1
|
Sohail SH, Sohoni S, Ting PC, Fantz LR, Abdulhadi SM, MacGregor-Chatwin C, Hitchcock A, Hunter CN, Engel GS, Massey SC. Functional Connectivity of Red Chlorophylls in Cyanobacterial Photosystem I Revealed by Fluence-Dependent Transient Absorption. J Phys Chem B 2025; 129:3191-3197. [PMID: 40100810 PMCID: PMC11956136 DOI: 10.1021/acs.jpcb.5c00198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 03/20/2025]
Abstract
External stressors modulate the oligomerization state of photosystem I (PSI) in cyanobacteria. The number of red chlorophylls (Chls), pigments lower in energy than the P700 reaction center, depends on the oligomerization state of PSI. Here, we use ultrafast transient absorption spectroscopy to interrogate the effective connectivity of the red Chls in excitonic energy pathways in trimeric PSI in native thylakoid membranes of the model cyanobacterium Synechocystis sp. PCC 6803, including emergent dynamics, as red Chls increase in number and proximity. Fluence-dependent dynamics indicate singlet-singlet annihilation within energetically connected red Chl sites in the PSI antenna but not within bulk Chl sites on the picosecond time scale. These data support picosecond energy transfer between energetically connected red Chl sites as the physical basis of singlet-singlet annihilation. The time scale of this energy transfer is faster than predicted by Förster resonance energy transfer calculations, raising questions about the physical mechanism of the process. Our results indicate distinct strategies to steer excitations through the PSI antenna; the red Chls present a shallow reservoir that direct excitations away from P700, extending the time to trapping by the reaction center.
Collapse
Affiliation(s)
- Sara H. Sohail
- Department
of Chemistry, Institute for Biophysical
Dynamics, the James Franck Institute, and the Pritzker School for
Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
- Laboratory
of Chemical Physics, National Institute
of Diabetes, and Digestive, and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United States
- Department
of Chemistry and Biochemistry, Swarthmore
College, Swarthmore, Pennsylvania 19081, United States
| | - Siddhartha Sohoni
- Department
of Chemistry, Institute for Biophysical
Dynamics, the James Franck Institute, and the Pritzker School for
Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Po-Chieh Ting
- Department
of Chemistry, Institute for Biophysical
Dynamics, the James Franck Institute, and the Pritzker School for
Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Lexi R. Fantz
- Department
of Chemistry and Biochemistry, Southwestern
University, Georgetown, Texas 78626, United States
| | - Sami M. Abdulhadi
- Department
of Chemistry, Institute for Biophysical
Dynamics, the James Franck Institute, and the Pritzker School for
Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | | | - Andrew Hitchcock
- School
of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K.
| | - C. Neil Hunter
- School
of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K.
| | - Gregory S. Engel
- Department
of Chemistry, Institute for Biophysical
Dynamics, the James Franck Institute, and the Pritzker School for
Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Sara C. Massey
- Department
of Chemistry and Biochemistry, Southwestern
University, Georgetown, Texas 78626, United States
| |
Collapse
|
2
|
Luo L, Martin AP, Tandoh EK, Chistoserdov A, Slipchenko LV, Savikhin S, Xu W. Impact of Peripheral Hydrogen Bond on Electronic Properties of the Primary Acceptor Chlorophyll in the Reaction Center of Photosystem I. Int J Mol Sci 2024; 25:4815. [PMID: 38732034 PMCID: PMC11084960 DOI: 10.3390/ijms25094815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Photosystem I (PS I) is a photosynthetic pigment-protein complex that absorbs light and uses the absorbed energy to initiate electron transfer. Electron transfer has been shown to occur concurrently along two (A- and B-) branches of reaction center (RC) cofactors. The electron transfer chain originates from a special pair of chlorophyll a molecules (P700), followed by two chlorophylls and one phylloquinone in each branch (denoted as A-1, A0, A1, respectively), converging in a single iron-sulfur complex Fx. While there is a consensus that the ultimate electron donor-acceptor pair is P700+A0-, the involvement of A-1 in electron transfer, as well as the mechanism of the very first step in the charge separation sequence, has been under debate. To resolve this question, multiple groups have targeted electron transfer cofactors by site-directed mutations. In this work, the peripheral hydrogen bonds to keto groups of A0 chlorophylls have been disrupted by mutagenesis. Four mutants were generated: PsaA-Y692F; PsaB-Y667F; PsaB-Y667A; and a double mutant PsaA-Y692F/PsaB-Y667F. Contrary to expectations, but in agreement with density functional theory modeling, the removal of the hydrogen bond by Tyr → Phe substitution was found to have a negligible effect on redox potentials and optical absorption spectra of respective chlorophylls. In contrast, Tyr → Ala substitution was shown to have a fatal effect on the PS I function. It is thus inferred that PsaA-Y692 and PsaB-Y667 residues have primarily structural significance, and their ability to coordinate respective chlorophylls in electron transfer via hydrogen bond plays a minor role.
Collapse
Affiliation(s)
- Lujun Luo
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, USA; (L.L.)
| | - Antoine P. Martin
- Department of Physics, Purdue University, West Lafayette, IN 47907, USA
| | - Elijah K. Tandoh
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, USA; (L.L.)
| | - Andrei Chistoserdov
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | | | - Sergei Savikhin
- Department of Physics, Purdue University, West Lafayette, IN 47907, USA
| | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, USA; (L.L.)
| |
Collapse
|
3
|
Cherepanov DA, Semenov AY, Mamedov MD, Aybush AV, Gostev FE, Shelaev IV, Shuvalov VA, Nadtochenko VA. Current state of the primary charge separation mechanism in photosystem I of cyanobacteria. Biophys Rev 2022; 14:805-820. [PMID: 36124265 PMCID: PMC9481807 DOI: 10.1007/s12551-022-00983-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/10/2022] [Indexed: 11/24/2022] Open
Abstract
This review analyzes new data on the mechanism of ultrafast reactions of primary charge separation in photosystem I (PS I) of cyanobacteria obtained in the last decade by methods of femtosecond absorption spectroscopy. Cyanobacterial PS I from many species harbours 96 chlorophyll a (Chl a) molecules, including six specialized Chls denoted Chl1A/Chl1B (dimer P700, or PAPB), Chl2A/Chl2B, and Chl3A/Chl3B arranged in two branches, which participate in electron transfer reactions. The current data indicate that the primary charge separation occurs in a symmetric exciplex, where the special pair P700 is electronically coupled to the symmetrically located monomers Chl2A and Chl2B, which can be considered together as a symmetric exciplex Chl2APAPBChl2B with the mixed excited (Chl2APAPBChl2B)* and two charge-transfer states P700 +Chl2A - and P700 +Chl2B -. The redistribution of electrons between the branches in favor of the A-branch occurs after reduction of the Chl2A and Chl2B monomers. The formation of charge-transfer states and the symmetry breaking mechanisms were clarified by measuring the electrochromic Stark shift of β-carotene and the absorption dynamics of PS I complexes with the genetically altered Chl 2B or Chl 2A monomers. The review gives a brief description of the main methods for analyzing data obtained using femtosecond absorption spectroscopy. The energy levels of excited and charge-transfer intermediates arising in the cyanobacterial PS I are critically analyzed.
Collapse
Affiliation(s)
- Dmitry A. Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
| | - Alexey Yu Semenov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
- A.N. Belozersky Institute of Physical-Chemical Biology, M.V. Lomonosov Moscow State University, 119992 Leninskye gory 1 building, 40 Moscow, Russia
| | - Mahir D. Mamedov
- A.N. Belozersky Institute of Physical-Chemical Biology, M.V. Lomonosov Moscow State University, 119992 Leninskye gory 1 building, 40 Moscow, Russia
| | - Arseniy V. Aybush
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
| | - Fedor E. Gostev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
| | - Ivan V. Shelaev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
| | - Vladimir A. Shuvalov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
| | - Victor A. Nadtochenko
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, 119991, Leninskiye Gory 1-3, Moscow, Russia
| |
Collapse
|
4
|
Pamu R, Khomami B, Mukherjee D. Observation of anomalous carotenoid and blind chlorophyll activations in photosystem I under synthetic membrane confinements. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183930. [PMID: 35398026 DOI: 10.1016/j.bbamem.2022.183930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 03/27/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
The role of natural thylakoid membrane confinements in architecting the robust structural and electrochemical properties of PSI is not fully understood. Most PSI studies till date extract the proteins from their natural confinements that can lead to non-native conformations. Recently our group had successfully reconstituted PSI in synthetic lipid membranes using detergent-mediated liposome solubilizations. In this study, we investigate the alterations in chlorophylls and carotenoids interactions and reorganization in PSI based on spectral property changes induced by its confinement in anionic DPhPG and zwitterionic DPhPC phospholipid membranes. To this end, we employ a combination of absorption, fluorescence, and circular dichroism (CD) spectroscopic measurements. Our results indicate unique activation and alteration of photoresponses from the PSI carotenoid (Car) bands in PSI-DPhPG proteoliposomes that can tune the Excitation Energy Transfer (EET), otherwise absent in PSI at non-native environments. Specifically, we observe broadband light harvesting via enhanced absorption in the otherwise non-absorptive green region (500-580 nm) of the Chlorophylls (Chl) along with ~64% increase in the full-width half maximum of the Qy band (650-720 nm). The CD results indicate enhanced Chl-Chl and Chl-Car interactions along with conformational changes in protein secondary structures. Such distinct changes in the Car and Chl bands are not observed in PSI confined in DPhPC. The fundamental insights into membrane microenvironments tailoring PSI subunits reorganization and interactions provide novel strategies for tuning photoexcitation processes and rational designing of biotic-abiotic interfaces in PSI-based photoelectrochemical energy conversion systems.
