1
|
Barbieri Caus L, Pasquetti MV, Seminotti B, Woontner M, Wajner M, Calcagnotto ME. Increased susceptibility to quinolinic acid-induced seizures and long-term changes in brain oscillations in an animal model of glutaric acidemia type I. J Neurosci Res 2021; 100:992-1007. [PMID: 34713466 DOI: 10.1002/jnr.24980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/19/2021] [Accepted: 09/25/2021] [Indexed: 11/11/2022]
Abstract
Glutaric acidemia type I (GA-I) is an inborn error of metabolism of lysine, hydroxylysine, and tryptophan, caused by glutaryl-CoA-dehydrogenase (GCDH) deficiency, characterized by the buildup of toxic organic acids predominantly in the brain. After acute catabolic states, patients usually develop striatal degeneration, but the mechanisms behind this damage are still unknown. Quinolinic acid (QA), a metabolite of the kynurenine pathway, increases especially during infections/inflammatory processes, and could act synergically with organic acids, contributing to the neurological features of GA-I. The aim of this study was to investigate whether QA increases seizure susceptibility and modifies brain oscillation patterns in an animal model of GA-I, the Gcdh-/- mice taking high-lysine diet (Gcdh-/- -Lys). Therefore, the characteristics of QA-induced seizures and changes in brain oscillatory patterns were evaluated by video-electroencephalography (EEG) analysis recorded in Gcdh-/- -Lys, Gcdh+/+ -Lys, and Gcdh-/- -N (normal diet) animals. We found that the number of seizures per animal was similar for all groups receiving QA, Gcdh-/- -Lys-QA, Gcdh+/+ -Lys-QA, and Gcdh-/- -N-QA. However, severe seizures were observed in the majority of Gcdh-/- -Lys-QA mice (82%), and only in 25% of Gcdh+/+ -Lys-QA and 44% of Gcdh-/- -N-QA mice. All Gcdh-/- -Lys animals developed spontaneous recurrent seizures (SRS), but Gcdh-/- -Lys-QA animals had increased number of SRS, higher mortality rate, and significant predominance of lower frequency oscillations on EEG. Our results suggest that QA plays an important role in the neurological features of GA-I, as Gcdh-/- -Lys mice exhibit increased susceptibility to intrastriatal QA-induced seizures and long-term changes in brain oscillations.
Collapse
Affiliation(s)
- Letícia Barbieri Caus
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab), Biochemistry Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Neuroscience, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mayara Vendramin Pasquetti
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab), Biochemistry Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Bianca Seminotti
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Michael Woontner
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, USA
| | - Moacir Wajner
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria Elisa Calcagnotto
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab), Biochemistry Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Neuroscience, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
2
|
Pathogenesis of brain damage in glutaric acidemia type I: Lessons from the genetic mice model. Int J Dev Neurosci 2019; 78:215-221. [DOI: 10.1016/j.ijdevneu.2019.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/18/2019] [Accepted: 05/18/2019] [Indexed: 11/22/2022] Open
|
3
|
|
4
|
Kotlar I, Rangel-López E, Colonnello A, Aguilera-Portillo G, Serratos IN, Galván-Arzate S, Pedraza-Chaverri J, Túnez I, Wajner M, Santamaría A. Anandamide Reduces the Toxic Synergism Exerted by Quinolinic Acid and Glutaric Acid in Rat Brain Neuronal Cells. Neuroscience 2019; 401:84-95. [PMID: 30668975 DOI: 10.1016/j.neuroscience.2019.01.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/07/2019] [Accepted: 01/11/2019] [Indexed: 01/26/2023]
Abstract
The endocannabinoid system (ECS) regulates several physiological processes in the Central Nervous System, including the modulation of neuronal excitability via activation of cannabinoid receptors (CBr). Both glutaric acid (GA) and quinolinic acid (QUIN) are endogenous metabolites that, under pathological conditions, recruit common toxic mechanisms. A synergistic effect between them has already been demonstrated, supporting potential implications for glutaric acidemia type I (GA I). Here we investigated the possible involvement of a cannabinoid component in the toxic model exerted by QUIN + GA in rat cortical slices and primary neuronal cell cultures. The effects of the CB1 receptor agonist anandamide (AEA), and the fatty acid amide hydrolase inhibitor URB597, were tested on cell viability in cortical brain slices and primary neuronal cultures exposed to QUIN, GA, or QUIN + GA. As a pre-treatment to the QUIN + GA condition, AEA prevented the loss of cell viability in both preparations. URB597 only protected in a moderate manner the cultured neuronal cells against the QUIN + GA-induced damage. The use of the CB1 receptor reverse agonist AM251 in both biological preparations prevented partially the protective effects exerted by AEA, thus suggesting a partial role of CB1 receptors in this toxic model. AEA also prevented the cell damage and apoptotic death induced by the synergic model in cell cultures. Altogether, these findings demonstrate a modulatory role of the ECS on the synergic toxic actions exerted by QUIN + GA, thus providing key information for the understanding of the pathophysiological events occurring in GA I.
Collapse
Affiliation(s)
- Ilan Kotlar
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, S.S.A., Mexico City, Mexico
| | - Edgar Rangel-López
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, S.S.A., Mexico City, Mexico
| | - Aline Colonnello
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, S.S.A., Mexico City, Mexico
| | - Gabriela Aguilera-Portillo
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, S.S.A., Mexico City, Mexico
| | - Iris N Serratos
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Sonia Galván-Arzate
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, S.S.A., Mexico City, Mexico
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Isaac Túnez
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Enfermería, Universidad de Córdoba, Cordoba, Spain
| | - Moacir Wajner
- Departamento de Bioquímica, Instituto de Ciências Básicas da Sáude, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, S.S.A., Mexico City, Mexico.
