qingshengii S10 secretes siderophores and possesses adaptive features (tolerance of up to 8% NaCl and pH 9) that should enable survival in its native habitat within dry serpentine rock.
Collapse
Affiliation(s)
- Irina V Khilyas
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region), Federal University, Kazan, Russian Federation.
| | - Alyona V Sorokina
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region), Federal University, Kazan, Russian Federation
| | - Maria I Markelova
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region), Federal University, Kazan, Russian Federation
| | - Maksim Belenikin
- Department of Molecular and Biological Physics, Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| | - Lilia Shafigullina
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region), Federal University, Kazan, Russian Federation
| | - Rezeda I Tukhbatova
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region), Federal University, Kazan, Russian Federation
| | - Elena I Shagimardanova
- Laboratory of Extreme Biology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region), Federal University, Kazan, Russian Federation
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Margarita R Sharipova
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region), Federal University, Kazan, Russian Federation
| | - Michael F Cohen
- Department of Biology, Sonoma State University, Rohnert Park, CA, USA
| |
Collapse
|
16
|
Cappelletti M, Presentato A, Piacenza E, Firrincieli A, Turner RJ, Zannoni D. Biotechnology of Rhodococcus for the production of valuable compounds. Appl Microbiol Biotechnol 2020; 104:8567-8594. [PMID: 32918579 PMCID: PMC7502451 DOI: 10.1007/s00253-020-10861-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/14/2020] [Accepted: 08/26/2020] [Indexed: 12/31/2022]
Abstract
Bacteria belonging to Rhodococcus genus represent ideal candidates for microbial biotechnology applications because of their metabolic versatility, ability to degrade a wide range of organic compounds, and resistance to various stress conditions, such as metal toxicity, desiccation, and high concentration of organic solvents. Rhodococcus spp. strains have also peculiar biosynthetic activities that contribute to their strong persistence in harsh and contaminated environments and provide them a competitive advantage over other microorganisms. This review is focused on the metabolic features of Rhodococcus genus and their potential use in biotechnology strategies for the production of compounds with environmental, industrial, and medical relevance such as biosurfactants, bioflocculants, carotenoids, triacylglycerols, polyhydroxyalkanoate, siderophores, antimicrobials, and metal-based nanostructures. These biosynthetic capacities can also be exploited to obtain high value-added products from low-cost substrates (industrial wastes and contaminants), offering the possibility to efficiently recover valuable resources and providing possible waste disposal solutions. Rhodococcus spp. strains have also recently been pointed out as a source of novel bioactive molecules highlighting the need to extend the knowledge on biosynthetic capacities of members of this genus and their potential utilization in the framework of bioeconomy. KEY POINTS: • Rhodococcus possesses promising biosynthetic and bioconversion capacities. • Rhodococcus bioconversion capacities can provide waste disposal solutions. • Rhodococcus bioproducts have environmental, industrial, and medical relevance. Graphical abstract.
Collapse
Affiliation(s)
- Martina Cappelletti
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy.
| | - Alessandro Presentato
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Elena Piacenza
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Florence, Italy
| | - Andrea Firrincieli
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - Raymond J Turner
- Department of Biological Sciences, Calgary University, Calgary, AB, Canada
| | - Davide Zannoni
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| |
Collapse
|
17
|
Thompson D, Cognat V, Goodfellow M, Koechler S, Heintz D, Carapito C, Van Dorsselaer A, Mahmoud H, Sangal V, Ismail W. Phylogenomic Classification and Biosynthetic Potential of the Fossil Fuel-Biodesulfurizing Rhodococcus Strain IGTS8. Front Microbiol 2020; 11:1417. [PMID: 32733398 PMCID: PMC7358434 DOI: 10.3389/fmicb.2020.01417] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/02/2020] [Indexed: 01/02/2023] Open
Abstract
Rhodococcus strain IGTS8 is the most extensively studied model bacterium for biodesulfurization of fossil fuels via the non–destructive sulfur–specific 4S pathway. This strain was initially assigned to Rhodococcus rhodochrous and later to Rhodococcus erythropolis thus making its taxonomic status debatable and reflecting the limited resolution of methods available at the time. In this study, phylogenomic analyses of the whole genome sequences of strain IGTS8 and closely related rhodococci showed that R. erythropolis and Rhodococcus qingshengii are very closely related species, that Rhodococcus strain IGTS8 is a R. qingshengii strain and that several strains identified as R. erythropolis should be re-classified as R. qingshengii. The genomes of strains assigned to these species contain potentially novel biosynthetic gene clusters showing that members of these taxa should be given greater importance in the search for new antimicrobials and other industrially important biomolecules. The plasmid-borne dsz operon encoding fossil fuel desulfurization enzymes was present in R. qingshengii IGTS8 and R. erythropolis XP suggesting that it might be transferable between members of these species.
