1
|
Castillo-Sanchez R, Cortes-Reynosa P, Lopez-Perez M, Garcia-Hernandez A, Salazar EP. Caveolae Microdomains Mediate STAT5 Signaling Induced by Insulin in MCF-7 Breast Cancer Cells. J Membr Biol 2023; 256:79-90. [PMID: 35751654 DOI: 10.1007/s00232-022-00253-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/06/2022] [Indexed: 02/07/2023]
Abstract
Caveolae are small plasma membrane invaginations constituted for membrane proteins namely caveolins and cytosolic proteins termed cavins, which can occupy up to 50% of the surface of mammalian cells. The caveolae have been involved with a variety of cellular processes including regulation of cellular signaling. Insulin is a hormone that mediates a variety of physiological processes through activation of insulin receptor (IR), which is a tyrosine kinase receptor expressed in all mammalian tissues. Insulin induces activation of signal transducers and activators of transcription (STAT) family members including STAT5. In this study, we demonstrate, for the first time, that insulin induces phosphorylation of STAT5 at tyrosine-694 (STAT5-Tyr(P)694), STAT5 nuclear accumulation and an increase in STAT5-DNA complex formation in MCF-7 breast cancer cells. Insulin also induces nuclear accumulation of STAT5-Tyr(P)694, caveolin-1, and IR in MCF-7 cells. STAT5 nuclear accumulation and the increase of STAT5-DNA complex formation require the integrity of caveolae and microtubule network. Moreover, insulin induces an increase and nuclear accumulation of STAT5-Tyr(P)694 in MDA-MB-231 breast cancer cells. In conclusion, results demonstrate that caveolae and microtubule network play an important role in STAT5-Tyr(P)694, STAT5 nuclear accumulation and STAT5-DNA complex formation induced by insulin in breast cancer cells.
Collapse
Affiliation(s)
- Rocio Castillo-Sanchez
- Departamento de Biologia Celular, Cinvestav-IPN, Av. IPN # 2508, 07360, Mexico City, Mexico
| | - Pedro Cortes-Reynosa
- Departamento de Biologia Celular, Cinvestav-IPN, Av. IPN # 2508, 07360, Mexico City, Mexico
| | - Mario Lopez-Perez
- Departamento de Biologia Celular, Cinvestav-IPN, Av. IPN # 2508, 07360, Mexico City, Mexico
| | | | - Eduardo Perez Salazar
- Departamento de Biologia Celular, Cinvestav-IPN, Av. IPN # 2508, 07360, Mexico City, Mexico.
| |
Collapse
|
2
|
Lee HC, Hamzah H, Leong MPY, Md Yusof H, Habib O, Zainal Abidin S, Seth EA, Lim SM, Vidyadaran S, Mohd Moklas MA, Abdullah MA, Nordin N, Hassan Z, Cheah PS, Ling KH. Transient prenatal ruxolitinib treatment suppresses astrogenesis during development and improves learning and memory in adult mice. Sci Rep 2021; 11:3847. [PMID: 33589712 PMCID: PMC7884429 DOI: 10.1038/s41598-021-83222-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 01/20/2021] [Indexed: 01/08/2023] Open
Abstract
Ruxolitinib is the first janus kinase 1 (JAK1) and JAK2 inhibitor that was approved by the United States Food and Drug Administration (FDA) agency for the treatment of myeloproliferative neoplasms. The drug targets the JAK/STAT signalling pathway, which is critical in regulating the gliogenesis process during nervous system development. In the study, we assessed the effect of non-maternal toxic dosages of ruxolitinib (0-30 mg/kg/day between E7.5-E20.5) on the brain of the developing mouse embryos. While the pregnant mice did not show any apparent adverse effects, the Gfap protein marker for glial cells and S100β mRNA marker for astrocytes were reduced in the postnatal day (P) 1.5 pups' brains. Gfap expression and Gfap+ cells were also suppressed in the differentiating neurospheres culture treated with ruxolitinib. Compared to the control group, adult mice treated with ruxolitinib prenatally showed no changes in motor coordination, locomotor function, and recognition memory. However, increased explorative behaviour within an open field and improved spatial learning and long-term memory retention were observed in the treated group. We demonstrated transplacental effects of ruxolitinib on astrogenesis, suggesting the potential use of ruxolitinib to revert pathological conditions caused by gliogenic-shift in early brain development such as Down and Noonan syndromes.
