1
|
Abstract
OBJECTIVE Genetic and environmental factors interact in the development of major depressive disorder (MDD). While neurobiological correlates have only partially been elucidated, altered levels of calcitonin gene-related peptide (CGRP)-like immunoreactivity (LI) in animal models and in the cerebrospinal fluid of depressed patients were reported, suggesting that CGRP may be involved in the pathophysiology and/or be a trait marker of MDD. However, changes in CGRP brain levels resulting from interactions between genetic and environmental risk factors and the response to antidepressant treatment have not been explored. METHODS We therefore superimposed maternal separation (MS) onto a genetic rat model (Flinders-sensitive and -resistant lines, FSL/FRL) of depression, treated these rats with antidepressants (escitalopram and nortriptyline) and measured CGRP-LI in selected brain regions. RESULTS CGRP was elevated in the frontal cortex, hippocampus and amygdala (but not in the hypothalamus) of FSL rats. However, MS did not significantly alter levels of this peptide. Likewise, there were no significant interactions between the genetic and environmental factors. Most importantly, neither escitalopram nor nortriptyline significantly altered brain CGRP levels. CONCLUSION Our data demonstrate that increased brain levels of CGRP are present in a well-established rat model of depression. Given that antidepressants have virtually no effect on the brain level of this peptide, our study indicates that further research is needed to evaluate the functional role of CGRP in the FSL model for depression.
Collapse
|
2
|
Wu G, Feder A, Wegener G, Bailey C, Saxena S, Charney D, Mathé AA. Central functions of neuropeptide Y in mood and anxiety disorders. Expert Opin Ther Targets 2012; 15:1317-31. [PMID: 21995655 DOI: 10.1517/14728222.2011.628314] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Neuropeptide Y (NPY) is a highly conserved neuropeptide belonging to the pancreatic polypeptide family. Its potential role in the etiology and pathophysiology of mood and anxiety disorders has been extensively studied. NPY also has effects on feeding behavior, ethanol intake, sleep regulation, tissue growth and remodeling. Findings from animal studies have delineated the physiological and behavioral effects mediated by specific NPY receptor subtypes, of which Y1 and Y2 are the best understood. AREAS COVERED Physiological roles and alterations of the NPYergic system in anxiety disorders, depression, posttraumatic stress disorder (PTSD), alcohol dependence and epilepsy. For each disorder, studies in animal models and human investigations are outlined and discussed, focusing on behavior, neurophysiology, genetics and potential for novel treatment targets. EXPERT OPINION The wide implications of NPY in psychiatric disorders such as depression and PTSD make the NPYergic system a promising target for the development of novel therapeutic interventions. These include intranasal NPY administration, currently under study, and the development of agonists and antagonists targeting NPY receptors. Therefore, we are proposing that via this mode of administration, NPY might exert CNS therapeutic actions without untoward systemic effects. Future work will show if this is a feasible approach.
Collapse
Affiliation(s)
- Gang Wu
- Karolinska Institutet-Clinical Neuroscience, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
3
|
Cohen H, Liu T, Kozlovsky N, Kaplan Z, Zohar J, Mathé AA. The neuropeptide Y (NPY)-ergic system is associated with behavioral resilience to stress exposure in an animal model of post-traumatic stress disorder. Neuropsychopharmacology 2012; 37:350-63. [PMID: 21976046 PMCID: PMC3242318 DOI: 10.1038/npp.2011.230] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Converging evidence implicates the regulatory neuropeptide Y (NPY) in anxiety- and depression-related behaviors. The present study sought to assess whether there is an association between the magnitude of behavioral responses to stress and patterns of NPY in selected brain areas, and subsequently, whether pharmacological manipulations of NPY levels affect behavior in an animal model of PTSD. Animals were exposed to predator-scent stress for 15 min. Behaviors were assessed with the elevated plus maze and acoustic startle response tests 7 days later. Preset cutoff criteria classified exposed animals according to their individual behavioral responses. NPY protein levels were assessed in specific brain regions 8 days after the exposure. The behavioral effects of NPY agonist, NPY-Y1-receptor antagonist, or placebo administered centrally 1 h post-exposure were evaluated in the same manner. Immunohistochemical technique was used to detect the expression of the NPY, NPY-Y1 receptor, brain-derived neurotrophic factor, and GR 1 day after the behavioral tests. Animals whose behavior was extremely disrupted (EBR) selectively displayed significant downregulation of NPY in the hippocampus, periaqueductal gray, and amygdala, compared with animals whose behavior was minimally (MBR) or partially (PBR) disrupted, and with unexposed controls. One-hour post-exposure treatment with NPY significantly reduced prevalence rates of EBR and reduced trauma-cue freezing responses, compared with vehicle controls. The distinctive pattern of NPY downregulation that correlated with EBR as well as the resounding behavioral effects of pharmacological manipulation of NPY indicates an intimate association between NPY and behavioral responses to stress, and potentially between molecular and psychopathological processes, which underlie the observed changes in behavior. The protective qualities attributed to NPY are supported by the extreme reduction of its expression in animals severely affected by the stressor and imply a role in promoting resilience and/or recovery.
Collapse
Affiliation(s)
- Hagit Cohen
- Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, The State of Israel Ministry of Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Tianmin Liu
- Karolinska Institutet-Clinical Neuroscience, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Nitsan Kozlovsky
- Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, The State of Israel Ministry of Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Zeev Kaplan
- Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, The State of Israel Ministry of Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Joseph Zohar
- Division of Psychiatry, The State of Israel Ministry of Health, The Chaim Sheba Medical Center, Ramat-Gan, Israel,Sackler Medical School, Tel-Aviv University, Tel-Aviv, Israel
| | - Aleksander A Mathé
- Karolinska Institutet-Clinical Neuroscience, Karolinska University Hospital Huddinge, Stockholm, Sweden,Karolinska Institutet-Clinical Neuroscience, Karolinska University Hospital Huddinge, Stockholm SE-14186, Sweden, Tel: +46 70 4840743, Fax: +46 8 300972, E-mail:
| |
Collapse
|
4
|
Criado JR, Liu T, Ehlers CL, Mathé AA. Prolonged chronic ethanol exposure alters neuropeptide Y and corticotropin-releasing factor levels in the brain of adult Wistar rats. Pharmacol Biochem Behav 2011; 99:104-11. [PMID: 21527271 DOI: 10.1016/j.pbb.2011.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 04/06/2011] [Accepted: 04/09/2011] [Indexed: 12/26/2022]
Abstract
There is evidence to suggest that alterations in neuropeptide Y (NPY) and corticotropin-releasing factor (CRF) contribute to the escalated voluntary ethanol intake seen following long term chronic ethanol exposure. The present study assessed whether the duration of chronic ethanol exposure and abstinence alters brain levels of NPY and CRF in adult Wistar rats. NPY-like immunoreactivity (NPY-LI) and CRF-LI were determined in the amygdala (AMYG), frontal cortex (FCTX), hippocampus (HPC) and parietal cortex (PCTX) of adult Wistar rats after chronic ethanol exposure, and 24-h and 2-weeks following withdrawal (WD). Chronic ethanol exposure consisted of either a 2-week or an 8-week ethanol vapor regimen. No change in brain levels of NPY-LI, CRF-LI and the NPY-LI/CRF-LI ratio was observed 2-weeks following ethanol exposure, whereas, 8-weeks of ethanol exposure produced a significant effect on NPY-LI expression in the AMYG and FCTX. Moreover, an 8-week ethanol vapor regimen significantly increased CRF-LI levels in the HPC and PCTX. Findings from the present study suggest that a longer duration of ethanol vapor, similar to what is required to enhance voluntary drinking, is required to produce changes in NPY-LI and CRF-LI expression in the adult rat brain.
