1
|
Liu T, Lin Y, Luo X, Sun Y, Zhao H. VISTA Uncovers Missing Gene Expression and Spatial-induced Information for Spatial Transcriptomic Data Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.26.609718. [PMID: 40166134 PMCID: PMC11957009 DOI: 10.1101/2024.08.26.609718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Characterizing cell activities within a spatially resolved context is essential to enhance our understanding of spatially-induced cellular states and features. While single-cell RNA-seq (scRNA-seq) offers comprehensive profiling of cells within a tissue, it fails to capture spatial context. Conversely, subcellular spatial transcriptomics (SST) technologies provide high-resolution spatial profiles of gene expression, yet their utility is constrained by the limited number of genes they can simultaneously profile. To address this limitation, we introduce VISTA, a novel approach designed to predict the expression levels of unobserved genes specifically tailored for SST data. VISTA jointly models scRNA-seq data and SST data based on variational inference and geometric deep learning, and incorporates uncertainty quantification. Using four SST datasets, we demonstrate VISTA's superior performance in imputation and in analyzing large-scale SST datasets with satisfactory time efficiency and memory consumption. The imputation of VISTA enables a multitude of downstream applications, including the detection of new spatially variable genes, the discovery of novel ligand-receptor interactions, the inference of spatial RNA velocity, the generation for spatial transcriptomics with in-silico perturbation, and an improved decomposition of spatial and intrinsic variations.
Collapse
Affiliation(s)
- Tianyu Liu
- Interdepartmental Program in Computational Biology & Bioinformatics, Yale University, New Haven, 06511, CT, USA
| | - Yingxin Lin
- Department of Biostatistics, Yale University, New Haven, 06511, CT, USA
| | - Xiao Luo
- Department of Computer Science, University of California, Los Angeles, Los Angeles, 90095, CA, USA
| | - Yizhou Sun
- Department of Computer Science, University of California, Los Angeles, Los Angeles, 90095, CA, USA
| | - Hongyu Zhao
- Interdepartmental Program in Computational Biology & Bioinformatics, Yale University, New Haven, 06511, CT, USA
- Department of Biostatistics, Yale University, New Haven, 06511, CT, USA
| |
Collapse
|
2
|
Samani SL, Yadi M, Aflatoonian B, Zarehmehrjerdi F, Hafizibarjin Z, Rezvani ME, Izadi M. Beneficial effects of apigenin on ovarian histological changes and angiogenesis gene expression in rat model of polycystic ovary syndrome. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2641-2649. [PMID: 39240354 DOI: 10.1007/s00210-024-03414-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Polycystic ovary syndrome (PCOS) is the most common heterogeneous reproductive disorder and can affect approximately 10% of women of reproductive age. Abnormal vasculogenesis is a common event in polycystic ovary syndrome. This study planned to evaluate the antiangiogenic role of apigenin in ovarian histology, gene expression, and vascular density and stability in an experimental model of PCOS. Twenty-eight rats weighing 180-250 g were divided into 4 groups. Seven rats in the control group remain intact and without treatment. In 21 rats, an ovary polycystic model with a single injection of estradiol valerate was established. The PCOS rats were treated with vehicle, apigenin 10, or apigenin 20 mg/kg in three different PCOS groups for 14 days. At the end, a histological assessment of the ovaries was performed to determine collagen density and follicle counting. The endothelial or periendothelial cells were determined by immunohistochemical assay, and angiogenesis gene expression was determined using molecular assessments. Apigenin treatment partially restored follicular development, decreased the number of cysts, and increased corpora lutea in PCOS rats. Also, apigenin decreased the collagen density in the polycystic ovaries. However, apigenin administration mitigated ovarian angiogenesis by a reduction in endothelial and periendothelial cell numbers. A decrease in VEGF and VEGF R2 (kinase insert domain receptor, KDR) expressions was found after the treatment of rats with apigenin. Conclusively, our data revealed that apigenin improves ovarian histological alterations and follicular dynamics in polycystic ovary rats. The effect is partially mediated by suppression of the VEGF signaling system and reduction in endothelial and periendothelial cell proliferation.
Collapse
Affiliation(s)
- Sanaz Lotfi Samani
- Department of Physiology, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Mahsa Yadi
- Department of Physiology, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Behrouz Aflatoonian
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Zarehmehrjerdi
- Yazd Neuroendocrine Research Center, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Zeynab Hafizibarjin
- Department of Physiology, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Mohammad Ebrahim Rezvani
- Department of Physiology, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran.
- Yazd Neuroendocrine Research Center, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran.
| | - Mahin Izadi
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- Andrology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
3
|
Eldehna WM, Habib YA, Mahmoud AE, Barghash MF, Elsayed ZM, Elsawi AE, Maklad RM, Rashed M, Khalil A, Hammad SF, Ali MM, El Kerdawy AM. Design, synthesis, and in silico insights of novel N'-(2-oxoindolin-3-ylidene)piperidine-4-carbohydrazide derivatives as VEGFR-2 inhibitors. Bioorg Chem 2024; 153:107829. [PMID: 39317037 DOI: 10.1016/j.bioorg.2024.107829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
Vascular endothelial growth factor (VEGF) is a crucial key factor in breast tumorigenesis. VEGF plays an important role in angiogenesis, tumor proliferation, and metastasis. Herein, we report the design and synthesis of twenty-one novel piperidine/oxindole derivatives as potential VEGFR-2 inhibitors. The designed compound library aimed to occupy the binding site of VEGFR-2 in a similar binding pattern to that of the reference VEGFR-2 inhibitor Sorafenib. The synthesized compounds were biologically evaluated for their cytotoxic effects against two breast cancer cell lines (MCF-7 and MDA-MB-468). Compounds 12e and 6n were the most potent cytotoxic derivatives against the former and the latter cell lines, showing IC50 values of 8.00 and 0.60 µM, respectively. Furthermore, all the synthesized compounds were evaluated for their inhibitory activities towards VEGFR-2, with compound 12e showing the most potent activity with an IC50 value of 45.9 nM, surpassing the reference standard Sorafenib (IC50 = 48.6 nM). Additionally, compound 6n emerged as the top performer when tested with the other most promising compounds for their cytotoxic effects on HUVEC (IC50 = 28.77 nM). The designed library of compounds was subjected to molecular docking and molecular dynamic simulations, which revealed key binding interactions within the VEGFR-2 active site, including hydrogen bonding with Cys919, Glu885, and Asp1046 residues. Moreover, in silico predictions of physicochemical and pharmacokinetic properties for the target compounds indicated favorable drug-like characteristics.
Collapse
Affiliation(s)
- Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh P.O. Box 33516, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Canal El Mahmoudia St., Alexandria 21648, Egypt.