Collapse
Affiliation(s)
- Han-Chung Lee
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Hamizun Hamzah
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Melody Pui-Yee Leong
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Hadri Md Yusof
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Biotechnology, Faculty of Science, Technology, Engineering and Mathematics, International University of Malaya-Wales, 50480, Kuala Lumpur, Malaysia
| | - Omar Habib
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Shahidee Zainal Abidin
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Eryse Amira Seth
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Siong-Meng Lim
- Collaborative Drug Discovery Research, Faculty of Pharmacy, Universiti Teknologi MARA, Cawangan Selangor, Kampus Puncak Alam, 42300, Bandar Puncak Alam, Selangor, Malaysia
| | - Sharmili Vidyadaran
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Mohamad Aris Mohd Moklas
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Maizaton Atmadini Abdullah
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Institute of Biosciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Norshariza Nordin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Pike-See Cheah
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - King-Hwa Ling
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
3
|
Xu M, Ni H, Xu L, Shen H, Deng H, Wang Y, Yao M. B14 ameliorates bone cancer pain through downregulating spinal interleukin-1β via suppressing neuron JAK2/STAT3 pathway. Mol Pain 2020; 15:1744806919886498. [PMID: 31615322 PMCID: PMC6876167 DOI: 10.1177/1744806919886498] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Curcumin has several pharmacological properties such as anti-inflammatory, antioxidant, and neuroprotective activities. B14 is a curcumin analogue and is considered to be a more potent compound with preserved pharmacodynamic activities. Based on the previous research studies, janus-activated kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway plays a remarkable role in inflammation, chronic pain, and even contributes to the pathogenesis of neuropathic pain. Pro-inflammatory cytokines interleukin-1β is a downstream factor of JAK2/STAT3 signal transition pathway, which participates in neuron injury and inflammation. We hypothesized that this signal transition pathway played an indispensable role in bone cancer pain. We herein established a bone cancer pain model to monitor the variation of JAK2/STAT3 signal transduction pathway and measured the effect of B14. The results in bone cancer pain model showed that (i) the levels of interleukin-1β were elevated, and the ratios of p-JAK2/JAK2 and p-STAT3/STAT3 were increased; (ii) double immunostaining showed that p-JAK2, p-STAT3, and interleukin-1β were colocalized primarily with neurons, rather than with astrocytes or microglial cells; (iii) B14 injection (intraperitoneally) markedly eased bone cancer pain; (iv) Western blotting showed that B14 injection lowered p-JAK2, p-STAT3, and interleukin-1β levels, meanwhile the ratios of p-JAK2/JAK2 and p-STAT3/STAT3 was reduced; (v) immunofluorescence results also confirmed decreased levels of p-JAK2, p-STAT3, and interleukin-1β in B14 treatment group. These findings suggested that B14 injection attenuated bone cancer pain in rats. This intervention inhibited JAK2/STAT3 cascade activation, downregulating interleukin-1β expression in spinal dorsal horn.