Collapse
Affiliation(s)
- Dean Thompson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Valérie Cognat
- Institut de Biologie Moléculaire des Plantes, Centre National de Recherche Scientifique (CNRS), Université de Strasbourg, Strasbourg, France
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sandrine Koechler
- Institut de Biologie Moléculaire des Plantes, Centre National de Recherche Scientifique (CNRS), Université de Strasbourg, Strasbourg, France
| | - Dimitri Heintz
- Institut de Biologie Moléculaire des Plantes, Centre National de Recherche Scientifique (CNRS), Université de Strasbourg, Strasbourg, France
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse Bio-organique, Institut Pluridisciplinaire Hubert Curien, UMR 7178 CNRS, Université de Strasbourg, Strasbourg, France
| | - Alain Van Dorsselaer
- Laboratoire de Spectrométrie de Masse Bio-organique, Institut Pluridisciplinaire Hubert Curien, UMR 7178 CNRS, Université de Strasbourg, Strasbourg, France
| | - Huda Mahmoud
- Department of Biological Sciences, College of Science, Kuwait University, Safat, Kuwait
| | - Vartul Sangal
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Wael Ismail
- Environmental Biotechnology Program, Life Sciences Department, College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
| |
Collapse
|
18
|
Zhu Y, Chen L, Xiao H, Shen F, Deng S, Zhang S, He J, Song C, Wang X, Zhang J, Gong L, Hu C. Effects of disinfection efficiency on microbial communities and corrosion processes in drinking water distribution systems simulated with actual running conditions. J Environ Sci (China) 2020; 88:273-282. [PMID: 31862068 DOI: 10.1016/j.jes.2019.09.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
The effects of disinfection efficiency on microbial communities and the corrosion of cast iron pipes in drinking water distribution systems (DWDSs) were studied. Two annular reactors (ARs) that simulated actual running conditions with UV/Cl2 disinfection and chlorination alone were used. High chlorine consumption and corrosion rate were found in the AR with UV/Cl2. According to functional genes and pyrosequencing tests, a high percentage of iron recycling bacteria was detected within the biofilm of the AR with Cl2 at early running stage, whereas siderophore-producing bacteria were dominant in the biofilm of the AR with UV/Cl2. At the early running stage, the sequential use of UV light and an initial high chlorine dosage suppressed the biomass and iron-recycling bacteria in both bulk water and biofilms, thereby forming less protective scales against further corrosion, which enhanced chlorine consumption. Non-metric multidimensional scaling analysis showed that the bacterial communities in the ARs shaped from within rather than being imported by influents. These results indicate that the initial high disinfection efficiency within the distribution system had not contributed to the accumulation of iron-recycling bacteria at the early running stages. This study offer certain implications for controlling corrosion and water quality in DWDSs.
Collapse
Affiliation(s)
- Ying Zhu
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Lu Chen
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Hong Xiao
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Fei Shen
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Shihuai Deng
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Shirong Zhang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jinsong He
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Chun Song
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xie Wang
- Soil and Fertilizer Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610066, China; Key Laboratory of Agricultural Environment of Southwest China, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan 610066, China
| | - Jianhua Zhang
- Soil and Fertilizer Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610066, China; Key Laboratory of Agricultural Environment of Southwest China, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan 610066, China
| | - Li Gong
- College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Chun Hu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
19
|
Salwan R, Sharma V. Molecular and biotechnological aspects of secondary metabolites in actinobacteria. Microbiol Res 2020; 231:126374. [DOI: 10.1016/j.micres.2019.126374] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 12/21/2022]
|
20
|
Garzón-Posse F, Quevedo-Acosta Y, Mahecha-Mahecha C, Acosta-Guzmán P. Recent Progress in the Synthesis of Naturally Occurring Siderophores. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Fabián Garzón-Posse
- Laboratory of Organic Synthesis; Bio and Organocatalysis; Universidad de los Andes; Cra 1 No. 18A-12 Q:305 111711 Bogotá Colombia
| | - Yovanny Quevedo-Acosta
- Laboratory of Organic Synthesis; Bio and Organocatalysis Chemistry Department; Universidad de los Andes; Cra 1 No. 18A-12 Q:305 111711 Bogotá Colombia
- Institute of Chemistry; Bio and Organocatalysis Chemistry Department; State University of Campinas; Rua Monteiro Lobato 270 13083-862 Campinas Brazil
| | - Camilo Mahecha-Mahecha
- Laboratory of Organic Synthesis; Bio and Organocatalysis Chemistry Department; Universidad de los Andes; Cra 1 No. 18A-12 Q:305 111711 Bogotá Colombia
| | - Paola Acosta-Guzmán
- Laboratory of Organic Synthesis; Bio and Organocatalysis Chemistry Department; Universidad de los Andes; Cra 1 No. 18A-12 Q:305 111711 Bogotá Colombia
| |
Collapse
|
21
|
Bohac TJ, Fang L, Giblin DE, Wencewicz TA. Fimsbactin and Acinetobactin Compete for the Periplasmic Siderophore Binding Protein BauB in Pathogenic Acinetobacter baumannii. ACS Chem Biol 2019; 14:674-687. [PMID: 30785725 DOI: 10.1021/acschembio.8b01051] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Environmental and pathogenic microbes produce siderophores as small iron-binding molecules to scavenge iron from natural environments. It is common for microbes to produce multiple siderophores to gain a competitive edge in mixed microbial environments. Strains of human pathogenic Acinetobacter baumannii produce up to three siderophores: acinetobactin, baumannoferrin, and fimsbactin. Production of acinetobactin and baumannoferrin is highly conserved among clinical isolates while fimsbactin production appears to be less common. Fimsbactin is structurally related to acinetobactin through the presence of catecholate and phenolate oxazoline metal-binding motifs, and both are derived from nonribosomal peptide assembly lines with similar catalytic domain orientations and identities. Here we report on the chemical, biochemical, and microbiological investigation of fimsbactin and acinetobactin alone and in combination. We show that fimsbactin forms a 1:1 complex with iron(III) that is thermodynamically more stable than the 2:1 acinetobactin ferric complex. Alone, both acinetobactin and fimsbactin stimulate A. baumannii growth, but in combination the two siderophores appear to compete and collectively inhibit bacterial growth. We show that fimsbactin directly competes with acinetobactin for binding the periplasmic siderophore-binding protein BauB suggesting a possible biochemical mechanism for the phenomenon where the buildup of apo-siderophores in the periplasm leads to iron starvation. We propose an updated model for siderophore utilization and competition in A. baumannii that frames the molecular, biochemical, and cellular interplay of multiple iron acquisition systems in a multidrug resistant Gram-negative human pathogen.
