1
|
Madireddi SK, Yadav RM, Zamal MY, Bag P, Gunasekaran JX, Subramanyam R. Exploring LHCSR3 expression and its role in Chlamydomonas reinhardtii under osmotic stress: Implications for non-photochemical quenching mechanism. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 256:112941. [PMID: 38763078 DOI: 10.1016/j.jphotobiol.2024.112941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
Plants have a protective mechanism called non-photochemical quenching to prevent damage caused by excessive sunlight. A critical component of this mechanism is energy-dependent quenching (qE). In Chlamydomonas reinhardtii, the protein expression called light-harvesting complex stress-related protein 3 (LHCSR3) is crucial for the qE mechanism. LHCSR3 expression is observed in various conditions that result in photooxidation, such as exposure to high light or nutrient deprivation, where the amount of captured light surpasses the maximum photosynthetic capacity. Although the role of LHCSR3 has been extensively studied under high light (HL) conditions, its function during nutrient starvation remains unclear. In this study, we demonstrate that LHCSR3 expression can occur under light intensities below saturation without triggering qE, particularly when nutrients are limited. To investigate this, we cultivated C. reinhardtii cells under osmotic stress, which replicates conditions of nutrient scarcity. Furthermore, we examined the photosynthetic membrane complexes of wild-type (WT) and npq4 mutant strains grown under osmotic stress. Our analysis revealed that LHCSR3 expression might modify the interaction between the photosystem II core and its peripheral light-harvesting complex II antennae. This alteration could potentially impede the transfer of excitation energy from the antenna to the reaction center.
Collapse
Affiliation(s)
- Sai Kiran Madireddi
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Ranay Mohan Yadav
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Mohammad Yusuf Zamal
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Pushan Bag
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Jerome Xavier Gunasekaran
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India.
| |
Collapse
|
2
|
Kupriyanova EV, Pronina NA, Los DA. Adapting from Low to High: An Update to CO 2-Concentrating Mechanisms of Cyanobacteria and Microalgae. PLANTS (BASEL, SWITZERLAND) 2023; 12:1569. [PMID: 37050194 PMCID: PMC10096703 DOI: 10.3390/plants12071569] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
The intracellular accumulation of inorganic carbon (Ci) by microalgae and cyanobacteria under ambient atmospheric CO2 levels was first documented in the 80s of the 20th Century. Hence, a third variety of the CO2-concentrating mechanism (CCM), acting in aquatic photoautotrophs with the C3 photosynthetic pathway, was revealed in addition to the then-known schemes of CCM, functioning in CAM and C4 higher plants. Despite the low affinity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) of microalgae and cyanobacteria for the CO2 substrate and low CO2/O2 specificity, CCM allows them to perform efficient CO2 fixation in the reductive pentose phosphate (RPP) cycle. CCM is based on the coordinated operation of strategically located carbonic anhydrases and CO2/HCO3- uptake systems. This cooperation enables the intracellular accumulation of HCO3-, which is then employed to generate a high concentration of CO2 molecules in the vicinity of Rubisco's active centers compensating up for the shortcomings of enzyme features. CCM functions as an add-on to the RPP cycle while also acting as an important regulatory link in the interaction of dark and light reactions of photosynthesis. This review summarizes recent advances in the study of CCM molecular and cellular organization in microalgae and cyanobacteria, as well as the fundamental principles of its functioning and regulation.
Collapse
|
3
|
Changes in lipid and carotenoid metabolism in Chlamydomonas reinhardtii during induction of CO2-concentrating mechanism: Cellular response to low CO2 stress. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
4
|
Treves H, Siemiatkowska B, Luzarowska U, Murik O, Fernandez-Pozo N, Moraes TA, Erban A, Armbruster U, Brotman Y, Kopka J, Rensing SA, Szymanski J, Stitt M. Multi-omics reveals mechanisms of total resistance to extreme illumination of a desert alga. NATURE PLANTS 2020; 6:1031-1043. [PMID: 32719473 DOI: 10.1038/s41477-020-0729-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 06/24/2020] [Indexed: 05/25/2023]
Abstract
The unparalleled performance of Chlorella ohadii under irradiances of twice full sunlight underlines the gaps in our understanding of how the photosynthetic machinery operates, and what sets its upper functional limit. Rather than succumbing to photodamage under extreme irradiance, unique features of photosystem II function allow C. ohadii to maintain high rates of photosynthesis and growth, accompanied by major changes in composition and cellular structure. This remarkable resilience allowed us to investigate the systems response of photosynthesis and growth to extreme illumination in a metabolically active cell. Using redox proteomics, transcriptomics, metabolomics and lipidomics, we explored the cellular mechanisms that promote dissipation of excess redox energy, protein S-glutathionylation, inorganic carbon concentration, lipid and starch accumulation, and thylakoid stacking. C. ohadii possesses a readily available capacity to utilize a sudden excess of reducing power and carbon for growth and reserve formation, and post-translational redox regulation plays a pivotal role in this rapid response. Frequently the response in C. ohadii deviated from that of model species, reflecting its life history in desert sand crusts. Comparative global and case-specific analyses provided insights into the potential evolutionary role of effective reductant utilization in this extreme resistance of C. ohadii to extreme irradiation.
Collapse
Affiliation(s)
- Haim Treves
- Max Planck Institute for Molecular Plant Physiology, Potsdam, Germany.
| | | | | | - Omer Murik
- Department of Plant & Environmental Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Noe Fernandez-Pozo
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | | | - Alexander Erban
- Max Planck Institute for Molecular Plant Physiology, Potsdam, Germany
| | - Ute Armbruster
- Max Planck Institute for Molecular Plant Physiology, Potsdam, Germany
| | - Yariv Brotman
- Max Planck Institute for Molecular Plant Physiology, Potsdam, Germany
| | - Joachim Kopka
- Max Planck Institute for Molecular Plant Physiology, Potsdam, Germany
| | - Stefan Andreas Rensing
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Jedrzej Szymanski
- Department of Network Analysis and Modelling, IPK, Gatersleben, Germany
| | - Mark Stitt
- Max Planck Institute for Molecular Plant Physiology, Potsdam, Germany
| |
Collapse
|
5
|
|
6
|
Babla M, Cai S, Chen G, Tissue DT, Cazzonelli CI, Chen ZH. Molecular Evolution and Interaction of Membrane Transport and Photoreception in Plants. Front Genet 2019; 10:956. [PMID: 31681411 PMCID: PMC6797626 DOI: 10.3389/fgene.2019.00956] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/06/2019] [Indexed: 12/20/2022] Open
Abstract
Light is a vital regulator that controls physiological and cellular responses to regulate plant growth, development, yield, and quality. Light is the driving force for electron and ion transport in the thylakoid membrane and other membranes of plant cells. In different plant species and cell types, light activates photoreceptors, thereby modulating plasma membrane transport. Plants maximize their growth and photosynthesis by facilitating the coordinated regulation of ion channels, pumps, and co-transporters across membranes to fine-tune nutrient uptake. The signal-transducing functions associated with membrane transporters, pumps, and channels impart a complex array of mechanisms to regulate plant responses to light. The identification of light responsive membrane transport components and understanding of their potential interaction with photoreceptors will elucidate how light-activated signaling pathways optimize plant growth, production, and nutrition to the prevailing environmental changes. This review summarizes the mechanisms underlying the physiological and molecular regulations of light-induced membrane transport and their potential interaction with photoreceptors in a plant evolutionary and nutrition context. It will shed new light on plant ecological conservation as well as agricultural production and crop quality, bringing potential nutrition and health benefits to humans and animals.
Collapse
Affiliation(s)
- Mohammad Babla
- School of Science and Health, Western Sydney University, Penrith, NSW, Australia
| | - Shengguan Cai
- School of Science and Health, Western Sydney University, Penrith, NSW, Australia
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Guang Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - David T. Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | | | - Zhong-Hua Chen
- School of Science and Health, Western Sydney University, Penrith, NSW, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
7
|
Wunder T, Oh ZG, Mueller‐Cajar O. CO
2
‐fixing liquid droplets: Towards a dissection of the microalgal pyrenoid. Traffic 2019; 20:380-389. [DOI: 10.1111/tra.12650] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Tobias Wunder
- School of Biological SciencesNanyang Technological University Singapore
| | - Zhen Guo Oh
- School of Biological SciencesNanyang Technological University Singapore
| | | |
Collapse
|
8
|
Rangsrikitphoti P, Durnford DG. Transcriptome Profiling of Bigelowiella natans in Response to Light Stress. J Eukaryot Microbiol 2018; 66:316-333. [PMID: 30055063 DOI: 10.1111/jeu.12672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/17/2018] [Accepted: 07/12/2018] [Indexed: 12/13/2022]
Abstract
Bigelowiella natans is a marine chlorarachniophyte whose plastid was acquired secondarily via endosymbiosis with a green alga. During plastid evolution, the photosynthetic endosymbiont would have integrated with the host metabolic pathways. This would require the evolution and coordination of strategies to cope with changes in light intensity that includes changes in the expression of both endosymbiont and host-derived genes. To investigate the transcriptional response to light intensity in chlorarachniophytes, we conducted an RNA-seq experiment to identify differentially expressed genes following a 4-h shift to high or very-low light. A shift to high light altered the expression of over 2,000 genes, many involved with photosynthesis, PSII assembly, primary metabolism, and reactive-oxygen scavenging. These changes are an attempt to optimize photosynthesis and increase energy sinks for excess reductant, while minimizing photooxidative stress. A transfer to very-low light resulted in a lower photosynthetic performance and metabolic alteration, reflecting an energy-limited state. Genes located on the nucleomorph, the vestigial nucleus in the plastid, had few changes in expression in either light treatment, indicating this organelle has relinquished most transcriptional control to the nucleus. Overall, during plastid origin, both host and transferred endosymbiont genes evolved a harmonized transcriptional network to respond to a classic photosynthetic stress.