Collapse
Affiliation(s)
- Miao Xu
- The Second Affiliate Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, China
| | - Huadong Ni
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, China
| | - Longsheng Xu
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, China
| | - Hui Shen
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, China
| | - Housheng Deng
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, China
| | - Yungong Wang
- The Affiliated Zhuzhou Hospital Xiangya Medical College, Changsha, China
| | - Ming Yao
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, China
| |
Collapse
|
4
|
Zhang X, Yang Q, Ding T, Xu J, Yan Z, Men Y, Xin W, Xu H. Retracted Article: Gm5820, an antisense RNA of FGF1, suppresses FGF1 expression at the posttranscriptional level to inactivate the ERK/STAT3 pathway and alleviates neuropathic pain in mice. RSC Adv 2019; 9:28364-28376. [PMID: 35529622 PMCID: PMC9071159 DOI: 10.1039/c9ra03791h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/02/2019] [Indexed: 11/21/2022] Open
Abstract
Emerging evidence reveals that lncRNAs play important roles in various pathological processes, but precious little indicates their regulatory role in neuropathic pain.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Pain
- Huaihe Hospital of Henan University
- Kaifeng 475000
- China
| | - Qing Yang
- Department of Anesthesiology
- Huaihe Hospital of Henan University
- Kaifeng 475000
- China
| | - Tao Ding
- Department of Anesthesiology
- Huaihe Hospital of Henan University
- Kaifeng 475000
- China
| | - Jingyu Xu
- Department of Pain
- Huaihe Hospital of Henan University
- Kaifeng 475000
- China
| | - Zeng Yan
- Department of Anesthesiology
- Huaihe Hospital of Henan University
- Kaifeng 475000
- China
| | - Yanhua Men
- Department of Anesthesiology
- Huaihe Hospital of Henan University
- Kaifeng 475000
- China
| | - Wenqi Xin
- Department of Anesthesiology
- Huaihe Hospital of Henan University
- Kaifeng 475000
- China
| | - Haixia Xu
- Department of Anesthesiology
- Huaihe Hospital of Henan University
- Kaifeng 475000
- China
| |
Collapse
|
5
|
Salaffi F, Giacobazzi G, Di Carlo M. Chronic Pain in Inflammatory Arthritis: Mechanisms, Metrology, and Emerging Targets-A Focus on the JAK-STAT Pathway. Pain Res Manag 2018; 2018:8564215. [PMID: 29623147 PMCID: PMC5829432 DOI: 10.1155/2018/8564215] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/13/2017] [Indexed: 12/14/2022]
Abstract
Chronic pain is nowadays considered not only the mainstay symptom of rheumatic diseases but also "a disease itself." Pain is a multidimensional phenomenon, and in inflammatory arthritis, it derives from multiple mechanisms, involving both synovitis (release of a great number of cytokines) and peripheral and central pain-processing mechanisms (sensitization). In the last years, the JAK-STAT pathway has been recognized as a pivotal component both in the inflammatory process and in pain amplification in the central nervous system. This paper provides a summary on pain in inflammatory arthritis, from pathogenesis to clinimetric instruments and treatment, with a focus on the JAK-STAT pathway.
Collapse
Affiliation(s)
- Fausto Salaffi
- Rheumatology Department, Università Politecnica delle Marche, Jesi, Ancona, Italy
| | | | - Marco Di Carlo
- Rheumatology Department, Università Politecnica delle Marche, Jesi, Ancona, Italy
| |
Collapse
|
6
|
The emerging role of signal transducer and activator of transcription 3 in cerebral ischemic and hemorrhagic stroke. Prog Neurobiol 2016; 137:1-16. [DOI: 10.1016/j.pneurobio.2015.11.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 10/13/2015] [Accepted: 11/18/2015] [Indexed: 01/05/2023]
|
7
|
Potential Role of JAK-STAT Signaling Pathway in the Neurogenic-to-Gliogenic Shift in Down Syndrome Brain. Neural Plast 2016; 2016:7434191. [PMID: 26881131 PMCID: PMC4737457 DOI: 10.1155/2016/7434191] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/15/2015] [Accepted: 11/17/2015] [Indexed: 01/09/2023] Open
Abstract
Trisomy of human chromosome 21 in Down syndrome (DS) leads to several phenotypes, such as mild-to-severe intellectual disability, hypotonia, and craniofacial dysmorphisms. These are fundamental hallmarks of the disorder that affect the quality of life of most individuals with DS. Proper brain development involves meticulous regulation of various signaling pathways, and dysregulation may result in abnormal neurodevelopment. DS brain is characterized by an increased number of astrocytes with reduced number of neurons. In mouse models for DS, the pool of neural progenitor cells commits to glia rather than neuronal cell fate in the DS brain. However, the mechanism(s) and consequences of this slight neurogenic-to-gliogenic shift in DS brain are still poorly understood. To date, Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling has been proposed to be crucial in various developmental pathways, especially in promoting astrogliogenesis. Since both human and mouse models of DS brain exhibit less neurons and a higher percentage of cells with astrocytic phenotypes, understanding the role of JAK-STAT signaling in DS brain development will provide novel insight into its role in the pathogenesis of DS brain and may serve as a potential target for the development of effective therapy to improve DS cognition.