Collapse
Affiliation(s)
- Tabbetha J. Bohac
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Luting Fang
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Daryl E. Giblin
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Timothy A. Wencewicz
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| |
Collapse
|
22
|
Ward AL, Reddyvari P, Borisova R, Shilabin AG, Lampson BC. An inhibitory compound produced by a soil isolate of Rhodococcus has strong activity against the veterinary pathogen R. equi. PLoS One 2018; 13:e0209275. [PMID: 30592730 PMCID: PMC6310278 DOI: 10.1371/journal.pone.0209275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 12/03/2018] [Indexed: 01/22/2023] Open
Abstract
Complete genome sequencing of dozens of strains of the soil bacterium Rhodococcus has revealed the presence of many cryptic biosynthetic gene clusters, presumably dedicated to the production of small molecules. This has sparked a renewed interest in this underexplored member of the Actinobacteria as a potential source of new bioactive compounds. Reported here is the discovery of a potent inhibitory molecule produced by a newly isolated strain of Rhodococcus, strain MTM3W5.2. This small inhibitory molecule shows strong activity against all Rhodococcus species tested, including the veterinary pathogen R. equi, and some closely related genera. It is not active against other Gram positive or Gram negative bacteria. A screen of random transposon mutants identified a gene required to produce this inhibitory compound. This gene is a large multi-domain, type I polyketide synthase that is part of a very large multi-gene biosynthetic gene cluster in the chromosome of strain MTM3W5.2. The high resolution mass spectrum of a major chromatogram peak from a broth culture extract of MTM3W5.2 shows the presence of a compound at m/z 911.5490 atomic mass units. This compound is not detected in the culture extracts from a non-producing mutant strain of MTM3W5.2. A large gene cluster containing at least 14 different type I polyketide synthase genes is proposed to be required to synthesize this antibiotic-like compound.
Collapse
Affiliation(s)
- Amber L. Ward
- Department of Health Sciences, East Tennessee State University, Johnson City, TN, United States of America
| | - Pushpavathi Reddyvari
- Department of Chemistry, East Tennessee State University, Johnson City, TN, United States of America
| | - Ralitsa Borisova
- Department of Health Sciences, East Tennessee State University, Johnson City, TN, United States of America
| | - Abbas G. Shilabin
- Department of Chemistry, East Tennessee State University, Johnson City, TN, United States of America
| | - Bert C. Lampson
- Department of Health Sciences, East Tennessee State University, Johnson City, TN, United States of America
- * E-mail:
| |
Collapse
|
23
|
Biodegradation of High Concentrations of Aliphatic Hydrocarbons in Soil from a Petroleum Refinery: Implications for Applicability of New Actinobacterial Strains. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8101855] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
At present, there is great demand for new resistant and metabolically active strains of biodegrading bacteria capable of degrading high concentrations of petroleum pollutants. In this study, we undertook a series of pot-based biodegradation experiments on soil from a petroleum refinery lagoon heavily polluted with aliphatic hydrocarbons (81.6 ± 2.5 g·kg−1 dry weight) and metals. Periodical bioaugmentation with either a mixture of isolated degraders identified as Bacillus sp. and Ochrobactrum sp. or biostimulation with nutrient medium, singly or in combination, did not produce any significant decrease in hydrocarbons, even after 455 days. Inoculation with Gordonia rubripertincta CWB2 and Rhodococcus erythropolis S43 in iron-limited media, however, resulted in a significant decrease in hydrocarbons 45 days after bioaugmentation. These actinobacterial strains, therefore, show significant potential for bioremediation of such highly polluted soils.
Collapse
|
24
|
Su Q, Xu G, Guan T, Que Y, Lu H. Mass spectrometry-derived systems biology technologies delineate the system's biochemical applications of siderophores. MASS SPECTROMETRY REVIEWS 2018; 37:188-201. [PMID: 27579891 DOI: 10.1002/mas.21513] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/13/2016] [Indexed: 06/06/2023]
Abstract
Siderophores are chemically diverse secondary metabolites that primarily assist the host organisms to chelate iron. Siderophores are biosynthesized by many biological organisms, including bacteria, fungi, and plants and they are responsible for a variety of biological functions beyond capture iron. Thus, they could provide a novel understanding of host-pathogen interactions, plant physiology, disease pathogenesis, and drug development. However, knowledge gaps in analytical technologies, chemistry, and biology have severely impeded the applications of siderophores, and a new strategy is urgently needed to bridge these gaps. Mass spectrometry (MS) and associated technologies render unparalleled advantages in this niche in terms of high throughput, resolution, and sensitivity. Herein, this critical review briefly summarizes progress in the study of siderophores and specifically identifies MS-based novel strategies that attempt to mimic the complexity of siderophore systems in order to increase the applicability of these compounds in the scientific community. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 37:188-201, 2018.