Collapse
Affiliation(s)
| | - Dion G Durnford
- Department of Biology, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| |
Collapse
|
9
|
Transcriptome profiling of the microalga Chlorella pyrenoidosa in response to different carbon dioxide concentrations. Mar Genomics 2016; 29:81-87. [PMID: 27209568 DOI: 10.1016/j.margen.2016.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 04/11/2016] [Accepted: 05/03/2016] [Indexed: 11/21/2022]
Abstract
To enrich our knowledge of carbon dioxide (CO2)-concentrating mechanism (CCM) in eukaryotic algae, we used high-throughput sequencing to investigate the transcriptome profiling of the microalga Chlorella pyrenoidosa (Chlorophyta) response to different CO2 levels. Altogether, 53.86 million (M) and 62.10M clean short reads of 100 nucleotides (nt) were generated from this microalga cultured at 4-fold air CO2 (control) and air CO2 concentrations by Illumina sequencing. A total of 32,662 unigenes were assembled from the two pooled samples. With an E-value cut-off of 1e-5, 9590, 6782, 5954, and 9092 unigenes were annotated in NR, Gene Ontology (GO), Eukaryotic Cluster of Orthologous Groups of proteins (KOG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, respectively. After screening, 51 differentially expressed unigenes were up-regulated and 8 were down-regulated in the air CO2 group, relative to the control. The transcript levels of eight differentially expressed unigenes were validated by real-time quantitative PCR, which manifested that thioredoxin-like protein, laminin subunit beta-1, and chlorophyll a/b binding protein might be associated with the utilization of inorganic carbon at low CO2 levels.
Collapse
|
10
|
Wang Y, Stessman DJ, Spalding MH. The CO2 concentrating mechanism and photosynthetic carbon assimilation in limiting CO2 : how Chlamydomonas works against the gradient. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:429-448. [PMID: 25765072 DOI: 10.1111/tpj.12829] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/08/2015] [Accepted: 03/11/2015] [Indexed: 05/04/2023]
Abstract
The CO2 concentrating mechanism (CCM) represents an effective strategy for carbon acquisition that enables microalgae to survive and proliferate when the CO2 concentration limits photosynthesis. The CCM improves photosynthetic performance by raising the CO2 concentration at the site of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), simultaneously enhancing carbon fixation and suppressing photorespiration. Active inorganic carbon (Ci) uptake, Rubisco sequestration and interconversion between different Ci species catalyzed by carbonic anhydrases (CAs) are key components in the CCM, and an array of molecular regulatory elements is present to facilitate the sensing of CO2 availability, to regulate the expression of the CCM and to coordinate interplay between photosynthetic carbon metabolism and other metabolic processes in response to limiting CO2 conditions. This review intends to integrate our current understanding of the eukaryotic algal CCM and its interaction with carbon assimilation, based largely on Chlamydomonas as a model, and to illustrate how Chlamydomonas acclimates to limiting CO2 conditions and how its CCM is regulated.
Collapse
Affiliation(s)
- Yingjun Wang
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Dan J Stessman
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Martin H Spalding
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
11
|
Xue H, Bergner SV, Scholz M, Hippler M. Novel insights into the function of LHCSR3 in Chlamydomonas reinhardtii. PLANT SIGNALING & BEHAVIOR 2015; 10:e1058462. [PMID: 26237677 PMCID: PMC4854336 DOI: 10.1080/15592324.2015.1058462] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 06/01/2015] [Indexed: 06/04/2023]
Abstract
Light is essential for photosynthesis but excess light is hazardous as it may lead to the formation of reactive oxygen species. Photosynthetic organisms struggle to optimize light utilization and photosynthesis while minimizing photo-oxidative damage. Hereby light to heat dissipation via specialized proteins is a potent mechanism to acclimate toward excess light. In the green alga Chlamydomonas reinhardtii the expression of an ancient light-harvesting protein LHCSR3 enables cells to dissipate harmful excess energy. Herein we summarize newest insights into the function of LHCSR3 from C. reinhardtii.
Collapse
Affiliation(s)
- Huidan Xue
- Institute of Plant Biology and Biotechnology; University of Münster; Münster, Germany
| | - Sonja Verena Bergner
- Institute of Plant Biology and Biotechnology; University of Münster; Münster, Germany
| | - Martin Scholz
- Institute of Plant Biology and Biotechnology; University of Münster; Münster, Germany
| | - Michael Hippler
- Institute of Plant Biology and Biotechnology; University of Münster; Münster, Germany
| |
Collapse
|
12
|
Ions channels/transporters and chloroplast regulation. Cell Calcium 2014; 58:86-97. [PMID: 25454594 DOI: 10.1016/j.ceca.2014.10.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/01/2014] [Accepted: 10/04/2014] [Indexed: 12/28/2022]
Abstract
Ions play fundamental roles in all living cells and their gradients are often essential to fuel transports, to regulate enzyme activities and to transduce energy within and between cells. Their homeostasis is therefore an essential component of the cell metabolism. Ions must be imported from the extracellular matrix to their final subcellular compartments. Among them, the chloroplast is a particularly interesting example because there, ions not only modulate enzyme activities, but also mediate ATP synthesis and actively participate in the building of the photosynthetic structures by promoting membrane-membrane interaction. In this review, we first provide a comprehensive view of the different machineries involved in ion trafficking and homeostasis in the chloroplast, and then discuss peculiar functions exerted by ions in the frame of photochemical conversion of absorbed light energy.
Collapse
|
13
|
Tirumani S, Kokkanti M, Chaudhari V, Shukla M, Rao BJ. Regulation of CCM genes in Chlamydomonas reinhardtii during conditions of light-dark cycles in synchronous cultures. PLANT MOLECULAR BIOLOGY 2014; 85:277-86. [PMID: 24590314 DOI: 10.1007/s11103-014-0183-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 02/19/2014] [Indexed: 05/19/2023]
Abstract
We have investigated transcript level changes of CO(2)-concentrating mechanism (CCM) genes during light-dark (12 h:12 h) cycles in synchronized Chlamydomonas reinhardtii at air-level CO(2). CCM gene transcript levels vary at various times of light-dark cycles, even at same air-level CO(2). Transcripts of inorganic carbon transporter genes (HLA3, LCI1, CCP1, CCP2 and LCIA) and mitochondrial carbonic anhydrase genes (CAH4 and CAH5) are up regulated in light, following which their levels decline in dark. Contrastingly, transcripts of chloroplast carbonic anhydrases namely CAH6, CAH3 and LCIB are up regulated in dark. CAH3 and LCIB transcript levels reached maximum by the end of dark, followed by high expression into early light period. In contrast, CAH6 transcript level stayed high in dark, followed by high level even in light. Moreover, the up regulation of transcripts in dark was undone by high CO(2), suggesting that the dark induced CCM transcripts were regulated by CO(2) even in dark when CCM is absent. Thus while the CAH3 transcript level modulations appear not to positively correlate with that of CCM, the protein regulation matched with CCM status: in spite of high transcript levels in dark, CAH3 protein reached peak level only in light and localized entirely to pyrenoid, a site functionally relevant for CCM. Moreover, in dark, CAH3 protein level not only reduced but also the protein localized as a diffused pattern in chloroplast. We propose that transcription of most CCM genes, followed by protein level changes including their intracellular localization of a subset is subject to light-dark cycles.
Collapse
Affiliation(s)
- Srikanth Tirumani
- B-202, Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, 400005, India
| | | | | | | | | |
Collapse
|
14
|
Mettler T, Mühlhaus T, Hemme D, Schöttler MA, Rupprecht J, Idoine A, Veyel D, Pal SK, Yaneva-Roder L, Winck FV, Sommer F, Vosloh D, Seiwert B, Erban A, Burgos A, Arvidsson S, Schönfelder S, Arnold A, Günther M, Krause U, Lohse M, Kopka J, Nikoloski Z, Mueller-Roeber B, Willmitzer L, Bock R, Schroda M, Stitt M. Systems Analysis of the Response of Photosynthesis, Metabolism, and Growth to an Increase in Irradiance in the Photosynthetic Model Organism Chlamydomonas reinhardtii. THE PLANT CELL 2014; 26:2310-2350. [PMID: 24894045 PMCID: PMC4114937 DOI: 10.1105/tpc.114.124537] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 04/17/2014] [Accepted: 05/06/2014] [Indexed: 05/18/2023]
Abstract
We investigated the systems response of metabolism and growth after an increase in irradiance in the nonsaturating range in the algal model Chlamydomonas reinhardtii. In a three-step process, photosynthesis and the levels of metabolites increased immediately, growth increased after 10 to 15 min, and transcript and protein abundance responded by 40 and 120 to 240 min, respectively. In the first phase, starch and metabolites provided a transient buffer for carbon until growth increased. This uncouples photosynthesis from growth in a fluctuating light environment. In the first and second phases, rising metabolite levels and increased polysome loading drove an increase in fluxes. Most Calvin-Benson cycle (CBC) enzymes were substrate-limited in vivo, and strikingly, many were present at higher concentrations than their substrates, explaining how rising metabolite levels stimulate CBC flux. Rubisco, fructose-1,6-biosphosphatase, and seduheptulose-1,7-bisphosphatase were close to substrate saturation in vivo, and flux was increased by posttranslational activation. In the third phase, changes in abundance of particular proteins, including increases in plastidial ATP synthase and some CBC enzymes, relieved potential bottlenecks and readjusted protein allocation between different processes. Despite reasonable overall agreement between changes in transcript and protein abundance (R2 = 0.24), many proteins, including those in photosynthesis, changed independently of transcript abundance.