Collapse
|
8
|
Park MS, Kim BR, Kang S, Kim DY, Rho SB. The antihypertension drug doxazosin suppresses JAK/STATs phosphorylation and enhances the effects of IFN-α/γ-induced apoptosis. Genes Cancer 2015; 5:470-479. [PMID: 25568671 PMCID: PMC4279443 DOI: 10.18632/genesandcancer.37] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/08/2014] [Indexed: 11/25/2022] Open
Abstract
Doxazosin, a commonly prescribed treatment for patients with benign prostatic hyperplasia, serves as an α1-blocker of the adrenergic receptors. In this study, we calculated its effect on the ovarian carcinoma cells. Doxazosin induces dose-dependent growth suppression and is additively activated through IFN-α or IFN-γ stimulation. They both enhanced G1 phase arrest, as well as the activity of caspase-3, and the reduction of cyclin D1 and CDK4 protein levels. Doxazosin growth suppression was abolished either by the Janus family of tyrosine kinase (JAK) or the signal transducer and activator of transcription (STAT) inhibitor treatment. The activity of JAK/STAT was dependent on the level of doxazosin, suggesting a requirement of doxazosin for the activation of JAK/STAT. Furthermore, doxazosin plus IFN-α or doxazosin plus IFN-γ additively suppressed the activation of the JAK/STAT signals through phosphorylation of JAK and STAT, thus affecting the activation of subsequent downstream signaling components PI3K, mTOR, 70S6K, and PKCδ. In vivo study demonstrated that doxazosin significantly suppressed tumor growth in an ovarian cancer cell xenograft mouse model, inducing apoptotic cell death by up-regulating the expression of p53, whereas c-Myc expression was markedly reduced. Our data indicate that doxazosin can modulate the apoptotic effects of IFN-α- and IFN-γ through the JAK/STAT signaling pathways. Collectively, we indicate that this action may be a potent chemotherapeutic property against ovarian carcinoma.
Collapse
Affiliation(s)
- Mi Sun Park
- Research Institute, National Cancer Center, Ilsandong-gu, Goyang-si Gyeonggi-do, Republic of Korea
| | - Boh-Ram Kim
- Research Institute, National Cancer Center, Ilsandong-gu, Goyang-si Gyeonggi-do, Republic of Korea
| | - Sokbom Kang
- Research Institute, National Cancer Center, Ilsandong-gu, Goyang-si Gyeonggi-do, Republic of Korea
| | - Dae-Yong Kim
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
| | - Seung Bae Rho
- Research Institute, National Cancer Center, Ilsandong-gu, Goyang-si Gyeonggi-do, Republic of Korea
| |
Collapse
|
9
|
Qiu J, Kleineidam A, Gouraud S, Yao ST, Greenwood M, Hoe SZ, Hindmarch C, Murphy D. The use of protein-DNA, chromatin immunoprecipitation, and transcriptome arrays to describe transcriptional circuits in the dehydrated male rat hypothalamus. Endocrinology 2014; 155:4380-90. [PMID: 25144923 PMCID: PMC4256826 DOI: 10.1210/en.2014-1448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The supraoptic nucleus (SON) of the hypothalamus is responsible for maintaining osmotic stability in mammals through its elaboration of the antidiuretic hormone arginine vasopressin. Upon dehydration, the SON undergoes a function-related plasticity, which includes remodeling of morphology, electrical properties, and biosynthetic activity. This process occurs alongside alterations in steady state transcript levels, which might be mediated by changes in the activity of transcription factors. In order to identify which transcription factors might be involved in changing patterns of gene expression, an Affymetrix protein-DNA array analysis was carried out. Nuclear extracts of SON from dehydrated and control male rats were analyzed for binding to the 345 consensus DNA transcription factor binding sequences of the array. Statistical analysis revealed significant changes in binding to 26 consensus elements, of which EMSA confirmed increased binding to signal transducer and activator of transcription (Stat) 1/Stat3, cellular Myelocytomatosis virus-like cellular proto-oncogene (c-Myc)-Myc-associated factor X (Max), and pre-B cell leukemia transcription factor 1 sequences after dehydration. Focusing on c-Myc and Max, we used quantitative PCR to confirm previous transcriptomic analysis that had suggested an increase in c-Myc, but not Max, mRNA levels in the SON after dehydration, and we demonstrated c-Myc- and Max-like immunoreactivities in SON arginine vasopressin-expressing cells. Finally, by comparing new data obtained from Roche-NimbleGen chromatin immunoprecipitation arrays with previously published transcriptomic data, we have identified putative c-Myc target genes whose expression changes in the SON after dehydration. These include known c-Myc targets, such as the Slc7a5 gene, which encodes the L-type amino acid transporter 1, ribosomal protein L24, histone deactylase 2, and the Rat sarcoma proto-oncogene (Ras)-related nuclear GTPase.
