1
|
Tan X, Vrana K, Ding ZM. Cotinine: Pharmacologically Active Metabolite of Nicotine and Neural Mechanisms for Its Actions. Front Behav Neurosci 2021; 15:758252. [PMID: 34744656 PMCID: PMC8568040 DOI: 10.3389/fnbeh.2021.758252] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
Tobacco use disorder continues to be a leading public health issue and cause of premature death in the United States. Nicotine is considered as the major tobacco alkaloid causing addiction through its actions on nicotinic acetylcholine receptors (nAChRs). Current pharmacotherapies targeting nicotine's effects produce only modest effectiveness in promoting cessation, highlighting the critical need for a better understanding of mechanisms of nicotine addiction to inform future treatments. There is growing interest in identifying potential contributions of non-nicotine components to tobacco reinforcement. Cotinine is a minor alkaloid, but the major metabolite of nicotine that can act as a weak agonist of nAChRs. Accumulating evidence indicates that cotinine produces diverse effects and may contribute to effects of nicotine. In this review, we summarize findings implicating cotinine as a neuroactive metabolite of nicotine and discuss available evidence regarding potential mechanisms underlying its effects. Preclinical findings reveal that cotinine crosses the blood brain barrier and interacts with both nAChRs and non-nAChRs in the nervous system, and produces neuropharmacological and behavioral effects. Clinical studies suggest that cotinine is psychoactive in humans. However, reviewing evidence regarding mechanisms underlying effects of cotinine provides a mixed picture with a lack of consensus. Therefore, more research is warranted in order to provide better insight into the actions of cotinine and its contribution to tobacco addiction.
Collapse
Affiliation(s)
- Xiaoying Tan
- Department of Anesthesiology & Perioperative Medicine, and Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Kent Vrana
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Zheng-Ming Ding
- Department of Anesthesiology & Perioperative Medicine, and Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
2
|
Ding ZM, Gao Y, Sentir AM, Tan X. Self-Administration of Cotinine in Wistar Rats: Comparisons to Nicotine. J Pharmacol Exp Ther 2021; 376:338-347. [PMID: 33361363 PMCID: PMC7883011 DOI: 10.1124/jpet.120.000367] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Nicotine is the major addictive component in tobacco. Cotinine is the major metabolite of nicotine and a weak agonist for nicotinic acetylcholine receptors (nAChRs). Nicotine supports self-administration in rodents. However, it remains undetermined whether cotinine can be self-administered. This study aimed to characterize cotinine self-administration in rats, to compare effects of cotinine to those of nicotine, and to determine potential involvement of nAChRs in cotinine's effects. Adult Wistar rats were trained to self-administer cotinine or nicotine (0.0075, 0.015, 0.03, or 0.06 mg/kg per infusion) under fixed-ratio (FR) and progressive-ratio (PR) schedules. Blood nicotine and cotinine levels were determined after the last FR session. Effects of mecamylamine, a nonselective nAChR antagonist, and varenicline, a partial agonist for α4β2* nAChRs, on cotinine and nicotine self-administration were determined. Rats readily acquired cotinine self-administration, responded more on active lever, and increased motivation to self-administer cotinine when the reinforcement requirement increased. Blood cotinine levels ranged from 77 to 792 ng/ml. Nicotine induced more infusions at lower doses during FR schedules and greater breakpoints at higher doses during the PR schedule than cotinine. There was no difference in cotinine self-administration between male and female rats. Mecamylamine and varenicline attenuated nicotine but not cotinine self-administration. These results indicate that cotinine was self-administered by rats. These effects of cotinine were less robust than nicotine and exhibited no sex difference. nAChRs appeared to be differentially involved in self-administration of nicotine and cotinine. These results suggest cotinine may play a role in the development of nicotine use and misuse. SIGNIFICANCE STATEMENT: Nicotine addiction is a serious public health problem. Cotinine is the major metabolite of nicotine, but its involvement in nicotine reinforcement remains elusive. Our findings indicate that cotinine, at doses producing clinically relevant blood cotinine levels, supported intravenous self-administration in rats. Cotinine self-administration was less robust than nicotine. Mecamylamine and varenicline attenuated nicotine but not cotinine self-administration. These results suggest cotinine may play a role in the development of nicotine use and misuse.
Collapse
Affiliation(s)
- Zheng-Ming Ding
- Department of Anesthesiology and Perioperative Medicine, and Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania (Z.-M.D., X.T.) and Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana (Y.G., A.S.)
| | - Yong Gao
- Department of Anesthesiology and Perioperative Medicine, and Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania (Z.-M.D., X.T.) and Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana (Y.G., A.S.)
| | - Alena M Sentir
- Department of Anesthesiology and Perioperative Medicine, and Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania (Z.-M.D., X.T.) and Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana (Y.G., A.S.)
| | - Xiaoying Tan
- Department of Anesthesiology and Perioperative Medicine, and Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania (Z.-M.D., X.T.) and Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana (Y.G., A.S.)