Collapse
Affiliation(s)
- Tabea Mettler
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Timo Mühlhaus
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Dorothea Hemme
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | | | - Jens Rupprecht
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Adam Idoine
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Daniel Veyel
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Sunil Kumar Pal
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Liliya Yaneva-Roder
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Flavia Vischi Winck
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Frederik Sommer
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Daniel Vosloh
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Bettina Seiwert
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Alexander Erban
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Asdrubal Burgos
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Samuel Arvidsson
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam-Golm, Germany
| | | | - Anne Arnold
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Manuela Günther
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Ursula Krause
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Marc Lohse
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Zoran Nikoloski
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Bernd Mueller-Roeber
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Lothar Willmitzer
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Michael Schroda
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| |
Collapse
|
15
|
|
16
|
Blanco-Rivero A, Shutova T, Román MJ, Villarejo A, Martinez F. Phosphorylation controls the localization and activation of the lumenal carbonic anhydrase in Chlamydomonas reinhardtii. PLoS One 2012; 7:e49063. [PMID: 23139834 PMCID: PMC3490910 DOI: 10.1371/journal.pone.0049063] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 10/09/2012] [Indexed: 11/25/2022] Open
Abstract
Background Cah3 is the only carbonic anhydrase (CA) isoform located in the thylakoid lumen of Chlamydomonas reinhardtii. Previous studies demonstrated its association with the donor side of the photosystem II (PSII) where it is required for the optimal function of the water oxidizing complex. However this enzyme has also been frequently proposed to perform a critical function in inorganic carbon acquisition and CO2 fixation and all mutants lacking Cah3 exhibit very poor growth after transfer to low CO2 conditions. Results/Conclusions In the present work we demonstrate that after transfer to low CO2, Cah3 is phosphorylated and that phosphorylation is correlated to changes in its localization and its increase in activity. When C. reinhardtii wild-type cells were acclimated to limiting CO2 conditions, the Cah3 activity increased about 5–6 fold. Under these conditions, there were no detectable changes in the level of the Cah3 polypeptide. The increase in activity was specifically inhibited in the presence of Staurosporine, a protein kinase inhibitor, suggesting that the Cah3 protein was post-translationally regulated via phosphorylation. Immunoprecipitation and in vitro dephosphorylation experiments confirm this hypothesis. In vivo phosphorylation analysis of thylakoid polypeptides indicates that there was a 3-fold increase in the phosphorylation signal of the Cah3 polypeptide within the first two hours after transfer to low CO2 conditions. The increase in the phosphorylation signal was correlated with changes in the intracellular localization of the Cah3 protein. Under high CO2 conditions, the Cah3 protein was only associated with the donor side of PSII in the stroma thylakoids. In contrast, in cells grown at limiting CO2 the protein was partly concentrated in the thylakoids crossing the pyrenoid, which did not contain PSII and were surrounded by Rubisco molecules. Significance This is the first report of a CA being post-translationally regulated and describing phosphorylation events in the thylakoid lumen.
Collapse
Affiliation(s)
| | - Tatiana Shutova
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - María José Román
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Arsenio Villarejo
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Flor Martinez
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
17
|
Foyer CH, Neukermans J, Queval G, Noctor G, Harbinson J. Photosynthetic control of electron transport and the regulation of gene expression. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1637-61. [PMID: 22371324 DOI: 10.1093/jxb/ers013] [Citation(s) in RCA: 289] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The term 'photosynthetic control' describes the short- and long-term mechanisms that regulate reactions in the photosynthetic electron transport (PET) chain so that the rate of production of ATP and NADPH is coordinated with the rate of their utilization in metabolism. At low irradiances these mechanisms serve to optimize light use efficiency, while at high irradiances they operate to dissipate excess excitation energy as heat. Similarly, the production of ATP and NADPH in ratios tailored to meet demand is finely tuned by a sophisticated series of controls that prevents the accumulation of high NAD(P)H/NAD(P) ratios and ATP/ADP ratios that would lead to potentially harmful over-reduction and inactivation of PET chain components. In recent years, photosynthetic control has also been extrapolated to the regulation of gene expression because mechanisms that are identical or similar to those that serve to regulate electron flow through the PET chain also coordinate the regulated expression of genes encoding photosynthetic proteins. This requires coordinated gene expression in the chloroplasts, mitochondria, and nuclei, involving complex networks of forward and retrograde signalling pathways. Photosynthetic control operates to control photosynthetic gene expression in response to environmental and metabolic changes. Mining literature data on transcriptome profiles of C(3) and C(4) leaves from plants grown under high atmospheric carbon dioxide (CO(2)) levels compared with those grown with ambient CO(2) reveals that the transition to higher photorespiratory conditions in C(3) plants enhances the expression of genes associated with cyclic electron flow pathways in Arabidopsis thaliana, consistent with the higher ATP requirement (relative to NADPH) of photorespiration.
Collapse
Affiliation(s)
- Christine H Foyer
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds LS2 9JT, UK.
| | | | | | | | | |
Collapse
|
18
|
Construction and evaluation of a whole genome microarray of Chlamydomonas reinhardtii. BMC Genomics 2011; 12:579. [PMID: 22118351 PMCID: PMC3235179 DOI: 10.1186/1471-2164-12-579] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 11/25/2011] [Indexed: 02/03/2023] Open
Abstract
Background Chlamydomonas reinhardtii is widely accepted as a model organism regarding photosynthesis, circadian rhythm, cell mobility, phototaxis, and biotechnology. The complete annotation of the genome allows transcriptomic studies, however a new microarray platform was needed. Based on the completed annotation of Chlamydomonas reinhardtii a new microarray on an Agilent platform was designed using an extended JGI 3.1 genome data set which included 15000 transcript models. Results In total 44000 probes were determined (3 independent probes per transcript model) covering 93% of the transcriptome. Alignment studies with the recently published AUGUSTUS 10.2 annotation confirmed 11000 transcript models resulting in a very good coverage of 70% of the transcriptome (17000). Following the estimation of 10000 predicted genes in Chlamydomonas reinhardtii our new microarray, nevertheless, covers the expected genome by 90-95%. Conclusions To demonstrate the capabilities of the new microarray, we analyzed transcript levels for cultures grown under nitrogen as well as sulfate limitation, and compared the results with recently published microarray and RNA-seq data. We could thereby confirm previous results derived from data on nutrient-starvation induced gene expression of a group of genes related to protein transport and adaptation of the metabolism as well as genes related to efficient light harvesting, light energy distribution and photosynthetic electron transport.
Collapse
|
19
|
Raven JA, Giordano M, Beardall J, Maberly SC. Algal and aquatic plant carbon concentrating mechanisms in relation to environmental change. PHOTOSYNTHESIS RESEARCH 2011; 109:281-296. [PMID: 21327536 DOI: 10.1007/s11120-011-9632-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 02/01/2011] [Indexed: 05/30/2023]
Abstract
Carbon dioxide concentrating mechanisms (also known as inorganic carbon concentrating mechanisms; both abbreviated as CCMs) presumably evolved under conditions of low CO(2) availability. However, the timing of their origin is unclear since there are no sound estimates from molecular clocks, and even if there were, there are no proxies for the functioning of CCMs. Accordingly, we cannot use previous episodes of high CO(2) (e.g. the Palaeocene-Eocene Thermal Maximum) to indicate how organisms with CCMs responded. Present and predicted environmental change in terms of increased CO(2) and temperature are leading to increased CO(2) and HCO(3)(-) and decreased CO(3)(2-) and pH in surface seawater, as well as decreasing the depth of the upper mixed layer and increasing the degree of isolation of this layer with respect to nutrient flux from deeper waters. The outcome of these forcing factors is to increase the availability of inorganic carbon, photosynthetic active radiation (PAR) and ultraviolet B radiation (UVB) to aquatic photolithotrophs and to decrease the supply of the nutrients (combined) nitrogen and phosphorus and of any non-aeolian iron. The influence of these variations on CCM expression has been examined to varying degrees as acclimation by extant organisms. Increased PAR increases CCM expression in terms of CO(2) affinity, whilst increased UVB has a range of effects in the organisms examined; little relevant information is available on increased temperature. Decreased combined nitrogen supply generally increases CO(2) affinity, decreased iron availability increases CO(2) affinity, and decreased phosphorus supply has varying effects on the organisms examined. There are few data sets showing interactions amongst the observed changes, and even less information on genetic (adaptation) changes in response to the forcing factors. In freshwaters, changes in phytoplankton species composition may alter with environmental change with consequences for frequency of species with or without CCMs. The information available permits less predictive power as to the effect of the forcing factors on CCM expression than for their overall effects on growth. CCMs are currently not part of models as to how global environmental change has altered, and is likely to further alter, algal and aquatic plant primary productivity.