Collapse
Affiliation(s)
- Jing Qiu
- School of Clinical Sciences (J.Q., A.K., S.G., S.T.Y., M.G., C.H., D.M.), University of Bristol, Bristol BS1 3NY, United Kingdom; and Department of Physiology (S.Z.H., C.H., D.M.), Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Tanabe K, Matsushima-Nishiwaki R, Yamaguchi S, Iida H, Dohi S, Kozawa O. Mechanisms of tumor necrosis factor-alpha-induced interleukin-6 synthesis in glioma cells. J Neuroinflammation 2010; 7:16. [PMID: 20205746 PMCID: PMC2846903 DOI: 10.1186/1742-2094-7-16] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 03/06/2010] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Interleukin (IL)-6 plays a pivotal role in a variety of CNS functions such as the induction and modulation of reactive astrogliosis, pathological inflammatory responses and neuroprotection. Tumor necrosis factor (TNF)-alpha induces IL-6 release from rat C6 glioma cells through the inhibitory kappa B (IkappaB)-nuclear factor kappa B (NFkappaB) pathway, p38 mitogen-activated protein (MAP) kinase and stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK). The present study investigated the mechanism of TNF-alpha-induced IL-6 release in more detail than has previously been reported. METHODS Cultured C6 cells were stimulated by TNF-alpha. IL-6 release from the cells was measured by an enzyme-linked immunosorbent assay, and the phosphorylation of IkappaB, NFkappaB, the MAP kinase superfamily, and signal transducer and activator of transcription (STAT)3 was analyzed by Western blotting. Levels of IL-6 mRNA in cells were evaluated by real-time reverse transcription-polymerase chain reaction. RESULTS TNF-alpha significantly induced phosphorylation of NFkappaB at Ser 536 and Ser 468, but not at Ser 529 or Ser 276. Wedelolactone, an inhibitor of IkappaB kinase, suppressed both TNF-alpha-induced IkappaB phosphorylation and NFkappaB phosphorylation at Ser 536 and Ser 468. TNF-alpha-stimulated increases in IL-6 levels were suppressed by wedelolactone. TNF-alpha induced phosphorylation of STAT3. The Janus family of tyrosine kinase (JAK) inhibitor I, an inhibitor of JAK 1, 2 and 3, attenuated TNF-alpha-induced phosphorylation of STAT3 and significantly reduced TNF-alpha-stimulated IL-6 release. Apocynin, an inhibitor of NADPH oxidase that suppresses intracellular reactive oxygen species, significantly suppressed TNF-alpha-induced IL-6 release and mRNA expression. However, apocynin failed to affect the phosphorylation of IkappaB, NFkappaB, p38 MAP kinase, SAPK/JNK or STAT3. CONCLUSION These results strongly suggest that TNF-alpha induces IL-6 synthesis through the JAK/STAT3 pathway in addition to p38 MAP kinase and SAPK/JNK in C6 glioma cells, and that phosphorylation of NFkappaB at Ser 536 and Ser 468, and NADPH oxidase are involved in TNF-alpha-stimulated IL-6 synthesis.
Collapse
Affiliation(s)
- Kumiko Tanabe
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | | | - Shinobu Yamaguchi
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Hiroki Iida
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Shuji Dohi
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| |
Collapse
|
11
|
Carmen J, Magnus T, Cassiani-Ingoni R, Sherman L, Rao MS, Mattson MP. Revisiting the astrocyte–oligodendrocyte relationship in the adult CNS. Prog Neurobiol 2007; 82:151-62. [PMID: 17448587 DOI: 10.1016/j.pneurobio.2007.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 01/26/2007] [Accepted: 03/02/2007] [Indexed: 01/31/2023]
Abstract
The lineages of both astrocytes and oligodendrocytes have been popular areas of research in the last decade. The source of these cells in the mature CNS is relevant to the study of the cellular response to CNS injury. A significant amount of evidence exists to suggest that resident precursor cells proliferate and differentiate into mature glial cells that facilitate tissue repair and recovery. Additionally, the re-entry of mature astrocytes into the cell cycle can also contribute to the pool of new astrocytes that are observed following CNS injury. In order to better understand the glial response to injury in the adult CNS we must revisit the astrocyte-oligodendrocyte relationship. Specifically, we argue that there is a common glial precursor cell from which astrocytes and oligodendrocytes differentiate and that the microenvironment surrounding the injury determines the fate of the stimulated precursor cell. Ideally, better understanding the origin of new glial cells in the injured CNS will facilitate the development of therapeutics targeted to alter the glial response in a beneficial way.
