1
|
Mahmoud AR, Kamel EO, Ahmed MA, Ahmed EA, Abd-Elhamid TH. Alleviation of Simvastatin-Induced Myopathy in Rats by the Standardized Extract of Ginkgo Biloba (EGb761): Insights into the Mechanisms of Action. Cells Tissues Organs 2020; 208:158-176. [PMID: 32369804 DOI: 10.1159/000507048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/07/2020] [Indexed: 01/24/2023] Open
Abstract
Statins are the most widely prescribed cholesterol-lowering drugs to reduce the risk of cardiovascular diseases. Statin-induced myopathy is the major side effect of this class of drugs. Here, we studied whether standardized leaf extracts of ginkgo biloba (EGb761) would improve simvastatin (SIM)-induced muscle changes. Sixty Wistar rats were allotted into six groups: control group, vehicle group receiving 0.5% carboxymethyl cellulose (CMC) for 30 days, SIM group receiving 80 mg/kg/day SIM in 0.5% CMC orally for 30 days, SIM withdrawal group treated with SIM for 16 days and sacrificed 14 days later, and EGb761-100 and EGb761-200 groups posttreated with either 100 or 200 mg/kg/day EGb761 orally. Muscle performance on the rotarod, serum creatine kinase (CK), coenzyme Q10 (CoQ10), serum and muscle nitrite, muscle malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT) activities were estimated. Additionally, muscle samples were processed for histopathological evaluation. We found that SIM decreased muscle performance on the rotarod, serum CoQ10, as well as muscle SOD and CAT activities while it increased serum CK, serum and muscle nitrite, as well as muscle MDA levels. SIM also induced sarcoplasmic vacuolation, splitting of myofibers, disorganization of sarcomeres, and disintegration of myofilaments. In contrast, posttreatment with EGb761 increased muscle performance, serum CoQ10, as well as muscle SOD and CAT activities while it reduced serum CK as well as serum and muscle nitrite levels in a dose-dependent manner. Additionally, EGb761 reversed SIM-induced histopathological changes with better results obtained by its higher dose. Interestingly, SIM withdrawal increased muscle performance on the rotarod, reduce serum CK and CoQ10, and reduced serum and muscle nitrite while it reversed SIM-induced histopathological changes. However, SIM withdrawal was not effective enough to restore their normal values. Additionally, SIM withdrawal did not improve SIM-induce muscle MDA, SOD, or CAT activities during the period studied. Our results suggest that EGb761 posttreatment reversed SIM-induces muscle changes possibly through its antioxidant effects, elevation of CoQ10 levels, and antagonizing mitochondrial damage.
Collapse
Affiliation(s)
- Amany R Mahmoud
- Department of Human Anatomy and Embryology, Faculty of Medicine, Assiut University, Assiut, Egypt.,Anatomy Unit, Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Saudi Arabia
| | - Esam Omar Kamel
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Al-Azhar University, Assiut, Egypt
| | - Marwa A Ahmed
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Esraa A Ahmed
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt.,Centre of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tarek Hamdy Abd-Elhamid
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt,
| |
Collapse
|
2
|
McDonald FB, Edge D, O'Halloran KD. Chronic nitric oxide synthase inhibition does not impair upper airway muscle adaptation to chronic intermittent hypoxia in the rat. PROGRESS IN BRAIN RESEARCH 2014; 212:237-51. [PMID: 25194201 DOI: 10.1016/b978-0-444-63488-7.00012-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nitric oxide (NO) is an important modulator of striated muscle function. Nitric oxide synthase (NOS) expression and activity is altered by hypoxia and NO is implicated in respiratory muscle remodeling following chronic sustained hypoxia. We sought to determine if NO is implicated in upper airway dilator muscle adaptation to chronic intermittent hypoxia (CIH). Thirty-two adult male Wistar rats (284±13, mean±SD) were exposed to alternating bouts of hypoxia (90 s; 5% O2 at the nadir) and normoxia (210 s; 21% O2) for 12 cycles per hour, 8h/day for 3 weeks. Sham animals were exposed to normoxia in parallel. Half of the animals in both groups received the nNOS inhibitor-L-NNA (2mM) in the drinking water throughout the study (N=8 for all groups). Sternohyoid (pharyngeal dilator) muscle contractile and endurance properties were determined ex vivo. Sternohyoid muscle myosin heavy chain (MHC) isoform composition and cross-sectional area was determined by fluorescence microscopy. Chronic nNOS blockade did not alter sternohyoid muscle peak force or force-frequency relationship in sham or CIH-treated animals. In contrast, chronic nNOS blockade significantly decreased sternohyoid muscle endurance with equivalent effects in sham and CIH-treated rats. Our results suggest that NO is an important modulator of sternohyoid muscle endurance. However, our data provide no evidence to suggest that NO is implicated in upper airway muscle adaptation to CIH.