Collapse
Affiliation(s)
- John A Raven
- Division of Plant Sciences, University of Dundee at SCRI, Scottish Crop Research Institute, Invergowrie, Dundee, UK.
| | | | | | | |
Collapse
|
20
|
Wang Y, Duanmu D, Spalding MH. Carbon dioxide concentrating mechanism in Chlamydomonas reinhardtii: inorganic carbon transport and CO2 recapture. PHOTOSYNTHESIS RESEARCH 2011; 109:115-22. [PMID: 21409558 DOI: 10.1007/s11120-011-9643-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 02/28/2011] [Indexed: 05/04/2023]
Abstract
Many microalgae are capable of acclimating to CO(2) limited environments by operating a CO(2) concentrating mechanism (CCM), which is driven by various energy-coupled inorganic carbon (Ci; CO(2) and HCO(3)(-)) uptake systems. Chlamydomonas reinhardtii (hereafter, Chlamydomonas), a versatile genetic model organism, has been used for several decades to exemplify the active Ci transport in eukaryotic algae, but only recently have many molecular details behind these Ci uptake systems emerged. Recent advances in genetic and molecular approaches, combined with the genome sequencing of Chlamydomonas and several other eukaryotic algae have unraveled some unique characteristics associated with the Ci uptake mechanism and the Ci-recapture system in eukaryotic microalgae. Several good candidate genes for Ci transporters in Chlamydomonas have been identified, and a few specific gene products have been linked with the Ci uptake systems associated with the different acclimation states. This review will focus on the latest studies on characterization of functional components involved in the Ci uptake and the Ci-recapture in Chlamydomonas.
Collapse
Affiliation(s)
- Yingjun Wang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | | | | |
Collapse
|
21
|
Moroney JV, Ma Y, Frey WD, Fusilier KA, Pham TT, Simms TA, DiMario RJ, Yang J, Mukherjee B. The carbonic anhydrase isoforms of Chlamydomonas reinhardtii: intracellular location, expression, and physiological roles. PHOTOSYNTHESIS RESEARCH 2011; 109:133-49. [PMID: 21365258 DOI: 10.1007/s11120-011-9635-3] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 02/12/2011] [Indexed: 05/19/2023]
Abstract
Aquatic photosynthetic organisms, such as the green alga Chlamydomonas reinhardtii, respond to low CO(2) conditions by inducing a CO(2) concentrating mechanism (CCM). Carbonic anhydrases (CAs) are important components of the CCM. CAs are zinc-containing metalloenzymes that catalyze the reversible interconversion of CO(2) and HCO(3)(-). In C. reinhardtii, there are at least 12 genes that encode CA isoforms, including three alpha, six beta, and three gamma or gamma-like CAs. The expression of the three alpha and six beta genes has been measured from cells grown on elevated CO(2) (having no active CCM) versus cells growing on low levels of CO(2) (with an active CCM) using northern blots, differential hybridization to DNA chips and quantitative RT-PCR. Recent RNA-seq profiles add to our knowledge of the expression of all of the CA genes. In addition, protein content for some of the CA isoforms was estimated using antibodies corresponding to the specific CA isoforms: CAH1/2, CAH3, CAH4/5, CAH6, and CAH7. The intracellular location of each of the CA isoforms was elucidated using immunolocalization and cell fractionation techniques. Combining these results with previous studies using CA mutant strains, we will discuss possible physiological roles of the CA isoforms concentrating on how these CAs might contribute to the acquisition and retention of CO(2) in C. reinhardtii.
Collapse
Affiliation(s)
- James V Moroney
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Terashima M, Specht M, Hippler M. The chloroplast proteome: a survey from the Chlamydomonas reinhardtii perspective with a focus on distinctive features. Curr Genet 2011; 57:151-68. [PMID: 21533645 DOI: 10.1007/s00294-011-0339-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 04/05/2011] [Accepted: 04/07/2011] [Indexed: 01/12/2023]
Abstract
The unicellular green alga Chlamydomonas reinhardtii has emerged to be an important model organism for the study of oxygenic eukaryotic photosynthesis as well as other processes occurring in the chloroplast. However, the chloroplast proteome in C. reinhardtii has only recently been comprehensively characterized, made possible by proteomics emerging as an accessible and powerful tool over the last decade. In this review, we introduce a compiled list of 996 experimentally chloroplast-localized proteins for C. reinhardtii, stemming largely from our previous proteomic dataset comparing chloroplasts and mitochondria samples to localize proteins. In order to get a taste of some cellular functions taking place in the C. reinhardtii chloroplast, we will focus this review particularly on metabolic differences between chloroplasts of C. reinhardtii and higher plants. Areas that will be covered are photosynthesis, chlorophyll biosynthesis, carbon metabolism, fermentative metabolism, ferredoxins and ferredoxin-interacting proteins.
Collapse
Affiliation(s)
- Mia Terashima
- Department of Biology, Institute of Plant Biology and Biotechnology, University of Münster, Hindenburgplatz 55, 48143, Münster, Germany
| | | | | |
Collapse
|
23
|
The PedR transcriptional regulator interacts with thioredoxin to connect photosynthesis with gene expression in cyanobacteria. Biochem J 2010; 431:135-40. [PMID: 20662766 DOI: 10.1042/bj20100789] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The redox state of the photosynthetic electron transport chain acts as a critical sensing mechanism by regulating the transcription of key genes involved in the acclimation response to a change in the environment. In the present study we show that the small LuxR-type regulator PedR interacts with Trx (thioredoxin) to achieve photosynthetic electron-transport-dependent transcriptional regulation in the cyanobacterium Synechocystis sp. PCC 6803. TrxM, an isoform of Trx, was isolated as an interacting factor of PedR by pull-down assays. In vitro analysis revealed that the intermolecular disulfide bond formed between Cys80 residues of the PedR homodimer was reduced by both TrxM and TrxX. It has been shown previously that, although PedR is active under low-light conditions, it becomes transiently inactivated following a shift to high-light conditions, with a concomitant conformational change [Nakamura and Hihara (2006) J. Biol. Chem. 281, 36758-36766]. In the present study, we found that the conformational change of PedR and the change in the transcript level of its target gene were minimal when mutants of Synechocystis that lack ferredoxin-Trx reductase or NADPH-Trx reductase were exposed to high levels of light. These results indicate that the reduction of PedR by Trx causes transient inactivation of PedR upon the shift of cyanobacterial cells to high-light conditions.
Collapse
|
24
|
Neilson JAD, Durnford DG. Structural and functional diversification of the light-harvesting complexes in photosynthetic eukaryotes. PHOTOSYNTHESIS RESEARCH 2010; 106:57-71. [PMID: 20596891 DOI: 10.1007/s11120-010-9576-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 06/16/2010] [Indexed: 05/25/2023]
Abstract
Eukaryotes acquired photosynthetic metabolism over a billion years ago, and during that time the light-harvesting antennae have undergone significant structural and functional divergence. The antenna systems are generally used to harvest and transfer excitation energy into the reaction centers to drive photosynthesis, but also have the dual role of energy dissipation. Phycobilisomes formed the first antenna system in oxygenic photoautotrophs, and this soluble protein complex continues to be the dominant antenna in extant cyanobacteria, glaucophytes, and red algae. However, phycobilisomes were lost multiple times during eukaryotic evolution in favor of a thylakoid membrane-integral light-harvesting complex (LHC) antenna system found in the majority of eukaryotic taxa. While photosynthesis spread across different eukaryotic kingdoms via endosymbiosis, the antenna systems underwent extensive modification as photosynthetic groups optimized their light-harvesting capacity and ability to acclimate to changing environmental conditions. This review discusses the different classes of LHCs within photosynthetic eukaryotes and examines LHC diversification in different groups in a structural and functional context.