| |
Collapse
|
5
|
Amaral AU, Seminotti B, da Silva JC, de Oliveira FH, Ribeiro RT, Vargas CR, Leipnitz G, Santamaría A, Souza DO, Wajner M. Induction of Neuroinflammatory Response and Histopathological Alterations Caused by Quinolinic Acid Administration in the Striatum of Glutaryl-CoA Dehydrogenase Deficient Mice. Neurotox Res 2017; 33:593-606. [DOI: 10.1007/s12640-017-9848-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 10/31/2017] [Accepted: 11/29/2017] [Indexed: 12/31/2022]
|
6
|
Pierozan P, Colín-González AL, Biasibetti H, da Silva JC, Wyse A, Wajner M, Santamaria A. Toxic Synergism Between Quinolinic Acid and Glutaric Acid in Neuronal Cells Is Mediated by Oxidative Stress: Insights to a New Toxic Model. Mol Neurobiol 2017; 55:5362-5376. [PMID: 28936789 DOI: 10.1007/s12035-017-0761-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/31/2017] [Indexed: 12/31/2022]
Abstract
It has been shown that synergistic toxic effects of quinolinic acid (QUIN) and glutaric acid (GA), both in isolated nerve endings and in vivo conditions, suggest the contribution of these metabolites to neurodegeneration. However, this synergism still requires a detailed characterization of the mechanisms involved in cell damage during its occurrence. In this study, the effects of subtoxic concentrations of QUIN and/or GA were tested in neuronal cultures, co-cultures (neuronal cells + astrocytes), and mixed cultures (neuronal cells + astrocytes + microglia) from rat cortex and striatum. The exposure of different cortical and striatal cell cultures to QUIN + GA resulted in cell death and stimulated different markers of oxidative stress, including reactive oxygen species (ROS) formation; changes in the activity of antioxidant enzymes such as superoxide dismutase, catalase, and glutathione peroxidase; and depletion of endogenous antioxidants such as -SH groups and glutathione. The co-incubation of neuronal cultures with QUIN + GA plus the N-methyl-D-aspartate antagonist MK-801 prevented cell death but not ROS formation, whereas the antioxidant melatonin reduced both parameters. Our results demonstrated that QUIN and GA can create synergistic scenarios, inducing toxic effects on some parameters of cell viability via the stimulation of oxidative damage. Therefore, it is likely that oxidative stress may play a major causative role in the synergistic actions exerted by QUIN + GA in a variety of cell culture conditions involving the interaction of different neural types.
Collapse
Affiliation(s)
- Paula Pierozan
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ana Laura Colín-González
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, SSA, Insurgentes Sur 3877, 14269, Mexico City, Mexico
| | - Helena Biasibetti
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Janaina Camacho da Silva
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Angela Wyse
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Moacir Wajner
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, SSA, Insurgentes Sur 3877, 14269, Mexico City, Mexico.
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| | - Abel Santamaria
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, SSA, Insurgentes Sur 3877, 14269, Mexico City, Mexico.
| |
Collapse
|
7
|
Seminotti B, Amaral AU, Ribeiro RT, Rodrigues MDN, Colín-González AL, Leipnitz G, Santamaría A, Wajner M. Oxidative Stress, Disrupted Energy Metabolism, and Altered Signaling Pathways in Glutaryl-CoA Dehydrogenase Knockout Mice: Potential Implications of Quinolinic Acid Toxicity in the Neuropathology of Glutaric Acidemia Type I. Mol Neurobiol 2015; 53:6459-6475. [PMID: 26607633 DOI: 10.1007/s12035-015-9548-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/17/2015] [Indexed: 12/13/2022]
Abstract
We investigated the effects of an acute intrastriatal QUIN administration on cellular redox and bioenergetics homeostasis, as well as on important signaling pathways in the striatum of wild-type (Gcdh +/+ , WT) and knockout mice for glutaryl-CoA dehydrogenase (Gcdh -/- ) fed a high lysine (Lys, 4.7 %) chow. QUIN increased lactate release in both Gcdh +/+ and Gcdh -/- mice and reduced the activities of complex IV and creatine kinase only in the striatum of Gcdh -/- mice. QUIN also induced lipid and protein oxidative damage and increased the generation of reactive nitrogen species, as well as the activities of the antioxidant enzymes glutathione peroxidase, superoxide dismutase 2, and glutathione-S-transferase in WT and Gcdh -/- animals. Furthermore, QUIN induced DCFH oxidation (reactive oxygen species production) and reduced GSH concentrations (antioxidant defenses) in Gcdh -/- . An early increase of Akt and phospho-Erk 1/2 in the cytosol and Nrf2 in the nucleus was also observed, as well as a decrease of cytosolic Keap1caused by QUIN, indicating activation of the Nrf2 pathway mediated by Akt and phospho-Erk 1/2, possibly as a compensatory protective mechanism against the ongoing QUIN-induced toxicity. Finally, QUIN increased NF-κB and diminished IκBα expression, evidencing a pro-inflammatory response. Our data show a disruption of energy and redox homeostasis associated to inflammation induced by QUIN in the striatum of Gcdh -/- mice submitted to a high Lys diet. Therefore, it is presumed that QUIN may possibly contribute to the pathophysiology of striatal degeneration in children with glutaric aciduria type I during inflammatory processes triggered by infections or vaccinations.
Collapse
Affiliation(s)
- Bianca Seminotti
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos N° 2600-Anexo, CEP 90035-003, Porto Alegre, RS, Brazil
| | - Alexandre Umpierrez Amaral
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos N° 2600-Anexo, CEP 90035-003, Porto Alegre, RS, Brazil
| | - Rafael Teixeira Ribeiro
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos N° 2600-Anexo, CEP 90035-003, Porto Alegre, RS, Brazil
| | - Marília Danyelle Nunes Rodrigues
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos N° 2600-Anexo, CEP 90035-003, Porto Alegre, RS, Brazil
| | - Ana Laura Colín-González
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, SSA, México, DF, México
| | - Guilhian Leipnitz
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos N° 2600-Anexo, CEP 90035-003, Porto Alegre, RS, Brazil
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, SSA, México, DF, México
| | - Moacir Wajner
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos N° 2600-Anexo, CEP 90035-003, Porto Alegre, RS, Brazil. .,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| |
Collapse
|
8
|
Colín-González A, Paz-Loyola A, Serratos I, Seminotti B, Ribeiro C, Leipnitz G, Souza D, Wajner M, Santamaría A. Toxic synergism between quinolinic acid and organic acids accumulating in glutaric acidemia type I and in disorders of propionate metabolism in rat brain synaptosomes: Relevance for metabolic acidemias. Neuroscience 2015; 308:64-74. [DOI: 10.1016/j.neuroscience.2015.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/29/2015] [Accepted: 09/01/2015] [Indexed: 12/11/2022]
|
9
|
Experimental evidence that overexpression of NR2B glutamate receptor subunit is associated with brain vacuolation in adult glutaryl-CoA dehydrogenase deficient mice: A potential role for glutamatergic-induced excitotoxicity in GA I neuropathology. J Neurol Sci 2015; 359:133-40. [PMID: 26671102 DOI: 10.1016/j.jns.2015.10.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 10/19/2015] [Accepted: 10/22/2015] [Indexed: 12/13/2022]
Abstract
Glutaric aciduria type I (GA I) is biochemically characterized by accumulation of glutaric and 3-hydroxyglutaric acids in body fluids and tissues, particularly in the brain. Affected patients show progressive cortical leukoencephalopathy and chronic degeneration of the basal ganglia whose pathogenesis is still unclear. In the present work we investigated parameters of bioenergetics and redox homeostasis in various cerebral structures (cerebral cortex, striatum and hippocampus) and heart of adult wild type (Gcdh(+/+)) and glutaryl-CoA dehydrogenase deficient knockout (Gcdh(-/-)) mice fed a baseline chow. Oxidative stress parameters were also measured after acute lysine overload. Finally, mRNA expression of NMDA subunits and GLT1 transporter was determined in cerebral cortex and striatum of these animals fed a baseline or high lysine (4.7%) chow. No significant alterations of bioenergetics or redox status were observed in these mice. In contrast, mRNA expression of the NR2B glutamate receptor subunit and of the GLT1 glutamate transporter was higher in cerebral cortex of Gcdh(-/-) mice. Furthermore, NR2B expression was markedly elevated in striatum of Gcdh(-/-) animals receiving chronic Lys overload. These data indicate higher susceptibility of Gcdh(-/-) mice to excitotoxic damage, implying that this pathomechanism may contribute to the cortical and striatum alterations observed in GA I patients.