Collapse
Affiliation(s)
- Fiona B McDonald
- Health Sciences Centre, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Deirdre Edge
- Health Sciences Centre, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland; Department of Physiology, School of Medicine, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, University College Cork, Cork, Ireland.
| |
Collapse
|
3
|
Skelly JR, O'Connell RA, Jones JFX, O'Halloran KD. Structural and functional properties of an upper airway dilator muscle in aged obese male rats. Respiration 2011; 82:539-49. [PMID: 21997469 DOI: 10.1159/000332348] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 08/22/2011] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Age, obesity and male sex are risk factors for the development of obstructive sleep apnoea syndrome. OBJECTIVE We examined structural and functional properties of the sternohyoid muscle in young lean and aged obese male rats. We hypothesized that the aged muscle would be vulnerable to oxidative stress (hypoxia). METHODS Isometric contractile and endurance properties of the sternohyoid muscle were assessed in vitro with or without the superoxide scavenger Tempol (10 mM). Muscle fibre size and density were determined by myosin heavy chain immunofluorescence. Succinate dehydrogenase (SDH) and glycerol-3- phosphate dehydrogenase (GPDH) enzyme activities were determined. RESULTS Fibre hypertrophy, increased fast twitch (type 2X) fibre density, decreased SDH activity and increased GPDH activity, together with increased force and fatigue, were observed in aged obese muscles compared to young lean muscles. Tempol treatment increased strength and sensitivity to stimulation. Hypoxic depression of force was ameliorated by antioxidant treatment with equivalent effects in young lean and aged obese muscle. CONCLUSIONS We conclude that the rat sternohyoid exhibits indefinite growth and is protected from oxidative stress as the animal ages.
Collapse
Affiliation(s)
- J Richard Skelly
- UCD School of Medicine and Medical Science, Health Sciences Centre, University College Dublin, Dublin, Ireland
| | | | | | | |
Collapse
|
4
|
EGb 761 (Ginkgo biloba) protects cochlear hair cells against ototoxicity induced by gentamicin via reducing reactive oxygen species and nitric oxide-related apoptosis. J Nutr Biochem 2011; 22:886-94. [DOI: 10.1016/j.jnutbio.2010.08.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 07/29/2010] [Accepted: 08/05/2010] [Indexed: 12/23/2022]
|
5
|
Zaccone G, Mauceri A, Maisano M, Fasulo S. Immunolocalisation of nitric oxide synthase isoforms in the epidermis of the tiger salamander, Ambystoma tigrinum. Acta Histochem 2006; 108:407-10. [PMID: 16824585 DOI: 10.1016/j.acthis.2006.03.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 03/13/2006] [Accepted: 03/21/2006] [Indexed: 10/24/2022]
Abstract
A. tigrinum: Immunoreactivity for isoforms of nitric oxidase synthase is found in the flash cells and outer-deep epidermal cell layers of the tiger salamander A. tigrinum. Despite the absence of physiological data we assume NO may be lumped together as cytocrine regulators in the amphibian epidermis.
Collapse
Affiliation(s)
- Giacomo Zaccone
- Department of Animal Biology and Marine Ecology, Faculty of Science, University of Messina, Italy.