Collapse
Affiliation(s)
- Jonathan A D Neilson
- Department of Biology, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | | |
Collapse
|
25
|
Renberg L, Johansson AI, Shutova T, Stenlund H, Aksmann A, Raven JA, Gardeström P, Moritz T, Samuelsson G. A metabolomic approach to study major metabolite changes during acclimation to limiting CO2 in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2010; 154:187-96. [PMID: 20634393 PMCID: PMC2938146 DOI: 10.1104/pp.110.157651] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 07/12/2010] [Indexed: 05/19/2023]
Abstract
Using a gas chromatography-mass spectrometry-time of flight technique, we determined major metabolite changes during induction of the carbon-concentrating mechanism in the unicellular green alga Chlamydomonas reinhardtii. In total, 128 metabolites with significant differences between high- and low-CO(2)-grown cells were detected, of which 82 were wholly or partially identified, including amino acids, lipids, and carbohydrates. In a 24-h time course experiment, we show that the amino acids serine and phenylalanine increase transiently while aspartate and glutamate decrease after transfer to low CO(2). The biggest differences were typically observed 3 h after transfer to low-CO(2) conditions. Therefore, we made a careful metabolomic examination at the 3-h time point, comparing low-CO(2) treatment to high-CO(2) control. Five metabolites involved in photorespiration, 11 amino acids, and one lipid were increased, while six amino acids and, interestingly, 21 lipids were significantly lower. Our conclusion is that the metabolic pattern during early induction of the carbon-concentrating mechanism fit a model where photorespiration is increasing.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Göran Samuelsson
- Department of Plant Physiology, Umeå Plant Science Centre (L.R., T.S., P.G., G.S.), and Department of Chemistry (H.S.), Umeå University, SE 90187 Umea, Sweden; Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, SE 90183 Umea, Sweden (A.I.J., T.M.); Department of Plant Physiology, University of Gdańsk, 81–378 Gdynia, Poland (A.A.); Division of Plant Sciences, University of Dundee at the Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (J.A.R.)
| |
Collapse
|
26
|
Zhu SH, Green BR. Photoprotection in the diatom Thalassiosira pseudonana: Role of LI818-like proteins in response to high light stress. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1449-57. [DOI: 10.1016/j.bbabio.2010.04.003] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 03/11/2010] [Accepted: 04/05/2010] [Indexed: 10/19/2022]
|
27
|
Dubini A, Mus F, Seibert M, Grossman AR, Posewitz MC. Flexibility in anaerobic metabolism as revealed in a mutant of Chlamydomonas reinhardtii lacking hydrogenase activity. J Biol Chem 2009; 284:7201-13. [PMID: 19117946 PMCID: PMC2652310 DOI: 10.1074/jbc.m803917200] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 12/29/2008] [Indexed: 11/06/2022] Open
Abstract
The green alga Chlamydomonas reinhardtii has a network of fermentation pathways that become active when cells acclimate to anoxia. Hydrogenase activity is an important component of this metabolism, and we have compared metabolic and regulatory responses that accompany anaerobiosis in wild-type C. reinhardtii cells and a null mutant strain for the HYDEF gene (hydEF-1 mutant), which encodes an [FeFe] hydrogenase maturation protein. This mutant has no hydrogenase activity and exhibits elevated accumulation of succinate and diminished production of CO2 relative to the parental strain during dark, anaerobic metabolism. In the absence of hydrogenase activity, increased succinate accumulation suggests that the cells activate alternative pathways for pyruvate metabolism, which contribute to NAD(P)H reoxidation, and continued glycolysis and fermentation in the absence of O2. Fermentative succinate production potentially proceeds via the formation of malate, and increases in the abundance of mRNAs encoding two malate-forming enzymes, pyruvate carboxylase and malic enzyme, are observed in the mutant relative to the parental strain following transfer of cells from oxic to anoxic conditions. Although C. reinhardtii has a single gene encoding pyruvate carboxylase, it has six genes encoding putative malic enzymes. Only one of the malic enzyme genes, MME4, shows a dramatic increase in expression (mRNA abundance) in the hydEF-1 mutant during anaerobiosis. Furthermore, there are marked increases in transcripts encoding fumarase and fumarate reductase, enzymes putatively required to convert malate to succinate. These results illustrate the marked metabolic flexibility of C. reinhardtii and contribute to the development of an informed model of anaerobic metabolism in this and potentially other algae.
Collapse
Affiliation(s)
- Alexandra Dubini
- Environmental Science and Engineering Division, Colorado School of Mines, Golden, Colorado 80401, USA
| | | | | | | | | |
Collapse
|
28
|
Abstract
Despite recent elucidation of the three-dimensional structure of major photosynthetic complexes, our understanding of light energy conversion in plant chloroplasts and microalgae under physiological conditions requires exploring the dynamics of photosynthesis. The photosynthetic apparatus is a flexible molecular machine that can acclimate to metabolic and light fluctuations in a matter of seconds and minutes. On a longer time scale, changes in environmental cues trigger acclimation responses that elicit intracellular signaling between the nucleo-cytosol and chloroplast resulting in modification of the biogenesis of the photosynthetic machinery. Here we attempt to integrate well-established knowledge on the functional flexibility of light-harvesting and electron transfer processes, which has greatly benefited from genetic approaches, with data derived from the wealth of recent transcriptomic and proteomic studies of acclimation responses in photosynthetic eukaroytes.
Collapse
Affiliation(s)
- Stephan Eberhard
- Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | | | | |
Collapse
|
29
|
Yamano T, Fukuzawa H. Carbon-concentrating mechanism in a green alga,Chlamydomonas reinhardtii, revealed by transcriptome analyses. J Basic Microbiol 2009; 49:42-51. [DOI: 10.1002/jobm.200800352] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Abstract
Plants and algae often absorb too much light-more than they can actually use in photosynthesis. To prevent photo-oxidative damage and to acclimate to changes in their environment, photosynthetic organisms have evolved direct and indirect mechanisms for sensing and responding to excess light. Photoreceptors such as phototropin, neochrome, and cryptochrome can sense excess light directly and relay signals for chloroplast movement and gene expression responses. Indirect sensing of excess light through biochemical and metabolic signals can be transduced into local responses within chloroplasts, into changes in nuclear gene expression via retrograde signaling pathways, or even into systemic responses, all of which are associated with photoacclimation.
Collapse
Affiliation(s)
- Zhirong Li
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
31
|
Galván A, González-Ballester D, Fernández E. Insertional mutagenesis as a tool to study genes/functions in Chlamydomonas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 616:77-89. [PMID: 18161492 DOI: 10.1007/978-0-387-75532-8_7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The unicellular alga Chlamydomonas reinhardtii has emerged during the last decades as a model system to understand gene functions, many of them shared by bacteria, fungi, plants, animals and humans. A powerful resource for the research community is the availability of complete collections of stable mutants for studying whole genome function. In the meantime other strategies might be developed; insertional mutagenesis has become currently the best strategy to disrupt and tag nuclear genes in Chlamydomonas allowing forward and reverse genetic approaches. Here, we outline the mutagenesis technique stressing the idea of generating databases for ordered mutant libraries, and also of improving efficient methods for reverse genetics to identify mutants defective in a particular gene.
Collapse
Affiliation(s)
- Aurora Galván
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Córdoba. Campus de Rabanales, Edificio Severo Ochoa, 14071 Córdoba, Spain.
| | | | | |
Collapse
|
32
|
Grossman AR. In the Grip of Algal Genomics. TRANSGENIC MICROALGAE AS GREEN CELL FACTORIES 2008; 616:54-76. [DOI: 10.1007/978-0-387-75532-8_6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
33
|
The evolution of inorganic carbon concentrating mechanisms in photosynthesis. Philos Trans R Soc Lond B Biol Sci 2008; 363:2641-50. [PMID: 18487130 PMCID: PMC2606764 DOI: 10.1098/rstb.2008.0020] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Inorganic carbon concentrating mechanisms (CCMs) catalyse the accumulation of CO(2) around rubisco in all cyanobacteria, most algae and aquatic plants and in C(4) and crassulacean acid metabolism (CAM) vascular plants. CCMs are polyphyletic (more than one evolutionary origin) and involve active transport of HCO(3)(-), CO(2) and/or H(+), or an energized biochemical mechanism as in C(4) and CAM plants. While the CCM in almost all C(4) plants and many CAM plants is constitutive, many CCMs show acclimatory responses to variations in the supply of not only CO(2) but also photosynthetically active radiation, nitrogen, phosphorus and iron. The evolution of CCMs is generally considered in the context of decreased CO(2) availability, with only a secondary role for increasing O(2). However, the earliest CCMs may have evolved in oxygenic cyanobacteria before the atmosphere became oxygenated in stromatolites with diffusion barriers around the cells related to UV screening. This would decrease CO(2) availability to cells and increase the O(2) concentration within them, inhibiting rubisco and generating reactive oxygen species, including O(3).
Collapse
|
34
|
Naumann B, Busch A, Allmer J, Ostendorf E, Zeller M, Kirchhoff H, Hippler M. Comparative quantitative proteomics to investigate the remodeling of bioenergetic pathways under iron deficiency in Chlamydomonas reinhardtii. Proteomics 2008; 7:3964-79. [PMID: 17922516 DOI: 10.1002/pmic.200700407] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The basic question addressed in this study is how energy metabolism is adjusted to cope with iron deficiency in Chlamydomonas reinhardtii. To investigate the impact of iron deficiency on bioenergetic pathways, comparative proteomics was combined with spectroscopic as well as voltametric oxygen measurements to assess protein dynamics linked to functional properties of respiratory and photosynthetic machineries. Although photosynthetic electron transfer is largely compromised under iron deficiency, our quantitative and spectroscopic data revealed that the functional antenna size of photosystem II (PSII) significantly increased. Concomitantly, stress-related chloroplast polypeptides, like 2-cys peroxiredoxin and a stress-inducible light-harvesting protein, LhcSR3, as well as a novel light-harvesting protein and several proteins of unknown function were induced under iron-deprivation. Respiratory oxygen consumption did not decrease and accordingly, polypeptides of respiratory complexes, harboring numerous iron-sulfur clusters, were only slightly diminished or even increased under low iron. Consequently, iron-deprivation induces a transition from photoheterotrophic to primarily heterotrophic metabolism, indicating that a hierarchy for iron allocations within organelles of a single cell exists that is closely linked with the metabolic state of the cell.