| |
Collapse
|
3
|
Ghazi A, Pakfetrat A, Hashemy SI, Boroomand F, Javan-Rashid A. Evaluation of Antioxidant Capacity and Cotinine Levels of Saliva in Male Smokers and Non-smokers. ADDICTION & HEALTH 2021; 12:244-250. [PMID: 33623643 PMCID: PMC7878005 DOI: 10.22122/ahj.v12i4.278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background The cigarette compounds are associated with the increase in the incidence of oral cancer and precancerous lesions. Salivary antioxidant system plays an important role in anti-carcinogenic capacity of saliva. Cotinine, a nicotine metabolite, has a longer half-life in comparison with nicotine and is a suitable marker for exposure to cigarette smoke. This study aims to measure total antioxidant capacity (TAC) and cotinine level in saliva of smokers and non-smokers and compare salivary cotinine level and TAC in each group. Methods In this cross-sectional study, 32 smokers and 34 non-smokers were recruited by consecutive sampling from Department of Oral Medicine, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran. Salivary cotinine and TAC concentrations were determined using the enzyme-linked immunosorbent assay (ELISA) technique. For data analysis, correlation tests of Spearman, Mann-Whitney U, and independent samples t-test were used. Findings A significant difference was observed between the two groups in the mean cotinine level and in the mean TAC (P = 0.015, P = 0.027, respectively). TAC showed a weak negative correlation with the cotinine level, but the difference was not significant (P = 0.651). Conclusion Antioxidants are of great importance to smokers because antioxidants are able to scavenge free radicals found in cigarette smoke. According to the results of present study, the salivary TAC in smokers was lower than that of non-smokers, and the salivary cotinine level in smokers was higher than non-smokers. Therefore, smoking endangers the oral cavity health by reducing the salivary TAC. Further studies with a higher sample size and other factors affecting the salivary TAC are needed for definitive comment.
Collapse
Affiliation(s)
- Ala Ghazi
- Oral and Maxillofacial Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atessa Pakfetrat
- Oral and Maxillofacial Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Abdollah Javan-Rashid
- Department of Biostatistics, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Pardo M, Beurel E, Jope RS. Cotinine administration improves impaired cognition in the mouse model of Fragile X syndrome. Eur J Neurosci 2016; 45:490-498. [PMID: 27775852 DOI: 10.1111/ejn.13446] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 01/15/2023]
Abstract
Cotinine is the major metabolite of nicotine and has displayed some capacity for improving cognition in mouse models following chronic administration. We tested if acute cotinine treatment is capable of improving cognition in the mouse model of Fragile X syndrome, Fmr1-/- knockout mice, and if this is related to inhibition by cotinine treatment of glycogen synthase kinase-3β (GSK3β), which is abnormally active in Fmr1-/- mice. Acute cotinine treatment increased the inhibitory serine-phosphorylation of GSK3β and the activating phosphorylation of AKT, which can mediate serine-phosphorylation of GSK3β, in both wild-type and Fmr1-/- mouse hippocampus. Acute cotinine treatment improved cognitive functions of Fmr1-/- mice in coordinate and categorical spatial processing, novel object recognition, and temporal ordering. However, cotinine failed to restore impaired cognition in GSK3β knockin mice, in which a serine9-to-alanine9 mutation blocks the inhibitory serine phosphorylation of GSK3β, causing GSK3β to be hyperactive. These results indicate that acute cotinine treatment effectively repairs impairments of these four cognitive tasks in Fmr1-/- mice, and suggest that this cognition-enhancing effect of cotinine is linked to its induction of inhibitory serine-phosphorylation of GSK3. Taken together, these results show that nicotinic receptor agonists can act as cognitive enhancers in a mouse model of Fragile X syndrome and highlight the potential role of inhibiting GSK3β in mediating the beneficial effects of cotinine on memory.
Collapse
Affiliation(s)
- Marta Pardo
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Eleonore Beurel
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Richard S Jope
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
5
|
Fox AM, Moonschi FH, Richards CI. The nicotine metabolite, cotinine, alters the assembly and trafficking of a subset of nicotinic acetylcholine receptors. J Biol Chem 2015; 290:24403-12. [PMID: 26269589 DOI: 10.1074/jbc.m115.661827] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Indexed: 12/27/2022] Open
Abstract
Exposure to nicotine alters the trafficking and assembly of nicotinic receptors (nAChRs), leading to their up-regulation on the plasma membrane. Although the mechanism is not fully understood, nicotine-induced up-regulation is believed to contribute to nicotine addiction. The effect of cotinine, the primary metabolite of nicotine, on nAChR trafficking and assembly has not been extensively investigated. We utilize a pH-sensitive variant of GFP, super ecliptic pHluorin, to differentiate between intracellular nAChRs and those expressed on the plasma membrane to quantify changes resulting from cotinine and nicotine exposure. Similar to nicotine, exposure to cotinine increases the number of α4β2 receptors on the plasma membrane and causes a redistribution of intracellular receptors. In contrast to this, cotinine exposure down-regulates α6β2β3 receptors. We also used single molecule fluorescence studies to show that cotinine and nicotine both alter the assembly of α4β2 receptors to favor the high sensitivity (α4)2(β2)3 stoichiometry.