| | | | | | | |
Collapse
|
6
|
Buchwalow IB, Minin EA, Müller FU, Lewin G, Samoilova VE, Schmitz W, Wellner M, Hasselblatt M, Punkt K, Müller-Werdan U, Demus U, Slezak J, Koehler G, Boecker W. Nitric oxide synthase in muscular dystrophies: a re-evaluation. Acta Neuropathol 2006; 111:579-88. [PMID: 16718354 DOI: 10.1007/s00401-006-0069-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 03/13/2006] [Accepted: 03/23/2006] [Indexed: 10/24/2022]
Abstract
Duchenne and Becker muscular dystrophies (DMD and BMD) are associated with decreased total nitric oxide (NO). However, mechanisms leading to NO deficiency with consequent muscle-cell degeneration remain unknown. To address this issue, we examined skeletal muscles of DMD and BMD patients for co-expression of NO synthase (NOS) with nitrotyrosine and transcription factor CREB, as well as with enzymes engaged in NO signaling. Employing immunocytochemical labeling, Western blotting and RT-PCR, we found that, in contrast to the most commonly accepted view, neuronal NOS was not restricted to the sarcolemma and that muscles of DMD and BMD patients retained all three NOS isoforms with an up-regulation of the inducible NOS isoform, CREB and nitrotyrosine. We suggest that enhanced nitrotyrosine immunostaining in muscle fibers as well as in the vasculature of DMD and BMD specimens reflects massive oxidative stress, resulting in withdrawal of NO from its regular physiological course via the scavenging actions of superoxides.
Collapse
Affiliation(s)
- Igor B Buchwalow
- Gerhard Domagk Institute of Pathology, University of Muenster, Domagkstr. 17, 48149, Muenster, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Punkt K, Fritzsche M, Stockmar C, Hepp P, Josten C, Wellner M, Schering S, Buchwalow IB. Nitric oxide synthase in human skeletal muscles related to defined fibre types. Histochem Cell Biol 2005; 125:567-73. [PMID: 16292657 DOI: 10.1007/s00418-005-0108-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2005] [Indexed: 11/29/2022]
Abstract
Skeletal muscle functions regulated by NO are now firmly established. However, the knowledge about the NO synthase (NOS) expression related to a defined fibre type in human skeletal muscles necessitates further clarification. To address this issue, we examined localization of NOS isoforms I, II and III, in human skeletal muscles employing immunocytochemical labeling with tyramide signal amplification complemented with enzyme histochemistry and Western blotting. The NOS immunoreactivity was related to fibre types of different classification systems: physiological classification into slow and fast, ATPase classification into I, IIA, IIAX, IIX, and physiological-metabolic classification into slow-oxidative (SO), fast-oxidative glycolytic (FOG) and fast-glycolytic (FG). We found a correlation of NOS I-III immunoreactivity to metabolic defined fibre types with strong expression in FOG fibres. This implies that NO as modulator of muscle function is involved in oxidative metabolism in connection with fast force development, which only occurs in FOG fibres. The NOS expression showed no correlation to ATPase fibre subtypes due to the metabolic heterogeneity of ATPase fibre types. Healthy and affected vastus medialis muscles after anterior cruciate ligament rupture revealed similar NOS expression level as shown by Western blotting with, however, different expression patterns related to the fibre types in affected muscles. This suggests an altered modulation of force development in the fibres of diseased muscles.
Collapse
Affiliation(s)
- Karla Punkt
- Institute of Anatomy, University of Leipzig, Liebigstrasse 13, 04103, Leipzig, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Buchwalow IB, Minin EA, Samoilova VE, Boecker W, Wellner M, Schmitz W, Neumann J, Punkt K. Compartmentalization of NO signaling cascade in skeletal muscles. Biochem Biophys Res Commun 2005; 330:615-21. [PMID: 15796928 DOI: 10.1016/j.bbrc.2005.02.182] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Indexed: 11/24/2022]
Abstract
Skeletal muscle functions regulated by NO are now firmly established. However, the literature on the compartmentalization of NO signaling in myocytes is highly controversial. To address this issue, we examined localization of enzymes engaged in L-arginine-NO-cGMP signaling in the rat quadriceps muscle. Employing immunocytochemical labeling complemented with tyramide signal amplification and electron microscopy, we found NO synthase expressed not only in the sarcolemma, but also along contractile fibers, in the sarcoplasmic reticulum and mitochondria. The expression pattern of NO synthase in myocytes showed striking parallels with the enzymes engaged in L-arginine-NO-cGMP signaling (arginase, phosphodiesterase, and soluble guanylyl cyclase). Our findings are indicative of an autocrine fashion of NO signaling in skeletal muscles at both cellular and subcellular levels, and challenge the notion that the NO generation is restricted to the sarcolemma.