Collapse
Affiliation(s)
- Ravi Pamu
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA; Nano-BioMaterials Laboratory for Energy, Energetics & Environment (nbml-E3), University of Tennessee, Knoxville, TN 37996, USA; Sustainable Energy Education and Research Center (SEERC), University of Tennessee, Knoxville, TN 37996, USA
| | - Bamin Khomami
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA; Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA; Sustainable Energy Education and Research Center (SEERC), University of Tennessee, Knoxville, TN 37996, USA.
| | - Dibyendu Mukherjee
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA; Nano-BioMaterials Laboratory for Energy, Energetics & Environment (nbml-E3), University of Tennessee, Knoxville, TN 37996, USA; Sustainable Energy Education and Research Center (SEERC), University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
5
|
Gorka M, Baldansuren A, Malnati A, Gruszecki E, Golbeck JH, Lakshmi KV. Shedding Light on Primary Donors in Photosynthetic Reaction Centers. Front Microbiol 2021; 12:735666. [PMID: 34659164 PMCID: PMC8517396 DOI: 10.3389/fmicb.2021.735666] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022] Open
Abstract
Chlorophylls (Chl)s exist in a variety of flavors and are ubiquitous in both the energy and electron transfer processes of photosynthesis. The functions they perform often occur on the ultrafast (fs-ns) time scale and until recently, these have been difficult to measure in real time. Further, the complexity of the binding pockets and the resulting protein-matrix effects that alter the respective electronic properties have rendered theoretical modeling of these states difficult. Recent advances in experimental methodology, computational modeling, and emergence of new reaction center (RC) structures have renewed interest in these processes and allowed researchers to elucidate previously ambiguous functions of Chls and related pheophytins. This is complemented by a wealth of experimental data obtained from decades of prior research. Studying the electronic properties of Chl molecules has advanced our understanding of both the nature of the primary charge separation and subsequent electron transfer processes of RCs. In this review, we examine the structures of primary electron donors in Type I and Type II RCs in relation to the vast body of spectroscopic research that has been performed on them to date. Further, we present density functional theory calculations on each oxidized primary donor to study both their electronic properties and our ability to model experimental spectroscopic data. This allows us to directly compare the electronic properties of hetero- and homodimeric RCs.
Collapse
Affiliation(s)
- Michael Gorka
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
| | - Amgalanbaatar Baldansuren
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Amanda Malnati
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Elijah Gruszecki
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - John H. Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States
| | - K. V. Lakshmi
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
6
|
Akhtar P, Caspy I, Nowakowski PJ, Malavath T, Nelson N, Tan HS, Lambrev PH. Two-Dimensional Electronic Spectroscopy of a Minimal Photosystem I Complex Reveals the Rate of Primary Charge Separation. J Am Chem Soc 2021; 143:14601-14612. [PMID: 34472838 DOI: 10.1021/jacs.1c05010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photosystem I (PSI), found in all oxygenic photosynthetic organisms, uses solar energy to drive electron transport with nearly 100% quantum efficiency, thanks to fast energy transfer among antenna chlorophylls and charge separation in the reaction center. There is no complete consensus regarding the kinetics of the elementary steps involved in the overall trapping, especially the rate of primary charge separation. In this work, we employed two-dimensional coherent electronic spectroscopy to follow the dynamics of energy and electron transfer in a monomeric PSI complex from Synechocystis PCC 6803, containing only subunits A-E, K, and M, at 77 K. We also determined the structure of the complex to 4.3 Å resolution by cryoelectron microscopy with refinements to 2.5 Å. We applied structure-based modeling using a combined Redfield-Förster theory to compute the excitation dynamics. The absorptive 2D electronic spectra revealed fast excitonic/vibronic relaxation on time scales of 50-100 fs from the high-energy side of the absorption spectrum. Antenna excitations were funneled within 1 ps to a small pool of chlorophylls absorbing around 687 nm, thereafter decaying with 4-20 ps lifetimes, independently of excitation wavelength. Redfield-Förster energy transfer computations showed that the kinetics is limited by transfer from these red-shifted pigments. The rate of primary charge separation, upon direct excitation of the reaction center, was determined to be 1.2-1.5 ps-1. This result implies activationless electron transfer in PSI.
Collapse
Affiliation(s)
- Parveen Akhtar
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Nanyang Link 21, 637371 Singapore.,Biological Research Centre, Szeged, Temesvári krt. 62, Szeged 6726, Hungary.,ELI-ALPS, ELI-HU Non-profit Ltd., Wolfgang Sandner u. 3, Szeged 6728, Hungary
| | - Ido Caspy
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Paweł J Nowakowski
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Nanyang Link 21, 637371 Singapore
| | - Tirupathi Malavath
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nathan Nelson
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Howe-Siang Tan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Nanyang Link 21, 637371 Singapore
| | - Petar H Lambrev
- Biological Research Centre, Szeged, Temesvári krt. 62, Szeged 6726, Hungary
| |
Collapse
|
7
|
Excitation energy transfer kinetics of trimeric, monomeric and subunit-depleted Photosystem I from Synechocystis PCC 6803. Biochem J 2021; 478:1333-1346. [PMID: 33687054 DOI: 10.1042/bcj20210021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 01/16/2023]
Abstract
Photosystem I is the most efficient photosynthetic enzyme with structure and composition highly conserved among all oxygenic phototrophs. Cyanobacterial Photosystem I is typically associated into trimers for reasons that are still debated. Almost universally, Photosystem I contains a number of long-wavelength-absorbing 'red' chlorophylls (Chls), that have a sizeable effect on the excitation energy transfer and trapping. Here we present spectroscopic comparison of trimeric Photosystem I from Synechocystis PCC 6803 with a monomeric complex from the ΔpsaL mutant and a 'minimal' monomeric complex ΔFIJL, containing only subunits A, B, C, D, E, K and M. The quantum yield of photochemistry at room temperature was the same in all complexes, demonstrating the functional robustness of this photosystem. The monomeric complexes had a reduced far-red absorption and emission equivalent to the loss of 1.5-2 red Chls emitting at 710-715 nm, whereas the longest-wavelength emission at 722 nm was not affected. The picosecond fluorescence kinetics at 77 K showed spectrally and kinetically distinct red Chls in all complexes and equilibration times of up to 50 ps. We found that the red Chls are not irreversible traps at 77 K but can still transfer excitations to the reaction centre, especially in the trimeric complexes. Structure-based Förster energy transfer calculations support the assignment of the lowest-energy state to the Chl pair B37/B38 and the trimer-specific red Chl emission to Chls A32/B7 located at the monomer-monomer interface. These intermediate-energy red Chls facilitate energy migration from the lowest-energy states to the reaction centre.
Collapse
|
8
|
Zamzam N, Kaucikas M, Nürnberg DJ, Rutherford AW, van Thor JJ. Femtosecond infrared spectroscopy of chlorophyll f-containing photosystem I. Phys Chem Chem Phys 2019; 21:1224-1234. [DOI: 10.1039/c8cp05627g] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Femtosecond time resolved infrared spectroscopy of far-red light grown photosystem I shows chlorophyll f contributions in light harvesting and charge separation.
Collapse
Affiliation(s)
- Noura Zamzam
- Department of Life Sciences
- Imperial College London
- London
- UK
| | | | | | | | | |
Collapse
|
9
|
Lee Y, Gorka M, Golbeck JH, Anna JM. Ultrafast Energy Transfer Involving the Red Chlorophylls of Cyanobacterial Photosystem I Probed through Two-Dimensional Electronic Spectroscopy. J Am Chem Soc 2018; 140:11631-11638. [DOI: 10.1021/jacs.8b04593] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yumin Lee
- Deparment of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, Pennsylvania 19104, United States
| | - Michael Gorka
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - John H. Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jessica M. Anna
- Deparment of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
10
|
Molotokaite E, Remelli W, Casazza AP, Zucchelli G, Polli D, Cerullo G, Santabarbara S. Trapping Dynamics in Photosystem I-Light Harvesting Complex I of Higher Plants Is Governed by the Competition Between Excited State Diffusion from Low Energy States and Photochemical Charge Separation. J Phys Chem B 2017; 121:9816-9830. [DOI: 10.1021/acs.jpcb.7b07064] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Egle Molotokaite
- Centro
Studi sulla Biologia Cellulare e Molecolare delle Piante, CNR, Via Celoria 26, 20133 Milan, Italy
| | - William Remelli
- Centro
Studi sulla Biologia Cellulare e Molecolare delle Piante, CNR, Via Celoria 26, 20133 Milan, Italy
| | - Anna Paola Casazza
- Istituto
di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15a, 20133 Milano, Italy
| | - Giuseppe Zucchelli
- Centro
Studi sulla Biologia Cellulare e Molecolare delle Piante, CNR, Via Celoria 26, 20133 Milan, Italy
| | - Dario Polli
- Istituto di Fotonica e Nanotecnologie del CNR, Dipartimento di Fisica, Politecnico di Milano, P.zza Leonardo
da Vinci 32, 20133 Milano, Italy
- Center
for Nano Science and Technology at Polimi, Istituto Italiano di Tecnologia, Via Giovanni Pascoli, 70/3, 20133 Milano, Italy
| | - Giulio Cerullo
- Istituto di Fotonica e Nanotecnologie del CNR, Dipartimento di Fisica, Politecnico di Milano, P.zza Leonardo
da Vinci 32, 20133 Milano, Italy
| | - Stefano Santabarbara
- Centro
Studi sulla Biologia Cellulare e Molecolare delle Piante, CNR, Via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
11
|
Kaucikas M, Nürnberg D, Dorlhiac G, Rutherford AW, van Thor JJ. Femtosecond Visible Transient Absorption Spectroscopy of Chlorophyll f-Containing Photosystem I. Biophys J 2017; 112:234-249. [PMID: 28122212 PMCID: PMC5266252 DOI: 10.1016/j.bpj.2016.12.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/02/2016] [Accepted: 12/01/2016] [Indexed: 01/09/2023] Open
Abstract
Photosystem I (PSI) from Chroococcidiopsis thermalis PCC 7203 grown under far-red light (FRL; >725 nm) contains both chlorophyll a and a small proportion of chlorophyll f. Here, we investigated excitation energy transfer and charge separation using this FRL-grown form of PSI (FRL-PSI). We compared femtosecond transient visible absorption changes of normal, white-light (WL)-grown PSI (WL-PSI) with those of FRL-PSI using excitation at 670 nm, 700 nm, and (in the case of FRL-PSI) 740 nm. The possibility that chlorophyll f participates in energy transfer or charge separation is discussed on the basis of spectral assignments. With selective pumping of chlorophyll f at 740 nm, we observe a final ∼150 ps decay assigned to trapping by charge separation, and the amplitude of the resulting P700+•A1-• charge-separated state indicates that the yield is directly comparable to that of WL-PSI. The kinetics shows a rapid 2 ps time constant for almost complete transfer to chlorophyll f if chlorophyll a is pumped with a wavelength of 670 nm or 700 nm. Although the physical role of chlorophyll f is best supported as a low-energy radiative trap, the physical location should be close to or potentially within the charge-separating pigments to allow efficient transfer for charge separation on the 150 ps timescale. Target models can be developed that include a branching in the formation of the charge separation for either WL-PSI or FRL-PSI.