Collapse
Affiliation(s)
- Ashley M Fox
- From the Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506
| | - Faruk H Moonschi
- From the Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506
| | | |
Collapse
|
6
|
Fischer L, Mikus F, Jantos R, Skopp G. Simultaneous quantification of tobacco alkaloids and major phase I metabolites by LC-MS/MS in human tissue. Int J Legal Med 2015; 129:279-87. [PMID: 25304849 DOI: 10.1007/s00414-014-1093-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 10/01/2014] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Insurance agencies might request laboratories to differentiate whether a deceased has been a smoker or not to decide about refunding of his nonsmoker rate. In this context, the question on a solid proof of tobacco alkaloids and major metabolites in tissues came up. Currently, an appropriate assay is still lacking to analyze tissue distribution in smokers or nonsmokers. Nicotine (NIC), nornicotine (NNIC), anatabine (ATB), anabasine (ABS), and myosmine (MYO) are naturally occurring alkaloids of the tobacco plant; most important phase I metabolites of NIC are cotinine (COT), norcotinine (NCOT), trans-3'-hydroxycotinine (HCOT), nicotine-N'-oxide (NNO), and cotinine-N-oxide (CNO). An analytical assay for their determination was developed and applied to five randomly selected autopsy cases. METHODS Homogenates using 500 mg aliquots of tissue samples were analyzed by liquid chromatography/tandem mass spectrometry following solid phase extraction. The method was validated according to current international guidelines. RESULTS NIC, COT, NCOT, ABS, ATB, and HCOT could be detected in all tissues under investigation. Highest NIC concentrations were observed in the lungs, whereas highest COT concentrations have been found in the liver. MYO was not detectable in any of the tissues under investigation. CONCLUSIONS The assay is able to adequately separate isobaric analyte pairs such as NIC/ABS/NCOT and HCOT/CNO thus being suitable for the determination of tobacco alkaloids and their phase I metabolites from tissue. More autopsy cases as well as corresponding body fluids and hair samples will be investigated to differentiate smokers from nonsmokers.
Collapse
Affiliation(s)
- Lisa Fischer
- Institute of Legal and Traffic Medicine, University Hospital Heidelberg, Voss-Strasse 2, 69115, Heidelberg, Germany
| | | | | | | |
Collapse
|
7
|
Katner SN, Toalston JE, Smoker MP, Rodd ZA, McBride WJ, Engleman EA. Time-course of extracellular nicotine and cotinine levels in rat brain following administration of nicotine: effects of route and ethanol coadministration. Psychopharmacology (Berl) 2015; 232:551-60. [PMID: 25038869 PMCID: PMC4404024 DOI: 10.1007/s00213-014-3681-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 07/07/2014] [Indexed: 11/24/2022]
Abstract
RATIONALE Nicotine and ethanol are commonly coabused drugs, and nicotine-laced ethanol products are growing in popularity. However, little is known about time-course changes in extracellular nicotine and cotinine levels in rat models of ethanol and nicotine coabuse. OBJECTIVES The objective of the present study was to determine the time-course changes in brain levels of nicotine and cotinine following subcutaneous (SC) and intragastric (IG) nicotine administration in alcohol-preferring (P) and Wistar rats. METHODS In vivo microdialysis was used to collect dialysate samples from the nucleus accumbens shell (NACsh) for nicotine and cotinine determinations, following SC administration of (-)-nicotine (0.18, 0.35, and 0.70 mg/kg) in female P and Wistar rats or IG administration of (-)-nicotine (0.35 and 0.70 mg/kg) in 15 % (v/v) ethanol or water in female P rats. RESULTS SC nicotine produced nicotine and cotinine dialysate levels as high as 51 and 14 ng/ml, respectively. IG administration of 15 % EtOH + 0.70 mg/kg nicotine in P rats resulted in maximal nicotine and cotinine dialysate levels of 19 and 14 ng/ml, respectively, whereas administration of 0.70 mg/kg nicotine in water resulted in maximal nicotine and cotinine levels of 21 and 25 ng/ml, respectively. Nicotine and cotinine levels were detectable within the first 15 and 45 min, respectively, after IG administration. CONCLUSIONS Overall, the results of this study suggest that nicotine is rapidly adsorbed and produces relevant extracellular brain concentrations of nicotine and its pharmacologically active metabolite, cotinine. The persisting high brain concentrations of cotinine may contribute to nicotine addiction.
Collapse
|
8
|
Grizzell JA, Iarkov A, Holmes R, Mori T, Echeverria V. Cotinine reduces depressive-like behavior, working memory deficits, and synaptic loss associated with chronic stress in mice. Behav Brain Res 2014; 268:55-65. [DOI: 10.1016/j.bbr.2014.03.047] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/28/2014] [Accepted: 03/31/2014] [Indexed: 12/21/2022]
|
9
|
Grizzell JA, Echeverria V. New Insights into the Mechanisms of Action of Cotinine and its Distinctive Effects from Nicotine. Neurochem Res 2014; 40:2032-46. [PMID: 24970109 DOI: 10.1007/s11064-014-1359-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/10/2014] [Indexed: 12/20/2022]
Abstract
Tobacco consumption is far higher among a number of psychiatric and neurological diseases, supporting the notion that some component(s) of tobacco may underlie the oft-reported reduction in associated symptoms during tobacco use. Popular dogma holds that this component is nicotine. However, increasing evidence support theories that cotinine, the main metabolite of nicotine, may underlie at least some of nicotine's actions in the nervous system, apart from its adverse cardiovascular and habit forming effects. Though similarities exist, disparate and even antagonizing actions between cotinine and nicotine have been described both in terms of behavior and physiology, underscoring the need to further characterize this potentially therapeutic compound. Cotinine has been shown to be psychoactive in humans and animals, facilitating memory, cognition, executive function, and emotional responding. Furthermore, recent research shows that cotinine acts as an antidepressant and reduces cognitive-impairment associated with disease and stress-induced dysfunction. Despite these promising findings, continued focus on this potentially safe alternative to tobacco and nicotine use is lacking. Here, we review the effects of cotinine, including comparisons with nicotine, and discuss potential mechanisms of cotinine-specific actions in the central nervous system which are, to date, still being elucidated.