Collapse
Affiliation(s)
- Igor B Buchwalow
- Gerhard Domagk Institute of Pathology, University of Muenster, Muenster, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Chang HK, Jang MH, Lim BV, Lee TH, Shin MC, Shin MS, Kim H, Kim YP, Kim EH, Kim CJ. Administration of Ginseng radix decreases nitric oxide synthase expression in the hippocampus of streptozotocin-induced diabetic rats. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2005; 32:497-507. [PMID: 15481640 DOI: 10.1142/s0192415x04002144] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Nitric oxide (NO) is synthesized from L-arginine by nitric oxide synthase (NOS). Alternation of NOS expression is implicated in the pathogenesis of numerous secondary complications of diabetes. Aqueous extract of Ginseng radix has traditionally been used for the various disorders including diabetes. In this study, the effect of Ginseng radix on the NOS expression in the hippocampus of streptozotocin (STZ)-induced diabetic rats was investigated via nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) histochemistry. Enhanced NOS expression was detected in the hippocampus of diabetic rats and administration of Ginseng radix suppressed NOS expression. Ginseng radix may aid the treatment of central nervous system complications in diabetes.
Collapse
Affiliation(s)
- Hyun-Kyung Chang
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Buchwalow IB, Podzuweit T, Samoilova VE, Wellner M, Haller H, Grote S, Aleth S, Boecker W, Schmitz W, Neumann J. An in situ evidence for autocrine function of NO in the vasculature. Nitric Oxide 2005; 10:203-12. [PMID: 15275866 DOI: 10.1016/j.niox.2004.04.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Revised: 04/09/2004] [Indexed: 10/26/2022]
Abstract
The concept of endothelium derived relaxing factor (EDRF) implies that nitric oxide (NO) generated by NO synthase in the endothelium diffuses to the underlying vascular smooth muscle cells (VSMC) modulating thereby vascular tone. VSMC were regarded as passive recipients of NO from endothelial cells. However, this paradigm of a paracrine function of NO became currently subject to considerable debate. To address this issue, we examined the localization of enzymes engaged in l-arginine-NO-cGMP signaling in the rat blood vessels. Employing multiple immunocytochemical labeling complemented with signal amplification, electron microscopy, Western blotting, and RT-PCR, we found that NO synthase was differentially expressed in blood vessels depending on the blood vessel type. Moreover, the expression pattern of NO synthase in VSMC showed striking parallels with arginase and soluble guanylyl cyclase. Our findings challenge the commonly accepted view that the expression of NO synthase is restricted to vascular endothelial cells and lends further support to an alternative mechanism, by which constitutive local NOS expression in VSMC may modulate vascular functions in an endothelium-independent manner. Moreover, the co-expression of enzymes engaged in l-arginine-NO-cGMP signaling (NO synthase, arginase, and soluble guanylyl cyclase) in VSMC is indicative of an autocrine fashion of NO signaling in the vasculature in addition to the paracrine role of NO generated in the endothelium.
Collapse
Affiliation(s)
- Igor B Buchwalow
- Interdisciplinary Center of Clinical Research and Gerhard Domagk Institute of Pathology, University of Muenster, D-48149 Muenster, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Baum O, Miethke A, Wöckel A, Willerding G, Planitzer G. The specificity of the histochemical NADPH diaphorase reaction for nitric oxide synthase-1 in skeletal muscles is increased in the presence of urea. Acta Histochem 2002; 104:3-14. [PMID: 11993849 DOI: 10.1078/0065-1281-00625] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Nitric oxide synthase-1 (NOS-1) can be demonstrated in the sarcolemma region of myofibers in rodent skeletal muscles with the use of NADPH diaphorase histochemistry. Since other, especially intrafibrar enzymes also exhibit NADPH diaphorase activity, we tried to increase the specificity of the histochemical reaction for NOS-1. A qualitative and quantitative analysis was performed on cryostat sections of fast-twitch oxidative myofiber-rich tongue and fast-twitch glycolytic myofibers-rich tibialis anterior muscle derived from C57 mice and NOS-1 deficient knockout mice. All myofibers of both C57 mice and NOS-1 knockout mice contained significant intrafibrar NADPH diaphorase activity which was inhibited to almost background levels when 2 M urea was added to the incubation medium. On the other hand, myofibers of C57 mice but not of NOS-1-deficient knockout mice exhibited NADPH diaphorase activity in their sarcolemma region which was only weakly reduced in the presence of 2 M urea as was demonstrated by image analysis. Quantitative data on the activity of NADPH diaphorase(s) were obtained in situ by photometric analysis of formazan extracted from cryostat sections. The catalytic activity in tongue and tibialis anterior muscle was reduced in presence of 2 M urea to approximately 27% in C57 mice and to 7-17% in NOS-1 knockout mice, respectively. An in vitro NADPH diaphorase assay performed on homogenates of skeletal muscles also revealed an inhibitory effect of 2 M urea in both mouse strains and, additionally, indicated an upregulation of NADPH diaphorase activity in NOS-1 knockout mice. Finally, an immunodepletion analysis demonstrated that NOS-1 comprises 38% of the total NADPH diaphorase activity in tongue and approximately 59% in tibialis anterior muscle in C57 mice. In conclusion, we recommend the addition of 2 M urea to the incubation medium to increase the specificity of the NADPH diaphorase reaction to localise NOS-1 with the use of catalytic histochemistry.