Collapse
|
10
|
Tian F, Fu X, Gao J, Ying Y, Hou L, Liang Y, Ning Q, Luo X. Glutaric acid-mediated apoptosis in primary striatal neurons. BIOMED RESEARCH INTERNATIONAL 2014; 2014:484731. [PMID: 24900967 PMCID: PMC4036723 DOI: 10.1155/2014/484731] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/20/2014] [Accepted: 04/21/2014] [Indexed: 11/28/2022]
Abstract
Glutaric acid (GA) has been implicated in the mechanism of neurodegeneration in glutaric aciduria type I. In the present study, the potential cytotoxic effects of GA (0.1~50 mM for 24~96 h) were examined in cultured primary rat striatal neurons. Results showed increase in the number of cells labeled by annexin-V or with apoptotic features shown by Hoechst/PI staining and transmission electron microscopy (TEM) and upregulation of the expression of mRNA as well as the active protein fragments caspase 3, suggesting involvement of the caspase 3-dependent apoptotic pathway in GA-induced striatal neuronal death. This effect was in part suppressed by the N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 but not the α -amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) antagonist 6-cyano-7-nitroquinoxalone-2,3-dione (CNQX). Thus, GA may trigger neuronal damage partially through apoptotic pathway and via activation of NMDA receptors in cultured primary striatal neurons.
Collapse
Affiliation(s)
- Fengyan Tian
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xi Fu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jinzhi Gao
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yanqin Ying
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ling Hou
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yan Liang
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Qin Ning
- Laboratory of Infectious Immunology, Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| |
Collapse
|
11
|
Tian F, Fu X, Gao J, Zhang C, Ning Q, Luo X. Caspase-3 mediates apoptosis of striatal cells in GA I rat model. ACTA ACUST UNITED AC 2012; 32:107-112. [PMID: 22282255 DOI: 10.1007/s11596-012-0019-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Indexed: 11/30/2022]
Abstract
In previous study, glutaric acid (GA) induced apoptosis of primary striatal neuron in vitro. In order to investigate the neurotoxic effects of GA on neonatal rat corpus striatum and the possible mechanism, 34 male pups were randomly assigned to NS group, low dose GA (LGA, 5 μmol GA/g body weight) group and high dose GA (HGA, 10 μmol GA/g body weight) group. These pups were subcutaneously administered with three injections from postnatal day 3 to 22 at 7:30 am, 15:00 pm and 22:30 pm and killed 12 h after the last injection. Microscopic pathology in corpus striatum was evaluated by HE staining. The apoptotic cells were identified by TUNEL staining. The transcript levels of caspase-3, 8, 9, Bax, Bcl-2 were detected by using real-time PCR and the protein levels of procaspase-3 and the active fraction were evaluated by Western blotting. In LGA and HGA groups, ventricle collapse, cortical atrophy by a macroscope and interstitial edema, vacuolations, widened perivascular space of bilateral striatum by a microscope were observed. TUNEL assay revealed that the apoptotic cells were increased in LGA and HGA groups. The transcript of caspase-3 was up-regulated to 2.5 fold, accompanied by the up-regulation of caspase-9, Bax and down-regulation of Bcl-2. The protein levels of procaspase-3 and the active fraction were up-regulated in LGA and HGA groups. The rat model for GA I showed mitochondrial apoptotic pathway may be involved in the GA-induced striatal lesion. Further studies should be taken to investigate the underlying mechanisms.
Collapse
Affiliation(s)
- Fengyan Tian
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xi Fu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jinzhi Gao
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Cai Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qin Ning
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
12
|
Jafari P, Braissant O, Bonafé L, Ballhausen D. The unsolved puzzle of neuropathogenesis in glutaric aciduria type I. Mol Genet Metab 2011; 104:425-37. [PMID: 21944461 DOI: 10.1016/j.ymgme.2011.08.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 08/23/2011] [Accepted: 08/23/2011] [Indexed: 12/22/2022]
Abstract
Glutaric aciduria type I (GA-I) is a cerebral organic aciduria caused by deficiency of glutaryl-Co-A dehydrogenase (GCDH). GCDH deficiency leads to accumulation of glutaric acid (GA) and 3-hydroxyglutaric acid (3-OHGA), two metabolites that are believed to be neurotoxic, in brain and body fluids. The disorder usually becomes clinically manifest during a catabolic state (e.g. intercurrent illness) with an acute encephalopathic crisis that results in striatal necrosis and in a permanent dystonic-dyskinetic movement disorder. The results of numerous in vitro and in vivo studies have pointed to three main mechanisms involved in the metabolite-mediated neuronal damage: excitotoxicity, impairment of energy metabolism and oxidative stress. There is evidence that during a metabolic crisis GA and its metabolites are produced endogenously in the CNS and accumulate because of limiting transport mechanisms across the blood-brain barrier. Despite extensive experimental work, the relative contribution of the proposed pathogenic mechanisms remains unclear and specific therapeutic approaches have yet to be developed. Here, we review the experimental evidence and try to delineate possible pathogenetic models and approaches for future studies.
Collapse
Affiliation(s)
- Paris Jafari
- Inborn Errors of Metabolism, Molecular Pediatrics, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1011 Lausanne, Switzerland
| | | | | | | |
Collapse
|
13
|
Lin HM, Edmunds SI, Helsby NA, Ferguson LR, Rowan DD. Nontargeted urinary metabolite profiling of a mouse model of Crohn's disease. J Proteome Res 2009; 8:2045-57. [PMID: 19275240 DOI: 10.1021/pr800999t] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Crohn's disease is an inflammatory disorder of the bowel, believed to arise from the dysregulation of intestinal mucosal immunity. The interleukin-10-deficient (IL10-/-) mouse, which develops intestinal inflammation in the presence of gut microflora, serves as a mouse model of Crohn's disease. Nontargeted urinary metabolite profiling was carried out to identify systemic metabolic changes associated with the development of intestinal inflammation caused by IL10-deficiency. Spot urine samples, collected from IL10-/- and wildtype mice at ages 5.5, 7, 8.5, and 10.5 weeks old were analyzed by gas chromatography-mass spectrometry (GCMS). The data were analyzed using XCMS software, multiple t tests, and ANOVA. Among the key metabolic differences detected were elevated urinary levels of xanthurenic acid and fucose in IL10-/- mice relative to wildtype, indicating upregulation of tryptophan catabolism and perturbed fucosylation in IL10-/- mice. Three short-chain dicarboxylic acid metabolites were decreased in urine of IL10-/- mice relative to wildtype, suggesting the downregulation of fatty acid oxidation in IL10-/- mice. These metabolic differences were reproducible in an independent set of mice. This study demonstrates that nontargeted GCMS metabolite profiling of IL10-/- mice can provide insights into the metabolic effects of IL10-deficiency and identify potential markers of intestinal inflammation.