Collapse
Affiliation(s)
- J Alex Grizzell
- Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, FL, 33611, USA.,Department of Research and Development, Bay Pines VA Healthcare System, 10,000 Bay Pines Blvd., Bldg. 23, Rm. 123, Bay Pines, FL, 33744, USA
| | - Valentina Echeverria
- Department of Research and Development, Bay Pines VA Healthcare System, 10,000 Bay Pines Blvd., Bldg. 23, Rm. 123, Bay Pines, FL, 33744, USA. .,Universidad Autónoma de Chile, Carlos Antúnez 1920, Providencia, Santiago, Chile. .,Department of Molecular Medicine, University of South Florida, Tampa, FL, 33647, USA.
| |
Collapse
|
10
|
Moran VE. Cotinine: Beyond that Expected, More than a Biomarker of Tobacco Consumption. Front Pharmacol 2012; 3:173. [PMID: 23087643 PMCID: PMC3467453 DOI: 10.3389/fphar.2012.00173] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 09/10/2012] [Indexed: 12/15/2022] Open
Abstract
A greater incidence of tobacco consumption occurs among individuals with psychiatric conditions including post-traumatic stress disorder (PTSD), bipolar disorder, major depression, and schizophrenia, compared with the general population. Even when still controversial, it has been postulated that smoking is a form of self-medication that reduces psychiatric symptoms among individuals with these disorders. To better understand the component(s) of tobacco-inducing smoking behavior, greater attention has been directed toward nicotine. However, in recent years, new evidence has shown that cotinine, the main metabolite of nicotine, exhibits beneficial effects over psychiatric symptoms and may therefore promote smoking within this population. Some of the behavioral effects of cotinine compared to nicotine are discussed here. Cotinine, which accumulates in the body as a result of tobacco exposure, crosses the blood-brain barrier and has different pharmacological properties compared with nicotine. Cotinine has a longer plasma half-life than nicotine and showed no addictive or cardiovascular effects in humans. In addition, at the preclinical level, cotinine facilitated the extinction of fear memory and anxiety after fear conditioning, improved working memory in a mouse model of Alzheimer’s disease (AD) and in a monkey model of schizophrenia. Altogether, the new evidence suggests that the pharmacological and behavioral effects of cotinine may play a key role in promoting tobacco smoking in individuals that suffer from psychiatric conditions and represents a new potential therapeutic agent against psychiatric conditions such as AD and PTSD.
Collapse
Affiliation(s)
- Valentina Echeverria Moran
- Research and Development, Department of Veterans Affairs, Bay Pines VA Healthcare System Bay Pines, FL, USA ; Tampa VA Healthcare System Tampa, FL, USA ; Department of Molecular Medicine, University of South Florida Tampa, FL, USA
| |
Collapse
|
11
|
Echeverria V, Zeitlin R. Cotinine: a potential new therapeutic agent against Alzheimer's disease. CNS Neurosci Ther 2012; 18:517-23. [PMID: 22530628 DOI: 10.1111/j.1755-5949.2012.00317.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Tobacco smoking has been correlated with a lower incidence of Alzheimer's disease (AD). This negative correlation has been attributed to nicotine's properties. However, the undesired side-effects of nicotine and the absence of clear evidence of positive effects of this drug on the cognitive abilities of AD patients have decreased the enthusiasm for its therapeutic use. In this review, we discuss evidence showing that cotinine, the main metabolite of nicotine, has many of the beneficial effects but none of the negative side-effects of its precursor. Cotinine has been shown to be neuroprotective, to improve memory in primates as well as to prevent memory loss, and to lower amyloid-beta (Aβ)) burden in AD mice. In AD, cotinine's positive effect on memory is associated with the inhibition of Aβ aggregation, the stimulation of pro-survival factors such as Akt, and the inhibition of pro-apoptotic factors such as glycogen synthase kinase 3 beta (GSK3β). Because stimulation of the α7 nicotinic acetylcholine receptors (α7nAChRs) positively modulates these factors and memory, the involvement of these receptors in cotinine's effects are discussed. Because of its beneficial effects on brain function, good safety profile, and nonaddictive properties, cotinine may represent a new therapeutic agent against AD.
Collapse
|
12
|
The nicotine metabolite, cotinine, attenuates glutamate (NMDA) antagonist-related effects on the performance of the five choice serial reaction time task (5C-SRTT) in rats. Biochem Pharmacol 2012; 83:941-51. [PMID: 22244928 DOI: 10.1016/j.bcp.2011.12.043] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 12/29/2011] [Accepted: 12/30/2011] [Indexed: 12/11/2022]
Abstract
Cotinine, the most predominant metabolite of nicotine in mammalian species, has a pharmacological half-life that greatly exceeds its precursor. However, until recently, relatively few studies had been conducted to systematically characterize the behavioral pharmacology of cotinine. Our previous work indicated that cotinine improves prepulse inhibition of the auditory startle response in rats in pharmacological impairment models and that it improves working memory in non-human primates. Here we tested the hypothesis that cotinine improves sustained attention in rats and attenuates behavioral alterations induced by the glutamate (NMDA) antagonist MK-801. The effects of acute subcutaneous (dose range 0.03-10.0 mg/kg) and chronic oral administration (2.0 mg/kg/day in drinking water) of cotinine were evaluated in fixed and variable stimulus duration (VSD) as well as variable intertrial interval (VITI) versions of a five choice serial reaction time task (5C-SRTT). The results indicated only subtle effects of acute cotinine (administered alone) on performance of the 5C-SRTT (e.g., decreases in timeout responses). However, depending on dose, acute treatment with cotinine attenuated MK-801-related impairments in accuracy and elevations in timeout responses, and it increased the number of completed trials. Moreover, chronic cotinine attenuated MK-801-related impairments in accuracy and it reduced premature and timeout responses when the demands of the task were increased (i.e., by presenting VSDs or VITIs in addition to administering MK-801). These data suggest that cotinine may represent a prototype for compounds that have therapeutic potential for neuropsychiatric disorders (i.e., by improving sustained attention and decreasing impulsive and compulsive behaviors), especially those characterized by glutamate receptor alterations.