Collapse
Affiliation(s)
- Marius Kaucikas
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Dennis Nürnberg
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Gabriel Dorlhiac
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | | - Jasper J. van Thor
- Department of Life Sciences, Imperial College London, London, United Kingdom,Corresponding author
| |
Collapse
|
12
|
Caffarri S, Tibiletti T, Jennings RC, Santabarbara S. A comparison between plant photosystem I and photosystem II architecture and functioning. Curr Protein Pept Sci 2015; 15:296-331. [PMID: 24678674 PMCID: PMC4030627 DOI: 10.2174/1389203715666140327102218] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 11/22/2013] [Accepted: 03/16/2014] [Indexed: 01/31/2023]
Abstract
Oxygenic photosynthesis is indispensable both for the development and maintenance of life on earth by converting
light energy into chemical energy and by producing molecular oxygen and consuming carbon dioxide. This latter
process has been responsible for reducing the CO2 from its very high levels in the primitive atmosphere to the present low
levels and thus reducing global temperatures to levels conducive to the development of life. Photosystem I and photosystem
II are the two multi-protein complexes that contain the pigments necessary to harvest photons and use light energy to
catalyse the primary photosynthetic endergonic reactions producing high energy compounds. Both photosystems are
highly organised membrane supercomplexes composed of a core complex, containing the reaction centre where electron
transport is initiated, and of a peripheral antenna system, which is important for light harvesting and photosynthetic activity
regulation. If on the one hand both the chemical reactions catalysed by the two photosystems and their detailed structure
are different, on the other hand they share many similarities. In this review we discuss and compare various aspects of
the organisation, functioning and regulation of plant photosystems by comparing them for similarities and differences as
obtained by structural, biochemical and spectroscopic investigations.
Collapse
Affiliation(s)
| | | | | | - Stefano Santabarbara
- Laboratoire de Génétique et de Biophysique des Plantes (LGBP), Aix-Marseille Université, Faculté des Sciences de Luminy, 163 Avenue de Luminy, 13009, Marseille, France.
| |
Collapse
|
13
|
McConnell MD, Lowry D, Rowan TN, van Dijk K, Redding KE. Purification and photobiochemical profile of photosystem 1 from a high-salt tolerant, oleaginous Chlorella (Trebouxiophycaea, Chlorophyta). Biochem Cell Biol 2015; 93:199-209. [PMID: 25600216 DOI: 10.1139/bcb-2014-0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The eukaryotic green alga Chlamydomonas reinhardtii has been studied extensively within the biofuel industry as a model organism, as researchers look towards algae to provide chemical feedstocks (i.e., lipids) for the production of liquid transportation fuels. C. reinhardtii, however, is unsuitable for high-level production of such precursors due to its relatively poor lipid accumulation and fresh-water demand. In this study we offer insight into the primary light harvesting and electron transfer reactions that occur during phototropic growth in a high-salt tolerant strain of Chlorella (a novel strain introduced here as NE1401), a single-celled eukaryotic algae also in the phylum Chlorophyta. Under nutrient starvation many eukaryotic algae increase dramatically the amount of lipids stored in lipid bodies within their cell interiors. Microscopy and lipid analyses indicate that Chlorella sp. NE1401 may become a superior candidate for algal biofuels production. We have purified highly active Photosystem 1 (PS1) complexes to study in vitro, so that we may understand further the photobiochemisty of this promising biofuel producer and how its characteristics compare and contrast with that of the better understood C. reinhardtii. Our findings suggest that the PS1 complex from Chlorella sp. NE1401 demonstrates similar characteristics to that of C. reinhardtii with respect to light-harvesting and electron transfer reactions. We also illustrate that the relative extent of the light state transition performed by Chlorella sp. NE1401 is smaller compared to C. reinhardtii, although they are triggered by the same dynamic light stresses.
Collapse
Affiliation(s)
- Michael D McConnell
- Department of Chemistry & Biochemistry and Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, AZ 85287-1604, USA., Department of Biochemistry, University of Nebraska at Lincoln, Lincoln, NE 68588-0664, USA
| | | | | | | | | |
Collapse
|
14
|
Karapetyan NV, Bolychevtseva YV, Yurina NP, Terekhova IV, Shubin VV, Brecht M. Long-wavelength chlorophylls in photosystem I of cyanobacteria: origin, localization, and functions. BIOCHEMISTRY (MOSCOW) 2014; 79:213-20. [PMID: 24821447 DOI: 10.1134/s0006297914030067] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The structural organization of photosystem I (PSI) complexes in cyanobacteria and the origin of the PSI antenna long-wavelength chlorophylls and their role in energy migration, charge separation, and dissipation of excess absorbed energy are discussed. The PSI complex in cyanobacterial membranes is organized preferentially as a trimer with the core antenna enriched with long-wavelength chlorophylls. The contents of long-wavelength chlorophylls and their spectral characteristics in PSI trimers and monomers are species-specific. Chlorophyll aggregates in PSI antenna are potential candidates for the role of the long-wavelength chlorophylls. The red-most chlorophylls in PSI trimers of the cyanobacteria Arthrospira platensis and Thermosynechococcus elongatus can be formed as a result of interaction of pigments peripherally localized on different monomeric complexes within the PSI trimers. Long-wavelength chlorophylls affect weakly energy equilibration within the heterogeneous PSI antenna, but they significantly delay energy trapping by P700. When the reaction center is open, energy absorbed by long-wavelength chlorophylls migrates to P700 at physiological temperatures, causing its oxidation. When the PSI reaction center is closed, the P700 cation radical or P700 triplet state (depending on the P700 redox state and the PSI acceptor side cofactors) efficiently quench the fluorescence of the long-wavelength chlorophylls of PSI and thus protect the complex against photodestruction.
Collapse
Affiliation(s)
- N V Karapetyan
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, 119071, Russia.
| | | | | | | | | | | |
Collapse
|
15
|
Konrad A, Trost AL, Skandary S, Hussels M, Meixner AJ, Karapetyan NV, Brecht M. Manipulating the excitation transfer in Photosystem I using a Fabry–Perot metal resonator with optical subwavelength dimensions. Phys Chem Chem Phys 2014; 16:6175-81. [DOI: 10.1039/c3cp55195d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Abstract
We demonstrate the ability of two-dimensional electronic spectroscopy (2DES) to
map ultrafast energy transfer and dynamics in two systems: the pigment–protein
complex photosystem I (PSI) and aggregates of the conjugated polymer
poly(3-hexylthiophene) (P3HT). A detailed description of our experimental set-up
and data processing procedure is also given.
Collapse
|
17
|
|
18
|
The role of the individual Lhcas in photosystem I excitation energy trapping. Biophys J 2011; 101:745-54. [PMID: 21806943 DOI: 10.1016/j.bpj.2011.06.045] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/22/2011] [Accepted: 06/24/2011] [Indexed: 11/20/2022] Open
Abstract
In this work, we have investigated the role of the individual antenna complexes and of the low-energy forms in excitation energy transfer and trapping in Photosystem I of higher plants. To this aim, a series of Photosystem I (sub)complexes with different antenna size/composition/absorption have been studied by picosecond fluorescence spectroscopy. The data show that Lhca3 and Lhca4, which harbor the most red forms, have similar emission spectra (λ(max) = 715-720 nm) and transfer excitation energy to the core with a relative slow rate of ∼25/ns. Differently, the energy transfer from Lhca1 and Lhca2, the "blue" antenna complexes, occurs about four times faster. In contrast to what is often assumed, it is shown that energy transfer from the Lhca1/4 and the Lhca2/3 dimer to the core occurs on a faster timescale than energy equilibration within these dimers. Furthermore, it is shown that all four monomers contribute almost equally to the transfer to the core and that the red forms slow down the overall trapping rate by about two times. Combining all the data allows the construction of a comprehensive picture of the excitation-energy transfer routes and rates in Photosystem I.
Collapse
|
19
|
Şener M, Strümpfer J, Hsin J, Chandler D, Scheuring S, Hunter CN, Schulten K. Förster energy transfer theory as reflected in the structures of photosynthetic light-harvesting systems. Chemphyschem 2011; 12:518-31. [PMID: 21344591 DOI: 10.1002/cphc.201000944] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Förster’s theory of resonant energy transfer underlies a fundamental process in nature, namely the harvesting of sunlight by photosynthetic life forms. The theoretical framework developed by Förster and others describes how electronic excitation migrates in the photosynthetic apparatus of plants, algae, and bacteria from light absorbing pigments to reaction centers where light energy is utilized for the eventual conversion into chemical energy. The demand for highest possible efficiency of light harvesting appears to have shaped the evolution of photosynthetic species from bacteria to plants which, despite a great variation in architecture, display common structural themes founded on the quantum physics of energy transfer as described first by Förster. Herein, Förster’s theory of excitation transfer is summarized, including recent extensions, and the relevance of the theory to photosynthetic systems as evolved in purple bacteria, cyanobacteria, and plants is demonstrated. Förster’s energy transfer formula, as used widely today in many fields of science, is also derived.