| | - Youmna A Habib
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Abeer E Mahmoud
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki 12622, Giza, Egypt
| | - Mohamed F Barghash
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki 12622, Giza, Egypt
| | - Zainab M Elsayed
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Ahmed E Elsawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh P.O. Box 33516, Egypt
| | - Raed M Maklad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh P.O. Box 33516, Egypt
| | - Mahmoud Rashed
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Amira Khalil
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt
| | - Sherif F Hammad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Ain Helwan, Egypt; PharmD Program, Egypt-Japan University of Science and Technology, New Borg El-Arab, Alexandria, Egypt
| | - Mamdouh M Ali
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki 12622, Giza, Egypt
| | - Ahmed M El Kerdawy
- School of Pharmacy, College of Health and Science, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, Lincolnshire, United Kingdom; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, P.O. Box 11562 Cairo, Egypt
| |
Collapse
|
4
|
Bruzaite A, Gedvilaite G, Kriauciuniene L, Liutkeviciene R. Association of KDR (rs2071559, rs1870377), CFH (rs1061170, rs1410996) genes variants and serum levels with pituitary adenoma. Mol Genet Genomic Med 2024; 12:e2289. [PMID: 37803932 PMCID: PMC10767405 DOI: 10.1002/mgg3.2289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/09/2023] [Accepted: 09/19/2023] [Indexed: 10/08/2023] Open
Abstract
INTRODUCTION Pituitary adenomas (PA) are slow-growing, benign tumors that usually do not metastasize to other body organs. Although they are referred to as benign, tumor growth can eventually put pressure on nearby structures, spread to surrounding tissues, and cause symptoms. The exact cause of PA is unknown, and the pathogenesis is multifactorial. METHODS Our study included PA patients and healthy volunteers. Genomic DNA was extracted using the DNA salting-out method. All participants were genotyped for the KDR rs2071559, rs1870377, CFH rs1061170, and rs1410996 polymorphisms. Serum levels of KDR and CFH were examined using the ELISA method. RESULTS The results of the present study showed that KDR rs2071559 A allele was associated with the occurrence of PA, hormonally active PA, invasive PA, and PA without recurrence development. KDR rs1870377 increased the probability of invasive PA and PA recurrence. CFH rs1061170 C allele was associated with hormonally active PA and the T allele was associated with non-invasive PA development. CONCLUSION KDR rs2071559, rs1870377, and CFH rs1061170 could be potential biomarkers associated with PA.
Collapse
Affiliation(s)
- Akvile Bruzaite
- Ophthalmology LaboratoryNeuroscience Institute, Lithuanian University of Health Sciences, Medical AcademyKaunasLithuania
| | - Greta Gedvilaite
- Ophthalmology LaboratoryNeuroscience Institute, Lithuanian University of Health Sciences, Medical AcademyKaunasLithuania
| | - Loresa Kriauciuniene
- Ophthalmology LaboratoryNeuroscience Institute, Lithuanian University of Health Sciences, Medical AcademyKaunasLithuania
| | - Rasa Liutkeviciene
- Ophthalmology LaboratoryNeuroscience Institute, Lithuanian University of Health Sciences, Medical AcademyKaunasLithuania
| |
Collapse
|
5
|
Tamilarasan R, Subramani A, Sasikumar G, Ganapathi P, Karthikeyan S, Ponnusamy S, Albukhaty S, Mohammed MKA, Al-Aqbi ZT, Al-Doghachi FAJ, Ahmed DS, Taufiq-Yap YH. Catalytic response and molecular simulation studies in the development of synthetic routes in trimeric triaryl pyridinium type ionic liquids. Sci Rep 2023; 13:4453. [PMID: 36932171 PMCID: PMC10023811 DOI: 10.1038/s41598-023-31476-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Under conventional and silica-supported Muffle furnace methods, water-soluble substituted trimeric triaryl pyridinium cations with various inorganic counter anions are synthesized. The solvent-free synthesis method is superior to the conventional method in terms of non-toxicity, quicker reaction times, ease of workup, and higher yields. Trimeric substituted pyridinium salts acted as excellent catalytic responses for the preparation of Gem-bisamide derivatives compared with available literature. To evaluate the molecular docking, benzyl/4-nitrobenzyl substituted triaryl pyridinium salt compounds with VEGFR-2 kinase were used with H-bonds, π-π stacking, salt bridges, and hydrophobic contacts. The results showed that the VEGFR-2 kinase protein had the most potent inhibitory activity. Intriguingly, the compound [NBTAPy]PF6- had a strongly binds to VEGFR-2 kinase and controlled its activity in cancer treatment and prevention.
Collapse
Affiliation(s)
- Ramalingam Tamilarasan
- Department of Chemistry, Vel Tech Multi Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Avadi, Chennai, India
| | - Annadurai Subramani
- Department of Biochemistry, Dwaraka Doss Goverdhan Doss Vaishnav College, Chennai, Tamilnadu, 600106, India
| | - G Sasikumar
- Department of Biochemistry, Dwaraka Doss Goverdhan Doss Vaishnav College, Chennai, Tamilnadu, 600106, India
| | - Pandurangan Ganapathi
- Department of Chemistry, Mohamed Sathak College of Arts & Science, Sholinganallur, Chennai, India
| | - S Karthikeyan
- Department of Physics, Periyar University Centre for Post Graduate and Research Studies, Dharmapuri, 636 701, India
| | - Sasikumar Ponnusamy
- Department of Physics, Saveetha School of Engineering, (SIMATS), Thandalam, Chennai, 602 105, India.
| | - Salim Albukhaty
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
| | - Mustafa K A Mohammed
- Radiological Techniques Department, Al-Mustaqbal University College, 51001, Hillah, Babylon, Iraq.
| | - Zaidon T Al-Aqbi
- College of Agriculture, University of Misan, Al-Amara, Misan, 62001, Iraq
| | - Faris A J Al-Doghachi
- Department of Chemistry, Faculty of Science, University of Basrah, Basrah, 61004, Iraq
| | - Duha S Ahmed
- Applied Science Department, University of Technology, Baghdad, 10011, Iraq
| | - Yun Hin Taufiq-Yap
- Catalysis Science and Technology Research Centre, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Faculty of Science and Natural Resources, University Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia.
| |
Collapse
|
6
|
Song MH, Park JW, Kim MJ, Shin YK, Kim SC, Jeong SY, Ku JL. Colon cancer organoids using monoclonal organoids established in four different lesions of one cancer patient reveal tumor heterogeneity and different real-time responsiveness to anti-cancer drugs. Biomed Pharmacother 2022; 152:113260. [PMID: 35691158 DOI: 10.1016/j.biopha.2022.113260] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 11/02/2022] Open
Abstract
Organoid culture technique has been taking center stage as a next-generation ex-vivo model due to advancement of stem cell research techniques. The importance of the laboratory-based ex vivo model has increasingly been recognized for recapitulating histological, and physioglocal conditions of in vivo microenviorment. Accordingly, the use of this technique has also broadened the understanding of intratumoral heterogeneity which is closely associated with varied drug responses observed in patients. Likewise, studies on heterogeneity within a single tumor tissue have drawn much attention. Here, we isolated 15 single clones from 4 tumor organoid lines from 1 patient at a primary passage from one patient. Each organoid line showed variable alterations in both genotype and phenotype. Furthermore, our methodological approach on drug test employing a high-throughput screening system enabled us to pinpoint the optimal time frame for anti-cancer drugs within a single tumor. We propose that our method can effectively reveal the heterogeneity of time-point in drug response, and the most optimal therapeutic strategies for individual patient.