Collapse
|
13
|
Zeitlin R, Patel S, Solomon R, Tran J, Weeber EJ, Echeverria V. Cotinine enhances the extinction of contextual fear memory and reduces anxiety after fear conditioning. Behav Brain Res 2011; 228:284-93. [PMID: 22137886 DOI: 10.1016/j.bbr.2011.11.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 11/14/2011] [Accepted: 11/18/2011] [Indexed: 12/14/2022]
Abstract
Posttraumatic stress disorder (PTSD) is an anxiety disorder triggered by traumatic events. Symptoms include anxiety, depression and deficits in fear memory extinction (FE). PTSD patients show a higher prevalence of cigarette smoking than the general population. The present study investigated the effects of cotinine, a tobacco-derived compound, over anxiety and contextual fear memory after fear conditioning (FC) in mice, a model for inducing PTSD-like symptoms. Two-month-old C57BL/6J mice were separated into three experimental groups. These groups were used to investigate the effect of pretreatment with cotinine on contextual fear memory and posttreatment on extinction and stability or retrievability of the fear memory. Also, changes induced by cotinine on the expression of extracellular signal-regulated kinase (ERK)1/2 were assessed after extinction in the hippocampus. An increase in anxiety and corticosterone levels were found after fear conditioning. Cotinine did not affect corticosterone levels but enhanced the extinction of contextual fear, decreased anxiety and the stability and/or retrievability of contextual fear memory. Cotinine-treated mice showed higher levels of the active forms of ERK1/2 than vehicle-treated mice after FC. This evidence suggests that cotinine is a potential new pharmacological treatment to reduce symptoms in individuals with PTSD.
Collapse
Affiliation(s)
- Ross Zeitlin
- Bay Pines VA Healthcare System, Bay Pines, FL 33744, USA
| | | | | | | | | | | |
Collapse
|
14
|
Dawson R, Messina SM, Stokes C, Salyani S, Alcalay N, De Fiebre NC, De Fiebre CM. Solid-Phase Extraction and HPLC Assay of Nicotine and Cotinine in Plasma and Brain. Toxicol Mech Methods 2010; 12:45-58. [DOI: 10.1080/15376510209167935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Zhou X, Zhuo X, Xie F, Kluetzman K, Shu YZ, Humphreys WG, Ding X. Role of CYP2A5 in the clearance of nicotine and cotinine: insights from studies on a Cyp2a5-null mouse model. J Pharmacol Exp Ther 2010; 332:578-87. [PMID: 19923441 PMCID: PMC2812111 DOI: 10.1124/jpet.109.162610] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2009] [Accepted: 11/13/2009] [Indexed: 11/22/2022] Open
Abstract
CYP2A5, a mouse cytochrome P450 monooxygenase that shows high similarities to human CYP2A6 and CYP2A13 in protein sequence and substrate specificity, is expressed in multiple tissues, including the liver, kidney, lung, and nasal mucosa. Heterologously expressed CYP2A5 is active in the metabolism of both endogenous substrates, such as testosterone, and xenobiotic compounds, such as nicotine and cotinine. To determine the biological and pharmacological functions of CYP2A5 in vivo, we have generated a Cyp2a5-null mouse. Homozygous Cyp2a5-null mice are viable and fertile; they show no evidence of embryonic lethality or developmental deficits; and they have normal circulating levels of testosterone and progesterone. The Cyp2a5-null mouse and wild-type mouse were then used for determination of the roles of CYP2A5 in the metabolism of nicotine and its major circulating metabolite, cotinine. The results indicated that the Cyp2a5-null mouse has lower hepatic nicotine 5'-hydroxylation activity in vitro, and slower systemic clearance of both nicotine and cotinine in vivo. For both compounds, a substantially longer plasma half-life and a greater area under the concentration-time curve were observed for the Cyp2a5-null mice, compared with wild-type mice. Further pharmacokinetics analysis confirmed that the brain levels of nicotine and cotinine are also influenced by the Cyp2a5 deletion. These findings provide direct evidence that CYP2A5 is the major nicotine and cotinine oxidase in mouse liver. The Cyp2a5-null mouse will be valuable for in vivo studies on the role of CYP2A5 in drug metabolism and chemical toxicity, and for future production of CYP2A6- and CYP2A13-humanized mouse models.