Collapse
Affiliation(s)
- José R Criado
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
5
|
Van Waes V, Darnaudéry M, Marrocco J, Gruber SH, Talavera E, Mairesse J, Van Camp G, Casolla B, Nicoletti F, Mathé AA, Maccari S, Morley-Fletcher S. Impact of early life stress on alcohol consumption and on the short- and long-term responses to alcohol in adolescent female rats. Behav Brain Res 2011; 221:43-9. [PMID: 21376087 DOI: 10.1016/j.bbr.2011.02.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 02/22/2011] [Indexed: 12/31/2022]
Abstract
We examined the interaction between early life stress and vulnerability to alcohol in female rats exposed to prenatal restraint stress (PRS rats). First we studied the impact of PRS on ethanol preference during adolescence. PRS slightly increased ethanol preference per se, but abolished the effect of social isolation on ethanol preference. We then studied the impact of PRS on short- and long-term responses to ethanol focusing on behavioral and neurochemical parameters related to depression/anxiety. PRS or unstressed adolescent female rats received 10% ethanol in the drinking water for 4 weeks from PND30 to PND60. At PND60, the immobility time in the forced-swim test did not differ between PRS and unstressed rats receiving water alone. Ethanol consumption had no effect in unstressed rats, but significantly reduced the immobility time in PRS rats. In contrast, a marked increase in the immobility time was seen after 5 weeks of ethanol withdrawal only in unstressed rats. Hippocampal levels of neuropeptide Y (NPY) and mGlu1a metabotropic glutamate receptors were increased at the end of ethanol treatment only in unstressed rats. Ethanol treatment had no effect on levels of corticotropin-releasing hormone (CRH) in the hippocampus, striatum, and prefrontal cortex of both groups of rats. After ethanol withdrawal, hippocampal levels of mGlu1 receptors were higher in unstressed rats, but lower in PRS rats, whereas NPY and CRH levels were similar in the two groups of rats. These data indicate that early life stress has a strong impact on the vulnerability and responsiveness to ethanol consumption during adolescence.
Collapse
Affiliation(s)
- V Van Waes
- NeuroPlasticity Team, UMR 8576, Functional and Structural Glycobiology Unit, CNRS/University Lille North of France, 59655 Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Bjørnebekk A, Mathé AA, Brené S. The antidepressant effects of running and escitalopram are associated with levels of hippocampal NPY and Y1 receptor but not cell proliferation in a rat model of depression. Hippocampus 2010; 20:820-8. [PMID: 19623606 DOI: 10.1002/hipo.20683] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
One hypothesis of depression is that it is caused by reduced neuronal plasticity including hippocampal neurogenesis. In this study, we compared the effects of three long-term antidepressant treatments: escitalopram, voluntary running, and their combination on hippocampal cell proliferation, NPY and the NPY-Y1 receptor mRNAs, targets assumed to be important for hippocampal plasticity and mood disorders. An animal model of depression, the Flinders Sensitive Line (FSL) rat, was used and female rats were chosen because the majority of the depressed population is females. We investigated if these treatments were correlated to immobility, swimming, and climbing behaviors, which are associated with an overall, serotonergic-like and noradrenergic-like antidepressant response, in the Porsolt swim test (PST). Interestingly, while escitalopram, running and their combination increased the number of hippocampal BrdU immunoreactive cells, the antidepressant-like effect was only detected in the running group and the group with access both to running wheel and escitalopram. Hippocampal NPY mRNA and the NPY-Y1 receptor mRNA were elevated by running and the combined treatment. Moreover, correlations were detected between NPY mRNA levels and climbing and cell proliferation and NPY-Y1 receptor mRNA levels and swimming. Our results suggest that increased cell proliferation is not necessarily associated with an antidepressant effect. However, treatments that were associated with an antidepressant-like effect did regulate hippocampal levels of mRNAs encoding NPY and/or the NPY-Y1 receptor and support the notion that NPY can stimulate cell proliferation and induce an antidepressant-like response.
Collapse
|
7
|
Walker BM, Drimmer DA, Walker JL, Liu T, Mathé AA, Ehlers CL. Effects of prolonged ethanol vapor exposure on forced swim behavior, and neuropeptide Y and corticotropin-releasing factor levels in rat brains. Alcohol 2010; 44:487-93. [PMID: 20705420 DOI: 10.1016/j.alcohol.2010.06.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 06/16/2010] [Accepted: 06/18/2010] [Indexed: 12/30/2022]
Abstract
Depressive symptoms in alcohol-dependent individuals are well-recognized and clinically relevant phenomena. The etiology has not been elucidated although it is clear that the depressive symptoms may be alcohol independent or alcohol induced. To contribute to the understanding of the neurobiology of chronic ethanol use, we investigated the effects of chronic intermittent ethanol vapor exposure on behaviors in the forced swim test (FST) and neuropeptide Y (NPY) and corticotropin-releasing factor (CRF) levels in specific brain regions. Adult male Wistar rats were subjected to intermittent ethanol vapor (14 h on/10 h off) or air exposure for 2 weeks and were then tested at three time points corresponding to acute withdrawal (8-12 h into withdrawal) and protracted withdrawal (30 and 60 days of withdrawal) in the FST. The behaviors that were measured in the five-min FST consisted of latency to immobility, swim time, immobility time, and climbing time. The FST results showed that the vapor-exposed animals displayed depressive-like behaviors; for instance, decreased latency to immobility in acute withdrawal and decreased latency to immobility, decreased swim time and increased immobility time in protracted withdrawal, with differences between air- and vapor-exposed animals becoming more pronounced over the 60-day withdrawal period. NPY levels in the frontal cortex of the vapor-exposed animals were decreased compared with the control animals, and CRF levels in the amygdala were correlated with increased immobility time. Thus, extended ethanol vapor exposure produced long-lasting changes in FST behavior and NPY levels in the brain.
Collapse
|
8
|
Melkonyan LG, Simonyan RM, Simonyan GM, Babayan MA, Arakelyan LN, Airapetyan RL, Simonyan MA, Galoyan AA. An increase in the activity of NADPH-dependent O 2 − -producing and ferrihemoglobin-reducing isoforms of cytochrome b 558 from membranes, mitochondria, and nuclei of cells of rats subjected to electrical stimulation of the supraoptic and paraventricular hypothalamic nuclei. NEUROCHEM J+ 2010. [DOI: 10.1134/s181971241002008x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Angelucci F, Gruber SHM, Caltagirone C, Mathé AA. Differential effects of olanzapine, haloperidol and risperidone on calcitonin gene-related peptide in the rat brain. Neuropeptides 2008; 42:535-41. [PMID: 18662828 DOI: 10.1016/j.npep.2008.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 06/17/2008] [Accepted: 06/17/2008] [Indexed: 11/23/2022]
Abstract
Calcitonin gene-related peptide (CGRP) is a 37 amino acid peptide which acts on central nervous system (CNS) neurons and is involved in activities related to dopamine. These effects of CGRP suggest that the peptide may have a role in pathophysiology and treatment of schizophrenia where dopaminergic system hypoactivity in the frontal cortex and hyperactivity in the subcortical structures have been demonstrated. In this study we measured by radioimmunoassay (RIA) the brain levels of CGRP-like immunoreactivity (CGRP-LI) in rats treated with either classical (haloperidol) or atypical (risperidone and olanzapine) antipsychotic drugs. Both haloperidol and risperidone decreased CGRP-LI in the striatum. Risperidone also decreased CGRP-LI in the occipital cortex. On the other hand, olanzapine increased CGRP-LI in the striatum, the frontal cortex and hypothalamus. The differential effects on CGRP could reflect a different profile of side effects and further suggest that CGRP is involved in CNS functions related to psychiatric disorders.