Collapse
Affiliation(s)
- Myoung-Hyun Song
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, South Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea; Cancer Research Institute, Seoul National University, Seoul 03080, South Korea
| | - Ji Won Park
- Cancer Research Institute, Seoul National University, Seoul 03080, South Korea; Department of Surgery, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Min Jung Kim
- Cancer Research Institute, Seoul National University, Seoul 03080, South Korea; Department of Surgery, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Young-Kyoung Shin
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Soon-Chan Kim
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, South Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea; Cancer Research Institute, Seoul National University, Seoul 03080, South Korea; Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Seung-Yong Jeong
- Cancer Research Institute, Seoul National University, Seoul 03080, South Korea; Department of Surgery, Seoul National University College of Medicine, Seoul 03080, South Korea; Seoul National University Boramae Medical Center, Seoul 07061, South Korea.
| | - Ja-Lok Ku
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, South Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea; Cancer Research Institute, Seoul National University, Seoul 03080, South Korea; Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, South Korea.
| |
Collapse
|
7
|
Artemisinin derivative FO-ARS-123 as a novel VEGFR2 inhibitor suppresses angiogenesis, cell migration, and invasion. Chem Biol Interact 2022; 365:110062. [DOI: 10.1016/j.cbi.2022.110062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/06/2022] [Accepted: 07/13/2022] [Indexed: 11/19/2022]
|
8
|
Malekan M, Ebrahimzadeh MA. Vascular Endothelial Growth Factor Receptors [VEGFR] as Target in Breast Cancer Treatment: Current Status in Preclinical and Clinical Studies and Future Directions. Curr Top Med Chem 2022; 22:891-920. [PMID: 35260067 DOI: 10.2174/1568026622666220308161710] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/11/2022] [Accepted: 01/20/2022] [Indexed: 12/09/2022]
Abstract
Breast cancer [BC] is one of the most common cancers among women, one of the leading causes of a considerable number of cancer-related death globally. Among all procedures leading to the formation of breast tumors, angiogenesis has an important role in cancer progression and outcomes. Therefore, various anti-angiogenic strategies have developed so far to enhance treatment's efficacy in different types of BC. Vascular endothelial growth factors [VEGFs] and their receptors are regarded as the most well-known regulators of neovascularization. VEGF binding to vascular endothelial growth factor receptors [VEGFRs] provides cell proliferation and vascular tissue formation by the subsequent tyrosine kinase pathway. VEGF/VEGFR axis displays an attractive target for anti-angiogenesis and anti-cancer drug design. This review aims to describe the existing literature regarding VEGFR inhibitors, focusing on BC treatment reported in the last two decades.
Collapse
Affiliation(s)
- Mohammad Malekan
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Ali Ebrahimzadeh
- Pharmaceutical Sciences Research Center, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
9
|
Mahnashi MH, El-Senduny FF, Alshahrani MA, Abou-Salim MA. Design, Synthesis, and Biological Evaluation of a Novel VEGFR-2 Inhibitor Based on a 1,2,5-Oxadiazole-2-Oxide Scaffold with MAPK Signaling Pathway Inhibition. Pharmaceuticals (Basel) 2022; 15:246. [PMID: 35215358 PMCID: PMC8880564 DOI: 10.3390/ph15020246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/04/2022] Open
Abstract
Over the past few decades, the development of broad-spectrum anticancer agents with anti-angiogenic activity has witnessed considerable progress. In this study, a new series of pyrazolo[3,4-d]pyrimidines based on a phenylfuroxan scaffold were designed, synthesized, and evaluated, in terms of their anticancer activities. NCI-60 cell one-dose screening revealed that compounds 12a-c and 14a had the best MGI%, among the tested compounds. The target fluorinated compound 12b, as the most active one, showed better anticancer activity compared to the reference drug sorafenib, with IC50 values of 11.5, 11.6, and 13 µM against the HepG-2, A2780CP, and MDA-MB-231 cell lines, respectively. Furthermore, compound 12b (IC50 = 0.092 µM) had VEGFR-2-inhibitory activity comparable to that of the standard inhibitor sorafenib (IC50 = 0.049 µM). Furthermore, the ability of compound 12b in modulating MAPK signaling pathways was investigated. It was found to decrease the level of total ERK and its phosphorylated form, as well as leading to the down-regulation of metalloproteinase MMP-9 and the over-expression of p21 and p27, thus leading to subG1 cell-cycle arrest and, thus, the induction of apoptosis. Additionally, compound 12b decreased the rate of wound healing in the absence of serum, in comparison to DMSO-treated cells, providing a significant impact on metastasis inhibition. The quantitative RT-PCR results for E-cadherin and N-cadherin showed lower expression of the neuronal N-cadherin and increased expression of epithelial E-cadherin, indicating the ability of 12b to suppress metastasis. Furthermore, 12b-treated HepG2 cells expressed a low level of anti-apoptotic BCL-2 and over-expressed proapoptotic Bax genes, respectively. Using the DAF-FM DA fluorescence probe, compound 12b produced NO intracellularly as efficiently as the reference drug JS-K. In silico molecular docking studies showed a structural similarity through an overlay of 12b with sorafenib. Interestingly, the drug-likeness properties of compound 12b met the expectations of Pfizer's rule for the design of new drug candidates. Therefore, this study presents a novel anticancer lead compound that is worthy of further investigation and activity improvement.
Collapse
Affiliation(s)
- Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran 61441, Saudi Arabia;
| | - Fardous F. El-Senduny
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt;
| | - Mohammed Abdulrahman Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia;
| | - Mahrous A. Abou-Salim
- Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| |
Collapse
|
10
|
Paul D, Mahanta S, Tag H, Das SK, Das Gupta D, Tanti B, Ananthan R, Das R, Jambhulkar S, Hui PK. Identification of tyrosine kinase inhibitors from Panax bipinnatifidus and Panax pseudoginseng for RTK-HER2 and VEGFR2 receptors, by in silico approach. Mol Divers 2021; 26:1933-1955. [PMID: 34554395 DOI: 10.1007/s11030-021-10304-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/24/2021] [Indexed: 11/26/2022]
Abstract
Breast and stomach cancer is reported as a leading cause for human mortality across the world. The overexpression of receptor tyrosine kinase (RTK) proteins, namely the human epidermal growth factor receptor2 (HER2) and the vascular endothelial growth factor receptor2 (VEGFR2), is reported to be responsible for development and metastasis of breast and stomach cancer. Although several synthetic tyrosine kinase inhibitors (TKIs) as drug candidates targeting RTK-HER2 and VEGFR2 are currently available in the market, these are expensive with the reported side effects. This confers an opportunity for development of alternative novel tyrosine kinase inhibitors (TKIs) for RTK-HER2 and VEGFR2 receptors from the botanical sources. In the present study, we characterized 47 bioactive phytocompounds from the methanol extracts of the rhizomes of Asiatic traditional medicinal herbs-Panax bipinnatifidus and Panax pseudoginseng, of Indian Himalayan landraces using HPLC, GC-MS and high-sensitivity LC-MS tools. We performed molecular docking and molecular dynamics simulation analysis using Schrödinger suite 2020-3 to confirm the TKI phytocompounds showing the best binding affinity towards RTK-HER2 and VEGFR2 receptors. The results of molecular docking studies confirmed that the phytocompound (ligand) luteolin 7-O-glucoside (IHP15) showed the highest binding affinity towards receptor HER2 (PDB ID: 3PP0) with docking score and Glide g score (G-Score) of - 13.272, while chlorogenic acid (IHP12) showed the highest binding affinity towards receptor VEGFR2 (PDB ID: 4AGC) with docking score and Glide g score (G-Score) of - 10.673. Molecular dynamics (MD) simulation analysis carried out for 100 ns has confirmed strong binding interaction between the ligand and receptor complex [luteolin 7-O-glucoside (IHP15) and HER2 (PDB ID: 3PP0)] and is found to be stabilized within 40 to 100 ns of MD simulation, whereas ligand-receptor complex [chlorogenic acid (IPH12) and VEGFR2 (PDB ID: 4AGC)] also showed strong binding interaction and is found to be stabilized within 18-30 ns but slightly deviated during 100 ns of MD simulation. In silico ADME-Tox study using SwissADME revealed that the ligands luteolin 7-O-glucoside (IHP15) and chlorogenic acid (IHP12) have passed majority parameters of the common drug discovery rules. The present study has confirmed luteolin 7-O-glucoside (IHP15) and chlorogenic acid (IHP12) as potential tyrosine kinase inhibitors (TKIs) which were found to inhibit RTKs-HER2 and VEGFR2 receptor proteins, and thus paving the way for development of alternative potential TKIs (drug molecules) for treatment of HER2- and VEGFR2-positive breast and stomach cancer.