Collapse
Affiliation(s)
- Jessica Carmen
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, NIH, Baltimore, MD 21224, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Nicoletti VG, Santoro AM, Grasso G, Vagliasindi LI, Giuffrida ML, Cuppari C, Purrello VS, Stella AMG, Rizzarelli E. Carnosine interaction with nitric oxide and astroglial cell protection. J Neurosci Res 2007; 85:2239-45. [PMID: 17546663 DOI: 10.1002/jnr.21365] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The neuropeptide carnosine (beta-amyloid peptide aggregation has been demonstrated. Carnosine protection against peroxynitrite damage is particularly relevant, but until now there has been no evidence of any direct interaction with nitric oxide. In this study we examined the protection that carnosine provides against nitric oxide (NO)-induced cell death in primary rat astroglial cell cultures treated with lipopolysaccharide (LPS) and interferon gamma (INFgamma), a well-known neurotoxic proinflammatory condition. A correlation was found between cell protection and NO free-radical scavenging activity of carnosine. Moreover, by competitive spectrophotometric measurement and electrospray mass spectrometry analysis in cell-free experiments, we demonstrated a direct interaction of the dipeptide with NO. A comparison of carnosine with its homologues or derivatives (homocarnosine and carcinine) as well as with its amino acid constituents (L-histidine and beta-alanine) highlighted that only histidine showed significant scavenging activity. Therefore, carnosine shows direct NO-trapping ability and may be a valuable multifunctional molecule in the treatment of neurodegenerative disorders.
Collapse
|
13
|
Elliott J, Cayouette M, Gravel C. The CNTF/LIF signaling pathway regulates developmental programmed cell death and differentiation of rod precursor cells in the mouse retina in vivo. Dev Biol 2006; 300:583-98. [PMID: 17054938 DOI: 10.1016/j.ydbio.2006.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 08/31/2006] [Accepted: 09/05/2006] [Indexed: 11/19/2022]
Abstract
Natural cell death is critical for normal development of the nervous system, but the extracellular regulators of developmental cell death remain poorly characterized. Here, we studied the role of the CNTF/LIF signaling pathway during mouse retinal development in vivo. We show that exposure to CNTF during neonatal retinal development in vivo retards rhodopsin expression and results in an important and specific deficit in photoreceptor cells. Detailed analysis revealed that exposure to CNTF during retinal development causes a sharp increase in cell death of postmitotic rod precursor cells. Importantly, we show that blocking the CNTF/LIF signaling pathway during mouse retinal development in vivo results in a significant reduction of naturally occurring cell death. Using retroviral lineage analysis, we demonstrate that exposure to CNTF causes a specific reduction of clones containing only rods without affecting other clone types, whereas blocking the CNTF/LIF receptor complex causes a specific increase of clones containing only rods. In addition, we show that stimulation of the CNTF/LIF pathway positively regulates the expression of the neuronal and endothelial nitric oxide synthase (NOS) genes, and blocking nitric oxide production by pre-treatment with a NOS inhibitor abolishes CNTF-induced cell death. Taken together, these results indicate that the CNTF/LIF signaling pathway acts via regulation of nitric oxide production to modulate developmental programmed cell death of postmitotic rod precursor cells.
Collapse
Affiliation(s)
- Jimmy Elliott
- Institut de Recherches Cliniques de Montréal (IRCM), 110, avenue des Pins Ouest Montréal, Québec, Canada H2W 1R7
| | | | | |
Collapse
|
14
|
Abstract
The immune system has a complex and dynamic relationship with the nervous system, both in health and disease. The immune system surveys the central and peripheral nervous systems, becoming activated in response to foreign substances, infectious particles or neoplasms. Conversely, the nervous system modulates immune system function both through the neuroendocrine axis and through vagus nerve efferents. In disease states, this dynamic relationship is perturbed, resulting in neuropsychiatric diseases. In this manuscript, we will summarize fundamental principles of the immune system and its interaction with the nervous system. We will describe the critical components of the adaptive and innate branches of the immune system and will describe important effectors and signalling pathways in each. By understanding the principles of the immune system and how these principles relate to nervous system function, the reader will be prepared to interpret subsequent manuscripts in this issue.