Collapse
Affiliation(s)
- Francesco Angelucci
- Karolinska Institutet, Clinical Neuroscience, Psychiatry M56, Karolinska University Hospital Huddinge, SE-14186 Stockholm, Sweden.
| | | | | | | |
Collapse
|
10
|
Zambello E, Jiménez-Vasquez PA, El Khoury A, Mathé AA, Caberlotto L. Acute stress differentially affects corticotropin-releasing hormone mRNA expression in the central amygdala of the "depressed" flinders sensitive line and the control flinders resistant line rats. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:651-61. [PMID: 18077069 DOI: 10.1016/j.pnpbp.2007.11.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 10/19/2007] [Accepted: 11/09/2007] [Indexed: 11/21/2022]
Abstract
Preclinical and clinical evidence suggests that neuropeptides play a role in the pathophysiology of mood disorders. In the present study, we investigated the involvement of the peptides corticotropin-releasing hormone (CRH), neuropeptide Y (NPY) and nociceptin/orphanin FQ (N/OFQ) and of their receptors in the regulation of emotional behaviours. In situ hybridization experiments were performed in order to evaluate the mRNA expression levels of these neuropeptidergic systems in limbic and limbic-related brain regions of the Flinders Sensitive Line (FSL) rats, a putative genetic animal model of depression. The FSL and their controls, the Flinders Resistant Line (FRL) rats, were subjected to one hour acute restraint and the effects of the stress exposure, including possible strain specific changes on these neuropeptidergic systems, were studied. In basal conditions, no significant differences between FSL and FRL rats in the CRH mRNA expression were found, however an upregulation of the CRH mRNA hybridization signal was detected in the central amygdala of the stressed FRL, compared to the non stressed FRL rats, but not in the FSL, suggesting a hypoactive mechanism of response to stressful stimuli in the "depressed" FSL rats. Baseline levels of NPY and N/OFQ mRNA were lower in the FSL rats compared to the FRL in the dentate gyrus of hippocampus and in the medial amygdala, respectively. However, the exposure to stress induced a significant upregulation of the N/OFQ mRNA levels in the paraventricular thalamic nucleus, while in the same nucleus the N/OFQ receptor mRNA expression was higher in the FSL rats. In conclusion, selective alterations of the NPY and N/OFQ mRNA in limbic and limbic-related regions of the FSL rats, a putative animal model of depression, provide further support for the involvement of these neuropeptides in depressive disorders. Moreover, the lack of CRH activation following stress in the "depressed" FSL rats suggests a form of allostatic load, that could alter their interpretation of environmental stimuli and influence their behavioural response to stressful situations.
Collapse
MESH Headings
- Amygdala/metabolism
- Animals
- Corticotropin-Releasing Hormone/genetics
- Depression/genetics
- Depression/metabolism
- Depression/physiopathology
- Disease Models, Animal
- Gene Expression Regulation/physiology
- Male
- Opioid Peptides/genetics
- Opioid Peptides/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred Strains
- Receptors, Neuropeptide Y/genetics
- Receptors, Neuropeptide Y/metabolism
- Receptors, Opioid/genetics
- Receptors, Opioid/metabolism
- Stress, Psychological/genetics
- Stress, Psychological/pathology
- Stress, Psychological/physiopathology
- Nociceptin Receptor
- Nociceptin
Collapse
Affiliation(s)
- Erika Zambello
- Section of Pharmacology, Department of Medicine and Public Health, University of Verona, Italy.
| | | | | | | | | |
Collapse
|
11
|
Southwick SM, Vythilingam M, Charney DS. The psychobiology of depression and resilience to stress: implications for prevention and treatment. Annu Rev Clin Psychol 2007; 1:255-91. [PMID: 17716089 DOI: 10.1146/annurev.clinpsy.1.102803.143948] [Citation(s) in RCA: 657] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review discusses neurobiological and psychosocial factors associated with stress-induced depression and compares these factors with those believed to characterize stress resilience. Neurobiological factors that are discussed and contrasted include serotonin, the 5-HT1A receptor, polymorphisms of the 5-HT transporter gene, norepinephrine, alpha-2 adrenergic receptors, neuropeptide Y, polymorphisms of the alpha-2 adrenergic gene, dopamine, corticotropin-releasing hormone (CRH), dehydroepiandrosterone (DHEA), cortisol, and CRH receptors. These factors are described in the context of brain regions believed to be involved in stress, depression, and resilience to stress. Psychosocial factors associated with depression and/or stress resilience include positive emotions and optimism, humor, cognitive flexibility, cognitive explanatory style and reappraisal, acceptance, religion/spirituality, altruism, social support, role models, coping style, exercise, capacity to recover from negative events, and stress inoculation. The review concludes with potential psychological, social, spiritual, and neurobiological approaches to enhancing stress resilience, decreasing the likelihood of developing stress-induced depression/anxiety, and treating stress-induced psychopathology.
Collapse
Affiliation(s)
- Steven M Southwick
- Yale University School of Medicine, National Center for Post-Traumatic Stress Disorder, VA Connecticut Healthcare System, West Haven, Connecticut 06516, USA.
| | | | | |
Collapse
|
12
|
Ishida H, Shirayama Y, Iwata M, Katayama S, Yamamoto A, Kawahara R, Nakagome K. Infusion of neuropeptide Y into CA3 region of hippocampus produces antidepressant-like effect via Y1 receptor. Hippocampus 2007; 17:271-80. [PMID: 17265460 DOI: 10.1002/hipo.20264] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A couple of papers indicate that patients with depression show a decrease in serum neuropeptide Y (NPY). To study the role of NPY in depression, we examined the effects of infusion of NPY into the hippocampus of learned helplessness (LH) rats (an animal model of depression). Infusion of NPY into the cerebral ventricle of LH rats showed antidepressant-like effects. Infusion of NPY into the CA3 region, but not the dentate gyrus (DG), produced antidepressant-like effects in the LH paradigm. Infusion of NPY did not affect locomotor activity or aversive learning ability. Coadministration of BIBO3304 (a Y1 receptor antagonist) with NPY to the CA3 region blocked the antidepressant-like effects of NPY, whereas coadministration of NPY with BIIE0246 (a Y2 receptor antagonist) to the CA3 region failed to block antidepressant-like effects. Furthermore, infusions of [Leu(31) Pro(34)]PYY (a Y1 and Y5 receptor agonist) alone and BIIE0246 alone into the CA3 region produced the antidepressant-like effects in LH rats. These results suggest that infusion of NPY into the CA3 region of hippocampus of LH rats produces antidepressant-like activity through Y1 receptors and attenuating effects through Y2 receptors.
Collapse
MESH Headings
- Animals
- Antidepressive Agents/pharmacology
- Antidepressive Agents/therapeutic use
- Arginine/analogs & derivatives
- Arginine/pharmacology
- Avoidance Learning/drug effects
- Behavior, Animal
- Benzazepines/pharmacology
- Depression/drug therapy
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Drug Interactions
- Exploratory Behavior/drug effects
- Helplessness, Learned
- Hippocampus/drug effects
- Hippocampus/physiology
- Injections, Intraventricular/methods
- Male
- Neuropeptide Y/pharmacology
- Neuropeptide Y/therapeutic use
- Peptide YY/pharmacology
- Rats
- Rats, Sprague-Dawley
- Reaction Time/drug effects
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/physiology
- Receptors, Neuropeptide/agonists
- Receptors, Neuropeptide/antagonists & inhibitors
- Receptors, Neuropeptide/physiology
Collapse
Affiliation(s)
- Hisahito Ishida
- Department of Neuropsychiatry, Faculty of Medicine, Tottori University, Yonago, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Christensen DZ, Olesen MV, Kristiansen H, Mikkelsen JD, Woldbye DPD. Unaltered neuropeptide Y (NPY)-stimulated [35S]GTPgammaS binding suggests a net increase in NPY signalling after repeated electroconvulsive seizures in mice. J Neurosci Res 2007; 84:1282-91. [PMID: 16941487 DOI: 10.1002/jnr.21028] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although electroconvulsive seizures (ECS) are widely used as a treatment for severe depression, the working mechanism of ECS remains unclear. Repeated ECS causes anticonvulsant effects that have been proposed to underlie the therapeutic effect of ECS, and neuropeptide Y (NPY) is a potential candidate for mediating this anticonvulsant effect. Repeated ECS results in prominent increases in NPY synthesis. In contrast, NPY-sensitive receptor binding is decreased, so it is unclear whether ECS causes a net increase in NPY signalling. Agonist-stimulated [35S]GTPgammaS binding is a method for detecting functional activation of G-protein-coupled receptors. The present study in mice examined the effects of daily ECS for 14 days on NPY-stimulated [35S]GTPgammaS functional binding and compared this with gene expression of NPY and NPY receptors as well as [125I]peptide YY (PYY) binding in hippocampus of the same animals. Significant increases in NPY mRNA and concomitant reductions in NPY-sensitive binding were found in the dentate gyrus, hippocampal CA1, and neocortex of ECS treated mice, which is consistent with previous rat data. These changes remained significant 1 week after repeated ECS. Significant increases in NPY Y1, Y2, and Y5 mRNA were found in the dentate gyrus after ECS. Surprisingly, unaltered levels of functional NPY receptor binding accompanied the decreased NPY-sensitive binding. This suggests that mechanisms coupling NPY receptor stimulation to G-protein activation could be augmented after repeated ECS. Thus increased synthesis of NPY after repeated ECS should result in a net increase in NPY signalling in spite of reduced levels of NPY-sensitive binding.