Collapse
Affiliation(s)
- Qiao Su
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
- The Laboratory for Functional Omics and Innovative Chinese Medicine, Innovative Drug Research Center, Chongqing University, Chongqing, 401331, P.R. China
| | - Guang Xu
- The Laboratory for Functional Omics and Innovative Chinese Medicine, Innovative Drug Research Center, Chongqing University, Chongqing, 401331, P.R. China
| | - Tianbing Guan
- The Laboratory for Functional Omics and Innovative Chinese Medicine, Innovative Drug Research Center, Chongqing University, Chongqing, 401331, P.R. China
| | - Yumei Que
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
- The Laboratory for Functional Omics and Innovative Chinese Medicine, Innovative Drug Research Center, Chongqing University, Chongqing, 401331, P.R. China
| | - Haitao Lu
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
- The Laboratory for Functional Omics and Innovative Chinese Medicine, Innovative Drug Research Center, Chongqing University, Chongqing, 401331, P.R. China
| |
Collapse
|
25
|
Ceniceros A, Dijkhuizen L, Petrusma M, Medema MH. Genome-based exploration of the specialized metabolic capacities of the genus Rhodococcus. BMC Genomics 2017; 18:593. [PMID: 28793878 PMCID: PMC5550956 DOI: 10.1186/s12864-017-3966-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/27/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Bacteria of the genus Rhodococcus are well known for their ability to degrade a large range of organic compounds. Some rhodococci are free-living, saprophytic bacteria; others are animal and plant pathogens. Recently, several studies have shown that their genomes encode putative pathways for the synthesis of a large number of specialized metabolites that are likely to be involved in microbe-microbe and host-microbe interactions. To systematically explore the specialized metabolic potential of this genus, we here performed a comprehensive analysis of the biosynthetic coding capacity across publicly available rhododoccal genomes, and compared these with those of several Mycobacterium strains as well as that of their mutual close relative Amycolicicoccus subflavus. RESULTS Comparative genomic analysis shows that most predicted biosynthetic gene cluster families in these strains are clade-specific and lack any homology with gene clusters encoding the production of known natural products. Interestingly, many of these clusters appear to encode the biosynthesis of lipopeptides, which may play key roles in the diverse environments were rhodococci thrive, by acting as biosurfactants, pathogenicity factors or antimicrobials. We also identified several gene cluster families that are universally shared among all three genera, which therefore may have a more 'primary' role in their physiology. Inactivation of these clusters by mutagenesis might help to generate weaker strains that can be used as live vaccines. CONCLUSIONS The genus Rhodococcus thus provides an interesting target for natural product discovery, in view of its large and mostly uncharacterized biosynthetic repertoire, its relatively fast growth and the availability of effective genetic tools for its genomic modification.
Collapse
Affiliation(s)
- Ana Ceniceros
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747, AG, Groningen, The Netherlands
| | - Lubbert Dijkhuizen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747, AG, Groningen, The Netherlands.
| | - Mirjan Petrusma
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747, AG, Groningen, The Netherlands
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands.
| |
Collapse
|
26
|
Matsui T, Nishino T. Transposon-mediated random gene disruption with moderate halophilic bacteria and its application for halophilic bacterial siderophore analysis. J Basic Microbiol 2016; 56:1354-1359. [DOI: 10.1002/jobm.201600121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/20/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Toru Matsui
- School of Bioscience and Biotechnology; Tokyo University of Technology; 1404 Katakura, Hachioji Tokyo 192-0982 Japan
| | - Tomohiko Nishino
- School of Bioscience and Biotechnology; Tokyo University of Technology; 1404 Katakura, Hachioji Tokyo 192-0982 Japan
| |
Collapse
|
27
|
Identification and characterization of a FAD-dependent putrescine N-hydroxylase (GorA) from Gordonia rubripertincta CWB2. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Berlinck RGS, Romminger S. The chemistry and biology of guanidine natural products. Nat Prod Rep 2016; 33:456-90. [DOI: 10.1039/c5np00108k] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The present review discusses the isolation, structure determination, synthesis, biosynthesis and biological activities of secondary metabolites bearing a guanidine group.
Collapse
Affiliation(s)
| | - Stelamar Romminger
- Instituto de Química de São Carlos
- Universidade de São Paulo
- São Carlos
- Brazil
| |
Collapse
|
29
|
Fazary AE, Ju YH, Al-Shihri AS, Alfaifi MY, Alshehri MA. Biodegradable siderophores: survey on their production, chelating and complexing properties. REV INORG CHEM 2016. [DOI: 10.1515/revic-2016-0002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe academic and industrial research on the interactions of complexing agents with the environment has received more attention for more than half a century ago and has always been concerned with the applications of chelating agents in the environment. In contrast, in recent years, an increasing scholarly interest has been demonstrated in the chemical and biological degradation of chelating agents. This is reflected by the increasing number of chelating agents-related publications between 1950 and middle of 2016. Consequently, the discovery of new green biodegradable chelating agents is of great importance and has an impact in the non-biodegradable chelating agent’s replacement with their green chemistry analogs. To acquire iron, many bacteria growing aerobically, including marine species, produce siderophores, which are low-molecular-weight compounds produced to facilitate acquisition of iron. To date and to the best of our knowledge, this is a concise and complete review article of the current and previous relevant studies conducted in the field of production, purification of siderophore compounds and their metal complexes, and their roles in biology and medicine.
Collapse
|
30
|
Metabolic responses of Rhodococcus erythropolis PR4 grown on diesel oil and various hydrocarbons. Appl Microbiol Biotechnol 2015; 99:9745-59. [DOI: 10.1007/s00253-015-6936-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/07/2015] [Accepted: 08/11/2015] [Indexed: 10/23/2022]
|
31
|
Kishimoto S, Nishimura S, Hatano M, Igarashi M, Kakeya H. Total Synthesis and Antimicrobial Activity of Chlorocatechelin A. J Org Chem 2015; 80:6076-82. [DOI: 10.1021/acs.joc.5b00532] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shinji Kishimoto
- Department
of System Chemotherapy and Molecular Sciences, Division of Bioinformatics
and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shinichi Nishimura
- Department
of System Chemotherapy and Molecular Sciences, Division of Bioinformatics
and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masaki Hatano
- Institute of Microbial
Chemistry (BIKAKEN), Kamiosaki, Shinagawa-ku,
Tokyo 141-0021, Japan
| | - Masayuki Igarashi
- Institute of Microbial
Chemistry (BIKAKEN), Kamiosaki, Shinagawa-ku,
Tokyo 141-0021, Japan
| | - Hideaki Kakeya
- Department
of System Chemotherapy and Molecular Sciences, Division of Bioinformatics
and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
32
|
Wannoussa W, Masy T, Lambert SD, Heinrichs B, Tasseroul L, Al-Ahmad A, Weekers F, Thonar P, Hiligsmann S. Effect of Iron Nanoparticles Synthesized by a Sol-Gel Process on <i>Rhodococcus erythropolis</i> T902.1 for Biphenyl Degradation. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/jwarp.2015.73021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Kishimoto S, Nishimura S, Hattori A, Tsujimoto M, Hatano M, Igarashi M, Kakeya H. Chlorocatechelins A and B from Streptomyces sp.: new siderophores containing chlorinated catecholate groups and an acylguanidine structure. Org Lett 2014; 16:6108-11. [PMID: 25408968 DOI: 10.1021/ol502964s] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two novel siderophores, chlorocatechelins A and B, were isolated from a culture broth of Streptomyces sp. Their structures were determined by spectroscopic analysis and degradation study. They contain chloro-substituted catecholate that has not been reported in natural products, whereas this group was conjugated to guanidine to form acylguanidine in chlorocatechelin A. This acylguanidine decomposed in weakly acidic solutions to furnish a less potent siderophore chlorocatechelin B. Chemical and biological insights into acylguanidine are also discussed.