Collapse
Affiliation(s)
- Melih Şener
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
A review of photoinduced charge separation of organic molecules in microporous and mesoporous materials is presented. In particular, the photoionization of N-alkylphenothiazine (PCn), N,N,N′,N′-tetramethylbenzidine (TMB), and porphyrin in microporous materials, such as zeolites, aluminophosphates (AlPOs), silicoaluminophosphates (SAPOs), and mesoporous materials, such as MCM-41, MCM-48, and SBA-15, is discussed.
Collapse
Affiliation(s)
- Ranjit T. Koodali
- Department of Chemistry, University of South Dakota, Vermillion, SD 57069, USA (e-mail: )
| |
Collapse
|
21
|
Nieder JB, Bittl R, Brecht M. Fluoreszenzstudien zum Einfluss plasmonischer Wechselwirkungen auf die Funktion eines Proteins. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201002172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
22
|
Nieder JB, Bittl R, Brecht M. Fluorescence Studies into the Effect of Plasmonic Interactions on Protein Function. Angew Chem Int Ed Engl 2010; 49:10217-20. [DOI: 10.1002/anie.201002172] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Santabarbara S, Galuppini L, Casazza AP. Bidirectional electron transfer in the reaction centre of photosystem I. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:735-749. [PMID: 20666929 DOI: 10.1111/j.1744-7909.2010.00977.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In the past decade light-induced electron transfer reactions in photosystem I have been the subject of intensive investigations that have led to the elucidation of some unique characteristics, the most striking of which is the existence of two parallel, functional, redox active cofactors chains. This process is generally referred to as bidirectional electron transfer. Here we present a review of the principal evidences that have led to the uncovering of bidirectionality in the reaction centre of photosystem I. A special focus is dedicated to the results obtained combining time-resolved spectroscopic techniques, either difference absorption or electron paramagnetic resonance, with molecular genetics, which allows, through modification of the binding of redox active cofactors with the reaction centre subunits, an effect on their physical-chemical properties.
Collapse
|
24
|
Swingley WD, Iwai M, Chen Y, Ozawa SI, Takizawa K, Takahashi Y, Minagawa J. Characterization of photosystem I antenna proteins in the prasinophyte Ostreococcus tauri. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1458-64. [PMID: 20457235 DOI: 10.1016/j.bbabio.2010.04.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 04/13/2010] [Accepted: 04/26/2010] [Indexed: 11/17/2022]
Abstract
Prasinophyceae are a broad class of early-branching eukaryotic green algae. These picophytoplankton are found ubiquitously throughout the ocean and contribute considerably to global carbon-fixation. Ostreococcus tauri, as the first sequenced prasinophyte, is a model species for studying the functional evolution of light-harvesting systems in photosynthetic eukaryotes. In this study we isolated and characterized O. tauri pigment-protein complexes. Two photosystem I (PSI) fractions were obtained by sucrose density gradient centrifugation in addition to free light-harvesting complex (LHC) fraction and photosystem II (PSII) core fractions. The smaller PSI fraction contains the PSI core proteins, LHCI, which are conserved in all green plants, Lhcp1, a prasinophyte-specific LHC protein, and the minor, monomeric LHCII proteins CP26 and CP29. The larger PSI fraction contained the same antenna proteins as the smaller, with the addition of Lhca6 and Lhcp2, and a 30% larger absorption cross-section. When O. tauri was grown under high-light conditions, only the smaller PSI fraction was present. The two PSI preparations were also found to be devoid of the far-red chlorophyll fluorescence (715-730 nm), a signature of PSI in oxygenic phototrophs. These unique features of O. tauri PSI may reflect primitive light-harvesting systems in green plants and their adaptation to marine ecosystems. Possible implications for the evolution of the LHC-superfamily in photosynthetic eukaryotes are discussed.
Collapse
Affiliation(s)
- Wesley D Swingley
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Effect of the P700 pre-oxidation and point mutations near A(0) on the reversibility of the primary charge separation in Photosystem I from Chlamydomonas reinhardtii. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1797:106-12. [PMID: 19761751 DOI: 10.1016/j.bbabio.2009.09.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 07/31/2009] [Accepted: 09/09/2009] [Indexed: 11/22/2022]
Abstract
Time-resolved fluorescence studies with a 3-ps temporal resolution were performed in order to: (1) test the recent model of the reversible primary charge separation in Photosystem I (Müller et al., 2003; Holwzwarth et al., 2005, 2006), and (2) to reconcile this model with a mechanism of excitation energy quenching by closed Photosystem I (with P700 pre-oxidized to P700+). For these purposes, we performed experiments using Photosystem I core samples isolated from Chlamydomonas reinhardtii wild type, and two mutants in which the methionine axial ligand to primary electron acceptor, A(0), has been change to either histidine or serine. The temporal evolution of fluorescence spectra was recorded for each preparation under conditions where the "primary electron donor," P700, was either neutral or chemically pre-oxidized to P700+. For all the preparations under study, and under neutral and oxidizing conditions, we observed multiexponential fluorescence decay with the major phases of approximately 7 ps and approximately 25 ps. The relative amplitudes and, to a minor extent the lifetimes, of these two phases were modulated by the redox state of P700 and by the mutations near A(0): both pre-oxidation of P700 and mutations caused slight deceleration of the excited state decay. These results are consistent with a model in which P700 is not the primary electron donor, but rather a secondary electron donor, with the primary charge separation event occurring between the accessory chlorophyll, A, and A(0). We assign the faster phase to the equilibration process between the excited state of the antenna/reaction center ensemble and the primary radical pair, and the slower phase to the secondary electron transfer reaction. The pre-oxidation of P700 shifts the equilibrium between the excited state and the primary radical pair towards the excited state. This shift is proposed to be induced by the presence of the positive charge on P700+. The same charge is proposed to be responsible for the fast A+A(0)(-)-->AA(0) charge recombination to the ground state and, in consequence, excitation quenching in closed reaction centers. Mutations of the A(0) axial ligand shift the equilibrium in the same direction as pre-oxidation of P700 due to the up-shift of the free energy level of the state A+A(0)(-).
Collapse
|
26
|
Komura M, Itoh S. Fluorescence measurement by a streak camera in a single-photon-counting mode. PHOTOSYNTHESIS RESEARCH 2009; 101:119-133. [PMID: 19568951 DOI: 10.1007/s11120-009-9463-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 06/15/2009] [Indexed: 05/28/2023]
Abstract
We describe here a recently developed fluorescence measurement system that uses a streak camera to detect fluorescence decay in a single photon-counting mode. This system allows for easy measurements of various samples and provides 2D images of fluorescence in the wavelength and time domains. The great advantage of the system is that the data can be handled with ease; furthermore, the data are amenable to detailed analysis. We describe the picosecond kinetics of fluorescence in spinach Photosystem (PS) II particles at 4-77 K as a typical experimental example. Through the global analysis of the data, we have identified a new fluorescence band (F689) in addition to the already established F680, F685, and F695 emission bands. The blue shift of the steady-state fluorescence spectrum upon cooling below 77 K can be interpreted as an increase of the shorter-wavelength fluorescence, especially F689, due to the slowdown of the excitation energy transfer process. The F685 and F695 bands seem to be thermally equilibrated at 77 K but not at 4 K. The simple and efficient photon accumulation feature of the system allows us to measure fluorescence from leaves, solutions, single colonies, and even single cells. The 2D fluorescence images obtained by this system are presented for isolated spinach PS II particles, intact leaves of Arabidopsis thaliana, the PS I super-complex of a marine centric diatom, Chaetoceros gracilis, isolated membranes of a purple photosynthetic bacterium, Acidiphilium rubrum, which contains Zn-BChl a, and a coral that contains a green fluorescent protein and an algal endosymbiont, Zooxanthella.
Collapse
Affiliation(s)
- Masayuki Komura
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya, Japan
| | | |
Collapse
|
27
|
Johnson MP, Ruban AV. Photoprotective energy dissipation in higher plants involves alteration of the excited state energy of the emitting chlorophyll(s) in the light harvesting antenna II (LHCII). J Biol Chem 2009; 284:23592-601. [PMID: 19567871 DOI: 10.1074/jbc.m109.013557] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Non-photochemical quenching (NPQ), a mechanism of energy dissipation in higher plants protects photosystem II (PSII) reaction centers from damage by excess light. NPQ involves a reduction in the chlorophyll excited state lifetime in the PSII harvesting antenna (LHCII) by a quencher. Yet, little is known about the effect of the quencher on chlorophyll excited state energy and dynamics. Application of picosecond time-resolved fluorescence spectroscopy demonstrated that NPQ involves a red-shift (60 +/- 5 cm(-1)) and slight enhancement of the vibronic satellite of the main PSII lifetime component present in intact chloroplasts. Whereas this fluorescence red-shift was enhanced by the presence of zeaxanthin, it was not dependent upon it. The red-shifted fluorescence of intact chloroplasts in the NPQ state was accompanied by red-shifted chlorophyll a absorption. Nearly identical absorption and fluorescence changes were observed in isolated LHCII complexes quenched in a low detergent media, suggesting that the mechanism of quenching is the same in both systems. In both cases, the extent of the fluorescence red-shift was shown to correlate with the lifetime of a component. The alteration in the energy of the emitting chlorophyll(s) in intact chloroplasts and isolated LHCII was also accompanied by changes in lutein 1 observed in their 77K fluorescence excitation spectra. We suggest that the characteristic red-shifted fluorescence emission reflects an altered environment of the emitting chlorophyll(s) in LHCII brought about by their closer interaction with lutein 1 in the quenching locus.