Collapse
Affiliation(s)
- D Z Christensen
- Laboratory of Neuropsychiatry, Department of Pharmacology, University of Copenhagen and Rigshospitalet University Hospital 6102, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
14
|
Bacchi F, Mathé AA, Jiménez P, Stasi L, Arban R, Gerrard P, Caberlotto L. Anxiolytic-like effect of the selective neuropeptide Y Y2 receptor antagonist BIIE0246 in the elevated plus-maze. Peptides 2006; 27:3202-7. [PMID: 16959374 DOI: 10.1016/j.peptides.2006.07.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 07/27/2006] [Accepted: 07/28/2006] [Indexed: 11/22/2022]
Abstract
The involvement of Neuropeptide Y (NPY) in the pathophysiology of mood disorders has been suggested by clinical and preclinical evidence. NPY Y1 and Y2 receptors have been proposed to mediate the NPY modulation of stress responses and anxiety related behaviors. To further investigate the role of Y2 receptors in anxiety we studied the effect of BIIE0246, a selective Y2 receptor antagonist, in the elevated plus-maze test. Rats treated with 1.0 nmol BIIE0246 showed an increase in the time spent on the open arm of the maze. In addition, to study the effects of the Y2 antagonism on NPY protein level, NPY-like immunoreactivity was measured in different brain regions following treatment with BIIE0246, but no statistically significant effects were observed. These results suggest that BIIE0246 has an anxiolytic-like profile in the elevated plus-maze.
Collapse
Affiliation(s)
- Fabrizio Bacchi
- Department of Biology, Psychiatry CEDD, GlaxoSmithKline Medicine Research Centre, via Fleming 4, 37100 Verona, Italy
| | | | | | | | | | | | | |
Collapse
|
15
|
Wörtwein G, Husum H, Andersson W, Bolwig TG, Mathé AA. Effects of maternal separation on neuropeptide Y and calcitonin gene-related peptide in "depressed" Flinders Sensitive Line rats: a study of gene-environment interactions. Prog Neuropsychopharmacol Biol Psychiatry 2006; 30:684-93. [PMID: 16600456 DOI: 10.1016/j.pnpbp.2006.01.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/30/2006] [Indexed: 11/23/2022]
Abstract
Interactions between genetic vulnerability to stress/depression and early life experience may play a crucial role in the pathogenesis of mood disorders. Here we explore this hypothesis by superimposing early life trauma in the form of maternal deprivation for 180 min per day from postnatal day 2 to 14 onto a genetic model of depression/susceptibility to depression, Flinders Sensitive Line (FSL) and their controls, Flinders Resistant Line (FRL) rats. We investigate effects on neuropeptide Y (NPY) and calcitonin gene-related peptide (CGRP) like immunoreactivity (LI) in 10 brain regions as these neuropeptides are affected by antidepressants and are altered in cerebrospinal fluid of depressed patients. NPY-LI was reduced while CGRP-LI was elevated in hippocampus and frontal cortex of "genetically depressed" FSL rats. The two peptides displayed a significant negative correlation in these regions that was strongest in the FSL strain. Maternal deprivation exacerbated the strain difference in hippocampal CGRP-LI, while it was without effect on NPY-LI. FSL rats had higher tissue concentration of both neuropeptides in periaqueductal grey and higher NPY-LI in caudate/putamen. Maternal deprivation selectively raised CGRP-LI in amygdala of the FRL control stain. Thus, in two brain regions implicated in the neurobiology of depression, hippocampus and frontal cortex, changes in CGRP-LI and NPY-LI were in opposite direction, and CGRP-LI appears to be more responsive to adverse experience. Our findings thus support the hypothesis that genetic disposition and developmental stress may contribute to the susceptibility to depression by exerting selective neuropeptide- and brain region-specific effects on adult neurobiology.
Collapse
Affiliation(s)
- Gitta Wörtwein
- Laboratory of Neuropsychiatry, Rigshospitalet, 2100 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
16
|
Affiliation(s)
- Annika Thorsell
- NIH/NIAAA, LCS, Building 10-CRC/Room 1-5330, 10 Center Drive, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
17
|
Bjørnebekk A, Mathé AA, Brené S. Running has differential effects on NPY, opiates, and cell proliferation in an animal model of depression and controls. Neuropsychopharmacology 2006; 31:256-64. [PMID: 16034445 DOI: 10.1038/sj.npp.1300820] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Physical activity has documented beneficial effect in treatment of depression. Recently, we found an antidepressant-like effect of running in an animal model of depression, the Flinders Sensitive Line (FSL) and demonstrated that it was associated with increased hippocampal cell proliferation. In this study, we analyzed levels of mRNAs encoding the neuropeptide Y (NPY) and the opioid peptides dynorphin and enkephalin in hippocampus and correlated these to cell proliferation in the FSL and in the 'nondepressed' Flinders Resistant Line (FRL) strain, with/without access to running wheels. Running increased NPY mRNA in dentate gyrus and the CA4 region in FSL, but not in FRL rats. NPY mRNA increase was correlated to increased cell proliferation in the subgranular zone of dentate gyrus. Baseline dynorphin and enkephalin mRNA levels in the dentate gyrus were lower in the FSL compared to the FRL strain. Running had no effect on dynorphin and enkephalin mRNAs in the FSL strain but it decreased dynorphin mRNA, and there was a trend to increased enkephalin mRNA in the FRL rats. Thus, it would appear that the CNS effects of running are different in 'depressed' and control animals; modification of NPY, a peptide associated with depression and anxiety, in depressed animals, vs effects on opioids, associated with the reward systems, in healthy controls. Our data support the hypothesis that NPY neurotransmission in hippocampus is malfunctioning in depression and that antidepressive treatment, in this case wheel running, will normalize it. In addition, we also show that the increased NPY after running is correlated to increased cell proliferation, which is associated with an antidepressive-like effect.
Collapse
Affiliation(s)
- Astrid Bjørnebekk
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
18
|
Thorsell A, Slawecki CJ, El Khoury A, Mathe AA, Ehlers CL. The effects of social isolation on neuropeptide Y levels, exploratory and anxiety-related behaviors in rats. Pharmacol Biochem Behav 2006; 83:28-34. [PMID: 16458953 DOI: 10.1016/j.pbb.2005.12.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 11/30/2005] [Accepted: 12/06/2005] [Indexed: 10/25/2022]
Abstract
NPY is one of the most abundantly expressed peptides within the CNS, and has been previously demonstrated to be altered in several animal models of depression, as well as to be differentially regulated by acute and repeated stress. The effect of social deprivation, through isolation housing, on brain NPY concentrations in adult rats has not been previously investigated. The effects of 12 weeks of social isolation, in adult rats, on anxiety-related behaviors and central concentrations of NPY in: hypothalamus, amygdala, caudate-putamen, hippocampus, and frontal cortex were evaluated. Single housed animals spent significantly more time on the open arms of the elevated plus maze and in the central area of the open field as compared to pair housed controls. These data are most likely indicative of enhanced exploration and novelty seeking. Concentrations of neuropeptide Y were increased in the caudate-putamen of the single housed subjects. NPY levels in caudate/putamen and hypothalamus were also significantly correlated with time spent in the open arms of the elevated plus maze. These data suggest that chronic social isolation, in these adult Wistar rats, did not increase anxiety but produced enhanced exploration in tests of anxiety, an effect that was associated with NPY concentrations in the striatum and hypothalamus.