Collapse
Affiliation(s)
- Dipayan Paul
- Department of Biotechnology, National Institute of Technology Arunachal Pradesh, Yupia, Papum Pare, Arunachal Pradesh, 791112, India
| | - Saurov Mahanta
- National Institute of Electronics and Information Technology, Guwahati, Assam, 781008, India
| | - Hui Tag
- Pharmacognosy and Phytochemistry Research Laboratory, Department of Botany, Rajiv Gandhi University, Rono Hills, Doimukh, Arunachal Pradesh, 791112, India.
| | - Sanjib Kumar Das
- Department of Biotechnology, National Institute of Technology Arunachal Pradesh, Yupia, Papum Pare, Arunachal Pradesh, 791112, India
| | - Debmalya Das Gupta
- Department of Biotechnology, National Institute of Technology Arunachal Pradesh, Yupia, Papum Pare, Arunachal Pradesh, 791112, India
| | - Bhaben Tanti
- Department of Botany, Gauhati University, Guwahati, Assam, 781014, India
| | - Rajendran Ananthan
- Food Chemistry Division, ICMR National Institute of Nutrition, Jamai-Osmania PO, Hyderabad, Telangana, 500007, India
| | - Ranjan Das
- Department of Crop Physiology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Sanjay Jambhulkar
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, Maharashtra, 400085, India
| | - Pallabi Kalita Hui
- Department of Biotechnology, National Institute of Technology Arunachal Pradesh, Yupia, Papum Pare, Arunachal Pradesh, 791112, India.
| |
Collapse
|
11
|
Buachan P, Namsa-Aid M, Sung HK, Peng C, Sweeney G, Tanechpongtamb W. Inhibitory effects of terrein on lung cancer cell metastasis and angiogenesis. Oncol Rep 2021; 45:94. [PMID: 33846818 PMCID: PMC8047749 DOI: 10.3892/or.2021.8045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/01/2021] [Indexed: 01/08/2023] Open
Abstract
Cancer metastasis is the leading cause of mortality in cancer patients. Over 70% of lung cancer patients are diagnosed at advanced or metastatic stages, and this results in an increased incidence of mortality. Terrein is a secondary bioactive fungal metabolite isolated from Aspergillus terreus. Numerous studies have demonstrated that terrein has anticancer properties, but in the present study, the cellular mechanisms underlying the inhibition of lung cancer cell metastasis by terrein was investigated for the first time. Using MTT assays, the cytotoxic effects of terrein were first examined in human lung cancer cells (A549 cells) and then compared with its cytotoxic effects in three noncancer control cell lines (Vero kidney, L6 skeletal muscle and H9C2 cardiomyoblast cells). The results indicated that terrein significantly reduced the viability of all these cells but exhibited a different level of toxicity in each cell type; these results revealed a specific concentration range in which the effect of terrein was specific to A549 cells. This significant cytotoxic effect of terrein in A549 cells was verified using LDH assays. It was then demonstrated that terrein attenuated the proliferation of A549 cells using IncuCyte image analysis. Regarding its antimetastatic effects, terrein significantly inhibited A549 cell adhesion, migration and invasion. In addition, terrein suppressed the angiogenic processes of A549 cells, including vascular endothelial growth factor (VEGF) secretion, capillary-like tube formation and VEGF/VEGFR2 interaction. These phenomena were accompanied by reduced protein levels of integrins, FAK, and their downstream mediators (e.g., PI3K, AKT, mTORC1 and P70S6K). All these data indicated that terrein was able to inhibit all the major metastatic processes in human lung cancer cells, which is crucial for cancer treatment.
Collapse
Affiliation(s)
- Paiwan Buachan
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Maneekarn Namsa-Aid
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Hye Kyoung Sung
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Chun Peng
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Gary Sweeney
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Wanlaya Tanechpongtamb
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| |
Collapse
|
12
|
Metibemu DS, Akinloye OA, Akamo AJ, Okoye JO, Ojo DA, Morifi E, Omotuyi IO. VEGFR-2 kinase domain inhibition as a scaffold for anti-angiogenesis: Validation of the anti-angiogenic effects of carotenoids from Spondias mombin in DMBA model of breast carcinoma in Wistar rats. Toxicol Rep 2021; 8:489-498. [PMID: 34408968 PMCID: PMC8363596 DOI: 10.1016/j.toxrep.2021.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 01/22/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) and its receptor-2 (VEGFR-2) mediated tumorigenesis, metastasis, and angiogenesis are the cause of the increased levels of mortality associated with breast cancer and other forms of cancer. Inhibition of VEGF and VEGFR-2 provides a great therapeutic option in the management of cancer. This study employed VEGFR-2 kinase domain inhibition as an anti-angiogenic scaffold and further validate the anti-angiogenic effects of the lead phytochemicals, carotenoids from Spondias mombin in 7, 12-Dimethylbenz[a]anthracene (DMBA) model of breast carcinoma in Wistar rats. Phytochemicals characterized from 6 reported anti-cancer plants were screened against the VEGFR-2 kinase domain. The lead phytochemicals, carotenoids from Spondias mombin were isolated and subjected to Liquid Chromatography-Electrospray Ionization-Mass Spectrometry (LC-ESI-MS) for characterization. The anti-angiogenic potentials of the carotenoid isolates were validated in the DMBA model of breast carcinoma in female Wistar rats through assessment of the expression of anti-angiogenic related mRNAs, histopathological analysis, and molecular docking. Treatment with carotenoid isolates (100 mg/kg and 200 mg/kg) significantly (p < 0.05) downregulated the expression of VEGF, VEGFR, Epidermal Growth Factor Receptor (EGFR), Hypoxia-Inducible Factor-1(HIF-1), and Matrix Metalloproteinase-2 (MMP-2) mRNAs in the mammary tumours, while the expression of Chromodomain Helicase DNA-Binding Protein-1 (CHD-1) mRNA was significantly (p < 0.05) upregulated. DMBA induced comedo and invasive ductal subtypes of breast carcinoma. The binding of astaxanthin, 7,7',8,8'-tetrahydro-β,β-carotene, and beta-carotene-15,15'-epoxide to the ATP binding site led to the DFG-out conformation with binding energies of -8.2 kcal/mol, -10.3 kcal/mol, and -10.5 kcal/mol respectively. Carotenoid isolates demonstrated anti-angiogenic and anti-proliferating potentials via VEGFR-2 kinase domain inhibition.