Collapse
Affiliation(s)
- Matthew P Johnson
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | | |
Collapse
|
28
|
Santabarbara S, Jasaitis A, Byrdin M, Gu F, Rappaport F, Redding K. Additive effect of mutations affecting the rate of phylloquinone reoxidation and directionality of electron transfer within photosystem I. Photochem Photobiol 2009; 84:1381-7. [PMID: 19067959 DOI: 10.1111/j.1751-1097.2008.00458.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Optical pump-probe spectroscopy in the nanosecond-microsecond timescale has been used to study the electron transfer reactions taking place within the Photosystem I reaction center of intact Chlamydomonas reinhardtii cells. The biphasic kinetics of phylloquinone (PhQ) reoxidation were investigated in double mutants that combine a mutation (PsaA-Y696F) near the primary acceptor chlorophyll, ec3A, with those near PhQA (PsaA-S692A, PsaA-W697F). The PsaA-S692A and PsaA-W697F mutations selectively lengthened the 200 ns lifetime component observed in the wild-type (WT). The reverse similar 20 ns component was unaltered in the single mutant, both in terms of lifetime and relative amplitude. However, both double mutants possessed a reverse similar 20 ns component (PhQB(-) reoxidation) with increased amplitude compared with the WT and the individual PhQA mutants. The component assigned to PhQA(-) reoxidation was slowed, like the individual PhQA mutants, and of lower amplitude, as observed in the single ec3A mutant. Hence, the effects of these mutations are almost entirely additive, providing strong support for the previously proposed bidirectional electron transfer model, which attributes the reverse similar 20 and reverse similar 200 ns phases to reoxidation of PhQB or PhQA, respectively. Moreover, in all the mutants investigated, it was also possible to observe an intermediate (approximately 180 ns) component, as previously reported for mutants of the PhQ(A) binding pocket (Biochim. Biophys. Acta [2006] 1757, 1529-1538), which we have tentatively attributed to forward electron transfer between the iron-sulfur clusters FX and FA/B.
Collapse
|
29
|
From Atomic-Level Structure to Supramolecular Organization in the Photosynthetic Unit of Purple Bacteria. THE PURPLE PHOTOTROPHIC BACTERIA 2009. [DOI: 10.1007/978-1-4020-8815-5_15] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
30
|
Yokono M, Akimoto S, Tanaka A. Seasonal changes of excitation energy transfer and thylakoid stacking in the evergreen tree Taxus cuspidata: How does it divert excess energy from photosynthetic reaction center? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:379-87. [DOI: 10.1016/j.bbabio.2008.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 01/23/2008] [Accepted: 01/24/2008] [Indexed: 10/22/2022]
|
31
|
Andreeva A, Abarova S, Stoitchkova K, Picorel R, Velitchkova M. Selective Photobleaching of Chlorophylls and Carotenoids in Photosystem I Particles under High-Light Treatment. Photochem Photobiol 2007; 83:1301-7. [DOI: 10.1111/j.1751-1097.2007.00136.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Riley KJ, Zazubovich V, Jankowiak R. Frequency-Domain Spectroscopic Study of the PS I−CP43‘ Supercomplex from the Cyanobacterium Synechocystis PCC 6803 Grown under Iron Stress Conditions. J Phys Chem B 2006; 110:22436-46. [PMID: 17091985 DOI: 10.1021/jp063691f] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Absorption, fluorescence excitation, emission, and hole-burning (HB) spectra were measured at liquid helium temperatures for the PS I-CP43' supercomplexes of Synechocystis PCC 6803 grown under iron stress conditions and for respective trimeric PS I cores. Results are compared with those of room temperature, time-domain experiments (Biochemistry 2003, 42, 3893) as well as with the low-temperature steady-state experiments on PS I-CP43' supercomplexes of Synechococcus PCC 7942 (Biochim. Biophys. Acta 2002, 1556, 265). In contrast to the CP43' of Synechococcus PCC 7942, CP43' of Synechocystis PCC 6803 possesses two low-energy states analogous to the quasidegenerate states A and B of CP43 of photosystem II (J. Phys. Chem. B 2000, 104, 11805). Energy transfer between the CP43' and the PS I core occurs, to a significant degree, through the state A, characterized with a broader site distribution function (SDF). It is demonstrated that the low temperature (T = 5 K) excitation energy transfer (EET) time between the state A of CP43' (IsiA) and the PS I core in PS I-CP43' supercomplexes from Synechocystis PCC 6803 is about 60 ps, which is significantly slower than the EET observed at room temperature. Our results are consistent with fast (< or =10 ps) energy transfer from state B to state A in CP43'. Energy absorbed by the CP43' manifold has, on average, a greater chance of being transferred to the reaction center (RC) and utilized for charge separation than energy absorbed by the PS I core antenna. This indicates that energy is likely transferred from the CP43' to the RC along a well-defined path and that the "red antenna states" of the PS I core are localized far away from that path, most likely on the B7-A32 and B37-B38 dimers in the vicinity of the PS I trimerization domain (near PsaL subunit). We argue that the A38-A39 dimer does not contribute to the red antenna region.
Collapse
Affiliation(s)
- Kerry J Riley
- Ames Laboratory-USDOE and Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, USA
| | | | | |
Collapse
|
33
|
Sener MK, Park S, Lu D, Damjanovic A, Ritz T, Fromme P, Schulten K. Excitation migration in trimeric cyanobacterial photosystem I. J Chem Phys 2006; 120:11183-95. [PMID: 15268148 DOI: 10.1063/1.1739400] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A structure-based description of excitation migration in multireaction center light harvesting systems is introduced. The description is an extension of the sojourn expansion, which decomposes excitation migration in terms of repeated detrapping and recapture events. The approach is applied to light harvesting in the trimeric form of cyanobacterial photosystem I (PSI). Excitation is found to be shared between PSI monomers and the chlorophylls providing the strongest respective links are identified. Excitation sharing is investigated by computing cross-monomer excitation trapping probabilities. It is seen that on the average there is a nearly 40% chance of excitation cross transfer and trapping, indicating efficient coupling between monomers. The robustness and optimality of the chlorophyll network of trimeric PSI is examined.
Collapse
Affiliation(s)
- Melih K Sener
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Gáspár L, Sárvári E, Morales F, Szigeti Z. Presence of 'PSI free' LHCI and monomeric LHCII and subsequent effects on fluorescence characteristics in lincomycin treated maize. PLANTA 2006; 223:1047-57. [PMID: 16292567 DOI: 10.1007/s00425-005-0149-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Accepted: 09/28/2005] [Indexed: 05/05/2023]
Abstract
The cause of the strong non-photochemical fluorescence quenching was examined in maize (Zea mays L.) plants that were treated with lincomycin during the 72 h period of greening. They were deficient in core complexes but seemed to contain the full complement of antennae. The following results were obtained: (1) High F(o) could not be attributed to the dark reduction of Q(A) but to the presence of a high amount of not properly organized antenna complexes due to the inhibited synthesis of reaction centres. (2) On illumination fluorescence intensity dropped considerably below F(o) within 20 s, and reached a steady state still below F(o). (3) Slowly relaxing part of non-photochemical quenching was significantly higher than in control plants. (4) De-epoxidation state was constant, and corresponded to the maximal value of the control. (5) Free Lhca1/4 dimers could be detected in all submembrane fractions, including the grana, obtained by digitonin fractionation. (6) Increase in the 679 and 700 nm fluorescence emissions could be attributed to the monomerisation of part of LHCII and to the presence of free Lhca2 or LHCII aggregates, respectively. (7) LHCII or PSII+LHCII and Lhca1/4 interaction may contribute to the increase of long-wavelength fluorescence in the granal fraction. We assume that the elevated fluorescence quenching of monomeric LHCII as well as the interaction between LHCII or PSII+LHCII and Lhca1/4 can be considered as an explanation for the extensive non-photochemical fluorescence quenching in lincomycin treated plants. The permanent presence of zeaxanthin may have contributed to the fast formation of quenching.
Collapse
Affiliation(s)
- László Gáspár
- Department of Plant Physiology and Molecular Plant Biology, Eötvös Loránd University, Pázmány Péter sétány 1/c, 1117 Budapest, Hungary.
| | | | | | | |
Collapse
|
35
|
Holzwarth AR, Müller MG, Niklas J, Lubitz W. Ultrafast transient absorption studies on photosystem I reaction centers from Chlamydomonas reinhardtii. 2: mutations near the P700 reaction center chlorophylls provide new insight into the nature of the primary electron donor. Biophys J 2006; 90:552-65. [PMID: 16258055 PMCID: PMC1367060 DOI: 10.1529/biophysj.105.059824] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Accepted: 10/03/2005] [Indexed: 11/18/2022] Open
Abstract
The energy transfer and charge separation kinetics in several core Photosystem I particles of Chlamydomonas reinhardtii with point mutations around the PA and PB reaction center chlorophylls (Chls) have been studied using ultrafast transient absorption spectroscopy in the femtosecond to nanosecond time range to characterize the influence on the early electron transfer processes. The data have been analyzed in terms of kinetic compartment models. The adequate description of the transient absorption kinetics requires three different radical pairs in the time range up to approximately 100 ps. Also a charge recombination process from the first radical pair back to the excited state is present in all the mutants, as already shown previously for the wild-type (Müller, M. G., J. Niklas, W. Lubitz, and A. R. Holzwarth. 2003. Biophys. J. 85:3899-3922; and Holzwarth, A. R., M. G. Müller, J. Niklas, and W. Lubitz. 2005. J. Phys. Chem. B. 109:5903-59115). In all mutants, the primary charge separation occurs with the same effective rate constant within the error limits as in the wild-type (>>350 ns(-1)), which implies an intrinsic rate constant of charge separation of <1 ps(-1). The rate constant of the secondary electron transfer process is slowed down by a factor of approximately 2 in the mutant B-H656C, which lacks the ligand to the central metal of Chl PB. For the mutant A-T739V, which breaks the hydrogen bond to the keto carbonyl of Chl PA, only a slight slowing down of the secondary electron transfer is observed. Finally for mutant A-W679A, which has the Trp near the PA Chl replaced, either no pronounced effect or, at best, a slight increase on the secondary electron transfer rate constants is observed. The effective charge recombination rate constant is modified in all mutants to some extent, with the strongest effect observed in mutant B-H656C. Our data strongly suggest that the Chls of the PA and PB pair, constituting what is traditionally called the "primary electron donor P700", are not oxidized in the first electron transfer process, but rather only in the secondary electron transfer step. We thus propose a new electron transfer mechanism for Photosystem I where the accessory Chl(s) function as the primary electron donor(s) and the A0 Chl(s) are the primary electron acceptor(s). This new mechanism also resolves in a straightforward manner the difficulty with the previous mechanism, where an electron would have to overcome a distance of approximately 14 A in <1 ps in a single step. If interpreted within a scheme of single-sided electron transfer, our data suggest that the B-branch is the active branch, although parallel A-branch activity cannot be excluded. All the mutations do affect to a varying extent the energy difference between the reaction center excited state RC* and the first radical pair and thus affect the rate constant of charge recombination. It is interesting to note that the new mechanism proposed is in fact analogous to the electron transfer mechanism in Photosystem II, where the accessory Chl also plays the role of the primary electron donor, rather than the special Chl pair P680 (Prokhorenko, V. and A. R. Holzwarth. 2000. J. Phys. Chem. B. 104:11563-11578).