Collapse
Affiliation(s)
- Annika Thorsell
- The Scripps Research Institute, Department of Neuropharmacology (CVN-14), 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
19
|
Thorsell A, Slawecki CJ, Khoury A, Mathe AA, Ehlers CL. Effect of social isolation on ethanol consumption and substance P/neurokinin expression in Wistar rats. Alcohol 2005; 36:91-7. [PMID: 16396742 DOI: 10.1016/j.alcohol.2005.07.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 05/09/2005] [Accepted: 07/13/2005] [Indexed: 10/24/2022]
Abstract
Environmental factors, such as adverse life experiences and family/peer influences have a substantial influence on the development of disorders related to alcohol use. In animals, maternal or peer separation/isolation has been used as an environmental intervention that has been shown to alter neurodevelopment and influence drinking behaviors in rodents and primates. In this study, the effects of adult peer isolation on subsequent ethanol intake were investigated in Wistar rats. Because central tachykinin levels have been reported to differ between rats selected for enhanced ethanol preference, neuropeptide [neurokinin A (NKA), substance P (SP)] concentrations were also estimated. Lower levels of ethanol intake, in a two-bottle free-choice model, were observed on the first day of forced ethanol drinking in the single-housed animals. However, overall ethanol consumption was unaffected by peer isolation. Peer isolation significantly lowered SP and NKA levels in the hypothalamus, but this effect was not related to ethanol consumption or body weight. These data indicate that endogenous SP and neurokinin levels are reduced by isolation housing, but this was not associated with alterations in drinking levels using a two-bottle choice procedure.
Collapse
Affiliation(s)
- Annika Thorsell
- The Scripps Research Institute, Department of Neuropharmacology (CVN-14), 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
20
|
Sergeyev V, Fetissov S, Mathé AA, Jimenez PA, Bartfai T, Mortas P, Gaudet L, Moreau JL, Hökfelt T. Neuropeptide expression in rats exposed to chronic mild stresses. Psychopharmacology (Berl) 2005; 178:115-24. [PMID: 15719227 DOI: 10.1007/s00213-004-2015-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2002] [Accepted: 08/16/2004] [Indexed: 12/30/2022]
Abstract
To investigate a possible link between some neuropeptides and depression, we analyzed their mRNA levels in brains of rats exposed to chronic mild stresses (CMS; a stress-induced anhedonia model), a commonly used model of depression. Rats exposed for 3 weeks to repeated, unpredictable, mild stressors exhibited an increased self-stimulation threshold, reflecting the development of an anhedonic state, which is regarded as an animal model of major depression. In situ hybridization was employed to monitor mRNA levels of neuropeptide Y (NPY), substance P and galanin in several brain regions. In the CMS rats, NPY mRNA expression levels were significantly decreased in the hippocampal dentate gyrus but increased in the arcuate nucleus. The substance P mRNA levels were increased in the anterodorsal part of the medial amygdaloid nucleus, in the ventromedial and dorsomedial hypothalamic nuclei and the lateral hypothalamic area, whereas galanin mRNA levels were decreased in the latter two regions. These findings suggest a possible involvement of these three peptides in mechanisms underlying depressive disorders and show that similar peptide changes previously demonstrated in genetic rat models also occur in the present stress-induced anhedonia model.
Collapse
Affiliation(s)
- Valeriy Sergeyev
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
NPY antagonizes behavioral consequences of stress through actions within the brain. Behavioral anti-stress actions of NPY are noteworthy in that (1) their magnitude surpasses that of other endogenous compounds; (2) they are produced across a wide range of animal models, normally thought to reflect different aspects of emotionality. This suggests that NPY acts with a high potency on a common core mechanism of emotionality and behavioral stress responses. Behavioral studies in genetically modified animals support this hypothesis. Increased emotionality is seen upon inactivation of NPY transmission, while the opposite is found when NPY signalling is made overactive. Several brain structures are involved in mediating anti-stress actions of NPY, with the most extensive evidence available for amygdala and hippocampus, and some evidence for regions within the septum, and locus coeruleus. Antistress actions of NPY are mimicked by Y1-receptor agonists, and blocked by Y1 antagonists, although Y5 receptors may substitute for Y1 actions in some cases. Blockade of Y2 receptors produces anti-stress effects indistinguishable from those produced by Y1 agonism, presumably through potentiation of presynaptic release of endogenous NPY. Together, available data point to the potential of the NPY system as a target for novel pharmacological treatments of stress-related disorders, including anxiety and depression. Development of Y2 antagonists presently appears to offer the most promising strategy for developing these clinical treatments.
Collapse
Affiliation(s)
- Markus Heilig
- Division of Psychiatry, Neurotec Department, Karolinska Institute, Huddinge University Hospital M57, Stockholm 141 86, Sweden; Laboratory of Clinical Science, NIAAA/NIH, Bethesda, MD, USA.
| |
Collapse
|
22
|
Koroleva SV, Ashmarin IP. Functional continuum of regulatory peptides (RPs): vector model of RP-effects representation. J Theor Biol 2002; 216:257-71. [PMID: 12183118 DOI: 10.1006/jtbi.2002.2555] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During the past decades, bioactive (regulatory) peptides have been identified as the major players in the regulation of many important biological processes. Dozens of peptides have found their application as pharmaceutical agents, which further stimulated research in this field making it one of the most rapidly developing areas on the edge of biological science and medicine. However, the fast accumulation of enormous amounts of experimental data has revealed a great difficulty in their analysis and demanded the development of a systematic approach for generalization of the obtained information. We propose a new computer-based algorithm for studying biological activities of regulatory peptides and their groups based on their representation as vectors in n -dimensional functional space. Our method allows the rapid analysis of databases containing thousands of polyfunctional regulatory peptides with overlapping spectra of physiological activity. The described method permits to perform several types of correlations which, when applied to the large databases, could reveal new important information about the system of regulatory peptides. It can select the groups of peptides with similar physiological role (peptide constellations) and search for the optimal peptide combinations with predetermined spectrum of effects and minimal side effects for their further pharmacological application. It can also reveal the role of regulatory peptides in induction of chain physiological reactions.
Collapse
Affiliation(s)
- S V Koroleva
- Department of Biology, Moscow State University, Vorobievy Gory, Moscow, 119899, Russia.
| | | |
Collapse
|
23
|
Husum H, Termeer E, Mathé AA, Bolwig TG, Ellenbroek BA. Early maternal deprivation alters hippocampal levels of neuropeptide Y and calcitonin-gene related peptide in adult rats. Neuropharmacology 2002; 42:798-806. [PMID: 12015206 DOI: 10.1016/s0028-3908(02)00038-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Stressful events early in life are reported to be more prevalent among patients with an adult life psychiatric disorder. Early maternal deprivation is considered an animal model of early life stress. Maternally deprived adult rats display long-term alterations in the neuroendocrine system, brain and behavior that are in many ways analogous to depressive and schizophrenic symptomatology. Neuropeptide Y (NPY) and calcitonin-gene related peptide (CGRP) have been implicated in both disorders and also been suggested to play a role in the neuroadaptational response to stress. Consequently, male Wistar rat-pups were subjected to early maternal deprivation or control handling, on postnatal day (pnd) 9. On pnd 21, pups were weaned and split into two groups that were reared either on a saw-dust floor or on a grid-floor, considered to be a mild stressor. On pnd 67, all animals were subjected to the prepulse inhibition test. One week later, the animals were sacrificed, the brains removed and dissected on ice. Levels of NPY-like immunoreactivity (LI) and CGRP-LI were quantified by radioimmunoassay in brain regional extracts. Maternal deprivation led to a significant reduction in basal startle amplitude and disruption of prepulse inhibition. These findings were paralleled by significantly reduced levels of NPY and CGRP in the hippocampus and occipital cortex. It is hypothesised that these changes may be of relevance to aspects of schizophrenic and affective symptomatology. The present study further shows that brain NPY and, in particular, CGRP are sensitive to long-term mild stress and further implicate the involvement of these peptides in the neuroendocrine stress response.