Collapse
Affiliation(s)
- Damilohun Samuel Metibemu
- Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria
| | | | - Adio Jamiu Akamo
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria
| | - Jude Ogechukwu Okoye
- Department of Medical Laboratory Science, Faculty of Health Sciences and Technology, College of Medicine, Nnamdi Azikiwe University, Nnewi Campus, Nigeria
| | - David Ajiboye Ojo
- Department of Microbiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - Eric Morifi
- Department of Chemistry, School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa
| | - Idowu Olaposi Omotuyi
- Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria
| |
Collapse
|
13
|
Modi SJ, Kulkarni VM. Exploration of structural requirements for the inhibition of VEGFR-2 tyrosine kinase: Binding site analysis of type II, 'DFG-out' inhibitors. J Biomol Struct Dyn 2021; 40:5712-5727. [PMID: 33459187 DOI: 10.1080/07391102.2021.1872417] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The conserved three-dimensional structure of receptor tyrosine kinases (RTKs) has been varyingly observed in prokaryotes to humans that actively participate in the phosphorylation process of tyrosine residues in the protein, which results in the alteration of protein's function. Mutation and transcriptional or post-translational modifications lead to a deregulation of kinases, which ultimately fallout into the development of pathological conditions like cancer. The human genome encodes two kinds of tyrosine kinases: non-receptor tyrosine kinases (NRTKs) and receptor tyrosine kinases (RTKs). Among these kinases, VEGF/VEGFR-2 signaling cascade is an important target to develop novel small-molecule inhibitors for the therapy of abnormal angiogenesis incorporated with cancer. Due to advances in the knowledge of the catalytic domain and 'DFG-motif' region, selective 'DFG-in' (type I) and 'DFG-out' (type II) VEGFR-2/KDR inhibitors were successfully developed, and some are in different phases of a clinical trial. 'DFG-out' (inactive) confirmation has significant advantages over 'DFG-in' (active) confirmation concerning the affinity of the ATP at the catalytic domain. Further, in the catalytic domain, between front and back cleft, smaller gatekeeper residue (Val916) present; therefore, selectivity against VEGFR-2 could be precisely achieved. In this review, small molecule type II/'DFG-out' inhibitors, their conformation, interaction at receptor binding pocket, and structural requirements to inhibit VEGFR-2 at the molecular level are discussed.HighlightsVEGFR-2 is a type of membrane-bound receptor tyrosine kinases (RTKs) that regulates the process of vasculogenesis and angiogenesis.Small molecule first-generation type I, 'DFG-in' and second-generation type II, 'DFG-out' VEGFR-2 inhibitors exhibit clinical benefits in the treatment of aberrant angiogenesis associated with cancer.Molecular docking of FDA approved and novel type II inhibitors were performed using X-ray crystal structures of VEGFR-2; binding site analysis was carried out.Structural requirements for the inhibition of VEGFR-2 were identified.
Collapse
Affiliation(s)
- Siddharth J Modi
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| | - Vithal M Kulkarni
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| |
Collapse
|
14
|
Ntellas P, Mavroeidis L, Gkoura S, Gazouli I, Amylidi AL, Papadaki A, Zarkavelis G, Mauri D, Karpathiou G, Kolettas E, Batistatou A, Pentheroudakis G. Old Player-New Tricks: Non Angiogenic Effects of the VEGF/VEGFR Pathway in Cancer. Cancers (Basel) 2020; 12:E3145. [PMID: 33121034 PMCID: PMC7692709 DOI: 10.3390/cancers12113145] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022] Open
Abstract
Angiogenesis has long been considered to facilitate and sustain cancer growth, making the introduction of anti-angiogenic agents that disrupt the vascular endothelial growth factor/receptor (VEGF/VEGFR) pathway an important milestone at the beginning of the 21st century. Originally research on VEGF signaling focused on its survival and mitogenic effects towards endothelial cells, with moderate so far success of anti-angiogenic therapy. However, VEGF can have multiple effects on additional cell types including immune and tumor cells, by directly influencing and promoting tumor cell survival, proliferation and invasion and contributing to an immunosuppressive microenvironment. In this review, we summarize the effects of the VEGF/VEGFR pathway on non-endothelial cells and the resulting implications of anti-angiogenic agents that include direct inhibition of tumor cell growth and immunostimulatory functions. Finally, we present how previously unappreciated studies on VEGF biology, that have demonstrated immunomodulatory properties and tumor regression by disrupting the VEGF/VEGFR pathway, now provide the scientific basis for new combinational treatments of immunotherapy with anti-angiogenic agents.
Collapse
Affiliation(s)
- Panagiotis Ntellas
- Department of Medical Oncology, University Hospital of Ioannina, 45500 Ioannina, Greece; (P.N.); (L.M.); (S.G.); (I.G.); (A.-L.A.); (A.P.); (G.Z.); (D.M.)
- Society for Study of Clonal Heterogeneity of Neoplasia (EMEKEN), 45445 Ioannina, Greece
| | - Leonidas Mavroeidis
- Department of Medical Oncology, University Hospital of Ioannina, 45500 Ioannina, Greece; (P.N.); (L.M.); (S.G.); (I.G.); (A.-L.A.); (A.P.); (G.Z.); (D.M.)
- Society for Study of Clonal Heterogeneity of Neoplasia (EMEKEN), 45445 Ioannina, Greece
| | - Stefania Gkoura
- Department of Medical Oncology, University Hospital of Ioannina, 45500 Ioannina, Greece; (P.N.); (L.M.); (S.G.); (I.G.); (A.-L.A.); (A.P.); (G.Z.); (D.M.)
- Society for Study of Clonal Heterogeneity of Neoplasia (EMEKEN), 45445 Ioannina, Greece
| | - Ioanna Gazouli
- Department of Medical Oncology, University Hospital of Ioannina, 45500 Ioannina, Greece; (P.N.); (L.M.); (S.G.); (I.G.); (A.-L.A.); (A.P.); (G.Z.); (D.M.)
- Society for Study of Clonal Heterogeneity of Neoplasia (EMEKEN), 45445 Ioannina, Greece
| | - Anna-Lea Amylidi
- Department of Medical Oncology, University Hospital of Ioannina, 45500 Ioannina, Greece; (P.N.); (L.M.); (S.G.); (I.G.); (A.-L.A.); (A.P.); (G.Z.); (D.M.)
- Society for Study of Clonal Heterogeneity of Neoplasia (EMEKEN), 45445 Ioannina, Greece
| | - Alexandra Papadaki
- Department of Medical Oncology, University Hospital of Ioannina, 45500 Ioannina, Greece; (P.N.); (L.M.); (S.G.); (I.G.); (A.-L.A.); (A.P.); (G.Z.); (D.M.)
- Society for Study of Clonal Heterogeneity of Neoplasia (EMEKEN), 45445 Ioannina, Greece
| | - George Zarkavelis
- Department of Medical Oncology, University Hospital of Ioannina, 45500 Ioannina, Greece; (P.N.); (L.M.); (S.G.); (I.G.); (A.-L.A.); (A.P.); (G.Z.); (D.M.)
- Society for Study of Clonal Heterogeneity of Neoplasia (EMEKEN), 45445 Ioannina, Greece
| | - Davide Mauri
- Department of Medical Oncology, University Hospital of Ioannina, 45500 Ioannina, Greece; (P.N.); (L.M.); (S.G.); (I.G.); (A.-L.A.); (A.P.); (G.Z.); (D.M.)
- Society for Study of Clonal Heterogeneity of Neoplasia (EMEKEN), 45445 Ioannina, Greece
| | - Georgia Karpathiou
- Department of Pathology, University Hospital of St-Etienne, 42055 Saint Etienne, France;
| | - Evangelos Kolettas
- Laboratory of Biology, School of Medicine, Faculty of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
- Biomedical Research Division, Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology, 45115 Ioannina, Greece
| | - Anna Batistatou
- Department of Pathology, University Hospital of Ioannina, 45500 Ioannina, Greece;
| | - George Pentheroudakis
- Department of Medical Oncology, University Hospital of Ioannina, 45500 Ioannina, Greece; (P.N.); (L.M.); (S.G.); (I.G.); (A.-L.A.); (A.P.); (G.Z.); (D.M.)