Collapse
Affiliation(s)
- Xin Zhou
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201-0509, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Liou HH, Hsu HJ, Tsai YF, Shih CY, Chang YC, Lin CJ. Interaction between nicotine and MPTP/MPP+ in rat brain endothelial cells. Life Sci 2007; 81:664-72. [PMID: 17689566 DOI: 10.1016/j.lfs.2007.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 06/21/2007] [Accepted: 07/04/2007] [Indexed: 11/25/2022]
Abstract
To examine the interaction between nicotine and MPTP/MPP+ in the blood-brain barrier, cellular uptake of MPTP and MPP+ was studied in the presence of nicotine and several compounds, including MPTP/MPP+ analogs and a specific inhibitor of organic cation transporter (OCT) in an adult rat brain microvascular endothelial cell line (ARBEC). The kinetic properties of the uptake of MPTP, MPP+, and nicotine were also examined. In addition, a microdialysis study was performed to evaluate the in vivo effect of nicotine (i.p.) on extracellular levels of MPTP and MPP+ in the brain after intravenous administration of MPTP. The results showed that uptake of MPTP, MPP+, and nicotine was partly mediated by a carrier system that was sensitive to decynium22, a specific OCT inhibitor. RT-PCR showed the presence of OCT1 mRNA in ARBEC. Capacity for uptake of MPTP and nicotine was much higher than that for MPP+ (Km and Vm values of 10.94+/-1.44 microM and 0.049+/-0.007 pmol/mg s, respectively, for MPP+, compared to values of 35.75+/-0.85 microM and 40.95+/-3.56 pmol/mg s for MPTP and 25.29+/-6.44 microM and 51.15+/-14.18 pmol/mg s for nicotine). In addition, nicotine competitively inhibited the uptake of both MPTP and MPP+, with inhibition constants (Ki) of 328 microM and 210 microM, respectively. In vivo microdialysis results showed that nicotine significantly reduced brain extracellular levels of MPTP in the first 30 min (507.4+/-8.5 ng/ml vs. 637.9+/-30.8 ng/ml with and without nicotine pre-treatment, respectively), but did not have significant effect on those of MPP+. In conclusion, nicotine can inhibit in vitro cellular uptake and in vivo transfer of MPTP across the blood-brain barrier, which can be mediated by multiple pathways including OCT1.
Collapse
Affiliation(s)
- Horng-Huei Liou
- Department of Pharmacology, College of Medicine, National Taiwan University, and Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
17
|
Ono K, Hirohata M, Yamada M. Anti-fibrillogenic and fibril-destabilizing activity of nicotine in vitro: Implications for the prevention and therapeutics of Lewy body diseases. Exp Neurol 2007; 205:414-24. [PMID: 17425956 DOI: 10.1016/j.expneurol.2007.03.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2007] [Revised: 02/27/2007] [Accepted: 03/01/2007] [Indexed: 01/12/2023]
Abstract
The aggregation of alpha-synuclein (alphaS) has been implicated as a critical step in the development of Lewy body diseases (LBD) and multiple system atrophy (MSA). Both retrospective and prospective epidemiological studies have consistently demonstrated an inverse association between cigarette smoking and Parkinson's disease (PD). We used fluorescence spectroscopy with thioflavin S, electron microscopy and atomic force microscopy to examine the effects of nicotine, pyridine, and N-methylpyrrolidine on the formation of alphaS fibrils (f alphaS) from wild-type alphaS (alphaS (WT)) and A53T mutant alphaS (A53T) and on preformed f alpha Ss. Nicotine dose-dependently inhibited the f alphaS formation from both alphaS (WT) and A53T. Moreover, nicotine dose-dependently destabilized preformed f alpha Ss. These effects of nicotine were similar to those of N-methylpyrrolidine. The anti-fibrillogenic activity of nicotine may be exerted not only by the inhibition of f alphaS formation but also by the destabilization of preformed f alphaS. Additionally, this effect may be attributed to N-methylpyrrolidine moieties of nicotine.
Collapse
Affiliation(s)
- Kenjiro Ono
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | | | | |
Collapse
|
18
|
Mente SR, Lombardo F. A recursive-partitioning model for blood–brain barrier permeation. J Comput Aided Mol Des 2005; 19:465-81. [PMID: 16331406 DOI: 10.1007/s10822-005-9001-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Accepted: 07/11/2005] [Indexed: 10/25/2022]
Abstract
A series of bagged recursive partitioning models for log(BB) is presented. Using a LGO-CV, three sets of physical property descriptors are evaluated and found to have Q2 values of 0.51 (CPSA), 0.53 (Ro5x) and 0.53 (MOE). Extrapolating these models to Pfizer chemical space is difficult due to P-glycoprotein (P-gp) mediated efflux. Low correlation coefficients for this test set are improved (R2 = 0.39) when compounds known to be P-gp substrates or statistical extrapolations are removed. The use of simple linear models for specific chemical series is also found to improve the correlation over a limited chemical space.
Collapse
Affiliation(s)
- S R Mente
- Pfizer Global Research and Development, Groton, CT, USA.
| | | |
Collapse
|
19
|
Lockman PR, McAfee G, Geldenhuys WJ, Van der Schyf CJ, Abbruscato TJ, Allen DD. Brain uptake kinetics of nicotine and cotinine after chronic nicotine exposure. J Pharmacol Exp Ther 2005; 314:636-42. [PMID: 15845856 DOI: 10.1124/jpet.105.085381] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Blood-brain barrier (BBB) nicotine transfer has been well documented in view of the fact that this alkaloid is a cerebral blood flow marker. However, limited data are available that describe BBB penetration of the major tobacco alkaloids after chronic nicotine exposure. This question needs to be addressed, given long-term nicotine exposure alters both BBB function and morphology. In contrast to nicotine, it has been reported that cotinine (the major nicotine metabolite) does not penetrate the BBB, yet cotinine brain distribution has been well documented after nicotine exposure. Surprisingly, therefore, the literature indirectly suggests that central nervous system cotinine distribution occurs secondarily to nicotine brain metabolism. The aims of the current report are to define BBB transfer of nicotine and cotinine in naive and nicotine-exposed animals. Using an in situ brain perfusion model, we assessed the BBB uptake of [3H]nicotine and [3H]cotinine in naive animals and in animals exposed chronically to S-(-)nicotine (4.5 mg/kg/day) through osmotic minipump infusion. Our data demonstrate that 1) [3H]nicotine BBB uptake is not altered in the in situ perfusion model after chronic nicotine exposure, 2) [3H]cotinine penetrates the BBB, and 3) similar to [3H]nicotine, [3H]cotinine BBB transfer is not altered by chronic nicotine exposure. To our knowledge, this is the first report detailing the uptake of nicotine and cotinine after chronic nicotine exposure and quantifying the rate of BBB penetration by cotinine.