Collapse
Affiliation(s)
- H Husum
- Institution of Clinical Neuroscience and Institution of Physiology and Pharmacology, Division of Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
24
|
Mathé AA, Agren H, Wallin A, Blennow K. Calcitonin gene-related peptide and calcitonin in the CSF of patients with dementia and depression: possible disease markers. Prog Neuropsychopharmacol Biol Psychiatry 2002; 26:41-8. [PMID: 11853117 DOI: 10.1016/s0278-5846(01)00219-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cerebrospinal fluid (CSF) was obtained from 32 patients with dementia, 19 healthy controls that were age-matched with the dementia patients, and 29 DSM-IV major depression patients and calcitonin gene-related peptide-like immunoreactivity (CGRP-LI) and calcitonin-like immunoreactivity (CT-LI) measured by RIA. CGRP-LI was lower in the dementia group compared to both the controls and depressed patients (P<.01) after covarying out sex and age. CT-LI was decreased in the dementia and depressed patients (P<.05) compared to the controls. A positive relationship between CGRP-LI and CT-LI was found in dementia. A logistic discriminant analysis with calcitonin gene-related peptide (CGRP) and log calcitonin (CT) predicting diagnosis (three classes) revealed a significant overall fit (chi2 = 18.08, P = .0011), with an effect test showing contributions of both independent variables: CGRP (chi2 = 10.03, P<.007), log CT (chi2 = 8.63, P = .013). In dementia, both CGRP-LI and CT-LI were decreased and their concentration ratio did not differ from that in controls, likely reflecting a general neuronal loss. Alternatively and more speculatively, but theoretically possible, expression of the alpha-CGRP/CT gene may be affected in dementia. In contrast, in depression, CT-LI but not CGRP-LI was decreased and the CGRP/CT concentration ratio was increased, which is consistent with a possibility of an altered splicing process favoring CGRP mRNA.
Collapse
Affiliation(s)
- Aleksander A Mathé
- Institution of Clinical Neuroscience, Karolinska Institutet, St Göran's Hospital, Stockholm, Sweden
| | | | | | | |
Collapse
|
25
|
Angelucci F, Gruber SH, Mathé AA. A pilot study of rat brain regional distribution of calcitonin, katacalcin and calcitonin gene-related peptide before and after antipsychotic treatment. Neuropeptides 2001; 35:285-91. [PMID: 12030813 DOI: 10.1054/npep.2001.0876] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In contrast to extensive determinations of calcitonin gene-related peptide (CGRP) in neural tissues, calcitonin and its carboxyl-terminal flanking peptide katacalcin (in human PDN-21) have not been systematically measured by radioimmunoassay (RIA) in discrete brain structures. Using microwave irradiation (MW), a procedure that increases the recovery of neuropeptides, we investigated by radioimmunoassay (RIA) the rat brain regional distribution of CGRP like- immunoreactivity (-LI), calcitonin-LI, and katacalcin-LI. Calcitonin-LI and katacalcin-LI were found in low concentrations in frontal cortex, occipital cortex, striatum and hippocampus. Moreover, a 4-week treatment with antipsychotic drugs altered the concentrations of the calcitonin-gene family peptides in the frontal cortex, occipital cortex, and hippocampus; the magnitude of these changes, however, was only moderate. Lastly, calcitonin-LI and katacalcin-LI baseline concentrations as well as after antipsychotic treatment were highly correlated in the frontal cortex, striatum, and hippocampus. The possible regulatory role of calcitonin gene family peptides in the central nervous system (CNS) needs to be further explored.
Collapse
Affiliation(s)
- F Angelucci
- Karolinska Institutet, Institution of Clinical Neuroscience, St. Göran's Hospital, Stockholm, Sweden
| | | | | |
Collapse
|
26
|
Gruber SH, Nomikos GG, Mathé AA. Dopamine receptor antagonists prevent the d-amphetamine-induced increase in calcitonin gene-related peptide levels in ventral striatum. J Neurosci Res 2001; 64:606-11. [PMID: 11398184 DOI: 10.1002/jnr.1113] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Microdialysis in conjunction with radioimmunoassay (RIA) were used to study the effects of acute d-amphetamine or dopamine (DA) receptor antagonists administration on extracellular concentrations of calcitonin gene-related peptide (CGRP) in the ventral striatum of the rat. One hour after the subcutaneous (s.c.) injection of saline, the DA-D(1) receptor antagonist SCH 23390 (0.3 mg/kg) or the DA-D(2/3) receptor antagonist raclopride (1.0 mg/kg), one additional s.c. injection of saline or d-amphetamine (1.5 mg/kg) was given. The dialysates were collected at 60-min intervals; CGRP-like immunoreactivities (-LI) were determined by RIA. d-Amphetamine significantly increased extracellular CGRP-LI concentrations compared to the control animals. Administration of either SCH 23390 or raclopride did not significantly affect CGRP-LI concentrations. Pretreatment with either SCH 23390 or raclopride abolished the stimulatory effect of d-amphetamine on CGRP-LI levels. The results show that d-amphetamine administration results in an increase in extracellular concentrations of CGRP in the ventral striatum through a mechanism that appears to involve stimulation of either DA-D(1) or DA-D(2/3) receptors. The results also indicate that changes in dopaminergic neurotransmission affect CGRP outflow in the ventral striatum in a phasic but not tonic manner.
Collapse
Affiliation(s)
- S H Gruber
- Institution of Clinical Neuroscience, Karolinska Institutet, St. Görans Hospital, Stockholm, Sweden
| | | | | |
Collapse
|
27
|
Ahn YM, Oh SW, Kang UG, Park J, Kim YS. An N-methyl-D-aspartate antagonist, MK-801, preferentially reduces electroconvulsive shock-induced phosphorylation of p38 mitogen-activated protein kinase in the rat hippocampus. Neurosci Lett 2000; 296:101-4. [PMID: 11108991 DOI: 10.1016/s0304-3940(00)01632-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electroconvulsive shock (ECS) activates the mitogen-activated protein kinase (MAPK) family in the rat hippocampus, but the signaling pathways for this activation are not well understood. We investigated whether N-methyl-D-aspartate (NMDA) receptor mediated signaling is involved in the phosphorylation-activation of the MAPK family. The NMDA receptor antagonist, MK-801, dose-dependently reduced ECS-induced phosphorylation of p38 and its upstream kinase MKK6 up to 1 mg/kg. MK-801 also reduced the phosphorylation of ERK1/2 and MEK1, but only at high dosage, 2 mg/kg. Moreover, the reduction in the phosphorylation of p38 and MKK6 was greater than that of ERK1/2 and MEK1. Our results suggest that ECS activates p38 and ERK1/2 partly through an NMDA receptor-mediated signaling system in the rat hippocampus and that NMDA receptor mediated signaling is more responsible for the activation of the MKK6-p38 pathway than the MEK1-ERK pathway.