Collapse
Affiliation(s)
- Bianca Naumann
- Institute of Plant Biochemistry and Biotechnology, University of Münster, Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
35
|
Misumi O, Yoshida Y, Nishida K, Fujiwara T, Sakajiri T, Hirooka S, Nishimura Y, Kuroiwa T. Genome analysis and its significance in four unicellular algae, Cyanidioschyzon [corrected] merolae, Ostreococcus tauri, Chlamydomonas reinhardtii, and Thalassiosira pseudonana. JOURNAL OF PLANT RESEARCH 2008; 121:3-17. [PMID: 18074102 DOI: 10.1007/s10265-007-0133-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Accepted: 10/30/2007] [Indexed: 05/19/2023]
Abstract
Algae play a more important role than land plants in the maintenance of the global environment and productivity. Progress in genome analyses of these organisms means that we can now obtain information on algal genomes, global annotation and gene expression. The full genome information for several algae has already been analyzed. Whole genomes of the red alga Cyanidioschyzon [corrected] merolae, the green algae Ostreococcus tauri and Chlamydomonas reinhardtii, and the diatom Thalassiosira pseudonana have been sequenced. Genome composition and the features of cells among the four algae were compared. Each alga maintains basic genes as photosynthetic eukaryotes and possesses additional gene groups to represent their particular characteristics. This review discusses and introduces the latest research that makes the best use of the particular features of each organism and the significance of genome analysis to study biological phenomena. In particular, examples of post-genome studies of organelle multiplication in C. merolae based on analyzed genome information are presented.
Collapse
Affiliation(s)
- Osami Misumi
- Department of Life Science, Graduate School of Science, Rikkyo University, Tokyo 171-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Iwai M, Kato N, Minagawa J. Distinct physiological responses to a high light and low CO2 environment revealed by fluorescence quenching in photoautotrophically grown Chlamydomonas reinhardtii. PHOTOSYNTHESIS RESEARCH 2007; 94:307-14. [PMID: 17680341 DOI: 10.1007/s11120-007-9220-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Accepted: 07/03/2007] [Indexed: 05/16/2023]
Abstract
Mechanisms for countering environmental stress are essential to photosynthetic organisms. Alteration of the photosynthetic apparatus, a mechanism for balancing the flux of light energy and carbon fixation, can be characterized by fluorescence properties. In this study, we have established a simple protocol to determine the extent of energy-dependent quenching (qE) and quenching by state transition (qT) in Chlamydomonas cells by examining their fluorescence properties under light fluctuations. We identified qE as the uncoupler-sensitive NPQ component that was rapidly relaxed upon transition to dark conditions. We characterized the qT component by determining low-temperature fluorescence spectra and analyzing a state-transition-less mutant. By these methods, we observed that similar abiotic stresses-high light conditions (where excess energy is supplied) and low CO2 conditions (where energy utilization is limited)-induced different types of NPQ. High light conditions induced mainly qE-quenching that increased gradually while low CO2 conditions induced mainly qT-quenching that peaked in 20 min and then decreased gradually. That high light and low carbon signals induced different physiological responses suggests that they triggered different genetic responses, which altered protein expression under each of the conditions.
Collapse
Affiliation(s)
- Masakazu Iwai
- The Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819, Japan
| | | | | |
Collapse
|
37
|
Burey SC, Poroyko V, Ergen ZN, Fathi-Nejad S, Schüller C, Ohnishi N, Fukuzawa H, Bohnert HJ, Löffelhardt W. Acclimation to low [CO(2)] by an inorganic carbon-concentrating mechanism in Cyanophora paradoxa. PLANT, CELL & ENVIRONMENT 2007; 30:1422-35. [PMID: 17897412 DOI: 10.1111/j.1365-3040.2007.01715.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The glaucocystophyte Cyanophora paradoxa contains cyanelles, plastids with prokaroytic features such as a peptidoglycan wall and a central proteinaceous inclusion body. While this central body includes the majority of the enzyme ribulose 1,5-bisphosphate carboxylase/oxgenase Rubisco), the presence of a carbon-concentrating mechanism (CCM) in C. paradoxa has only been hypothesized. Here, we present physiological data in support of a CCM: CO(2) exchange activity as well as apparent affinity against inorganic carbon were found to increase under CO(2)-limiting stress. Further, expressed sequence tags (ESTs) of C. paradoxa were obtained from two cDNA libraries, one from cells grown in high [CO(2)] conditions and one from cells grown under low [CO(2)] conditions. A cDNA microarray platform assembled from 2378 cDNA sequences revealed that 142 genes significantly responded to a shift from high to low [CO(2)]. Trends in gene expression were comparable to those reported for Chlamydomonas reinhardtii and the cyanobacterium Synechocystis 6803, both possessing a CCM. Among genes regulated by [CO(2)], transcripts were identified encoding carbonic anhydrases (CAs), Rubisco activase and a putative bicarbonate transporter in C. paradoxa, likely functionally involved in the CCM. These results and the polyhedric appearance of the central body further support the hypothesis of a unique 'eukaryotic carboxysome' in Cyanophora.
Collapse
Affiliation(s)
- S C Burey
- Max F. Perutz Laboratories, University of Vienna, Department of Biochemistry, Dr. Bohr-Gasse 9/5, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Mus F, Dubini A, Seibert M, Posewitz MC, Grossman AR. Anaerobic acclimation in Chlamydomonas reinhardtii: anoxic gene expression, hydrogenase induction, and metabolic pathways. J Biol Chem 2007; 282:25475-86. [PMID: 17565990 DOI: 10.1074/jbc.m701415200] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Both prokaryotic and eukaryotic photosynthetic microbes experience conditions of anoxia, especially during the night when photosynthetic activity ceases. In Chlamydomonas reinhardtii, dark anoxia is characterized by the activation of an extensive set of fermentation pathways that act in concert to provide cellular energy, while limiting the accumulation of potentially toxic fermentative products. Metabolite analyses, quantitative PCR, and high density Chlamydomonas DNA microarrays were used to monitor changes in metabolite accumulation and gene expression during acclimation of the cells to anoxia. Elevated levels of transcripts encoding proteins associated with the production of H2, organic acids, and ethanol were observed in congruence with the accumulation of fermentation products. The levels of over 500 transcripts increased significantly during acclimation of the cells to anoxic conditions. Among these were transcripts encoding transcription/translation regulators, prolyl hydroxylases, hybrid cluster proteins, proteases, transhydrogenase, catalase, and several putative proteins of unknown function. Overall, this study uses metabolite, genomic, and transcriptome data to provide genome-wide insights into the regulation of the complex metabolic networks utilized by Chlamydomonas under the anaerobic conditions associated with H2 production.
Collapse
Affiliation(s)
- Florence Mus
- Department of Plant Biology, Carnegie Institution, Stanford, California 94305, USA
| | | | | | | | | |
Collapse
|
39
|
Ledford HK, Chin BL, Niyogi KK. Acclimation to singlet oxygen stress in Chlamydomonas reinhardtii. EUKARYOTIC CELL 2007; 6:919-30. [PMID: 17435007 PMCID: PMC1951523 DOI: 10.1128/ec.00207-06] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In an aerobic environment, responding to oxidative cues is critical for physiological adaptation (acclimation) to changing environmental conditions. The unicellular alga Chlamydomonas reinhardtii was tested for the ability to acclimate to specific forms of oxidative stress. Acclimation was defined as the ability of a sublethal pretreatment with a reactive oxygen species to activate defense responses that subsequently enhance survival of that stress. C. reinhardtii exhibited a strong acclimation response to rose bengal, a photosensitizing dye that produces singlet oxygen. This acclimation was dependent upon photosensitization and occurred only when pretreatment was administered in the light. Shifting cells from low light to high light also enhanced resistance to singlet oxygen, suggesting an overlap in high-light and singlet oxygen response pathways. Microarray analysis of RNA levels indicated that a relatively small number of genes respond to sublethal levels of singlet oxygen. Constitutive overexpression of either of two such genes, a glutathione peroxidase gene and a glutathione S-transferase gene, was sufficient to enhance singlet oxygen resistance. Escherichia coli and Saccharomyces cerevisiae exhibit well-defined responses to reactive oxygen but did not acclimate to singlet oxygen, possibly reflecting the relative importance of singlet oxygen stress for photosynthetic organisms.
Collapse
Affiliation(s)
- Heidi K Ledford
- Department of Plant and Microbial Biology, 111 Koshland Hall, University of California-Berkeley, Berkeley, CA 94720-3102, USA
| | | | | |
Collapse
|
40
|
Griesbeck C, Kobl I, Heitzer M. Chlamydomonas reinhardtii: a protein expression system for pharmaceutical and biotechnological proteins. Mol Biotechnol 2007; 34:213-23. [PMID: 17172667 DOI: 10.1385/mb:34:2:213] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/11/2022]
Abstract
Recombinant proteins have become more and more important for the pharmaceutical and chemical industry. Although various systems for protein expression have been developed, there is an increasing demand for inexpensive methods of large-scale production. Eukaryotic algae could serve as a novel option for the manufacturing of recombinant proteins, as they can be cultivated in a cheap and easy manner and grown to high cell densities. Being a model organism, the unicellular green alga Chlamydomonas reinhardtii has been studied intensively over the last decades and offers now a complete toolset for genetic manipulation. Recently, the successful expression of several proteins with pharmaceutical relevance has been reported from the nuclear and the chloroplastic genome of this alga, demonstrating its ability for biotechnological applications.