Collapse
MESH Headings
- Animals
- Enzyme Inhibitors/pharmacology
- Fluorescent Antibody Technique, Indirect
- Image Processing, Computer-Assisted
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/enzymology
- Muscle, Skeletal/cytology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/enzymology
- NADPH Dehydrogenase/metabolism
- Nitric Oxide Synthase/antagonists & inhibitors
- Nitric Oxide Synthase/genetics
- Nitric Oxide Synthase/metabolism
- Nitric Oxide Synthase Type I
- Sensitivity and Specificity
- Urea/pharmacology
Collapse
Affiliation(s)
- Oliver Baum
- Department of Anatomy, Universitätsklinikum Benjamin Franklin, Freie Universität Berlin, Germany.
| | | | | | | | | |
Collapse
|
12
|
Punkt K, Zaitsev S, Wellner M, Schreiter T, Fitzl G, Buchwalow IB. Myopathy-dependent changes in activity of ATPase, SDH and GPDH and NOS expression in the different fibre types of hamster muscles. Acta Histochem 2002; 104:15-22. [PMID: 11993846 DOI: 10.1078/0065-1281-00628] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Proximal (vastus lateralis) and distal (gastrocnemius) muscles of 100-day-old normal and myopathic BIO TO-2 hamsters were analysed to study the effects of myopathy on the different muscle fibre types: SO (slow oxidative), FOG (fast oxidative glycolytic) and FG (fast glycolytic). Cytophotometric measurements of enzyme activities (myofibrillic adenosine triphosphatase, succinate dehydrogenase and glycerol-3-phosphate dehydrogenase), Western blot analysis of nitric oxide synthase (NOS) I, II, III isoforms and NOS II immunohistochemistry were performed. The following alterations were found in myopathic muscle fibres: all fibre types of both proximal and distal myopathic muscles showed decreased myofibrillic adenosine triphosphatase activity indicating depressed contractility. This was associated with depressed oxidative activity of the muscle fibres. A shift to more glycolytic metabolism was observed, mainly in FG fibres of proximal muscle. We found an increased NOS II expression in both myopathic muscle types investigated. It means that increased NO production inhibits force generation in myopathic muscle. NOS II immunoreactivity was found mainly in the cytoplasm of FG fibres. NOS I and NOS III expression was not significantly effected by this form of myopathy. Our findings demonstrate that muscle fibres of proximal and distal skeletal muscles of 100-day-old cardiomyopathic BIO TO-2 hamsters are altered with respect to contractility, metabolism and NOS II expression. FG fibres of the proximal muscle were effected most strongly.