Collapse
Affiliation(s)
- Y M Ahn
- Department of Neuropsychiatry, Eulji Hospital College of Medicine, Hagye-1 Dong, Nowon-Gu, 139-711, Seoul, South Korea
| | | | | | | | | |
Collapse
|
28
|
Nomikos GG, Gruber S, Svensson TH, Mathé AA. Effects of acute and chronic electroconvulsive stimuli on cAMP and cGMP efflux in the rat striatum and hippocampus. Eur Neuropsychopharmacol 2000; 10:495-500. [PMID: 11115740 DOI: 10.1016/s0924-977x(00)00122-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The effects of acute and chronic electroconvulsive stimuli (ECS) on extracellular concentrations of the cyclic nucleotides, cAMP and cGMP, from the striatum and hippocampus of awake rats were studied with in vivo microdialysis in conjunction with radioimmunoassay. Acute ECS, but not acute sham-ECS, significantly increased cAMP and cGMP efflux from the striatum by about 75 and 50%, respectively. Chronic ECS did not influence significantly basal efflux of cAMP or cGMP from the striatum or the hippocampus in comparison to control animals receiving chronically sham-ECS. Administration of a challenge ECS in animals treated chronically with sham-ECS resulted in an increase in cAMP and cGMP concentrations in the striatum by 20%, but it failed to affect significantly efflux of these nucleotides in animals treated chronically with ECS. Similarly, in the hippocampus, administration of a challenge ECS in animals treated chronically with sham-ECS resulted in an increase in cAMP and cGMP concentrations by about 40 and 65%, respectively, whereas it failed to affect significantly efflux of these nucleotides in animals treated chronically with ECS. Thus, acutely administered ECS increases cAMP and cGMP efflux in the striatum and hippocampus of rats, an effect that is greatly diminished in animals chronically receiving ECS. These findings suggest changes in the cAMP and cGMP signal transduction mechanisms in response to acute and chronic ECS that may be related to the therapeutic effects of this antidepressant and antipsychotic treatment.
Collapse
Affiliation(s)
- G G Nomikos
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
29
|
Jiménez-Vasquez PA, Overstreet DH, Mathé AA. Neuropeptide Y in male and female brains of Flinders Sensitive Line, a rat model of depression. Effects of electroconvulsive stimuli. J Psychiatr Res 2000; 34:405-12. [PMID: 11165308 DOI: 10.1016/s0022-3956(00)00036-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Human and animal studies suggest that neuropeptide Y (NPY), a peptide co-localized and co-released with classical neurotransmitters, is involved in the pathogenesis of affective disorders. In addition, lithium, electroconvulsive treatments (ECT in humans and ECS in rodents) and antidepressants affect NPY in a specific temporal- and brain-region fashion. These results have been obtained on healthy male rats; females and/or "depressed" animals have essentially not been studied. Consequently, we studied brain NPY-like immunoreactivity (-LI) under basal conditions and following a series of ECS in both male and female Flinders Sensitive Line (FSL), an animal model of depression, and their controls, the Flinders Resistant Line (FRL) rats. Furthermore, we examined whether the oestrus cycle affects NPY-LI in these strains. Following sacrifice by focused microwave irradiation, the peptides were extracted from dissected brain regions and measured by radioimmunoassay. Hippocampal NPY-LI in both sexes was significantly lower in the "depressed" FSL compared to the control FRL. ECS increased NPY-LI in both male and female rats in both FSL and FRL strains in hippocampus, frontal cortex and occipital cortex. In the hypothalamus, the increase was found only in the FSL rats. In both FSL and control rats, the basal NPY-LI was lower in the hippocampus of female compared to male rats. NPY-LI did not vary during the different phases of the oestrus cycle. These results suggest that the gender differences are not due to NPY-LI variations during the oestrus. The results are consistent with our hypothesis that NPY plays a role in the pathophysiology of depressive disorders and provide further evidence that one of the modes of ECS action is to elevate NPY in the limbic system. Assumption that gender differences in NPY could explain increased rates of depression in women is speculative, but is in line with the findings in the present study.
Collapse
Affiliation(s)
- P A Jiménez-Vasquez
- Institute for Clinical Neuroscience, St. Göran's Hospital, Karolinska Institutet, S-112 81, Stockholm, Sweden
| | | | | |
Collapse
|
30
|
Gruber SH, Mathé AA. Effects of typical and atypical antipsychotics on neuropeptide Y in rat brain tissue and microdialysates from ventral striatum. J Neurosci Res 2000; 61:458-63. [PMID: 10931533 DOI: 10.1002/1097-4547(20000815)61:4<458::aid-jnr13>3.0.co;2-i] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The main goal of this study was to investigate effects of typical (haloperidol) and atypical (risperidone) antipsychotic drugs on brain regional neuropeptide Y (NPY)-like immunoreactivity (-LI) tissue concentrations and on release of NPY-LI in freely moving rats. An additional aim was to explore the effect of d-amphetamine on NPY-LI release following pretreatment with typical and atypical antipsychotics. During a 4-week period, male Wistar rats were fed chow to which vehicle, risperidone (1.15 mg/100 g food or 2.3 mg/100 g food), or haloperidol (1.15 mg/100 g food) were added. In one series of experiments, the animals were sacrificed on day 30 with focused microwave irradiation, the brain regions dissected and extracted for radioimmunoassay of NPY-LI. In another experimental series, probes were inserted into the ventral striatum. The perfusates were collected at 60-min intervals; NPY-LI was determined by radioimmunoassay. Haloperidol significantly increased NPY-LI in hypothalamus and the occipital cortex. In contrast, haloperidol decreased tissue levels of NPY-LI in striatum. Moreover, haloperidol and risperidone also significantly decreased extracellular NPY-LI concentrations in the ventral striatum. d-amphetamine (1.5 mg/kg) significantly increased extracellular NPY-LI in the vehicle group. Both haloperidol and risperidone pretreatments abolished the effect of d-amphetamine. The results show that d-amphetamine as well as haloperidol and risperidone selectively and specifically affect NPY-LI concentrations in brain tissue and microdialysates and that the effect of d-amphetamine is abolished by both typical and atypical antipsychotics.
Collapse
Affiliation(s)
- S H Gruber
- Institution of Clinical Neuroscience, Karolinska Institutet, St. Görans Hospital, Stockholm, Sweden
| | | |
Collapse
|
31
|
Jiménez Vasquez PA, Salmi P, Ahlenius S, Mathé AA. Neuropeptide Y in brains of the Flinders Sensitive Line rat, a model of depression. Effects of electroconvulsive stimuli and d-amphetamine on peptide concentrations and locomotion. Behav Brain Res 2000; 111:115-23. [PMID: 10840138 DOI: 10.1016/s0166-4328(00)00142-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neuropeptide Y (NPY), has been implicated in the pathophysiology of depression and the mechanisms of action of electroconvulsive treatment (ECT). In this series of experiments, we explored whether there are differences between Flinders Sensitive Line (FSL) rats, an animal model of depression, and controls, Flinders Resistant Line (FRL) in (1) baseline brain NPY-LI concentrations, (2) effects of ECS on locomotion and brain neuropeptides, (3) amphetamine effects on behavior, and (4) effects of ECS pretreatment on subsequent effects of amphetamine on behavior. Both strains were divided into two groups, receiving eight ECS or ShamECS. Twenty-four hours after the last session, animals were habituated in activity boxes for 45 min before given d-amphetamine (1.5 mg.kg(-1), subcutaneously) or vehicle. Locomotor activity was then recorded for an additional 45 min. Twenty-four hours later, rats were sacrificed by microwave irradiation, the brains dissected into frontal cortex, occipital cortex, hippocampus, hypothalamus and striatum, and the neuropeptides extracted and measured by radioimmunoassay. No differences between FSL and FRL rats in baseline locomotor activity were found. FSL compared to FRL animals showed a significantly larger locomotion increase following saline and a significantly smaller increase following amphetamine. ECS pretreatment significantly decreased the saline effects on locomotion in the FSL and the amphetamine effects in the FRL rats. 'Baseline' NPY-like immunoreactivity (LI) concentrations were lower in the hippocampus of the 'depressed' rats. ECS increased NPY-LI in frontal cortex, occipital cortex and hippocampus of both strains. The hippocampal NPY-LI increase was significantly larger in the FSL compared to FRL animals.