Collapse
Affiliation(s)
- Hui-Ming Lin
- School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | | | |
Collapse
|
14
|
Guo GB, Xu CS. Expression profiles of the organic acid metabolism-associated genes during rat liver regeneration. Amino Acids 2007; 34:597-604. [PMID: 18095055 DOI: 10.1007/s00726-007-0013-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Accepted: 11/26/2007] [Indexed: 12/22/2022]
Abstract
In this study, 55 of the organic acid metabolism-involved genes were primarily confirmed to be associated with liver regeneration (LR) by bioinformatics and gene expression profiling analysis. Number of the initially and totally expressed genes occurring in initiation phase of LR, G(0)/G(1), cell proliferation, cell differentiation and liver tissue structure-function reconstruction were 21, 5, 33, 1 and 40, 20, 174, 44, respectively, illustrating that genes were initially expressed mainly in initiation stage, and worked in different phases. 151 times up-regulation and 114 times down-regulation as well as 14 types of expression patterns showed the diversification and complication of genes expression changes. It is inferred from the above gene expression changes and patterns that acetate biosynthesis enhanced at forepart, propionate biosynthesis at forepart, prophase and early metaphase, pyruvate biosynthesis at forepart, metaphase and anaphase, succinate biosynthesis at forepart and anaphase; malate biosynthesis in metaphase and N-acetylneuraminate biosynthesis at 36, 66 and 96 h. Whereas, carnitine biosynthsis attenuates at forepart and prophase, enhancement at middle metaphase; isocitrate in the forepart, quinolinate at forepart and early metaphase, creatine at early metaphase and fumarate at anaphase perform the restrained biosynthesis, respectively; catabolisms of propionate and pyruvate were depressed in metaphase.
Collapse
Affiliation(s)
- G B Guo
- College of Life Sciences, Henan Normal University, No. 46, Jianshe RD, Xinxiang, 453007 Henan Province, China.
| | | |
Collapse
|
15
|
Sauer SW. Biochemistry and bioenergetics of glutaryl-CoA dehydrogenase deficiency. J Inherit Metab Dis 2007; 30:673-80. [PMID: 17879145 DOI: 10.1007/s10545-007-0678-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 05/25/2007] [Accepted: 05/31/2007] [Indexed: 11/26/2022]
Abstract
Glutaryl-CoA dehydrogenase (GCDH) is a central enzyme in the catabolic pathway of L-tryptophan, L-lysine, and L-hydroxylysine which catalyses the oxidative decarboxylation of glutaryl-CoA to crotonyl-CoA and CO2. Glutaryl-CoA dehydrogenase deficiency (GDD) is an autosomal recessive disease characterized by the accumulation of glutaric and 3-hydroxyglutaric acids in tissues and body fluids. Untreated patients commonly present with severe striatal degeneration during encephalopathic crises. Previous studies have highlighted primary excitotoxicity as a trigger of striatal degeneration. The aim of this PhD study was to investigate in detail tissue-specific bioenergetic and biochemical parameters of GDD in vitro, post mortem, and in Gcdh-/- mice. The major bioenergetic finding was uncompetitive inhibition of alpha-ketoglutarate dehydrogenase complex by glutaryl-CoA. It is suggested that a synergism of primary and secondary excitotoxic effects in concert with age-related physiological changes in the developing brain underlie acute and chronic neurodegenerative changes in GDD patients. The major biochemical findings were highly elevated cerebral concentrations of glutaric and 3-hydroxyglutaric acid despite low permeability of the blood-brain barrier for these dicarboxylic acids. It can be postulated that glutaric and 3-hydroxyglutaric acids are synthesized de novo and subsequently trapped in the brain. In this light, neurological disease in GDD is not 'transported' to the brain in analogy with phenylketonuria or hepatic encephalopathy as suggested previously but is more likely to be induced by the intrinsic biochemical properties of the cerebral tissue and the blood-brain barrier.
Collapse
Affiliation(s)
- S W Sauer
- Department of General Pediatrics, Division of Inborn Metabolic Diseases, University Children's Hospital, Im Neuenheimer Feld 150, D-69120, Heidelberg, Germany.
| |
Collapse
|
16
|
Ferreira GC, Tonin A, Schuck PF, Viegas CM, Ceolato PC, Latini A, Perry MLS, Wyse ATS, Dutra-Filho CS, Wannmacher CMD, Vargas CR, Wajner M. Evidence for a synergistic action of glutaric and 3-hydroxyglutaric acids disturbing rat brain energy metabolism. Int J Dev Neurosci 2007; 25:391-8. [PMID: 17643899 DOI: 10.1016/j.ijdevneu.2007.05.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 05/02/2007] [Accepted: 05/30/2007] [Indexed: 11/26/2022] Open
Abstract
Glutaric acidemia type I is an inherited metabolic disorder caused by a severe deficiency of the mitochondrial glutaryl-CoA dehydrogenase activity leading to accumulation of predominantly glutaric and 3-hydroxyglutaric acids in the brain tissue of the affected patients. Considering that a toxic role was recently postulated for quinolinic acid in the neuropathology of glutaric acidemia type I, in the present work we investigated whether the combination of quinolinic acid with glutaric or 3-hydroxyglutaric acids or the mixture of glutaric plus 3-hydroxyglutaric acids could alter brain energy metabolism. The parameters evaluated in cerebral cortex from young rats were glucose utilization, lactate formation and (14)CO(2) production from labeled glucose and acetate, as well as the activities of pyruvate dehydrogenase and creatine kinase. We first observed that glutaric (5 mM), 3-hydroxyglutaric (1 mM) and quinolinic acids (0.1 microM) per se did not alter these parameters. Similarly, no change of these parameters occurred when combining glutaric with quinolinic acids or 3-hydroxyglutaric with quinolinic acids. In contrast, co-incubation of glutaric plus 3-hydroxyglutaric acids increased glucose utilization, decreased (14)CO(2) generation from glucose, inhibited pyruvate dehydrogenase activity as well as total and mitochondrial creatine kinase activities. The glutaric plus 3-hydroxyglutaric acids-induced inhibitory effects on creatine kinase were prevented by the antioxidants glutathione and catalase plus superoxide dismutase, indicating the participation of reactive oxygen species. Our data indicate a synergic action of glutaric and 3-hydroxyglutaric acids disturbing energy metabolism in cerebral cortex of young rats.