Collapse
MESH Headings
- Adenosine Triphosphatases/metabolism
- Animals
- Blotting, Western
- Cricetinae
- Glycerolphosphate Dehydrogenase/metabolism
- Male
- Mesocricetus
- Muscle Fibers, Fast-Twitch/enzymology
- Muscle Fibers, Fast-Twitch/pathology
- Muscle Fibers, Skeletal/classification
- Muscle Fibers, Skeletal/enzymology
- Muscle Fibers, Skeletal/pathology
- Muscle Fibers, Slow-Twitch/enzymology
- Muscle Fibers, Slow-Twitch/pathology
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/pathology
- Muscular Diseases/enzymology
- Muscular Diseases/genetics
- Myofibrils/enzymology
- Myofibrils/pathology
- Nitric Oxide Synthase/metabolism
- Succinate Dehydrogenase/metabolism
Collapse
Affiliation(s)
- Karla Punkt
- Institute of Anatomy, University of Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
13
|
Krey KF, Dannhauer KH, Hemprich A, Zaitsev S, Bankfalvi A, Buchwalow IB, Punkt K. Cytophotometrical and immunohistochemical analysis of soft palate muscles of children with isolated cleft palate and combined cleft lip and palate. EXPERIMENTAL AND TOXICOLOGIC PATHOLOGY : OFFICIAL JOURNAL OF THE GESELLSCHAFT FUR TOXIKOLOGISCHE PATHOLOGIE 2002; 54:69-75. [PMID: 12180805 DOI: 10.1078/0940-2993-00235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Palatal muscle biopsies from the cleft margin of children were subjected to cytophotometrical and immunohistochemical analysis. Muscle fiber types were classified according to the enzyme activity of myofibrillic adenosine triphosphatase, glycerol-3-phosphate-dehydrogenase and succinate dehydrogenase assessed cytophotometrically. Fiber type-related immunoreactivity of nitric oxide synthase (NOS) isoforms I, II, III, as a physiological modulator of skeletal muscle function, was related to the oxidative and glycolytic activity of the muscle fibers. Fast oxidative glycolytic fibers with high oxidative activity showed strong NOS I immunoreactivity, whereas fast glycolytic fibers with high glycolytic activity were stronger immunolabelled for NOS III. NOS II expression was similar in all fiber types. No differences in NOS immunoreactivity were found between the two investigated forms of deformity. Additionally to the usual skeletal muscle fiber types, a slow tonic fiber type was for the first time identified in cleft palate muscles. Comparison of two forms of cleft palate, isolated cleft palate and combined cleft lip and palate has shown decreased enzyme activities in muscle fibers of palatal muscles from combined cleft lip and palate. Fast oxidative glycolytic fibers were mainly effected. Cytophotometrical and immunohistochemical analysis indicated a depressed performance of the cleft palatal muscles from combined cleft lip and palate as a stronger deformity compared with isolated cleft palate.
Collapse
MESH Headings
- Adenosine Triphosphatases/metabolism
- Cleft Lip/complications
- Cleft Lip/metabolism
- Cleft Lip/pathology
- Cleft Palate/complications
- Cleft Palate/metabolism
- Cleft Palate/pathology
- Glycerolphosphate Dehydrogenase/metabolism
- Humans
- Image Processing, Computer-Assisted
- Immunohistochemistry
- Infant
- Isoenzymes
- Muscle Fibers, Fast-Twitch/classification
- Muscle Fibers, Fast-Twitch/enzymology
- Muscle Fibers, Fast-Twitch/pathology
- Muscle Fibers, Slow-Twitch/classification
- Muscle Fibers, Slow-Twitch/enzymology
- Muscle Fibers, Slow-Twitch/pathology
- Muscle, Skeletal/abnormalities
- Muscle, Skeletal/enzymology
- Nitric Oxide Synthase/metabolism
- Palate, Soft/abnormalities
- Palate, Soft/metabolism
- Succinate Dehydrogenase/metabolism
Collapse
|
14
|
Buchwalow IB, Podzuweit T, Bocker W, Samoilova VE, Thomas S, Wellner M, Baba HA, Robenek H, Schnekenburger J, Lerch MM. Vascular smooth muscle and nitric oxide synthase. FASEB J 2002; 16:500-8. [PMID: 11919152 DOI: 10.1096/fj.01-0842com] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The concept of endothelium-derived relaxing factor (EDRF) put forward in 1980 by Furchgott and Zawadzki implies that nitric oxide (NO) produced by NO synthase (NOS) in the endothelium diffuses to the underlying vascular smooth muscle, where it modulates vascular tone as well as vascular smooth muscle cell (VSMC) proliferation by increasing cGMP formation with subsequent activation of cGMP-dependent protein kinase. According to this concept, VSMC do not express NOS by themselves. This attractive, simple scheme is now under considerable debate. To address this issue, we designed this study with the use of a novel supersensitive immunocytochemical technique of signal amplification with tyramide and electron microscopic immunogold labeling complemented with Western blotting, as in our recent studies demonstrating NOS in the myocardial and skeletal muscles. We provide the first evidence that, in contrast to the currently accepted view, VSMC in various blood vessels express all three NOS isoforms depending on the blood vessel type. These findings suggest an alternative mechanism by which local NOS expression may modulate vascular functions in an endothelium-independent manner.
Collapse
Affiliation(s)
- Igor B Buchwalow
- Department of Medicine B, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|