Collapse
Affiliation(s)
- Alfred R Holzwarth
- Max-Planck-Institut für Bioanorganische Chemie, D-45470 Mülheim an der Ruhr, Germany.
| | | | | | | |
Collapse
|
36
|
Wang Z, Keller LMM, Dillon J, Gaillard ER. Oxidation of A2E Results in the Formation of Highly Reactive Aldehydes and Ketones. Photochem Photobiol 2006; 82:1251-7. [PMID: 16813456 DOI: 10.1562/2006-04-01-ra-864] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
It has been reported that the photo-oxidation of A2E, a component of human retinal lipofuscin, leads to products that are toxic to cells via dark reactions. Because these compounds have been implicated in the development of various maculopathies such as age-related macular degeneration (AMD), it is important to determine the structures of those deleterious compounds. Both the photo-oxidation and auto-oxidation of A2E lead to the same complex mixture of products, some of which have lower molecular weights than the staring material. Because A2E is homologous to beta-carotene, it was hypothesized that its oxidation would lead to products analogous to those found in oxidized beta-carotene, namely, a series of cleavage products along the acyclic chain with the concomitant formation of aldehydes. This was found to be the case based upon 1) the formation of all of the aldehydes predicted from the oxidation of beta-carotene, 2) the loss of 28 amu (carbonyl moiety) from the molecular ion, 3) the facile reaction of the aldehydes with nitrophenylhydrazines to form nitrophenylhydrazones and 4) the subsequent MS/MS cleavage of those derivatives at the N-N bond. If formed in vivo, these aldehydes would have toxic effects on any cell. Finally, the similarity in product mixtures from both the photo-oxidation and auto-oxidation strongly suggests that the intermolecular photo-oxidation of A2E results primarily from a radical process without the involvement of singlet oxygen. Any formation of singlet oxygen most likely arises from sensitization by the aldehyde oxidation products, as this process is well known for aldehydes, in general, and retinal, specifically.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, USA
| | | | | | | |
Collapse
|
37
|
Melkozernov AN, Kargul J, Lin S, Barber J, Blankenship RE. Spectral and kinetic analysis of the energy coupling in the PS I-LHC I supercomplex from the green alga Chlamydomonas reinhardtii at 77 K. PHOTOSYNTHESIS RESEARCH 2005; 86:203-15. [PMID: 16172939 DOI: 10.1007/s11120-005-4118-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Accepted: 03/18/2005] [Indexed: 05/04/2023]
Abstract
Energy transfer processes in the chlorophyll antenna of the PS I-LHCI supercomplexes from the green alga Chlamydomonas reinhardtii have been studied at 77 K using transient absorption spectroscopy with multicolor excitation in the 640-670 nm region. Comparison of the kinetic data obtained at low and room temperatures indicates that the slow approximately approximately 100 ps excitation equilibration phase that is characteristic of energy coupling of the LHCI peripheral antenna to the PS I core at physiological temperatures (Melkozernov AN, Kargul J, Lin S, Barber J and Blankenship RE (2004) J Phys Chem B 108: 10547-10555) is not observed in the excitation dynamics of the PS I-LHCI supercomplex at 77 K. This suggests that at low temperatures the peripheral antenna is energetically uncoupled from the PS I core antenna. Under these conditions the observed kinetic phases on the time scales from subpicoseconds to tens of picoseconds represent the superposition of the processes occurring independently in the PS I core antenna and the Chl a/b containing LHCI antenna. In the PS I-LHCI supercomplex with two uncoupled antennas the excitation is channeled to the excitation sinks formed at low temperature by clusters of red pigments. A better spectral resolution of the transient absorption spectra at 77 K results in detection of two DeltaA bands originating from the rise of photobleaching on the picosecond time scale of two clearly distinguished pools of low energy absorbing Chls in the PS I-LHCI supercomplex. The first pool of low energy pigments absorbing at 687 nm is likely to originate from the red pigments in the LHCI where the Lhca1 protein is most abundant. The second pool at 697 nm is suggested to result either from the structural interaction of the LHCI and the PS I core or from other Lhca proteins in the antenna. The kinetic data are discussed based on recent structural models of the PS I-LHCI. It is proposed that the uncoupling of pigment pools may be a control mechanism that regulates energy flow in Photosystem I.
Collapse
Affiliation(s)
- Alexander N Melkozernov
- Department of Chemistry and Biochemistry, Center for the Study of Early Events in Photosynthesis, Tempe, AZ 85287-1604, USA.
| | | | | | | | | |
Collapse
|
38
|
Gibasiewicz K, Szrajner A, Ihalainen JA, Germano M, Dekker JP, van Grondelle R. Characterization of Low-Energy Chlorophylls in the PSI-LHCI Supercomplex from Chlamydomonas reinhardtii. A Site-Selective Fluorescence Study. J Phys Chem B 2005; 109:21180-6. [PMID: 16853744 DOI: 10.1021/jp0530909] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Almost all photosystem I (PSI) complexes from oxygenic photosynthetic organisms contain chlorophylls that absorb at longer wavelength than that of the primary electron donor P700. We demonstrate here that the low-energy pool of chlorophylls in the PSI-LHCI complex from the green alga Chlamydomonas reinhardtii, containing five to six pigments, is significantly blue-shifted (A(max) at 700 nm at 4 K) compared to that in the PSI core preparations from several species of cyanobacteria and in PSI-LHCI particles from higher plants. This makes them almost isoenergetic with the primary donor. However, they keep the other characteristic features of "red" chlorophylls: clear spectral separation from the bulk chlorophylls, big Stokes shift revealing pronounced electron-phonon coupling, and large homogeneous and inhomogeneous broadening of approximately 170 and approximately 310 cm(-1), respectively.
Collapse
Affiliation(s)
- Krzysztof Gibasiewicz
- Department of Physics and Astronomy, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
39
|
Ihalainen JA, Klimmek F, Ganeteg U, van Stokkum IHM, van Grondelle R, Jansson S, Dekker JP. Excitation energy trapping in photosystem I complexes depleted in Lhca1 and Lhca4. FEBS Lett 2005; 579:4787-91. [PMID: 16098971 DOI: 10.1016/j.febslet.2005.06.091] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Revised: 05/27/2005] [Accepted: 06/10/2005] [Indexed: 01/01/2023]
Abstract
We report a time-resolved fluorescence spectroscopy characterization of photosystem I (PSI) particles prepared from Arabidopsis lines with knock-out mutations against the peripheral antenna proteins of Lhca1 or Lhca4. The first mutant retains Lhca2 and Lhca3 while the second retains one other light-harvesting protein of photosystem I (Lhca) protein, probably Lhca5. The results indicate that Lhca2/3 and Lhca1/4 each provides about equally effective energy transfer routes to the PSI core complex, and that Lhca5 provides a less effective energy transfer route. We suggest that the specific location of each Lhca protein within the PSI-LHCI supercomplex is more important than the presence of so-called red chlorophylls in the Lhca proteins.