Collapse
Affiliation(s)
- Gustavo C Ferreira
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Korman SH, Jakobs C, Darmin PS, Gutman A, van der Knaap MS, Ben-Neriah Z, Dweikat I, Wexler ID, Salomons GS. Glutaric aciduria type 1: clinical, biochemical and molecular findings in patients from Israel. Eur J Paediatr Neurol 2007; 11:81-9. [PMID: 17188916 DOI: 10.1016/j.ejpn.2006.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Accepted: 11/18/2006] [Indexed: 10/23/2022]
Abstract
Glutaric aciduria type 1 (GA1) is a rare cerebral organic aciduria which typically manifests as an acute encephalopathic crisis followed by profound long-term neurological handicap. We report the diagnosis of 12 new patients from a single laboratory in Israel during a 5-year period. Eleven of the 12 were of Palestinian origin, and only two were related. One patient was asymptomatic whilst one was mildly, one moderately and nine severely affected, two of whom had unusual MRI findings. Two patients had normal glutaric acid excretion and normal blood glutarylcarnitine levels yet glutarylcarnitine excretion was increased, indicating its utility as a diagnostic marker. Four novel GCDH mutations (Thr193_Arg194insHis, Asn329Ser, Thr341Pro, Met405Val) and five previously reported mutations (Ser119Leu, Leu283Pro, Ala293Thr, Gly390Arg and Thr416Ile) were identified. Severely and mildly affected or even asymptomatic patients shared the same genotypes (Thr416Ile/Thre416Ile and Aal293Thr/Thr193_Arg194insHis). Knowledge of the responsible mutation enabled successful prenatal diagnosis on chorionic villous DNA in three families. In conclusion, GA1 is genetically heterogeneous and has a relatively high incidence in the Palestinian population, reflecting the historical tradition of marriages within extended kindreds, particularly in isolated villages. Additional genetic and/or environmental factors must account for the phenotypic heterogeneity in patients with the same genotype. The diagnosis was not suspected in the majority of cases despite typical clinical and/or neuroimaging features, suggesting that glutaric aciduria may be under-diagnosed. Greater awareness of glutaric aciduria amongst pediatricians, neonatologists and radiologists is the key to identifying the disorder in the presymptomatic phase and preventing its catastrophic consequences.
Collapse
Affiliation(s)
- Stanley H Korman
- Department of Clinical Biochemistry, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Schuck PF, Tonin A, da Costa Ferreira G, Viegas CM, Latini A, Duval Wannmacher CM, de Souza Wyse AT, Dutra-Filho CS, Wajner M. Kynurenines impair energy metabolism in rat cerebral cortex. Cell Mol Neurobiol 2007; 27:147-60. [PMID: 17151944 PMCID: PMC11517205 DOI: 10.1007/s10571-006-9124-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Accepted: 09/27/2006] [Indexed: 12/22/2022]
Abstract
Growing evidence indicates that some metabolites derived from the kynurenine pathway, the major route of L-tryptophan catabolism, are involved in the neurotoxicity associated with several brain disorders, such as Huntington's disease, Parkinson's disease and Alzheimer's disease, as well as in glutaryl-CoA dehydrogenase deficiency (GAI). Considering that the pathophysiology of the brain damage in these neurodegenerative disorders is not completely defined, in the present study, we investigated the in vitro effect of L-kynurenine (Kyn), kynurenic acid (KA), 3-hydroxykynurenine (3HK), 3-hydroxyanthranilic acid (3HA) and anthranilic acid (AA) on some parameters of energy metabolism, namely glucose uptake, 14CO2 production from [U-14C] glucose, [1-14C] acetate and [1,5-14C] citrate, as well as on the activities of the respiratory chain complexes I-IV and Na+,K+-ATPase activity in cerebral cortex from 30-day-old rats. We observed that all compounds tested, except L-kynurenine, significantly increased glucose uptake and inhibited 14CO2 production from [U-14C] glucose, [1-14C] acetate and [1,5-14C] citrate. In addition, the activities of complexes I, II and IV of the respiratory chain were significantly inhibited by 3HK, while 3HA inhibited complexes I and II activities and AA inhibited complexes I-III activities. Moreover, Na+,K+-ATPase activity was not modified by these kynurenines. Taken together, our present data provide evidence that various kynurenine intermediates provoke impairment of brain energy metabolism.
Collapse
Affiliation(s)
- Patrícia Fernanda Schuck
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600- Anexo, CEP 90035-003 Porto Alegre, RS Brazil
| | - Anelise Tonin
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600- Anexo, CEP 90035-003 Porto Alegre, RS Brazil
| | - Gustavo da Costa Ferreira
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600- Anexo, CEP 90035-003 Porto Alegre, RS Brazil
| | - Carolina Maso Viegas
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600- Anexo, CEP 90035-003 Porto Alegre, RS Brazil
| | - Alexandra Latini
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600- Anexo, CEP 90035-003 Porto Alegre, RS Brazil
- Serviço de Genética Médica do Hospital de Clínicas de Porto Alegre, Porto Alegre, RS Brazil
| | - Clovis Milton Duval Wannmacher
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600- Anexo, CEP 90035-003 Porto Alegre, RS Brazil
| | - Angela Terezinha de Souza Wyse
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600- Anexo, CEP 90035-003 Porto Alegre, RS Brazil
| | - Carlos Severo Dutra-Filho
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600- Anexo, CEP 90035-003 Porto Alegre, RS Brazil
| | - Moacir Wajner
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600- Anexo, CEP 90035-003 Porto Alegre, RS Brazil
- Serviço de Genética Médica do Hospital de Clínicas de Porto Alegre, Porto Alegre, RS Brazil
- Universidade Luterana do Brasil, Canoas, RS Brazil
| |
Collapse
|
19
|
Leipnitz G, Schumacher C, Dalcin KB, Scussiato K, Solano A, Funchal C, Dutra-Filho CS, Wyse ATS, Wannmacher CMD, Latini A, Wajner M. In vitro evidence for an antioxidant role of 3-hydroxykynurenine and 3-hydroxyanthranilic acid in the brain. Neurochem Int 2007; 50:83-94. [PMID: 16959377 DOI: 10.1016/j.neuint.2006.04.017] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Revised: 04/10/2006] [Accepted: 04/12/2006] [Indexed: 11/25/2022]
Abstract
We investigated the in vitro effect of 3-hydroxykynurenine (3HKyn), 3-hydroxyanthranilic acid (3HAA), kynurenine (Kyn) and anthranilic acid (AA) on various parameters of oxidative stress in rat cerebral cortex and in cultured C6 glioma cells. It was demonstrated that 3HKyn and 3HAA significantly reduced the thiobarbituric acid-reactive substances (TBA-RS) and chemiluminescence measurements in rat cerebral cortex, indicating that these metabolites prevent lipid peroxidation in the brain. In addition, GSH spontaneous oxidation was significantly prevented by 3HAA, but not by the other kynurenines in cerebral cortex. We also verified that 3HKyn and 3HAA significantly decreased the peroxyl radicals induced by the thermolysis of 2,2'-azo-bis-(2-amidinopropane)-derived peroxyl radicals, and to a higher degree than the classical peroxyl scavenger trolox. 2-Deoxy-d-ribose degradation was also significantly prevented by 3HKyn, implying that this metabolite was able to scavenge hydroxyl radicals. Furthermore, the total antioxidant reactivity of C6 glioma cells was significantly increased when these cells were exposed from 1 to 48h to 3HKyn, being the effect more prominent at shorter incubation times. TBA-RS values in C6 cells were significantly reduced by 3HKyn when exposed from 1 to 6h with this kynurenine. However, C6 cell morphology was not altered by 3HKyn. Finally, we tested whether 3HKyn could prevent the increased free radical production induced by glutaric acid (GA), the major metabolite accumulating in glutaric acidemia type I, by evaluating the isolated and combined effects of these compounds on TBA-RS levels and 2',7'-dihydrodichlorofluorescein (DCFH) oxidation in rat brain. GA provoked a significant increase of TBA-RS values and of DCFH oxidation, effects that were attenuated and fully prevented, respectively, by 3HKyn. The results strongly indicate that 3HKyn and 3HAA behave as antioxidants in cerebral cortex and C6 glioma cells from rats.