Collapse
Affiliation(s)
- Shinji Kishimoto
- †Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shinichi Nishimura
- †Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Akira Hattori
- †Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masafumi Tsujimoto
- ‡Faculty of Pharmaceutical Sciences, Teikyo-Heisei University, Nakano-ku, Tokyo 164-8530, Japan
| | - Masaki Hatano
- §Institute of Microbial Chemistry, Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Masayuki Igarashi
- §Institute of Microbial Chemistry, Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Hideaki Kakeya
- †Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
34
|
Bosello M, Zeyadi M, Kraas FI, Linne U, Xie X, Marahiel MA. Structural characterization of the heterobactin siderophores from Rhodococcus erythropolis PR4 and elucidation of their biosynthetic machinery. JOURNAL OF NATURAL PRODUCTS 2013; 76:2282-2290. [PMID: 24274668 DOI: 10.1021/np4006579] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In this study, the isolation, the structural characterization, and the elucidation of the biosynthetic origin of heterobactins, catecholate-hydroxamate mixed-type siderophores from Rhodococcus erythropolis PR4, are reported. The structure elucidation of heterobactin A was accomplished via MS(n) analysis and NMR spectroscopy and revealed the noteworthy presence of a peptide bond between the guanidine group of an arginine residue and a 2,3-dihydroxybenzoate moiety. The two heterobactin S1 and S2 variants are derivatives of heterobactin A that have sulfonation modifications on the aromatic rings. The bioinformatic analysis of the R. erythropolis PR4 genome and the subsequent genetic and biochemical characterization of the putative biosynthetic machinery identified the gene cluster responsible for the biosynthesis of the heterobactins. Interestingly, the HtbG NRPS presents an unprecedented C-PCP-A domain organization within the second module of the synthetase that may help the correct elongation of the peptide intermediate. Finally, the present work revises the structure of heterobactin A that was described by Carrano et al. in 2001.
Collapse
Affiliation(s)
- Mattia Bosello
- Biochemistry, Department of Chemistry, Philipps-University Marburg , Hans-Meerwein-Strasse D-35043 Marburg, Germany
| | | | | | | | | | | |
Collapse
|
35
|
The hydroxamate siderophore rhequichelin is required for virulence of the pathogenic actinomycete Rhodococcus equi. Infect Immun 2012; 80:4106-14. [PMID: 22966042 DOI: 10.1128/iai.00678-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We previously showed that the facultative intracellular pathogen Rhodococcus equi produces a nondiffusible and catecholate-containing siderophore (rhequibactin) involved in iron acquisition during saprophytic growth. Here, we provide evidence that the rhbABCDE cluster directs the biosynthesis of a hydroxamate siderophore, rhequichelin, that plays a key role in virulence. The rhbC gene encodes a nonribosomal peptide synthetase that is predicted to produce a tetrapeptide consisting of N(5)-formyl-N(5)-hydroxyornithine, serine, N(5)-hydroxyornithine, and N(5)-acyl-N(5)-hydroxyornithine. The other rhb genes encode putative tailoring enzymes mediating modification of ornithine residues incorporated into the hydroxamate product of RhbC. Transcription of rhbC was upregulated during growth in iron-depleted medium, suggesting that it plays a role in iron acquisition. This was confirmed by deletion of rhbCD, rendering the resulting strain R. equi SID2 unable to grow in the presence of the iron chelator 2,2-dipyridyl. Supernatant of the wild-type strain rescued the phenotype of R. equi SID2. The importance of rhequichelin in virulence was highlighted by the rapid increase in transcription levels of rhbC following infection and the inability of R. equi SID2 to grow within macrophages. Unlike the wild-type strain, R. equi SID2 was unable to replicate in vivo and was rapidly cleared from the lungs of infected mice. Rhequichelin is thus a key virulence-associated factor, although nonpathogenic Rhodococcus species also appear to produce rhequichelin or a structurally closely related compound. Rhequichelin biosynthesis may therefore be considered an example of cooption of a core actinobacterial trait in the evolution of R. equi virulence.
Collapse
|
36
|
Lee J, Postmaster A, Soon HP, Keast D, Carson KC. Siderophore production by actinomycetes isolates from two soil sites in Western Australia. Biometals 2011; 25:285-96. [PMID: 22038645 DOI: 10.1007/s10534-011-9503-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 10/15/2011] [Indexed: 11/28/2022]
Abstract
The actinomycetes are metabolically flexible soil micro-organisms capable of producing a range of compounds of interest, including siderophores. Siderophore production by actinomycetes sampled from two distinct and separate geographical sites in Western Australia were investigated and found to be generally similar in the total percentage of siderophore producers found. The only notable difference was the proportion of isolates producing catechol siderophores with only 3% found in site 1 (from the north-west of Western Australia and reportedly containing 40% magnetite) and 17% in site 2 (a commercial stone fruit orchard in the hills east of Perth with a soil base ranging from sandy loam to laterite). Further detailed characterization of isolates of interest identified a Streptomyces that produced extracellularly excreted enterobactin, the characteristic Enterobacteriaceae siderophore, and also revealed some of the conditions required for enterobactin production. Carriage of the entF gene, which codes for the synthetase responsible for the final assembly of the tri-cyclic structure of enterobactin, was confirmed by PCR in this isolate. Another separate Streptomyces produced a compound that matched the UV/VIS spectra of heterobactin, a siderophore previously only described in Rhodococcus and Nocardia.