Collapse
Affiliation(s)
- Janne A Ihalainen
- Vrije Universiteit Amsterdam, Department of Physics and Astronomy, Biophysics, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
40
|
Santabarbara S, Heathcote P, Evans MCW. Modelling of the electron transfer reactions in Photosystem I by electron tunnelling theory: The phylloquinones bound to the PsaA and the PsaB reaction centre subunits of PS I are almost isoenergetic to the iron–sulfur cluster FX. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1708:283-310. [PMID: 15975545 DOI: 10.1016/j.bbabio.2005.05.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Revised: 04/12/2005] [Accepted: 05/03/2005] [Indexed: 10/25/2022]
Abstract
Photosystem I is a large macromolecular complex located in the thylakoid membranes of chloroplasts and in cyanobacteria that catalyses the light driven reduction of ferredoxin and oxidation of plastocyanin. Due to the very negative redox potential of the primary electron transfer cofactors accepting electrons, direct estimation by redox titration of the energetics of the system is hampered. However, the rates of electron transfer reactions are related to the thermodynamic properties of the system. Hence, several spectroscopic and biochemical techniques have been employed, in combination with the classical Marcus theory for electron transfer tunnelling, in order to access these parameters. Nevertheless, the values which have been presented are very variable. In particular, for the case of the tightly bound phylloquinone molecule A(1), the values of the redox potentials reported in the literature vary over a range of about 350 mV. Previous models of Photosystem I have assumed a unidirectional electron transfer model. In the present study, experimental evidence obtained by means of time resolved absorption, photovoltage, and electron paramagnetic resonance measurements are reviewed and analysed in terms of a bi-directional kinetic model for electron transfer reactions. This model takes into consideration the thermodynamic equilibrium between the iron-sulfur centre F(X) and the phylloquinone bound to either the PsaA (A(1A)) or the PsaB (A(1B)) subunit of the reaction centre and the equilibrium between the iron-sulfur centres F(A) and F(B). The experimentally determined decay lifetimes in the range of sub-picosecond to the microsecond time domains can be satisfactorily simulated, taking into consideration the edge-to-edge distances between redox cofactors and driving forces reported in the literature. The only exception to this general behaviour is the case of phylloquinone (A(1)) reoxidation. In order to describe the reported rates of the biphasic decay, of about 20 and 200 ns, associated with this electron transfer step, the redox potentials of the quinones are estimated to be almost isoenergetic with that of the iron sulfur centre F(X). A driving force in the range of 5 to 15 meV is estimated for these reactions, being slightly exergonic in the case of the A(1B) quinone and slightly endergonic, in the case of the A(1A) quinone. The simulation presented in this analysis not only describes the kinetic data obtained for the wild type samples at room temperature and is consistent with estimates of activation energy by the analysis of temperature dependence, but can also explain the effect of the mutations around the PsaB quinone binding pocket. A model of the overall energetics of the system is derived, which suggests that the only substantially irreversible electron transfer reactions are the reoxidation of A(0) on both electron transfer branches and the reduction of F(A) by F(X).
Collapse
Affiliation(s)
- Stefano Santabarbara
- School of Biological Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK.
| | | | | |
Collapse
|
41
|
Sener MK, Jolley C, Ben-Shem A, Fromme P, Nelson N, Croce R, Schulten K. Comparison of the light-harvesting networks of plant and cyanobacterial photosystem I. Biophys J 2005; 89:1630-42. [PMID: 15994896 PMCID: PMC1366667 DOI: 10.1529/biophysj.105.066464] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
With the availability of structural models for photosystem I (PSI) in cyanobacteria and plants it is possible to compare the excitation transfer networks in this ubiquitous photosystem from two domains of life separated by over one billion years of divergent evolution, thus providing an insight into the physical constraints that shape the networks' evolution. Structure-based modeling methods are used to examine the excitation transfer kinetics of the plant PSI-LHCI supercomplex. For this purpose an effective Hamiltonian is constructed that combines an existing cyanobacterial model for structurally conserved chlorophylls with spectral information for chlorophylls in the Lhca subunits. The plant PSI excitation migration network thus characterized is compared to its cyanobacterial counterpart investigated earlier. In agreement with observations, an average excitation transfer lifetime of approximately 49 ps is computed for the plant PSI-LHCI supercomplex with a corresponding quantum yield of 95%. The sensitivity of the results to chlorophyll site energy assignments is discussed. Lhca subunits are efficiently coupled to the PSI core via gap chlorophylls. In contrast to the chlorophylls in the vicinity of the reaction center, previously shown to optimize the quantum yield of the excitation transfer process, the orientational ordering of peripheral chlorophylls does not show such optimality. The finding suggests that after close packing of chlorophylls was achieved, constraints other than efficiency of the overall excitation transfer process precluded further evolution of pigment ordering.
Collapse
Affiliation(s)
- Melih K Sener
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Nield J, Redding K, Hippler M. Remodeling of light-harvesting protein complexes in chlamydomonas in response to environmental changes. EUKARYOTIC CELL 2005; 3:1370-80. [PMID: 15590812 PMCID: PMC539040 DOI: 10.1128/ec.3.6.1370-1380.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Jon Nield
- Department of Biological Sciences, Imperial College London, London, UK
| | | | | |
Collapse
|
43
|
Kiley P, Zhao X, Vaughn M, Baldo MA, Bruce BD, Zhang S. Self-assembling peptide detergents stabilize isolated photosystem I on a dry surface for an extended time. PLoS Biol 2005; 3:e230. [PMID: 15954800 PMCID: PMC1151599 DOI: 10.1371/journal.pbio.0030230] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Accepted: 04/26/2005] [Indexed: 11/19/2022] Open
Abstract
We used a class of designed peptide detergents to stabilize photosystem I (PS-I) upon extended drying under N2 on a gold-coated-Ni-NTA glass surface. PS-I is a chlorophyll-containing membrane protein complex that is the primary reducer of ferredoxin and the electron acceptor of plastocyanin. We isolated the complex from the thylakoids of spinach chloroplasts using a chemical detergent. The chlorophyll molecules associated with the PS-I complex provide an intrinsic steady-state emission spectrum between 650 and 800 nm at -196.15 degrees C that reflects the organization of the pigment-protein interactions. In the absence of detergents, a large blue shift of the fluorescence maxima from approximately 735 nm to approximately 685 nm indicates a disruption in light-harvesting subunit organization, thus revealing chlorophyll-protein interactions. The commonly used membrane protein-stabilizing detergents, N-dodecyl-beta-D-maltoside and N-octyl-beta-D-glucoside, only partially stabilized the approximately 735-nm complex with approximately 685-nm spectroscopic shift. However, prior to drying, addition of the peptide detergent acetyl-AAAAAAK at increasing concentration significantly stabilized the PS-I complex. Moreover, in the presence of acetyl-AAAAAAK, the PS-I complex is stable in a dried form at room temperature for at least 3 wk. Another peptide detergent, acetyl-VVVVVVD, also stabilized the complex but to a lesser extent. These observations suggest that the peptide detergents may effectively stabilize membrane proteins in the solid-state. These designed peptide detergents may facilitate the study of diverse types of membrane proteins.
Collapse
Affiliation(s)
- Patrick Kiley
- 1Center for Biomedical Engineering NE47–379, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- 2Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Xiaojun Zhao
- 1Center for Biomedical Engineering NE47–379, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Michael Vaughn
- 3Center for Environmental Biotechnology and Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Marc A Baldo
- 2Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Barry D Bruce
- 3Center for Environmental Biotechnology and Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Shuguang Zhang
- 1Center for Biomedical Engineering NE47–379, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- 4Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
44
|
Rajagopal S, Joly D, Gauthier A, Beauregard M, Carpentier R. Protective effect of active oxygen scavengers on protein degradation and photochemical function in photosystem I submembrane fractions during light stress. FEBS J 2005; 272:892-902. [PMID: 15691324 DOI: 10.1111/j.1742-4658.2004.04512.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The protective role of reactive oxygen scavengers against photodamage was studied in isolated photosystem (PS) I submembrane fractions illuminated (2000 microE x m(-2) x s(-1)) for various periods at 4 degrees C. The photochemical activity of the submembrane fractions measured as P700 photooxidation was significantly protected in the presence of histidine or n-propyl gallate. Chlorophyll photobleaching resulting in a decrease of absorbance and fluorescence, and a blue-shift of both absorbance and fluorescence maximum in the red region, was also greatly delayed in the presence of these scavengers. Western blot analysis revealed the light harvesting antenna complexes of PSI, Lhca2 and Lhca1, were more susceptible to strong light when compared to Lhca3 and Lhca4. The reaction-center proteins PsaB, PsaC, and PsaE were most sensitive to strong illumination while other polypeptides were less affected. Addition of histidine or n-propyl gallate lead to significant protection of reaction-center proteins as well as Lhca against strong illumination. Circular dichroism (CD) spectra revealed that the alpha-helix content decreased with increasing period of light exposure, whereas beta-strands, turns, and unordered structure increased. This unfolding was prevented with the addition of histidine or n-propyl gallate even after 10 h of strong illumination. Catalase or superoxide dismutase could not minimize the alteration of PSI photochemical activity and structure due to photodamage. The specific action of histidine and n-propyl gallate indicates that 1O2 was the main form of reactive oxygen species responsible for strong light-induced damage in PSI submembrane fractions.
Collapse
Affiliation(s)
- Subramanyam Rajagopal
- Groupe de Recherche en Biologie Végétale, Université du Québec à Trois-Rivières, Québec, Canada
| | | | | | | | | |
Collapse
|
45
|
Karapetyan NV. Interaction of pigment-protein complexes within aggregates stimulates dissipation of excess energy. BIOCHEMISTRY (MOSCOW) 2005; 69:1299-304. [PMID: 15627383 DOI: 10.1007/s10541-005-0075-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Pigment-protein complexes in photosynthetic membranes exist mainly as aggregates that are functionally active as monomers but more stable due to their ability to dissipate excess energy. Dissipation of energy in the photosystem I (PSI) trimers of cyanobacteria takes place with a contribution of the long-wavelength chlorophylls whose excited state is quenched by cation radical of P700 or P700 in its triplet state. If P700 in one of the monomer complexes within a PSI trimer is oxidized, energy migration from antenna of other monomer complexes to cation radical of P700 via peripherally localized long-wavelength chlorophylls results in energy dissipation, thus protecting PSI complex of cyanobacteria against photodestruction. It is suggested that dissipation of excess absorbed energy in aggregates of the light-harvesting complex LHCII of higher plants takes place with a contribution of peripherally located chlorophylls and carotenoids.