Collapse
Affiliation(s)
- Douglas Kerr
- Department of Neurology, Johns Hopkins Hospital, 600 N. Wolfe St, Pathology 627C, Baltimore MD 21287, USA.
| | | | | | | |
Collapse
|
15
|
Klein M, Hempstead BL, Teng KK. Activation of STAT5-dependent transcription by the neurotrophin receptor Trk. ACTA ACUST UNITED AC 2005; 63:159-71. [PMID: 15702476 DOI: 10.1002/neu.20124] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Neurotrophins exert many of their biological effects via the Trk receptor tyrosine kinases and require the regulated activation of distinct transcriptional and post-translational cellular events. Here we provide evidence for a novel signaling cascade from activated Trks to the transcription factor STAT5. Utilizing the STAT5 responsive element derived from the p21(WAF1/Cip1) promoter to modulate luciferase expression, neurotrophin-dependent activation of Trk A, B, and C was found to induce STAT5-mediated transcriptional response. Structure-function analysis using Trk A mutants in heterologous cells further revealed that the kinase activity and an intact phospholipase C-gamma binding site are required for STAT5 activation. In most cytokine responsive cell systems, STAT5 function is modulated by JAK2-dependent tyrosine phosphorylation. However, reconstitution studies using a JAK2 deficient cell line indicate that neurotrophin-induced STAT5 activation does not require the cognate upstream kinase JAK2. In contrast, the Src kinase inhibitor PP1 significantly abolishes STAT5-dependent transcription in Trk A expressing 293T cells and in BDNF-treated primary cortical neurons. Together these results suggest that neurotrophins may regulate neuronal gene expression via STAT5 in a JAK2 independent manner.
Collapse
Affiliation(s)
- Mathias Klein
- Department of Medicine, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | |
Collapse
|
16
|
Calò V, Migliavacca M, Bazan V, Macaluso M, Buscemi M, Gebbia N, Russo A. STAT proteins: from normal control of cellular events to tumorigenesis. J Cell Physiol 2003; 197:157-68. [PMID: 14502555 DOI: 10.1002/jcp.10364] [Citation(s) in RCA: 459] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Signal transducers and activators of transcription (STAT) proteins comprise a family of transcription factors latent in the cytoplasm that participate in normal cellular events, such as differentiation, proliferation, cell survival, apoptosis, and angiogenesis following cytokine, growth factor, and hormone signaling. STATs are activated by tyrosine phosphorylation, which is normally a transient and tightly regulates process. Nevertheless, several constitutively activated STATs have been observed in a wide number of human cancer cell lines and primary tumors, including blood malignancies and solid neoplasias. STATs can be divided into two groups according to their specific functions. One is made up of STAT2, STAT4, and STAT6, which are activated by a small number of cytokines and play a distinct role in the development of T-cells and in IFNgamma signaling. The other group includes STAT1, STAT3, and STAT5, activated in different tissues by means of a series of ligands and involved in IFN signaling, development of the mammary gland, response to GH, and embriogenesis. This latter group of STATS plays an important role in controlling cell-cycle progression and apoptosis and thus contributes to oncogenesis. Although an increased expression of STAT1 has been observed in many human neoplasias, this molecule can be considered a potential tumor suppressor, since it plays an important role in growth arrest and in promoting apoptosis. On the other hand, STAT3 and 5 are considered as oncogenes, since they bring about the activation of cyclin D1, c-Myc, and bcl-xl expression, and are involved in promoting cell-cycle progression, cellular transformation, and in preventing apoptosis.
Collapse
Affiliation(s)
- Valentina Calò
- Section of Molecular Oncology, Department of Oncology, Regional Reference Center for the Biomolecular Characterization of Neoplasms and Genetic Screening of Hereditary Tumors, University of Palermo, Palermo, Italy
| | | | | | | | | | | | | |
Collapse
|