Collapse
Affiliation(s)
- Joanna Lee
- Discipline of Microbiology and Infectious Diseases, PathWest Laboratory Medicine WA, QEII Medical Center, Nedlands, WA, Australia
| | | | | | | | | |
Collapse
|
37
|
Bergeron RJ, Singh S, Bharti N. Synthesis of Heterobactins A and B and Nocardia Heterobactin. Tetrahedron 2011; 67:3163-3169. [PMID: 22539866 PMCID: PMC3334306 DOI: 10.1016/j.tet.2011.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The synthesis of the Rhodococcus erythropolis siderophores heterobactins A and B, and the structurally related Nocardia heterobactin, is described. Two approaches for the assembly of these asymmetric ligand donor chelators are explored. In the first approach, a scheme predicated on the biosynthesis of the Paracoccus denitrificans siderophore, parabactin, is employed. In this approach, the central donor synthon is added last. In the second scheme, the central donor and the terminal 2,3-dihydroxybenzoyl fragment are first fixed to the ligand's D-ornithine backbone. This is followed by condensation with the cyclic ornithine hydroxamate glycine segment. The schemes offer a flexible approach to other heterobactins. Job's plots suggest that heterobactin A and Nocardia heterobactin form 1:1 ligand/metal complexes, while heterobactin B forms a 3:2 ligand/metal complex.
Collapse
Affiliation(s)
- Raymond J Bergeron
- Box 100485, Department of Medicinal Chemistry, University of Florida, Gainesville, FL, 32610-0485
| | | | | |
Collapse
|
38
|
Bosello M, Robbel L, Linne U, Xie X, Marahiel MA. Biosynthesis of the siderophore rhodochelin requires the coordinated expression of three independent gene clusters in Rhodococcus jostii RHA1. J Am Chem Soc 2011; 133:4587-95. [PMID: 21381663 DOI: 10.1021/ja1109453] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work we report the isolation, structural characterization, and the genetic analysis of the biosynthetic origin of rhodochelin, a unique mixed-type catecholate-hydroxamate siderophore isolated from Rhodococcus jostii RHA1. Rhodochelin structural elucidation was accomplished via MS(n)- and NMR-analysis and revealed the tetrapeptide to contain an unusual ester bond between an L-δ-N-formyl-δ-N-hydroxyornithine moiety and the side chain of a threonine residue. Gene deletions within three putative biosynthetic gene clusters abolish rhodochelin production, proving that the ORFs responsible for rhodochelin biosynthesis are located in different chromosomal loci. These results demonstrate the efficient cross-talk between distantly located secondary metabolite gene clusters and outline new insights into the comprehension of natural product biosynthesis.
Collapse
Affiliation(s)
- Mattia Bosello
- Biochemistry, Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Strasse D-35043 Marburg, Germany
| | | | | | | | | |
Collapse
|
39
|
Harrington JM, Park H, Ying Y, Hong J, Crumbliss AL. Characterization of Fe(iii) sequestration by an analog of the cytotoxic siderophore brasilibactin A: Implications for the iron transport mechanism in mycobacteria. Metallomics 2011; 3:464-71. [DOI: 10.1039/c0mt00109k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
|
41
|
Mukai A, Komaki H, Takagi M, Shin-ya K. Novel siderophore, JBIR-16, isolated from Nocardia tenerifensis NBRC 101015. J Antibiot (Tokyo) 2009; 62:601-3. [DOI: 10.1038/ja.2009.84] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
The intracellular pathogen Rhodococcus equi produces a catecholate siderophore required for saprophytic growth. J Bacteriol 2007; 190:1631-7. [PMID: 18156254 DOI: 10.1128/jb.01570-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Little is known about the iron acquisition systems of the soilborne facultative intracellular pathogen Rhodococcus equi. We previously reported that expression of iupABC, encoding a putative siderophore ABC transporter system, is iron regulated and required for growth at low iron concentrations. Here we show that disruption of iupA leads to the concomitant accumulation of catecholates and a chromophore with absorption maxima at 341 and 528 nm during growth under iron-replete conditions. In contrast, the wild-type strain produces these compounds only in iron-depleted medium. Disruption of iupU and iupS, encoding nonribosomal peptide synthetases, prevented growth of the corresponding R. equi SID1 and SID3 mutants at low iron concentrations. However, only R. equi SID3 did not produce the chromophore produced by the wild-type strain during growth at low iron concentrations. The phenotype of R. equi SID3, but not that of R. equi SID1, could be rescued by coculture with the wild type, allowing growth at low iron concentrations. This strongly suggests that the product of the iupS gene is responsible for the synthesis of a diffusible compound required for growth at low iron concentrations. Transcription of iupU was constitutive, but that of iupS was iron regulated, with an induction of 3 orders of magnitude during growth in iron-depleted compared to iron-replete medium. Neither mutant was attenuated in vivo in a mouse infection model, indicating that the iupU- and iupS-encoded iron acquisition systems are primarily involved in iron uptake during saprophytic life.
Collapse
|
43
|
Abstract
High-affinity iron acquisition is mediated by siderophore-dependent pathways in the majority of pathogenic and nonpathogenic bacteria and fungi. Considerable progress has been made in characterizing and understanding mechanisms of siderophore synthesis, secretion, iron scavenging, and siderophore-delivered iron uptake and its release. The regulation of siderophore pathways reveals multilayer networks at the transcriptional and posttranscriptional levels. Due to the key role of many siderophores during virulence, coevolution led to sophisticated strategies of siderophore neutralization by mammals and (re)utilization by bacterial pathogens. Surprisingly, hosts also developed essential siderophore-based iron delivery and cell conversion pathways, which are of interest for diagnostic and therapeutic studies. In the last decades, natural and synthetic compounds have gained attention as potential therapeutics for iron-dependent treatment of infections and further diseases. Promising results for pathogen inhibition were obtained with various siderophore-antibiotic conjugates acting as "Trojan horse" toxins and siderophore pathway inhibitors. In this article, general aspects of siderophore-mediated iron acquisition, recent findings regarding iron-related pathogen-host interactions, and current strategies for iron-dependent pathogen control will be reviewed. Further concepts including the inhibition of novel siderophore pathway targets are discussed.