Collapse
Affiliation(s)
- N V Karapetyan
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow 119071, Russia.
| |
Collapse
|
46
|
Holzwarth AR, Müller MG, Niklas J, Lubitz W. Charge Recombination Fluorescence in Photosystem I Reaction Centers from Chlamydomonas reinhardtii. J Phys Chem B 2005; 109:5903-11. [PMID: 16851643 DOI: 10.1021/jp046299f] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The fluorescence kinetics of photosystem I core particles from Chlamydomonas reinhardtii have been measured with picosecond resolution in order to test a previous hypothesis suggesting a charge recombination mechanism for the early electron-transfer steps and the fluorescence kinetics (Müller et al. Biophys. J. 2003, 85, 3899-3922). Performing global target analyses for various kinetic models on the original fluorescence data confirms the "charge recombination" model as the only acceptable one of the models tested while all of the other models can be excluded. The analysis allowed a precise determination of (i) the effective charge separation rate constant from the equilibrated reaction center excited state (438 ns(-1)) confirming our previous assignment based on transient absorption data (Müller et al. Biophys. J. 2003, 85, 3899-3922), (ii) the effective charge recombination rate constant back to the excited state (52 ns(-1)), and (iii) the intrinsic secondary electron-transfer rate constant (80 ns(-1)). The average energy equilibration lifetime core antenna/RC is about 1 ps in the "charge recombination" model, in agreement with previous transient absorption data, vs the 18-20 ps energy transfer lifetime from antenna to RC within "transfer-to-the-trap-limited" models. The apparent charge separation lifetime in the recombination model is about three times faster than in the "transfer-to-the-trap-limited" model. We conclude that the charge separation kinetics is trap-limited in PS I cores devoid of red antenna states such as in C. reinhardtii.
Collapse
Affiliation(s)
- Alfred R Holzwarth
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim a.d. Ruhr, Germany
| | | | | | | |
Collapse
|
47
|
Schlodder E, Cetin M, Byrdin M, Terekhova IV, Karapetyan NV. P700+- and 3P700-induced quenching of the fluorescence at 760 nm in trimeric Photosystem I complexes from the cyanobacterium Arthrospira platensis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1706:53-67. [PMID: 15620365 DOI: 10.1016/j.bbabio.2004.08.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Revised: 08/27/2004] [Accepted: 08/27/2004] [Indexed: 11/26/2022]
Abstract
The 5 K absorption spectrum of Photosystem I (PS I) trimers from Arthrospira platensis (old name: Spirulina platensis) exhibits long-wavelength antenna (exciton) states absorbing at 707 nm (called C707) and at 740 nm (called C740). The lowest energy state (C740) fluoresces around 760 nm (F760) at low temperature. The analysis of the spectral properties (peak position and line width) of the lowest energy transition (C740) as a function of temperature within the linear electron-phonon approximation indicates a large optical reorganization energy of approximately 110 cm(-1) and a broad inhomogeneous site distribution characterized by a line width of approximately 115 cm(-1). Linear dichroism (LD) measurements indicate that the transition dipole moment of the red-most state is virtually parallel to the membrane plane. The relative fluorescence yield at 760 nm of PS I with P700 oxidized increases only slightly when the temperature is lowered to 77 K, whereas in the presence of reduced P700 the fluorescence yield increases nearly 40-fold at 77 K as compared to that at room temperature (RT). A fluorescence induction effect could not be resolved at RT. At 77 K the fluorescence yield of PS I trimers frozen in the dark in the presence of sodium ascorbate decreases during illumination by about a factor of 5 due to the irreversible formation of (P700+)F(A/B-) in about 60% of the centers and the reversible accumulation of the longer-lived state (P700+)FX-. The quenching efficiency of different functionally relevant intermediate states of the photochemistry in PS I has been studied. The redox state of the acceptors beyond A(0) does not affect F760. Direct kinetic evidence is presented that the fluorescence at 760 nm is strongly quenched not only by P700+ but also by 3P700. Similar kinetics were observed for flash-induced absorbance changes attributed to the decay of 3P700 or P700+, respectively, and flash-induced fluorescence changes at 760 nm measured under identical conditions. A nonlinear relationship between the variable fluorescence around 760 nm and the [P700red]/[P700total] ratio was derived from titration curves of the absorbance change at 826 nm and the variable fluorescence at 760 nm as a function of the redox potential imposed on the sample solution at room temperature before freezing. The result indicates that the energy exchange between the antennae of different monomers within a PS I trimer stimulates quenching of F760 by P700+.
Collapse
Affiliation(s)
- Eberhard Schlodder
- Max-Volmer-Laboratorium für Biophysikalische Chemie, Technische Universität Berlin, Strasse des 17 Juni, 135, 10623 Berlin, Germany.
| | | | | | | | | |
Collapse
|
48
|
Melkozernov AN, Blankenship RE. Structural and functional organization of the peripheral light-harvesting system in photosystem I. PHOTOSYNTHESIS RESEARCH 2005; 85:33-50. [PMID: 15977058 DOI: 10.1007/s11120-004-6474-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2004] [Accepted: 11/19/2004] [Indexed: 05/03/2023]
Abstract
This review centers on the structural and functional organization of the light-harvesting system in the peripheral antenna of Photosystem I (LHC I) and its energy coupling to the Photosystem I (PS I) core antenna network in view of recently available structural models of the eukaryotic Photosystem I-LHC I complex, eukaryotic LHC II complexes and the cyanobacterial Photosystem I core. A structural model based on the 3D homology of Lhca4 with LHC II is used for analysis of the principles of pigment arrangement in the LHC I peripheral antenna, for prediction of the protein ligands for the pigments that are unique for LHC I and for estimates of the excitonic coupling in strongly interacting pigment dimers. The presence of chlorophyll clusters with strong pigment-pigment interactions is a structural feature of PS I, resulting in the characteristic red-shifted fluorescence. Analysis of the interactions between the PS I core antenna and the peripheral antenna leads to the suggestion that the specific function of the red pigments is likely to be determined by their localization with respect to the reaction center. In the PS I core antenna, the Chl clusters with a different magnitude of low energy shift contribute to better spectral overlap of Chls in the reaction center and the Chls of the antenna network, concentrate the excitation around the reaction center and participate in downhill enhancement of energy transfer from LHC II to the PS I core. Chlorophyll clusters forming terminal emitters in LHC I are likely to be involved in photoprotection against excess energy.
Collapse
Affiliation(s)
- Alexander N Melkozernov
- Department of Chemistry and Biochemistry, Center for the Study of Early Events in Photosynthesis, Tempe, AZ, 85287-1604, USA.
| | | |
Collapse
|
49
|
Dashdorj N, Xu W, Martinsson P, Chitnis PR, Savikhin S. Electrochromic shift of chlorophyll absorption in photosystem I from Synechocystis sp. PCC 6803: a probe of optical and dielectric properties around the secondary electron acceptor. Biophys J 2004; 86:3121-30. [PMID: 15111425 PMCID: PMC1304177 DOI: 10.1016/s0006-3495(04)74360-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Nanosecond absorption dynamics at approximately 685 nm after excitation of photosystem I (PS I) from Synechocystis sp. PCC 6803 is consistent with electrochromic shift of absorption bands of the Chl a pigments in the vicinity of the secondary electron acceptor A(1). Based on experimental optical data and structure-based simulations, the effective local dielectric constant has been estimated to be between 3 and 20, which suggests that electron transfer in PS I is accompanied by considerable protein relaxation. Similar effective dielectric constant values have been previously observed for the bacterial photosynthetic reaction center and indicate that protein reorganization leading to effective charge screening may be a necessary structural property of proteins that facilitate the charge transfer function. The data presented here also argue against attributing redmost absorption in PS I to closely spaced antenna chlorophylls (Chls) A38 and A39, and suggest that optical transitions of these Chls, along with that of connecting chlorophyll (A40) lie in the range 680-695 nm.
Collapse
|
50
|
Müller MG, Niklas J, Lubitz W, Holzwarth AR. Ultrafast transient absorption studies on Photosystem I reaction centers from Chlamydomonas reinhardtii. 1. A new interpretation of the energy trapping and early electron transfer steps in Photosystem I. Biophys J 2004; 85:3899-922. [PMID: 14645079 PMCID: PMC1303691 DOI: 10.1016/s0006-3495(03)74804-8] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The energy transfer and charge separation kinetics in core Photosystem I (PSI) particles of Chlamydomonas reinhardtii has been studied using ultrafast transient absorption in the femtosecond-to-nanosecond time range. Although the energy transfer processes in the antenna are found to be generally in good agreement with previous interpretations, we present evidence that the interpretation of the energy trapping and electron transfer processes in terms of both kinetics and mechanisms has to be revised substantially as compared to current interpretations in the literature. We resolved for the first time i), the transient difference spectrum for the excited reaction center state, and ii), the formation and decay of the primary radical pair and its intermediate spectrum directly from measurements on open PSI reaction centers. It is shown that the dominant energy trapping lifetime due to charge separation is only 6-9 ps, i.e., by a factor of 3 shorter than assumed so far. The spectrum of the first radical pair shows the expected strong bleaching band at 680 nm which decays again in the next electron transfer step. We show furthermore that the early electron transfer processes up to approximately 100 ps are more complex than assumed so far. Several possibilities are discussed for the intermediate redox states and their sequence which involve oxidation of P700 in the first electron transfer step, as assumed so far, or only in the second electron transfer step, which would represent a fundamental change from the presently assumed mechanism. To explain the data we favor the inclusion of an additional redox state in the electron transfer scheme. Thus we distinguish three different redox intermediates on the timescale up to 100 ps. At this level no final conclusion as to the exact mechanism and the nature of the intermediates can be drawn, however. From comparison of our data with fluorescence kinetics in the literature we also propose a reversible first charge separation step which has been excluded so far for open PSI reaction centers. For the first time an ultrafast 150-fs equilibration process, occurring among exciton states in the reaction center proper, upon direct excitation of the reaction center at 700 nm, has been resolved. Taken together the data call for a fundamental revision of the present understanding of the energy trapping and early electron transfer kinetics in the PSI reaction center. Due to the fact that it shows the fastest trapping time observed so far of any intact PSI particle, the PSI core of C. reinhardtii seems to be best suited to further characterize the electron transfer steps and mechanisms in the reaction center of PSI.
Collapse
Affiliation(s)
- Marc G Müller
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstr 34-36, D-45470 Mülheim ad Ruhr, Germany
| | | | | | | |
Collapse
|