Collapse
Affiliation(s)
- Christoph Griesbeck
- Center of Excellence for Fluorescent Bioanalysis, Josef-Engert-Str. 9, D-93053 Regensburg, Germany.
| | | | | |
Collapse
|
41
|
Jamers A, Van der Ven K, Moens L, Robbens J, Potters G, Guisez Y, Blust R, De Coen W. Effect of copper exposure on gene expression profiles in Chlamydomonas reinhardtii based on microarray analysis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2006; 80:249-60. [PMID: 17079029 DOI: 10.1016/j.aquatox.2006.09.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Revised: 09/09/2006] [Accepted: 09/10/2006] [Indexed: 05/12/2023]
Abstract
Copper is a naturally occurring trace metal with toxic properties for man and environment. It is assumed that toxicity is primarily caused by oxidative damage, generated through the production of reactive oxygen species. Copper is, however, also an essential element, which means trace amounts are necessary for biological processes to function properly. Organisms are therefore presented with the challenging problem of maintaining copper concentrations within a well-defined range to avoid stress. We exposed the green alga Chlamydomonas reinhardtii to different copper concentrations and used microarray analysis to investigate the changes in mRNA abundances and to obtain an image of the molecular mechanisms underlying copper homeostasis. The results confirm and extend upon previous findings showing that in the case of lower copper concentrations there is a change in levels of mRNA coding for alternative polypeptides which can take over the function of certain copper containing molecules so as to compensate for the lack of copper. In the case of copper toxicity, there is a strong upregulation of transcripts encoding enzymes involved in oxidative stress defense mechanisms. In both cases, there were significant changes in expression levels of transcripts coding for enzymes involved in several metabolic pathways (photosynthesis, pentose phosphate pathway, glycolysis, gluconeogenesis), in general stress response (heat shock proteins) and in intracellular proteolysis (lysosomal enzymes, proteasome components).
Collapse
Affiliation(s)
- An Jamers
- Laboratory for Ecophysiology, Biochemistry and Toxicology, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Fischer BB, Wiesendanger M, Eggen RIL. Growth condition-dependent sensitivity, photodamage and stress response of Chlamydomonas reinhardtii exposed to high light conditions. PLANT & CELL PHYSIOLOGY 2006; 47:1135-45. [PMID: 16857695 DOI: 10.1093/pcp/pcj085] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Different substrate conditions, such as varying CO(2) concentrations or the presence of acetate, strongly influence the efficiency of photosynthesis in Chlamydomonas reinhardtii. Altered photosynthetic efficiencies affect the susceptibility of algae to the deleterious effects of high light stress, such as the production of reactive oxygen species (ROS) and PSII photodamage. In this study, we investigated the effect of high light on C. reinhardtii grown under photomixotrophy, i.e. in the presence of acetate, as well as under photoautotrophic growth conditions with either low or high CO(2) concentrations. Different parameters such as growth rate, chlorophyll bleaching, singlet oxygen generation, PSII photodamage and the total genomic stress response were analyzed. Although showing a similar degree of PSII photodamage, a much stronger singlet oxygen-specific response and a broader general stress response was observed in acetate and high CO(2)-supplemented cells compared with CO(2)-limited cells. These different photooxidative stress responses were correlated with the individual cellular PSII content and probably directly influenced the ROS production during exposure to high light. In addition, growth of high CO(2)-supplemented cells was more susceptible to high light stress compared with cells grown under CO(2) limitation. The growth of acetate-supplemented cultures, on the other hand, was less affected by high light treatment than cultures grown under high CO(2) concentrations, despite the similar cellular stress. This suggests that the production of ATP by mitochondrial acetate respiration protects the cells from the deleterious effects of high light stress, presumably by providing energy for an effective defense.
Collapse
Affiliation(s)
- Beat B Fischer
- Eawag, Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600 Duebendorf, Switzerland
| | | | | |
Collapse
|
43
|
Turkina MV, Kargul J, Blanco-Rivero A, Villarejo A, Barber J, Vener AV. Environmentally modulated phosphoproteome of photosynthetic membranes in the green alga Chlamydomonas reinhardtii. Mol Cell Proteomics 2006; 5:1412-25. [PMID: 16670252 DOI: 10.1074/mcp.m600066-mcp200] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mapping of in vivo protein phosphorylation sites in photosynthetic membranes of the green alga Chlamydomonas reinhardtii revealed that the major environmentally dependent changes in phosphorylation are clustered at the interface between the photosystem II (PSII) core and its light-harvesting antennae (LHCII). The photosynthetic membranes that were isolated form the algal cells exposed to four distinct environmental conditions affecting photosynthesis: (i) dark aerobic, corresponding to photosynthetic State 1; (ii) dark under nitrogen atmosphere, corresponding to photosynthetic State 2; (iii) moderate light; and (iv) high light. The surface-exposed phosphorylated peptides were cleaved from the membrane by trypsin, methyl-esterified, enriched by immobilized metal affinity chromatography, and sequenced by nanospray-quadrupole time-of-flight mass spectrometry. A total of 19 in vivo phosphorylation sites were mapped in the proteins corresponding to 15 genes in C. reinhardtii. Amino-terminal acetylation of seven proteins was concomitantly determined. Sequenced amino termini of six mature LHCII proteins differed from the predicted ones. The State 1-to-State 2 transition induced phosphorylation of the PSII core components D2 and PsbR and quadruple phosphorylation of a minor LHCII antennae subunit, CP29, as well as phosphorylation of constituents of a major LHCII complex, Lhcbm1 and Lhcbm10. Exposure of the algal cells to either moderate or high light caused additional phosphorylation of the D1 and CP43 proteins of the PSII core. The high light treatment led to specific hyperphosphorylation of CP29 at seven distinct residues, phosphorylation of another minor LHCII constituent, CP26, at a single threonine, and double phosphorylation of additional subunits of a major LHCII complex including Lhcbm4, Lhcbm6, Lhcbm9, and Lhcbm11. Environmentally induced protein phosphorylation at the interface of PSII core and the associated antenna proteins, particularly multiple differential phosphorylations of CP29 linker protein, suggests the mechanisms for control of photosynthetic state transitions and for LHCII uncoupling from PSII under high light stress to allow thermal energy dissipation.
Collapse
Affiliation(s)
- Maria V Turkina
- Division of Cell Biology, Linköping University, SE-581 85 Linköping, Sweden
| | | | | | | | | | | |
Collapse
|
44
|
Turkina MV, Blanco-Rivero A, Vainonen JP, Vener AV, Villarejo A. CO2 limitation induces specific redox-dependent protein phosphorylation inChlamydomonas reinhardtii. Proteomics 2006; 6:2693-704. [PMID: 16572472 DOI: 10.1002/pmic.200500461] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Acclimation of the green alga Chlamydomonas reinhardtii to limiting environmental CO2 induced specific protein phosphorylation at the surface of photosynthetic thylakoid membranes. Four phosphopeptides were identified and sequenced by nanospray quadrupole TOF MS from the cells acclimating to limiting CO2. One phosphopeptide originated from a protein that has not been annotated. We found that this unknown expressed protein (UEP) was encoded in the genome of C. reinhardtii. Three other phosphorylated peptides belonged to Lci5 protein encoded by the low-CO2-inducible gene 5 (lci5). The phosphorylation sites were mapped in the tandem repeats of Lci5 ensuring phosphorylation of four serine and three threonine residues in the protein. Immunoblotting with Lci5-specific antibodies revealed that Lci5 was localized in chloroplast and confined to the stromal side of the thylakoid membranes. Phosphorylation of Lci5 and UEP occurred strictly at limiting CO2; it required reduction of electron carriers in the thylakoid membrane, but was not induced by light. Both proteins were phosphorylated in the low-CO2-exposed algal mutant deficient in the light-activated protein kinase Stt7. Phosphorylation of previously unknown basic proteins UEP and Lci5 by specific redox-dependent protein kinase(s) in the photosynthetic membranes reveals the early response of green algae to limitation in the environmental inorganic carbon.
Collapse
Affiliation(s)
- Maria V Turkina
- Division of Cell Biology, Linköping University, Linköping, Sweden
| | | | | | | | | |
Collapse
|
45
|
Park S, Polle JEW, Melis A, Lee TK, Jin E. Up-regulation of photoprotection and PSII-repair gene expression by irradiance in the unicellular green alga Dunaliella salina. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2006; 8:120-8. [PMID: 16525865 DOI: 10.1007/s10126-005-5030-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2005] [Accepted: 07/06/2005] [Indexed: 05/07/2023]
Abstract
The unicellular green alga Dunaliella salina is an attractive model organism for studying photoacclimation responses and the photosystem II (PSII) damage and repair process in the photosynthetic apparatus. Irradiance during cell growth defines both the photoacclimation and the PSII repair status of the cells. To identify genes specific to these processes, a cDNA library was created from irradiance-stressed D. salina. From the cDNA library, 1112 randomly selected expressed sequence tags (ESTs) were analyzed. Because ESTs constitute the expressed part of the genome, the strategy of randomly sequencing cDNA clones at their 5'-ends allowed us to obtain information about the transcript level of numerous genes in light-stressed D. salina. The results of a BLASTX search performed on the obtained total set of ESTs showed that approximately 1% of the ESTs could be assigned to genes coding for proteins that are known to be up-regulated in response to high-light stress. Specifically, after 48 h of high-light exposure of the cells, an increase in the expression level of antioxidant genes, such as Fe-SOD and APX, was observed, as well as elevated levels of the Cbr transcript, a light-harvesting Chl-protein homolog. Further, the ATP-dependent Clp protease gene was also up-regulated in D. salina cells after 48 h of exposure to high light. The results provide initial insight into the global gene regulation process in response to irradiance.