Collapse
Affiliation(s)
- Guilhian Leipnitz
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal de Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ribeiro CAJ, Grando V, Dutra Filho CS, Wannmacher CMD, Wajner M. Evidence that quinolinic acid severely impairs energy metabolism through activation of NMDA receptors in striatum from developing rats. J Neurochem 2006; 99:1531-42. [PMID: 17230642 DOI: 10.1111/j.1471-4159.2006.04199.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In the present study we investigated the effect of intrastriatal administration of 150 nmol quinolinic acid to young rats on critical enzyme activities of energy production and transfer, as well as on 14CO2 production from [1-14C]acetate at distinct periods after quinolinic acid injection. We observed that quinolinic acid injection significantly inhibited complexes II (50%), III (46%) and II-III (35%), as well as creatine kinase (27%), but not the activities of complexes I and IV and citrate synthase in striatum prepared 12 h after treatment. In contrast, no alterations of these enzyme activities were observed 3 or 6 h after quinolinic acid administration. 14CO2 production from [1-14C]acetate was also significantly inhibited (27%) by quinolinic acid in rat striatum prepared 12 h after injection. However, no alterations of these activities were observed in striatum homogenates incubated in the presence of 100 microm quinolinic acid . Pretreatment with the NMDA receptor antagonist MK-801 and with creatine totally prevented all inhibitory effects elicited by quinolinic acid administration. In addition, alpha-tocopherol plus ascorbate and the nitric oxide synthase inhibitor l-NAME completely abolished the inhibitions provoked by quinolinic acid on creatine kinase and complex III. Furthermore, pyruvate pretreatment totally blocked the inhibitory effects of quinolinic acid injection on complex II activity and partially prevented quinolinic acid-induced creatine kinase inhibition. These observations strongly indicate that oxidative phosphorylation, the citric acid cycle and cellular energy transfer are compromised by high concentrations of quinolinic acid in the striatum of young rats and that these inhibitory effects were probably mediated by NMDA stimulation.
Collapse
Affiliation(s)
- César A J Ribeiro
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | |
Collapse
|
21
|
Kölker S, Sauer SW, Surtees RAH, Leonard JV. The aetiology of neurological complications of organic acidaemias--a role for the blood-brain barrier. J Inherit Metab Dis 2006; 29:701-4; discussion 705-6. [PMID: 17041745 DOI: 10.1007/s10545-006-0415-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 08/09/2006] [Accepted: 08/30/2006] [Indexed: 10/24/2022]
Abstract
The blood-brain barrier (BBB) metabolically isolates the central nervous system (CNS) from the circulation and protects it against fluctuations of hydrophilic nutrients in plasma and from intoxication. Recent studies have shown that dicarboxylic acids (DCAs) are transported across the blood-brain barrier at very low rates. In organic acidaemias, neurological complications are common. We hypothesize that, as a result of the very limited efflux, in certain organic acidaemias there is pathological accumulation of DCAs (e.g. glutarate, 3-hydroxyglutarate, D-2- and L-2-hydroxyglutarate, methylmalonate) in the brain secondary to the metabolic block. At high concentrations some of these compounds may become neurotoxic. Treatment should be aimed at preventing the accumulation of these compounds using our understanding of the properties of the BBB.
Collapse
Affiliation(s)
- S Kölker
- Department of General Paediatrics, Division of Inborn Metabolic Diseases, Universitatskinderklinik Heidelberg, Germany
| | | | | | | |
Collapse
|
22
|
Hedlund GL, Longo N, Pasquali M. Glutaric acidemia type 1. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2006; 142C:86-94. [PMID: 16602100 PMCID: PMC2556991 DOI: 10.1002/ajmg.c.30088] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Glutaric acidemias comprise different disorders resulting in an increased urinary excretion of glutaric acid. Glutaric acidemia type 1 (GA-1) is an autosomal recessive disorder of lysine, hydroxylysine, and tryptophan metabolism caused by deficiency of glutaryl-CoA dehydrogenase. It results in the accumulation of 3-hydroxyglutaric and glutaric acid. Affected patients can present with brain atrophy and macrocephaly and with acute dystonia secondary to striatal degeneration in most cases triggered by an intercurrent childhood infection with fever between 6 and 18 months of age. This disorder can be identified by increased glutaryl (C5DC) carnitine on newborn screening. Urine organic acid analysis indicates the presence of excess 3-OH-glutaric acid, and urine acylcarnitine profile shows glutaryl carnitine as the major peak. Therapy consists in carnitine supplementation to remove glutaric acid, a diet restricted in amino acids capable of producing glutaric acid, and prompt treatment of intercurrent illnesses. Early diagnosis and therapy reduce the risk of acute dystonia in patients with GA-1.