- Society for Study of Clonal Heterogeneity of Neoplasia (EMEKEN), 45445 Ioannina, Greece
| |
Collapse
|
15
|
Modi SJ, Kulkarni VM. Discovery of VEGFR-2 inhibitors exerting significant anticancer activity against CD44+ and CD133+ cancer stem cells (CSCs): Reversal of TGF-β induced epithelial-mesenchymal transition (EMT) in hepatocellular carcinoma. Eur J Med Chem 2020; 207:112851. [PMID: 33002846 DOI: 10.1016/j.ejmech.2020.112851] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/02/2020] [Accepted: 09/13/2020] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is a malignancy characterized by neoangiogenesis, which is an augmented production of proangiogenic factors by the tumor and its adjacent infected cells. These dysregulated angiogenic factors are the therapeutic targets in anti-angiogenic drug development. The signaling pathway of vascular endothelial growth factor (VEGF)/VEGFR-2 is crucial for controlling the angiogenic responses in endothelial cells (ECs). In this study, we carried out a rational drug design approach wherein we have identified the novel orally bioavailable compound VS 8 as a potent VEGFR-2 inhibitor, which remarkably suppresses hVEGF and hVEGFR-2 expression in HUVECs and exhibits significant anti-angiogenic effects in CAM assay. Besides, VS 8 significantly induces apoptosis in HCC cell line (Hep G2). Later we examined its effectiveness against CD44+ and CD133+ CSCs. Here, VS 8 was found to be active against CSCs, and adequate for the cessation of the cell cycle at 'G0/G1' and 'S' phase in CD44+ and CD133+ CSCs respectively. Factually, transforming growth factor-β (TGF-β) stimulated epithelial-mesenchymal transition (EMT) induces invasion and migration of HCC cells, which results in the metastasis. Therefore, we studied the effect of VS 8 on EMT markers using flow cytometry, which suggested that VS 8 significantly upregulates E-cadherin (epithelial biomarker) and downregulates vimentin (mesenchymal biomarker). Further, VS 8 downregulates the expression of EMT-inducing transcription factors (EMT-TFs), i.e., SNAIL. Altogether, our findings indicate that VS 8 could be a promising drug candidate for cancer therapy.
Collapse
Affiliation(s)
- Siddharth J Modi
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune, 411038, Maharashtra, India
| | - Vithal M Kulkarni
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune, 411038, Maharashtra, India.
| |
Collapse
|
16
|
Dana P, Bunthot S, Suktham K, Surassmo S, Yata T, Namdee K, Yingmema W, Yimsoo T, Ruktanonchai UR, Sathornsumetee S, Saengkrit N. Active targeting liposome-PLGA composite for cisplatin delivery against cervical cancer. Colloids Surf B Biointerfaces 2020; 196:111270. [PMID: 32777659 DOI: 10.1016/j.colsurfb.2020.111270] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 06/25/2020] [Accepted: 07/21/2020] [Indexed: 12/24/2022]
Abstract
Cisplatin (Cis) is a widely used chemotherapeutic drug for cancer treatment. However, toxicities and drug resistance limit the use of cisplatin. This study was aimed to improve cisplatin delivery using a targeting strategy to reduce the toxicity. In the present study, combinations of poly lactic-co-glycolic acids (PLGA) and liposomes were used as carriers for cisplatin delivery. In addition, to target the nanoparticle towards tumor cells, the liposome was conjugated with Avastin®, an anti-VEGF antibody. Cisplatin was loaded into PLGA using the double emulsion solvent evaporation method and further encapsulated in an Avastin® conjugated liposome (define herein as L-PLGA-Cis-Avastin®). Their physicochemical properties, including particle size, ζ-potential, encapsulation efficiency and drug release profiles were characterized. In addition, a study of the efficiency of tumor targeted drug delivery was conducted with cervical tumor bearing mice via intravenous injection. The therapeutic effect was examined in a 3D spheroid of SiHa cell line and SiHa cells bearing mice. The L-PLGA-Cis-Avastin® prompted a significant effect on cell viability and triggered cytotoxicity of SiHa cells. A cell internalization study confirmed that the L-PLGA-Cis-Avastin® had greater binding specificity to SiHa cells than those of L-PLGA-Cis or free drug, resulting in enhanced cellular uptake. Tumor targeting specificity was finally confirmed in xenograft tumors. Taken together, this nanoparticle could serve as a promising specific targeted drug for cervical cancer treatment.
Collapse
Affiliation(s)
- Paweena Dana
- National Nanotechnology Center, National Science and Technology Development Agency, Pathumthani, 12120, Thailand
| | - Suphawadee Bunthot
- National Nanotechnology Center, National Science and Technology Development Agency, Pathumthani, 12120, Thailand
| | - Kunat Suktham
- National Nanotechnology Center, National Science and Technology Development Agency, Pathumthani, 12120, Thailand
| | - Suvimol Surassmo
- National Nanotechnology Center, National Science and Technology Development Agency, Pathumthani, 12120, Thailand
| | - Teerapong Yata
- Biochemical Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Katawut Namdee
- National Nanotechnology Center, National Science and Technology Development Agency, Pathumthani, 12120, Thailand
| | - Werayut Yingmema
- Laboratory Animal Center, Thammasat University, Pathumthani, 12121, Thailand
| | - Thunyatorn Yimsoo
- Laboratory Animal Center, Thammasat University, Pathumthani, 12121, Thailand
| | | | - Sith Sathornsumetee
- Research Network NANOTEC-MU in Theranostic Nanomedicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok, 10700, Thailand
| | - Nattika Saengkrit
- National Nanotechnology Center, National Science and Technology Development Agency, Pathumthani, 12120, Thailand.
| |
Collapse
|
17
|
Theranostic Designed Near-Infrared Fluorescent Poly (Lactic-co-Glycolic Acid) Nanoparticles and Preliminary Studies with Functionalized VEGF-Nanoparticles. J Clin Med 2020; 9:jcm9061750. [PMID: 32516917 PMCID: PMC7355639 DOI: 10.3390/jcm9061750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022] Open
Abstract
Poly-lactic-co-glycolic acid nanoparticles (PLGA-NPs) were approved by the Food and Drug Administration (FDA) for drug delivery in cancer. The enhanced permeability and retention (EPR) effect drives their accumulation minimizing the side effects of chemotherapeutics. Our aim was to develop a new theranostic tool for cancer diagnosis and therapy based on PLGA-NPs and to evaluate the added value of vascular endothelial growth factor (VEGF) for enhanced tumor targeting. In vitro and in vivo properties of PLGA-NPs were tested and compared with VEGF-PLGA-NPs. Dynamic light scattering (DLS) was performed to evaluate the particle size, polydispersity index (PDI), and zeta potential of both preparations. Spectroscopy was used to confirm the absorption spectra in the near-infrared (NIR). In vivo, in BALB/c mice bearing a syngeneic tumor in the right thigh, intravenously injected PLGA-NPs showed a high target-to-muscle ratio (4.2 T/M at 24 h post-injection) that increased over time, with a maximum uptake at 72 h and a retention of the NPs up to 240 h. VEGF-PLGA-NPs accumulated in tumors 1.75 times more than PLGA-NPs with a tumor-to-muscle ratio of 7.90 ± 1.61 (versus 4.49 ± 0.54 of PLGA-NPs). Our study highlights the tumor-targeting potential of PLGA-NPs for diagnostic and therapeutic applications. Such NPs can be conjugated with proteins such as VEGF to increase accumulation in tumor lesions.
Collapse
|
18
|
Dietary patterns and relative expression levels of PPAR-γ, VEGF-A and HIF-1α genes in benign breast diseases: case-control and consecutive case-series designs. Br J Nutr 2020; 124:832-843. [PMID: 32406342 DOI: 10.1017/s0007114520001737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We aimed to study dietary patterns in association with the relative expression levels of PPAR-γ, vascular endothelial growth factor-A (VEGF-A) and hypoxia-inducible factor-1α (HIF-1α) in women with benign breast disease (BBD). The study design was combinative, included a case-series and case-control compartments. Initially, eligible BBD patients (n 77, aged 19-52 years old) were recruited at Nour-Nejat hospital, Tabriz, Iran (2012-2014). A hospital-based group of healthy controls was matched for age (n 231, aged 20-63 years old) and sex. Dietary data were collected using a valid 136-item FFQ. Principal component analysis generated two main components (Kaiser-Meyer-Olkin = 0·684), including a Healthy pattern (whole bread, fruits, vegetables, vegetable oils, legumes, spices, seafood, low-fat meat, skinless poultry, low-fat dairy products, nuts and seeds) and a Western pattern (starchy foods, high-fat meat and poultry, high-fat dairy products, hydrogenated fat, fast food, salt and sweets). High adherence to the Western pattern increased the risk of BBD (ORadj 5·59; 95 % CI 2·06, 15·10; P < 0·01), whereas high intake of the Healthy pattern was associated with a 74 % lower risk of BBD (95 % CI 0·08, 0·81; P < 0·05). In the BBD population, the Western pattern was correlated with over-expression of HIF-1α (radj 0·309, P < 0·05). There were inverse correlations between the Healthy pattern and expressions of PPAR-γ (radj -0·338, P < 0·05), HIF-1α (radj -0·340, P < 0·05) and VEGF-A (radj -0·286, P < 0·05). In conclusion, new findings suggested that the Healthy pattern was associated inversely with the risk of BBD, and this could be correlated with down-regulation of PPAR-γ, VEGF-A and HIF-1α genes, which might hold promise to preclude BBD of malignant pathological transformation.