Collapse
Affiliation(s)
- P A Jiménez Vasquez
- Department of Psychiatry, Institution of Clinical Neuroscience, St. Göran's Hospital, Karolinska Institutet, S-112 81, Stockholm, Sweden
| | | | | | | |
Collapse
|
32
|
Husum H, Mikkelsen JD, Hogg S, Mathé AA, Mørk A. Involvement of hippocampal neuropeptide Y in mediating the chronic actions of lithium, electroconvulsive stimulation and citalopram. Neuropharmacology 2000; 39:1463-73. [PMID: 10818262 DOI: 10.1016/s0028-3908(00)00009-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Neuropeptide Y (NPY) has been considered to be involved in the pathogenesis of affective disorders, and chronic treatment with lithium or electroconvulsive stimuli (ECS) has been shown to increase mRNA and peptide levels of NPY in rat brain tissue. Consequently, parameters reflective of NPYergic neurotransmission were studied in the hippocampus of rats following chronic treatment with lithium, ECS or the selective serotonin re-uptake inhibitor (SSRI), citalopram. Lithium (28 days, diet) and ECS (10 days, once daily) treatments caused a marked increase in levels of preproNPY mRNA in the CA1 area and dentate gyrus (DG). This increase was accompanied by an increase in extracellular levels of NPY in the dorsal hippocampus of freely moving rats as determined by microdialysis, suggesting that lithium and ECS treatments lead to an increased biosynthesis and release of NPY in this area. (125)I-peptide YY (PYY) binding was reduced by 40 and 60% respectively in the DG following the same treatments, showing that the increased release is accompanied by a down-regulation of corresponding binding sites. In contrast, citalopram (10 mg/kg i.p., twice daily for 28 days) caused a 100% increase in (125)I-PYY binding in CA, CA3 and DG while levels of preproNPY mRNA and extracellular NPY in the hippocampus were unaffected. The results indicate that various agents and stimuli exerting antidepressant effects in humans, such as chronic lithium, ECS and citalopram all increase NPYergic neurotransmission in the hippocampus by distinct modes of action. Moreover, NPY (6 microg) given intracerebroventricularly (i.c.v.) induced an antidepressant-like effect in the forced swim test. It is hypothesised that the increase in NPYergic neurotransmission may be associated with the mechanism of action of various antidepressant treatments in the alleviation of depression.
Collapse
Affiliation(s)
- H Husum
- Department of Neurobiology, H. Lundbeck A/S, Ottiliavej 9, DK-2500, Copenhagen-Valby, Denmark
| | | | | | | | | |
Collapse
|
33
|
Röhrenbeck AM, Bette M, Hooper DC, Nyberg F, Eiden LE, Dietzschold B, Weihe E. Upregulation of COX-2 and CGRP expression in resident cells of the Borna disease virus-infected brain is dependent upon inflammation. Neurobiol Dis 1999; 6:15-34. [PMID: 10078970 DOI: 10.1006/nbdi.1998.0225] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Infection of immunocompetent adult rats with Borna disease virus (BDV) causes severe encephalitis and neural dysfunction. The expression of COX-2 and CGRP, genes previously shown to be implicated in CNS disease and peripheral inflammation, was dramatically upregulated in the cortical neurons of acutely BDV-infected rats. Neuronal COX-2 and CGRP upregulation was predominantly seen in brain areas where ED1-positive macrophages/microglia accumulated. In addition, COX-2 expression was strongly induced in brain endothelial cells and the number of COX-2 immunoreactive microglial cells was increased. In contrast, despite increased expression of viral antigens, neither COX-2 nor CGRP expression was altered in the CNS of BDV-infected rats treated with dexamethasone, or tolerant to BDV. Thus, increased CGRP and COX-2 expression in the BDV-infected brain is the result of the inflammatory response and likely to be involved in the pathogenesis of virus-induced encephalitis.
Collapse
Affiliation(s)
- A M Röhrenbeck
- Institute of Anatomy and Cell Biology, Philipps University Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Ehlers CL, Li TK, Lurneng L, Hwang BH, Somes C, Jimenez P, Mathe AA. Neuropeptide Y Levels in Ethanol-Naive Alcohol-Preferring and Nonpreferring Rats and in Wistar Rats after Ethanol Exposure. Alcohol Clin Exp Res 1998. [DOI: 10.1111/j.1530-0277.1998.tb03979.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Caberlotto L, Fuxe K, Overstreet DH, Gerrard P, Hurd YL. Alterations in neuropeptide Y and Y1 receptor mRNA expression in brains from an animal model of depression: region specific adaptation after fluoxetine treatment. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 59:58-65. [PMID: 9729278 DOI: 10.1016/s0169-328x(98)00137-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To investigate the possible link between neuropeptide Y (NPY) and depression, we analyzed NPY and its receptors in different limbic-related regions in the Flinder sensitive line (FSL), a genetic animal model of depression. In situ hybridization histochemistry was used to measure mRNA expression levels of NPY and NPY receptors, Y1 and Y2, in the FSL as compared to the control Flinder resistant Line rats (FRL). In the FSL rats, NPY mRNA expression levels were significantly decreased in the nucleus accumbens and CA regions, but increased in the arcuate nucleus and anterior cingulate cortex. Y1 receptor mRNA expression was decreased in different cortical regions (retrosplenial, anterior cingulate, and occipital) and in the hippocampal dentate gyrus. Y2 mRNA expression levels did not differ between FSL and FRL animals. The effect of the antidepressant drug fluoxetine (a serotonin reuptake inhibitor) in the two rat strains was also studied. There was an increase of the NPY mRNA hybridization signal in the arcuate nucleus of both strains following the antidepressant treatment (10 micromol/kg; daily for 14 days). However, in other brain regions, fluoxetine administration caused a differential effect on the induction of NPY-related genes in the two rat strains: in the CA region and dentate gyrus NPY mRNA expression was increased in the FSL, but decreased in the FRL. In contrast, Y1 mRNA levels tended to be decreased by fluoxetine in the nucleus accumbens of the FSL rats, but increased in the FRL. These findings suggest an involvement of the Y1, but not the Y2, receptor subtype in depressive disorder. Overall, the results appear to sustain the importance of the FSL rats as an animal model of depression in view of the impairment of NPY genes and the ability of fluoxetine treatment to normalize NPY-related gene expression selectively in this strain.
Collapse
Affiliation(s)
- L Caberlotto
- Department of Neuroscience, Division of Cellular and Molecular Neurochemistry, Karolinska Institute, S-171 75, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
36
|
Mathé AA, Jimenez PA, Theodorsson E, Stenfors C. Neuropeptide Y, neurokinin A and neurotensin in brain regions of Fawn Hooded "depressed", Wistar, and Sprague Dawley rats. Effects of electroconvulsive stimuli. Prog Neuropsychopharmacol Biol Psychiatry 1998; 22:529-46. [PMID: 9612849 DOI: 10.1016/s0278-5846(98)00023-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
1. Concentrations of neuropeptide Y (NPY)-, neurokinin A (NKA)- and neurotensin (NT)-like immunoreactivity (-LI) were measured in brain tissues of Fawn Hooded (FH) (a model of depression), Wistar (W) (control for depression) and Sprague Dawley (SD) rats (control for strain) with the aim to explore possible associations between neuropeptides and models of depression. 2. In addition, peptides were determined after six electroconvulsive stimuli (ECS) or six sham ECS ("baseline") in order to investigate ECS mechanisms of action. 3. Baseline NPY-LI concentrations were markedly lower in the hippocampus of the "depressed" FH compared to the W and SD animals. 4. Baseline NKA-LI concentrations were higher in the occipital cortex and NT-LI concentrations in the occipital cortex, frontal cortex, and hypothalamus of the FH and W compared to the SD rats. 5. ECS increased NPY-LI in the hippocampus, frontal cortex and occipital cortex of all three strains. In the hippocampus, the increase was significantly larger in the FH compared to the W and SD rats. ECS also increased NKA-LI in the hippocampus. 6. In contrast, ECS decreased NT-LI in the occipital cortex of the FH and W animals. 7. The results indicate that NPY may play a role in depression and that changes in NPY and NKA probably constitute one of the mechanisms of ECT action. More speculatively, NT may also be involved in depression.
Collapse
Affiliation(s)
- A A Mathé
- Institution of Clinical Neuroscience, Karolinska Institute-St Görans Hospital, Stockholm, Sweden
| | | | | | | |
Collapse
|