Collapse
Affiliation(s)
- Seunghye Park
- Department of Life Science, Hanyang University, Seoul, South Korea
| | | | | | | | | |
Collapse
|
46
|
Moseley JL, Chang CW, Grossman AR. Genome-based approaches to understanding phosphorus deprivation responses and PSR1 control in Chlamydomonas reinhardtii. EUKARYOTIC CELL 2006; 5:26-44. [PMID: 16400166 PMCID: PMC1360252 DOI: 10.1128/ec.5.1.26-44.2006] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Chlamydomonas reinhardtii transcription factor PSR1 is required for the control of activities involved in scavenging phosphate from the environment during periods of phosphorus limitation. Increased scavenging activity reflects the development of high-affinity phosphate transport and the expression of extracellular phosphatases that can cleave phosphate from organic compounds in the environment. A comparison of gene expression patterns using microarray analyses and quantitative PCRs with wild-type and psr1 mutant cells deprived of phosphorus has revealed that PSR1 also controls genes encoding proteins with potential "electron valve" functions--these proteins can serve as alternative electron acceptors that help prevent photodamage caused by overexcitation of the photosynthetic electron transport system. In accordance with this finding, phosphorus-starved psr1 mutants die when subjected to elevated light intensities; at these intensities, the wild-type cells still exhibit rapid growth. Acclimation to phosphorus deprivation also involves a reduction in the levels of transcripts encoding proteins involved in photosynthesis and both cytoplasmic and chloroplast translation as well as an increase in the levels of transcripts encoding stress-associated chaperones and proteases. Surprisingly, phosphorus-deficient psr1 cells (but not wild-type cells) also display expression patterns associated with specific responses to sulfur deprivation, suggesting a hitherto unsuspected link between the signal transduction pathways involved in controlling phosphorus and sulfur starvation responses. Together, these results demonstrate that PSR1 is critical for the survival of cells under conditions of suboptimal phosphorus availability and that it plays a key role in controlling both scavenging responses and the ability of the cell to manage excess absorbed excitation energy.
Collapse
Affiliation(s)
- Jeffrey L Moseley
- Carnegie Institution, Department of Plant Biology, 260 Panama Street, Stanford, California 94305, USA.
| | | | | |
Collapse
|
47
|
Fischer BB, Eggen RIL, Trebst A, Krieger-Liszkay A. The glutathione peroxidase homologous gene Gpxh in Chlamydomonas reinhardtii is upregulated by singlet oxygen produced in photosystem II. PLANTA 2006; 223:583-90. [PMID: 16160847 DOI: 10.1007/s00425-005-0108-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Accepted: 07/15/2005] [Indexed: 05/04/2023]
Abstract
The expression of the glutathione peroxidase homologous gene Gpxh, known to be specifically induced by the formation of singlet oxygen (1O2), was analyzed in cells of Chlamydomonas reinhardtii exposed to environmental conditions causing photoinhibition. Illumination with high light intensities, leading to an increased formation of 1O2 in photosystem II, continuously induced the expression of Gpxh in cell for at least 2 h. Phenolic herbicides like dinoterb, raise the rate of 1O2 formation by increasing the probability of charge recombination in photosystem II via the formation of the primary radical pair and thereby 3P680 formation (Fufezan C et al. 2002, FEBS Letters 532, 407-410). In the presence of dinoterb the light-induced loss of the D1 protein in C. reinhardtii was increased and the high light-induced Gpxh expression was further stimulated. DCMU, a urea-type herbicide, causing reduced 1O2 generation in photosystem II, protected the D1 protein slightly against degradation and downregulated the expression of the Gpxh gene compared to untreated cells exposed to high light intensities. This indicates that the Gpxh expression is induced by 1O2 under environment conditions causing photoinhibition.
Collapse
Affiliation(s)
- Beat B Fischer
- Department of Environmental Toxicology, Swiss Federal Institute for Environmental Science and Technology (EAWAG), Uberlandstr. 133, Dubendorf 8600, Switzerland
| | | | | | | |
Collapse
|
48
|
Balczun C, Bunse A, Nowrousian M, Korbel A, Glanz S, Kück U. DNA macroarray and real-time PCR analysis of two nuclear photosystem I mutants from Chlamydomonas reinhardtii reveal downregulation of Lhcb genes but different regulation of Lhca genes. ACTA ACUST UNITED AC 2005; 1732:62-8. [PMID: 16414130 DOI: 10.1016/j.bbaexp.2005.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Revised: 11/04/2005] [Accepted: 11/08/2005] [Indexed: 11/28/2022]
Abstract
In photoautotrophic organisms, the expression of nuclear genes encoding plastid proteins is known to be regulated at various levels. In this study, we present the analysis of two non-photosynthetic mutants (CC1051 and TR72) from the unicellular green alga Chlamydomonas reinhardtii. Both mutant strains show a defect in the processing of chloroplast psaA mRNA, and therefore they are assumed to be defective in photosystem I (PSI) assembly. We have performed macroarray experiments with trans-splicing mutants CC1051 and TR72 in order to analyse putative pleiotropic effects of nuclear-located mutations leading to a non-functional PSI. To the best of our knowledge, this is the first example of Chlamydomonas cDNA macroarray analysis comparing the transcriptional regulation of nuclear genes in wild-type and photosystem I mutants. The macroarray results demonstrated a transcriptional downregulation of members of the Lhcb gene family more than 2-fold in both mutant strains. In addition, real-time RT-PCR experiments found a 4- to 16-fold reduction in transcript levels of several Lhca genes in TR72; whereas in CC1051, no significant change in transcript levels was observed. Taken together, our data suggest that a signal is transmitted from the chloroplast to the nucleus that serves to regulate the level of light harvesting polypeptides in the organelle.
Collapse
Affiliation(s)
- Carsten Balczun
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Lohr M, Im CS, Grossman AR. Genome-based examination of chlorophyll and carotenoid biosynthesis in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2005; 138:490-515. [PMID: 15849308 PMCID: PMC1104202 DOI: 10.1104/pp.104.056069] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Revised: 02/03/2005] [Accepted: 02/08/2005] [Indexed: 05/19/2023]
Abstract
The unicellular green alga Chlamydomonas reinhardtii is a particularly important model organism for the study of photosynthesis since this alga can grow heterotrophically, and mutants in photosynthesis are therefore conditional rather than lethal. The recently developed tools for genomic analyses of this organism have allowed us to identify most of the genes required for chlorophyll and carotenoid biosynthesis and to examine their phylogenetic relationships with homologous genes from vascular plants, other algae, and cyanobacteria. Comparative genome analyses revealed some intriguing features associated with pigment biosynthesis in C. reinhardtii; in some cases, there are additional conserved domains in the algal and plant but not the cyanobacterial proteins that may directly influence their activity, assembly, or regulation. For some steps in the chlorophyll biosynthetic pathway, we found multiple gene copies encoding putative isozymes. Phylogenetic studies, theoretical evaluation of gene expression through analysis of expressed sequence tag data and codon bias of each gene, enabled us to generate hypotheses concerning the function and regulation of the individual genes, and to propose targets for future research. We have also used quantitative polymerase chain reaction to examine the effect of low fluence light on the level of mRNA accumulation encoding key proteins of the biosynthetic pathways and examined differential expression of those genes encoding isozymes that function in the pathways. This work is directing us toward the exploration of the role of specific photoreceptors in the biosynthesis of pigments and the coordination of pigment biosynthesis with the synthesis of proteins of the photosynthetic apparatus.
Collapse
Affiliation(s)
- Martin Lohr
- Institut für Allgemeine Botanik Johannes Gutenberg-Universität, 55099 Mainz, Germany.
| | | | | |
Collapse
|
50
|
Abstract
This review focuses on the biosynthesis of pigments in the unicellular alga Chlamydomonas reinhardtii and their physiological and regulatory functions in the context of information gathered from studies of other photosynthetic organisms. C. reinhardtii is serving as an important model organism for studies of photosynthesis and the pigments associated with the photosynthetic apparatus. Despite extensive information pertaining to the biosynthetic pathways critical for making chlorophylls and carotenoids, we are just beginning to understand the control of these pathways, the coordination between pigment and apoprotein synthesis, and the interactions between the activities of these pathways and those for other important cellular metabolites branching from these pathways. Other exciting areas relating to pigment function are also emerging: the role of intermediates of pigment biosynthesis as messengers that coordinate metabolism in the chloroplast with nuclear gene activity, and the identification of photoreceptors and their participation in critical cellular processes including phototaxis, gametogenesis, and the biogenesis of the photosynthetic machinery. These areas of research have become especially attractive for intensive development with the application of potent molecular and genomic tools currently being applied to studies of C. reinhardtii.
Collapse
Affiliation(s)
- Arthur R Grossman
- The Carnegie Institution of Washington, Department of Plant Biology, Stanford, California 94305, USA.
| | | | | |
Collapse
|