Collapse
|
19
|
Kassab AE, El‐Dash Y, Gedawy EM. Novel pyrazolopyrimidine urea derivatives: Synthesis, antiproliferative activity, VEGFR‐2 inhibition, and effects on the cell cycle profile. Arch Pharm (Weinheim) 2020; 353:e1900319. [DOI: 10.1002/ardp.201900319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 01/11/2023]
Affiliation(s)
- Asmaa E. Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of PharmacyCairo UniversityCairo Egypt
| | - Yara El‐Dash
- Department of Pharmaceutical Organic Chemistry, Faculty of PharmacyCairo UniversityCairo Egypt
| | - Ehab M. Gedawy
- Department of Pharmaceutical Organic Chemistry, Faculty of PharmacyCairo UniversityCairo Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical IndustriesBadr University in Cairo (BUC)Cairo Egypt
| |
Collapse
|
20
|
Saw PE, Song EW. Phage display screening of therapeutic peptide for cancer targeting and therapy. Protein Cell 2019; 10:787-807. [PMID: 31140150 PMCID: PMC6834755 DOI: 10.1007/s13238-019-0639-7] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/21/2019] [Indexed: 12/14/2022] Open
Abstract
Recently, phage display technology has been announced as the recipient of Nobel Prize in Chemistry 2018. Phage display technique allows high affinity target-binding peptides to be selected from a complex mixture pool of billions of displayed peptides on phage in a combinatorial library and could be further enriched through the biopanning process; proving to be a powerful technique in the screening of peptide with high affinity and selectivity. In this review, we will first discuss the modifications in phage display techniques used to isolate various cancer-specific ligands by in situ, in vitro, in vivo, and ex vivo screening methods. We will then discuss prominent examples of solid tumor targeting-peptides; namely peptide targeting tumor vasculature, tumor microenvironment (TME) and over-expressed receptors on cancer cells identified through phage display screening. We will also discuss the current challenges and future outlook for targeting peptide-based therapeutics in the clinics.
Collapse
Affiliation(s)
- Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Er-Wei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
21
|
Shokri A, Pirouzpanah S, Foroutan-Ghaznavi M, Montazeri V, Fakhrjou A, Nozad-Charoudeh H, Tavoosidana G. Dietary protein sources and tumoral overexpression of RhoA, VEGF-A and VEGFR2 genes among breast cancer patients. GENES & NUTRITION 2019; 14:22. [PMID: 31333806 PMCID: PMC6617685 DOI: 10.1186/s12263-019-0645-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 06/20/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND High protein intake may promote angiogenesis giving support to the development of metastasis according to the experimental data. However, nutritional epidemiologic evidence is inconsistent with metastasis. Therefore, we aimed to study the association between dietary intake of protein and tumoral expression levels of Ras homologous gene family member A (RhoA), vascular endothelial growth factor-A (VEGF-A), and VEGF receptor-2 (VEGFR2) in primary breast cancer (BC) patients. METHODS Over this consecutive case series, 177 women primary diagnosed with histopathologically confirmed BC in Tabriz (Iran) were enrolled between May 2011 and November 2016. A validated food frequency questionnaire was completed for eligible participants. Fold change in gene expression was measured using quantitative real-time PCR. Principal component factor analysis (PCA) was used to express dietary groups of proteins. RESULTS Total protein intake was associated with the expression level of VEGF-A in progesterone receptor-positive (PR+: β = 0.296, p < 0.01) and VEGFR2 in patients with involvement of axillary lymph node metastasis (ALNM+: β = 0.295, p < 0.01) when covariates were adjusted. High animal protein intake was correlated with overexpression of RhoA in tumors with estrogen receptor-positive (ER+: β = 0.230, p < 0.05), ALNM+ (β = 0.238, p < 0.05), and vascular invasion (VI+: β = 0.313, p < 0.01). Animal protein intake was correlated with the overexpression of VEGFR2 when tumors were positive for hormonal receptors (ER+: β = 0.299, p < 0.01; PR+: β = 0.296, p < 0.01). Based on the PCA outputs, protein provided by whole meat (white and red meat) was associated inversely with RhoA expression in ALNM+ (β = - 0.253, p < 0.05) and premenopausal women (β = - 0.285, p < 0.01) in adjusted models. Whole meat was correlated with VEGFR2 overexpression in VI+ (β = 0.288, p < 0.05) and premenopausal status (β = 0.300, p < 0.05) in adjusted models. A group composed of dairy products and legumes was correlated with the overexpression of RhoA (β = 0.249, p < 0.05) and VEGF-A (β = 0.297, p < 0.05) in VI+. CONCLUSIONS Based on the multivariate findings, the dietary protein could associate with the overexpression of RhoA and VEGF-VEGFR2 in favor of lymphatic and vascular metastasis in BC patients.
Collapse
Affiliation(s)
- Ali Shokri
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry and Dietetics, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Pirouzpanah
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry and Dietetics, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mitra Foroutan-Ghaznavi
- Department of Clinical Nutrition, Faculty of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Montazeri
- Department of Thoracic Surgery, Faculty of Medicine, Surgery Ward, Nour-Nejat Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ashraf Fakhrjou
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Gholamreza Tavoosidana
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Dai G, Ding K, Cao Q, Xu T, He F, Liu S, Ju W. Emodin suppresses growth and invasion of colorectal cancer cells by inhibiting VEGFR2. Eur J Pharmacol 2019; 859:172525. [PMID: 31288005 DOI: 10.1016/j.ejphar.2019.172525] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 06/30/2019] [Accepted: 07/04/2019] [Indexed: 01/01/2023]
Abstract
Emodin can effectively inhibit colorectal cancer cells, but the mechanism remains elusive. This study analyzed the changes of VEGFR2 signaling pathways in patients with colorectal cancer and the effects of emodin on HCT116 cells and xenograft tumor model. The expression levels of VEGFR2, PI3K, and p-AKT in colorectal cancer tissue samples were significantly higher than those in adjacent normal ones. Docking simulation confirmed that emodin bound the hydrophobic pocket and partially overlapped with the binding sites of VEGFR2, thus disrupting VEGFR2 dimerization. Western blotting further confirmed that emodin significantly inhibited the expression of VEGFR2, and reduced the expressions of PI3K and p-AKT in HCT116 cells. Furthermore, it suppressed the growth, adhesion and migration of HCT116 cells. In addition, emodin inhibited the tumor growth in xenograft model and the expressions of VEGFR2, PI3K and p-AKT in vivo. In conclusion, emodin suppressed the growth of colorectal cancer cells by inhibiting VEGFR2, as a potential candidate for therapy.