Collapse
Affiliation(s)
- P R Lockman
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, 1300 So. Coulter Drive, Amarillo, TX 79106-1712, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Myles ME, Alack C, Manino PM, Reish ER, Higaki S, Maruyama K, Mallakin A, Azcuy A, Barker S, Ragan FA, Thompson H, Hill JM. Nicotine applied by transdermal patch induced HSV-1 reactivation and ocular shedding in latently infected rabbits. J Ocul Pharmacol Ther 2003; 19:121-33. [PMID: 12804057 DOI: 10.1089/108076803321637654] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The identification of factors involved in herpes virus latency and reactivation is critical to a better understanding of the mechanisms essential to viral neuroinvasiveness and neurovirulence. Recurrent episodes of ocular herpes infections cause irreversible corneal scarring and are the primary cause of loss of vision due to an infectious agent in industrialized countries. In this study, we examined the ability of nicotine, a compound known to be involved in stress-associated immunomodulation and recognized as one of the most frequently used addictive agents, to induce ocular shedding in rabbits latently infected with herpes simplex virus type 1 (HSV-1) strain McKrae. New Zealand white rabbits latently infected with HSV-1 at 3-4 weeks post-inoculation were randomly divided into two groups. The corneas of all rabbits were free of lesions as verified by slit lamp biomicroscopy. One group received nicotine by transdermal patch (21 mg/day) for 20 days and the other group served as the control. Reactivation data were obtained by detection of virus in tear film collected by ocular swabbing performed concurrently with the administration of nicotine. Compilation of data from three separate experiments demonstrated that 16.5% (258/1560) of the swabs taken from rabbits treated with nicotine were positive for virus, compared with 8.3% (53/639) of swabs taken from controls. Rabbits receiving nicotine exhibited a significantly (P < 0.0001) higher rate of ocular shedding than controls. The concentration of nicotine in the serum was determined at various times (0-24 hrs) after new patch replacement. Peak (average) serum level of nicotine was obtained 8 hours after patch replacement and exhibited a broad range of values (0.233 microg/mL-6.21 microg/mL). These results suggest that an initial systemic exposure to nicotine significantly increases HSV-1 reactivation. Further studies are needed to reveal any effects of nicotine dependency and nicotine withdrawal on herpesvirus reactivation.
Collapse
Affiliation(s)
- M E Myles
- Department of Ophthalmology, LSU Eye Center, Baton Rouge, LA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Chen YH, Chen SHM, Jong A, Zhou ZY, Li W, Suzuki K, Huang SH. Enhanced Escherichia coli invasion of human brain microvascular endothelial cells is associated with alternations in cytoskeleton induced by nicotine. Cell Microbiol 2002; 4:503-14. [PMID: 12174085 DOI: 10.1046/j.1462-5822.2002.00209.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although epidemiological studies have shown that exposure to tobacco smoking significantly increases the risk of bacterial meningitis, heretofore the pathogenic effects of smoking on this disease have been poorly understood. In order to dissect this issue, we have investigated the effects of nicotine, the major component of tobacco, on E. coli invasion of human brain microvascular endothelial cells (HBMEC). Our studies showed that E. coli invasion of HBMEC was significantly enhanced by nicotine in a dose-dependent manner. The nicotine-mediated enhancement was associated with actin cytoskeleton rearrangement and morphological changes in the eukaryotic host cell that are essential for bacterial entry. The recombinant IbeA protein and alpha-bungarotoxin (a nicotinic acetylcholine receptor antagonist) were able to efficiently block the nicotine-mediated cellular effects, suggesting the involvement of the IbeA and nicotinic receptors. Blocking of phosphatidylinositol 3-kinase (PI3K) by LY294002 abolished the entry of E. coli in HBMECs treated with nicotine in a dose-dependent manner. Inhibition of PI3K was associated with decreased phosphorylation of Akt and actin cytoskeletal rearrangement. In contrast to PI3K, blockage of Rho kinase (ROCK) by Y27632 upregulated both nicotine- and E. coli-mediated cellular responses. Thus, this study provides experimental evidence for the first time that the major component of tobacco, nicotine, enhances meningitic E. coli invasion of HBMEC through modulation of cytoskeleton.