Collapse
Affiliation(s)
- Gary L. Hedlund
- Department of Medical Imaging, Primary Children’s Medical Center, Salt Lake City UT 84113
| | - Nicola Longo
- Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
- Department of Pathology, University of Utah, and ARUP Laboratories, 500 Chipeta Way, Salt Lake City, Utah, USA
| | - Marzia Pasquali
- Department of Pathology, University of Utah, and ARUP Laboratories, 500 Chipeta Way, Salt Lake City, Utah, USA
| |
Collapse
|
23
|
Chalmers RA, Bain MD, Zschocke J. Riboflavin-responsive glutaryl CoA dehydrogenase deficiency. Mol Genet Metab 2006; 88:29-37. [PMID: 16377226 DOI: 10.1016/j.ymgme.2005.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 11/10/2005] [Accepted: 11/10/2005] [Indexed: 11/21/2022]
Abstract
We report here riboflavin responsiveness in a patient with glutaryl CoA dehydrogenase (GCDH) deficiency, compound heterozygous for the S139L and P248L mutations and with 20% residual GCDH enzyme activity in vitro. Our results suggest the mitochondrial GCDH homotetramer remains intact with one of these mutations associated with the binding site of the single FAD cofactor and that pharmacological doses of the cofactor precursor may be sufficient to induce an increase in activity in the mutant GCDH enzyme, although not sufficient to normalise urinary organic acid excretion. Serine139 is one of nine conserved amino acid residues that line the binding site of the protein and is in close proximity to both substrate and FAD cofactor. It is possible that steric alterations caused by substitution of serine with leucine at this position may be overcome with high cofactor concentrations. P248L is also associated with some residual GCDH activity in other patients and the unique combination of S139L with P248L may also explain the results in our patient. Responsiveness to riboflavin in our patient has been compared with two other patients with glutaric aciduria type 1 and minimal residual GCDH activity, one with homozygosity for the R257Q mutation and one with heterozygosity for the G354S mutation and a novel G156V mutation. A low lysine diet reduced glutaric acid excretion in our riboflavin-responsive GCDH-deficient patient almost to control values. She is now 21 years of age and clinically and neurologically normal.
Collapse
|
24
|
Sauer SW, Okun JG, Fricker G, Mahringer A, Müller I, Crnic LR, Mühlhausen C, Hoffmann GF, Hörster F, Goodman SI, Harding CO, Koeller DM, Kölker S. Intracerebral accumulation of glutaric and 3-hydroxyglutaric acids secondary to limited flux across the blood-brain barrier constitute a biochemical risk factor for neurodegeneration in glutaryl-CoA dehydrogenase deficiency. J Neurochem 2006; 97:899-910. [PMID: 16573641 DOI: 10.1111/j.1471-4159.2006.03813.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glutaric acid (GA) and 3-hydroxyglutaric acids (3-OH-GA) are key metabolites in glutaryl co-enzyme A dehydrogenase (GCDH) deficiency and are both considered to be potential neurotoxins. As cerebral concentrations of GA and 3-OH-GA have not yet been studied systematically, we investigated the tissue-specific distribution of these organic acids and glutarylcarnitine in brain, liver, skeletal and heart muscle of Gcdh-deficient mice as well as in hepatic Gcdh-/- mice and in C57Bl/6 mice following intraperitoneal loading. Furthermore, we determined the flux of GA and 3-OH-GA across the blood-brain barrier (BBB) using porcine brain microvessel endothelial cells. Concentrations of GA, 3-OH-GA and glutarylcarnitine were significantly elevated in all tissues of Gcdh-/- mice. Strikingly, cerebral concentrations of GA and 3-OH-GA were unexpectedly high, reaching similar concentrations as those found in liver. In contrast, cerebral concentrations of these organic acids remained low in hepatic Gcdh-/- mice and after intraperitoneal injection of GA and 3-OH-GA. These results suggest limited flux of GA and 3-OH-GA across the BBB, which was supported in cultured porcine brain capillary endothelial cells. In conclusion, we propose that an intracerebral de novo synthesis and subsequent trapping of GA and 3-OH-GA should be considered as a biochemical risk factor for neurodegeneration in GCDH deficiency.
Collapse
Affiliation(s)
- Sven W Sauer
- Department of General Pediatrics, Division of Inborn Metabolic Diseases, University Children's Hospital Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ferreira GDC, Viegas CM, Schuck PF, Tonin A, Ribeiro CAJ, Coelho DDM, Dalla-Costa T, Latini A, Wyse ATS, Wannmacher CMD, Vargas CR, Wajner M. Glutaric acid administration impairs energy metabolism in midbrain and skeletal muscle of young rats. Neurochem Res 2006; 30:1123-31. [PMID: 16292505 DOI: 10.1007/s11064-005-7711-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2005] [Indexed: 01/03/2023]
Abstract
A genetic mice model of glutaric acidemia type I (GAI) has recently been developed, however affected animals do not develop the striatal damage characteristic of patients with this disorder. Therefore, the initial aim of the present work was to induce high glutaric acid (GA) concentrations in rat brain similar to those found in GAI patients through subcutaneous injection of GA. High brain GA concentrations (up to 0.60 micromol/g congruent with 0.60mM) were achieved by a single subcutaneous injection of saline-buffered GA (5 micromol/g body weight) to Wistar rats of 7-22 days of life. GA brain levels were about 10-fold lower than in plasma and 5-fold lower than in skeletal and cardiac muscles, indicating that the permeability of the blood brain barrier to GA is low. We also aimed to use this model to investigate neurochemical parameters in the animals. Thus, we evaluated the effect of this model on energy metabolism parameters in midbrain, in which the striatum is localized, as well as in peripheral tissues (skeletal and cardiac muscles) of 22-day-old rats. Control rats were treated with saline in the same volumes. We verified that CO2 production from glucose was not altered in midbrain of rats treated with GA, indicating a normal functioning of the tricarboxylic acid cycle. Creatine kinase activity was also not changed in midbrain, skeletal and cardiac muscles. In contrast, complex I-III activity of the respiratory chain was inhibited in midbrain (25%), while complexes I-III (25%) and II-III (15%) activities were reduced in skeletal muscle, with no alterations found in cardiac muscle. These data indicate that GA administration moderately impairs cellular energy metabolism in midbrain and skeletal muscle of young rats.