Collapse
Affiliation(s)
- Marcus Miethke
- Philipps Universität Marburg, FB Chemie Biochemie, Hans Meerwein Strasse, D-35032 Marburg, Germany
| | | |
Collapse
|
44
|
Dhungana S, Michalczyk R, Boukhalfa H, Lack JG, Koppisch AT, Fairlee JM, Johnson MT, Ruggiero CE, John SG, Cox MM, Browder CC, Forsythe JH, Vanderberg LA, Neu MP, Hersman LE. Purification and characterization of rhodobactin: a mixed ligand siderophore from Rhodococcus rhodochrous strain OFS. Biometals 2007; 20:853-67. [PMID: 17273817 DOI: 10.1007/s10534-006-9079-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 12/22/2006] [Indexed: 11/24/2022]
Abstract
The siderophore produced by Rhodococcus rhodochrous strain OFS, rhodobactin, was isolated from iron-deficient cultures and purified by a combination of XAD-7 absorptive/partition resin column and semi-preparative HPLC. The siderophore structure was characterized using 1D and 2D (1)H, (13)C and (15)N NMR techniques (DQFCOSY, TOCSY, NOESY, HSQC and LR-HSQC) and was confirmed using ESI-MS and MS/MS experiments. The structural characterization revealed that the siderophore, rhodobactin, is a mixed ligand hexadentate siderophore with two catecholate and one hydroxamate moieties for iron chelation. We further investigated the effects of Fe concentrations on siderophore production and found that Fe limiting conditions (Fe concentrations from 0.1 microM to 2.0 microM) facilitated siderophore excretion. Our interests lie in the role that siderophores may have in binding metals at mixed contamination sites (containing metals/radionuclides and organics). Given the broad metabolic capacity of this microbe and its Fe scavenging ability, R. rhodochrous OFS may have a competitive advantage over other organisms employed in bioremediation.
Collapse
Affiliation(s)
- Suraj Dhungana
- Bioscience, Los Alamos National Laboratory, Mail Stop M888, Los Alamos, NM 87545, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ferraroni M, Kolomytseva MP, Solyanikova IP, Scozzafava A, Golovleva LA, Briganti F. Crystal structure of 3-chlorocatechol 1,2-dioxygenase key enzyme of a new modified ortho-pathway from the Gram-positive Rhodococcus opacus 1CP grown on 2-chlorophenol. J Mol Biol 2006; 360:788-99. [PMID: 16793061 DOI: 10.1016/j.jmb.2006.05.046] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 05/15/2006] [Accepted: 05/18/2006] [Indexed: 11/18/2022]
Abstract
The crystal structure of the 3-chlorocatechol 1,2-dioxygenase from the Gram-positive bacterium Rhodococcus opacus (erythropolis) 1CP, a Fe(III) ion-containing enzyme specialized in the aerobic biodegradation of 3-chloro- and methyl-substituted catechols, has been solved by molecular replacement techniques using the coordinates of 4-chlorocatechol 1,2-dioxygenase from the same organism (PDB code 1S9A) as a starting model and refined at 1.9 A resolution (R(free) 21.9%; R-factor 17.4%). The analysis of the structure and of the kinetic parameters for a series of different substrates, and the comparison with the corresponding data for the 4-chlorocatechol 1,2-dioxygenase isolated from the same bacterial strain, provides evidence of which active site residues are responsible for the observed differences in substrate specificity. Among the amino acid residues expected to interact with substrates, only three are altered Val53(Ala53), Tyr78(Phe78) and Ala221(Cys224) (3-chlorocatechol 1,2-dioxygenase(4-chlorocatechol 1,2-dioxygenase)), clearly identifying the substitutions influencing substrate selectivity in these enzymes. The crystallographic asymmetric unit contains eight subunits (corresponding to four dimers) that show heterogeneity in the conformation of a co-crystallized molecule bound to the catalytic non-heme iron(III) ion resembling a benzohydroxamate moiety, probably a result of the breakdown of recently discovered siderophores synthesized by Gram-positive bacteria. Several different modes of binding benzohydroxamate into the active site induce distinct conformations of the interacting protein ligands Tyr167 and Arg188, illustrating the plasticity of the active site origin of the more promiscuous substrate preferences of the present enzyme.
Collapse
Affiliation(s)
- Marta Ferraroni
- Dipartimento di Chimica, Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy
| | | | | | | | | | | |
Collapse
|
46
|
Grass G. Iron Transport in Escherichia Coli: All has not been said and Done. Biometals 2006; 19:159-72. [PMID: 16718601 DOI: 10.1007/s10534-005-4341-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Accepted: 10/24/2005] [Indexed: 11/30/2022]
Abstract
During recent years new systems involved in iron transport were identified in the old workhorse Escherichia coli (and in other enterobacteria). This came as a bit of a surprise because one might think transport of this essential trace element was already thoroughly studied. Moreover, it appears that iron homeostasis consists not only of uptake but also of efflux of this potentially toxic redox-active metal. New findings in E. coli will be discussed and compared to the situation in other bacteria.