Collapse
Affiliation(s)
- Yu-Hua Chen
- Childrens Hospital Los Angeles, University of Southern California, Los Angeles, CA 90027, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Parain K, Marchand V, Dumery B, Hirsch E. Nicotine, but not cotinine, partially protects dopaminergic neurons against MPTP-induced degeneration in mice. Brain Res 2001; 890:347-50. [PMID: 11164803 DOI: 10.1016/s0006-8993(00)03198-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In order to analyze the putative neuroprotective role of nicotine and cotinine in parkinsonian syndromes, these two compounds were administered in male C57Bl6 mice for 4 weeks. On day 8, four injections of 1-methyl-4-phenyl-1,2,3,6,-tetrahydropyridine (MPTP) were administered. MPTP intoxication induced a 50% loss of dopaminergic neurons in the substantia nigra and a 45% reduction in dopaminergic fibers in the striatum. Administration of cotinine did not affect MPTP toxicity in the nigrostriatal system but chronic nicotine treatment showed a slight protection (15%) of nigrostriatal dopaminergic neurons against MPTP.
Collapse
Affiliation(s)
- K Parain
- INSERM U289, Hôpital de la Salpêtrière, 47 Bd de l'Hôpital, 75651 Cedex 13, Paris, France
| | | | | | | |
Collapse
|
23
|
Riah O, Dousset JC, Bofill-Cardona E, Courrière P. Isolation and microsequencing of a novel cotinine receptor. Cell Mol Neurobiol 2000; 20:653-64. [PMID: 11100974 PMCID: PMC11537503 DOI: 10.1023/a:1007094623775] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
1. Nicotine and its main derivative. cotinine, are reported to have distinct central activities in mammals. In this study, the cotinine receptor was separated by biochemical procedures including radio receptor, affinity-chromatography, SDS-PAGE, and N-terminal sequencing assays. 2. Consistently, the results showed that distinctive cotinine receptors exist in different tissues of mammals. In rat brain, the affinity chromatography and [125I]cotinine receptor essays were used to isolate a 40-kDa protein (p40) with higher affinity for cotinine than alpha-bungarotoxin and nicotine. The N-terminus amino acid sequences of the p40 and its internal tryptic peptides showed no identity to recently described protein sequences, with the exception of homology to the human p205 synovial fluid protein. 3. These results, in agreement with other behavioral studies, are the first molecular evidence for distinctive nicotine and cotinine receptors in mammals.
Collapse
Affiliation(s)
- O Riah
- Laboratoire des Mécanismes d'Action des Nicotianées, Faculté des Sciences Pharmaceutiques, Toulouse, France.
| | | | | | | |
Collapse
|
24
|
Stribley JM, Carter CS. Developmental exposure to vasopressin increases aggression in adult prairie voles. Proc Natl Acad Sci U S A 1999; 96:12601-4. [PMID: 10535968 PMCID: PMC23008 DOI: 10.1073/pnas.96.22.12601] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although the biological roots of aggression have been the source of intense debate, the precise physiological mechanisms responsible for aggression remain poorly understood. In most species, aggression is more common in males than females; thus, gonadal hormones have been a focal point for research in this field. Although gonadal hormones have been shown to influence the expression of aggression, in many cases aggression can continue after castration, indicating that testicular steroids are not completely essential for the expression of aggression. Recently, the mammalian neuropeptide arginine vasopressin (AVP) has been implicated in aggression. AVP plays a particularly important role in social behavior in monogamous mammals, such as prairie voles (Microtus ochrogaster). In turn, the effects of social experiences may be mediated by neuropeptides, including AVP. For example, sexually naïve prairie voles are rarely aggressive. However, 24 h after the onset of mating, males of this species become significantly aggressive toward strangers. Likewise, in adult male prairie voles, central (intracerebroventricular) injections of AVP can significantly increase intermale aggression, suggesting a role for AVP in the expression of postcopulatory aggression in adult male prairie voles. In this paper, we demonstrate that early postnatal exposure to AVP can have long-lasting effects on the tendency to show aggression, producing levels of aggression in sexually naïve, adult male prairie voles that are comparable to those levels observed after mating. Females showed less aggression and were less responsive to exogenous AVP, but the capacity of an AVP V(1a) receptor antagonist to block female aggression also implicates AVP in the development of female aggression.
Collapse
Affiliation(s)
- J M Stribley
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
25
|
Riah O, Dousset JC, Courriere P, Stigliani JL, Baziard-Mouysset G, Belahsen Y. Evidence that nicotine acetylcholine receptors are not the main targets of cotinine toxicity. Toxicol Lett 1999; 109:21-9. [PMID: 10514027 DOI: 10.1016/s0378-4274(99)00070-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The toxicity of nicotine, cotinine and their mixtures was studied in Mus musculus mice as well their effects on growth after repetitive administration to young mice. The affinity constants of the two alkaloids for the nicotinic acetylcholine receptors (nAChRs) of Torpedo and rat brain membranes were determined. The administration of these alkaloids produced distinct symptoms of intoxication. Nicotine was 100-fold more toxic than cotinine and 10-fold more rapid than cotinine at producing respiratory arrest. The affinity of nicotine for both subtypes of nAChRs was > 100-fold higher than that of cotinine. Repetitive administrations of nicotine caused weight loss, whereas that of cotinine caused weight gain (P < 0.01). The administration of the two alkaloids as mixtures to mice caused significantly (P < 0.01) higher mortality than theoretically expected. Furthermore, hexamethonium pretreatment reduced by 2-fold (P < 0.01) the toxicity of nicotine but enhanced by 1.6-fold (P < 0.01) that of cotinine and was without effects on toxicity of mixtures. We suggest that nAChRs are not the main targets of cotinine toxicity.
Collapse
Affiliation(s)
- O Riah
- Laboratoire des Mécanismes d'Action des Nicotianées, Faculté des Sciences Pharmaceutiques, Toulouse, France
| | | | | | | | | | | |
Collapse
|