Collapse
Affiliation(s)
- Gustavo da C Ferreira
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Leipnitz G, Schumacher C, Scussiato K, Dalcin KB, Wannmacher CMD, Wyse ATD, Dutra-Filho CS, Wajner M, Latini A. Quinolinic acid reduces the antioxidant defenses in cerebral cortex of young rats. Int J Dev Neurosci 2005; 23:695-701. [PMID: 16213122 DOI: 10.1016/j.ijdevneu.2005.08.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2005] [Revised: 08/26/2005] [Accepted: 08/30/2005] [Indexed: 11/21/2022] Open
Abstract
Quinolinic acid (QA), the major metabolite of the kynurenine pathway, is found at increased concentrations in brain of patients affected by various common neurodegenerative diseases, including Huntington's disease and Alzheimer's disease. Recently, a role for QA in the pathophysiology of glutaric acidemia type I (GAI) was postulated. Considering that oxidative stress has been recently involved in the pathophysiology of the brain injury in these neurodegenerative disorders; in the present study, we investigated the in vitro effect of QA on various parameters of oxidative stress, namely total radical-trapping antioxidant potential (TRAP), total antioxidant reactivity (TAR), glutathione (GSH) levels, thiobarbituric acid-reactive substances (TBA-RS) measurement and chemiluminescence in cerebral cortex of 30-day-old rats. QA diminished the brain non-enzymatic antioxidant defenses, as determined by the reduced levels of TRAP, TAR and GSH. We also observed that QA significantly increased TBA-RS and chemiluminescence. Therefore, in vitro QA-treatment of rat cortical supernatants induced oxidative stress by reducing the tissue antioxidant defenses and increasing lipid oxidative damage, probably as a result of free radical generation. In addition, we examined the effect of QA on TBA-RS levels in the presence of glutaric acid (GA) and 3-hydroxyglutaric acid (3HGA), which are accumulated in GAI, as well as in the presence of 3-hydroxykynurenine (3HK), a tryptophan metabolite of the kynurenine pathway with antioxidant properties. It was verified that the single addition of QA or GA plus 3HGA to the incubation medium significantly stimulated in vitro lipid peroxidation. Furthermore, 3HK completely prevented the TBA-RS increase caused by the simultaneous addition of QA, GA and 3HGA. Taken together, it may be presumed that QA induces oxidative stress in the brain, which may be associated, at least in part, with the pathophysiology of central nervous system abnormalities of neurodegenerative diseases in which QA accumulates.
Collapse
Affiliation(s)
- Guilhian Leipnitz
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal de Rio Grande do Sul, Rua Ramiro Barcelos N 2600 - Anexo, CEP 90035-003, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Latini A, Rodriguez M, Borba Rosa R, Scussiato K, Leipnitz G, Reis de Assis D, da Costa Ferreira G, Funchal C, Jacques-Silva MC, Buzin L, Giugliani R, Cassina A, Radi R, Wajner M. 3-Hydroxyglutaric acid moderately impairs energy metabolism in brain of young rats. Neuroscience 2005; 135:111-20. [PMID: 16111821 DOI: 10.1016/j.neuroscience.2005.05.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 05/09/2005] [Accepted: 05/09/2005] [Indexed: 01/03/2023]
Abstract
3-Hydroxyglutaric acid (3HGA) accumulates in the inherited neurometabolic disorder known as glutaryl-CoA dehydrogenase deficiency. The disease is clinically characterized by severe neurological symptoms, frontotemporal atrophy and striatum degeneration. Because of the pathophysiology of the brain damage in glutaryl-CoA dehydrogenase deficiency is not completed clear, we investigated the in vitro effect of 3HGA (0.01-5.0mM) on critical enzyme activities of energy metabolism, including the respiratory chain complexes I-V, creatine kinase isoforms and Na(+),K(+)-ATPase in cerebral cortex and striatum from 30-day-old rats. Complex II activity was also studied in rat C6-glioma cells exposed to 3HGA. The effect of 3HGA was further investigated on the rate of oxygen consumption in mitochondria from rat cerebrum. We observed that 1.0mM 3HGA significantly inhibited complex II in cerebral cortex and C6 cells but not the other activities of the respiratory chain complexes. Creatine kinase isoforms and Na(+),K(+)-ATPase were also not affected by the acid. Furthermore, no inhibition of complex II activity occurred when mitochondrial preparations from cerebral cortex or striatum homogenates were used. In addition, 3HGA significantly lowered the respiratory control ratio in the presence of glutamate/malate and succinate under stressful conditions or when mitochondria were permeabilized with digitonin. Since 3HGA stimulated oxygen consumption in state IV and compromised ATP formation, it can be presumed that this organic acid might act as an endogenous uncoupler of mitochondria respiration. Finally, we observed that 3HGA changed C6 cell morphology from a round flat to a spindle-differentiated shape, but did not alter cell viability neither induced apoptosis. The data provide evidence that 3HGA provokes a moderate impairment of brain energy metabolism and do not support the view that 3HGA-induced energy failure would solely explain the characteristic brain degeneration observed in glutaryl-CoA dehydrogenase deficiency patients.
Collapse
Affiliation(s)
- A Latini
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal de Rio Grande do Sul, Anexo, CEP 90035-003, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kölker S, Greenberg CR, Lindner M, Müller E, Naughten ER, Hoffmann GF. Emergency treatment in glutaryl-CoA dehydrogenase deficiency. J Inherit Metab Dis 2004; 27:893-902. [PMID: 15505397 DOI: 10.1023/b:boli.0000045774.51260.ea] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The history of glutaryl-CoA dehydrogenase deficiency is determined by acute encephalopathic crises that are precipitated by common febrile diseases, vaccinations or surgical interventions during infancy and early childhood. Such crises result in an irreversible destruction of the basal ganglia (in particular of the putamina), and consequently dystonia, dyskinesia and choreoathetosis. Secondary complications include feeding and speech problems, failure to thrive, recurrent aspiration, immobilization, severe motor deficits and early death. It is generally accepted that maintenance treatment based on dietary lysine or protein restriction and supplementation with carnitine (and riboflavin) is insufficient to prevent acute crises during intercurrent illnesses or conditions that enhance catabolic state. Consequently, outpatient and inpatient emergency therapies have been implemented. The present review describes a recommended approach to emergency therapy for this disease.
Collapse
Affiliation(s)
- S Kölker
- University Children's Hospital, Department of General Pediatrics, Division of Metabolic and Endocrine Diseases, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Kölker S, Koeller DM, Sauer S, Hörster F, Schwab MA, Hoffmann GF, Ullrich K, Okun JG. Excitotoxicity and bioenergetics in glutaryl-CoA dehydrogenase deficiency. J Inherit Metab Dis 2004; 27:805-12. [PMID: 15505385 DOI: 10.1023/b:boli.0000045762.37248.28] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Glutaryl-CoA dehydrogenase deficiency is an inherited organic acid disorder with predominantly neurological presentation. The biochemical hallmark of this disease is an accumulation and enhanced urinary excretion of two key organic acids, glutaric acid and 3-hydroxyglutaric acid. If untreated, acute striatal damage is often precipitated by febrile illnesses during a vulnerable period of brain development in infancy or early childhood, resulting in a dystonic dyskinetic movement disorder. 3-hydroxyglutaric and glutaric acids are structurally similar to glutamate, the main excitatory amino acid of the human brain, and are considered to play an important role in the pathophysiology of this disease. 3-hydroxyglutaric acid induces excitotoxic cell damage specifically via activation of N-methyl-D-aspartate receptors. It has also been suggested that secondary amplification loops potentiate the neurotoxic properties of these organic acids. Probable mechanisms for this effect include cytokine-stimulated NO production, a decrease in energy metabolism, and reduction of cellular creatine phosphate levels. Finally, maturation-dependent changes in the expression of neuronal glutamate receptors may affect the vulnerability of the immature brain to excitotoxic cell damage in this disease.
Collapse
Affiliation(s)
- S Kölker
- Department of General Pediatrics, University Children's Hospital, D-69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|