Collapse
Affiliation(s)
- Gregor Grass
- Institut für Mikrobiologie, Martin-Luther-Universität Halle, Kurt-Mothes-Str. 3, 06120, Halle, Germany.
| |
Collapse
|
47
|
Miranda-Casoluengo R, Duffy PS, O'Connell EP, Graham BJ, Mangan MW, Prescott JF, Meijer WG. The iron-regulated iupABC operon is required for saprophytic growth of the intracellular pathogen Rhodococcus equi at low iron concentrations. J Bacteriol 2005; 187:3438-44. [PMID: 15866930 PMCID: PMC1112021 DOI: 10.1128/jb.187.10.3438-3444.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Accepted: 02/09/2005] [Indexed: 11/20/2022] Open
Abstract
Rhodococcus equi is a facultative intracellular pathogen which proliferates rapidly in both manure-enriched soil and alveolar macrophages. Although both environments are characterized by extremely low concentrations of free iron, very little is known regarding the strategies employed by R. equi to thrive under these conditions. This paper reports the characterization of an R. equi transposome mutant that fails to grow at low iron concentrations. The transposome was shown to be inserted into iupA, the first gene of the iupABC operon encoding an ABC transport system highly similar to siderophore uptake systems. Disruption of the iupA gene also resulted in a failure of R. equi to utilize heme and hemoglobin as a source of iron. Introduction of the iupABC operon in trans restored the wild-type phenotype of the mutant strain. iupABC transcripts were 180-fold more abundant in R. equi grown in iron-depleted medium than in organisms grown in iron-replete medium. Proliferation of the iupABC mutant strain in macrophages was comparable to that of the wild-type strain. Furthermore, the iupABC mutant was not attenuated in mice, showing that the iupABC operon is not required for virulence.
Collapse
Affiliation(s)
- Raúl Miranda-Casoluengo
- Department of Industrial Microbiology, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland
| | | | | | | | | | | | | |
Collapse
|
48
|
Hayen H, Volmer DA. Rapid identification of siderophores by combined thin-layer chromatography/matrix-assisted laser desorption/ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2005; 19:711-720. [PMID: 15700233 DOI: 10.1002/rcm.1837] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The investigation of a combined thin-layer chromatography/matrix-assisted laser desorption/ionization mass spectrometry (TLC/MALDI-MS) method for the analysis of siderophores from microbial samples is described. The investigated siderophores were enterobactin, ferrioxamine B, ferrichrome, ferrirhodin, rhodotorulic acid and coprogen. Solid-phase extraction was employed to recover the siderophores from the microbial samples. After visualization of the spots via spraying with ferric chloride or chrome azurol sulfonate assay solution, the MALDI matrix was applied to the gel surface. Several TLC/MALDI experimental parameters were optimized, such as type and concentration of MALDI matrix, as well as the type and composition of solvent to facilitate analyte transport from the inside of the TLC gel to the surface. The impact of these parameters on sensitivity, precision and ion formation of the various siderophores was studied. The detection limits for the investigated siderophores were in the range 1-4 pmol. These values were about 4-24 times higher than the detection limits obtained directly from stainless steel MALDI targets. The differences were most likely due to incomplete transport of the 'trapped' analyte molecules from the deeper layers of the TLC gel to the surface and into the matrix layer. In addition, chromatographic band broadening spread the analyte further in TLC as compared with the steel plates, resulting in less analyte per surface area. The identification of the siderophores was aided by concurrently applying a Ga(III) nitrate solution to the TLC plate during the visualization step. The resulting formation of Ga(III) complexes lead to distinctive (69)Ga/(71)Ga isotope patterns in the mass spectra. The versatility of the TLC/MALDI-MS assay was demonstrated by using it to analyze siderophores in a Pseudomonas aeruginosa sample. An iron-binding compound was identified in the sample, namely pyochelin (2-(2-o-hydroxyphenyl-2-thiazolin-4-yl)-3-methylthiazolidine-4-carboxylic acid).
Collapse
Affiliation(s)
- Heiko Hayen
- Institute for Marine Biosciences, National Research Council, 1411 Oxford Street, Halifax, Nova Scotia B3H 3Z1, Canada
| | | |
Collapse
|
49
|
Martinez JS, Carter-Franklin JN, Mann EL, Martin JD, Haygood MG, Butler A. Structure and membrane affinity of a suite of amphiphilic siderophores produced by a marine bacterium. Proc Natl Acad Sci U S A 2003; 100:3754-9. [PMID: 12651947 PMCID: PMC152994 DOI: 10.1073/pnas.0637444100] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2002] [Indexed: 11/18/2022] Open
Abstract
Iron concentrations in the ocean are low enough to limit the growth of marine microorganisms, which raises questions about the molecular mechanisms these organisms use to acquire iron. Marine bacteria have been shown to produce siderophores to facilitate iron(III) uptake. We describe the structures of a suite of amphiphilic siderophores, named the amphibactins, which are produced by a nearshore isolate, gamma Proteobacterium, Vibrio sp. R-10. Each amphibactin has the same Tris-hydroxamate-containing peptidic headgroup composed of three ornithine residues and one serine residue but differs in the acyl appendage, which ranges from C-14 to C-18 and varies in the degree of saturation and hydroxylation. Although amphiphilic siderophores are relatively rare, cell-associated amphiphilic siderophores are even less common. We find that the amphibactins are cell-associated siderophores. As a result of the variation in the nature of the fatty acid appendage and the cellular location of the amphibactins, the membrane partitioning of these siderophores was investigated. The physiological mixture of amphibactins had a range of membrane affinities (3.8 x 10(3) to 8.3 x 10(2) M(-1)) that are larger overall than other amphiphilic siderophores, likely accounting for their cell association. This cell association is likely an important defense against siderophore diffusion in the oceanic environment. The phylogenetic affiliation of Vibrio sp. R-10 is discussed, as well as the observed predominance of amphiphilic siderophores produced by marine bacteria in contrast to those produced by terrestrial bacteria.
Collapse
Affiliation(s)
- Jennifer S Martinez
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106-9510, USA
| | | | | | | | | | | |
Collapse
|