Collapse
Affiliation(s)
- Guoliang Dai
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China
| | - Kang Ding
- National Center of Colorectal Surgery, Jiangsu Integrate Colorectal Oncology Center, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210001, PR China
| | - Qianyu Cao
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Tian Xu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China
| | - Fan He
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China
| | - Shijia Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China
| | - Wenzheng Ju
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China.
| |
Collapse
|
23
|
Vascular Endothelial Growth Factor Receptor (VEGFR-2)/KDR Inhibitors: Medicinal Chemistry Perspective. MEDICINE IN DRUG DISCOVERY 2019. [DOI: 10.1016/j.medidd.2019.100009] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
24
|
Inhibitors of the VEGF Receptor Suppress HeLa S3 Cell Proliferation via Misalignment of Chromosomes and Rotation of the Mitotic Spindle, Causing a Delay in M-Phase Progression. Int J Mol Sci 2018; 19:ijms19124014. [PMID: 30545129 PMCID: PMC6320846 DOI: 10.3390/ijms19124014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/20/2022] Open
Abstract
Cell division is the process by which replicated chromosomes are separated into two daughter cells. Although regulation of M phase has been extensively investigated, not all regulating factors have been identified. Over the course of our research, small molecules were screened to identify those that regulate M phase. In the present study, the vascular endothelial growth factor receptor (VEGFR) inhibitors A83-01, SU4312, and Ki8751 were examined to determine their effects on M phase. Treatment of HeLa S3 cells with these inhibitors suppressed cell proliferation in a concentration-dependent manner, and also suppressed Akt phosphorylation at Ser473, a marker of Akt activation. Interestingly, cleaved caspase-3 was detected in Adriamycin-treated cells but not in inhibitor-treated cells, suggesting that these inhibitors do not suppress cell proliferation by causing apoptosis. A cell cycle synchronization experiment showed that these inhibitors delayed M phase progression, whereas immunofluorescence staining and time-lapse imaging revealed that the M phase delay was accompanied by misalignment of chromosomes and rotation of the mitotic spindle. Treatment with the Mps1 inhibitor AZ3146 prevented the SU4312-induced M phase delay. In conclusion, the VEGFR inhibitors investigated here suppress cell proliferation by spindle assembly checkpoint-induced M phase delay, via misalignment of chromosomes and rotation of the mitotic spindle.
Collapse
|
25
|
Phosphorylated Akt1 in Human Breast Cancer Measured by Direct Sandwich Enzyme-Linked Immunosorbent Assay: Correlation with Clinicopathological Features and Tumor VEGF-Signaling System Component Levels. Int J Biol Markers 2018. [DOI: 10.1177/172460080602100103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Protein kinase B (Akt) plays a major role in the regulation of breast cancer growth, survival, hormone, drug and radiosensitivity, but the clinical value of its expression and activation in human tumors is unclear. Activated Akt1 (pAkt1) expression was quantified in a series of 46 breast cancer and adjacent mammary gland samples by a direct Path-Scan™ PhosphoAkt1 (Ser473) sandwich ELISA kit. VEGF, sVEGFR1 and sVEGFR2 levels were measured simultaneously by standard ELISA kits. Forty-nine percent of the tumors had an increased pAkt1 level as compared to adjacent tissue. pAkt1 levels were significantly higher in stage IIb than in stage I-IIa tumors. The frequency of pAkt1 elevation was positively associated with tumor size and malignancy grade. pAkt1 was also twice as frequently increased in PgR-negative as in PgR-positive tumors, while its mean level was significantly higher in ER-positive than in ER-negative tumors. VEGF, sVEGFR1 and sVEGFR2 were increased in 73–85% of the tumors, but no associations with most clinicobiological factors and pAkt1 level were found. In conclusion, activation of Akt1 is not associated with VEGF signaling protein expression in breast cancer but is related to tumor size, grade of malignancy, and steroid receptor status.
Collapse
|
26
|
Effect of Emodin on Expression of VEGF-A and VEGFR_2 Genes in Human Breast Carcinoma MCF-7 Cell. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2017. [DOI: 10.5812/ijcm.8095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Pu H, Zhang Q, Zhao C, Shi L, Wang Y, Wang J, Zhang M. VEGFA Involves in the Use of Fluvastatin and Zoledronate Against Breast Cancer. Pathol Oncol Res 2017; 24:557-565. [PMID: 28744693 DOI: 10.1007/s12253-017-0277-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 07/12/2017] [Indexed: 12/19/2022]
Abstract
Our study aimed to identify key genes involved in the use of fluvastatin and zoledronate against breast cancer, as well as to investigate the roles of vascular endothelial growth factor A (VEGFA) in the malignant behaviors of breast cancer cells. The expression data GSE33552 was downloaded from Gene Expression Omnibus database, including mocked-, fluvastatin- and zoledronate-treated MDA-MB-231 cells. Differentially expressed genes (DEGs) were identified in fluvastatin- and zoledronate-treated cells using limma package, respectively. Pathway enrichment analysis and protein-protein interaction (PPI) network analysis were then performed. Then we used shRNA specifically targeting VEGFA (shVEGFA) to knock down the expression of VEGFA in MDA-MB-231 cells. Cell viability assay, scratch wound healing assay, Transwell invasion assay and flow cytometry were performed to explore the effects of VEGFA knockdown on the malignant behaviors of breast cancer cells. VEGFA was up-regulated in both fluvastatin- and zoledronate-treated breast cancer cells. Moreover, VEGFA was a hub node in PPI network. In addition, VEGFA was successfully knocked down in MDA-MB-231 cells by shVEGFA. Suppression of VEGFA promoted the migration and invasion of breast cancer MDA-MB-231 cells. Suppression of VEGFA inhibited the apoptosis of MDA-MB-231 cells. Our results indicate that up-regulation of VEGFA may prevent the progression of breast cancer after fluvastatin and zoledronate treatment via inducing cell apoptosis and inhibiting migration and invasion. VEGFA may serve as a potential prognostic indicator for clinical outcome in the management of breast cancer.
Collapse
Affiliation(s)
- Haihong Pu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150 of Nangang District, Harbin, Heilongjiang Province, 150086, China
| | - Qingyuan Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150 of Nangang District, Harbin, Heilongjiang Province, 150086, China.
| | - Chunbo Zhao
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, Heilongjiang Province, China
| | - Lei Shi
- Department of Radiation Oncology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yan Wang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150 of Nangang District, Harbin, Heilongjiang Province, 150086, China
| | - Jingxuan Wang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150 of Nangang District, Harbin, Heilongjiang Province, 150086, China
| | - Minghui Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150 of Nangang District, Harbin, Heilongjiang Province, 150086, China
| |
Collapse
|
28
|
Nasir A, Holzer TR, Chen M, Man MZ, Schade AE. Differential expression of VEGFR2 protein in HER2 positive primary human breast cancer: potential relevance to anti-angiogenic therapies. Cancer Cell Int 2017; 17:56. [PMID: 28533703 PMCID: PMC5438568 DOI: 10.1186/s12935-017-0427-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/12/2017] [Indexed: 12/28/2022] Open
Abstract
Background Clinically relevant predictive biomarkers to tailor anti-angiogenic therapies to breast cancer (BRC) patient subpopulations are an unmet need. Methods We analyzed tumor vascular density and VEGFR2 protein expression in various subsets of primary human BRCs (186 females; Mean age: 59 years; range 33–88 years), using a tissue microarray. Discrete VEGFR2+ and CD34+ tumor vessels were manually scored in invasive ductal, lobular, mixed ductal-lobular and colloid (N = 139, 22, 18, 7) BRC cores. Results The observed CD34+ and VEGFR2+ tumor vascular counts in individual cases were heterogeneous. Mean CD34+ and VEGFR2+ tumor vessel counts were 11 and 3.4 per tumor TMA core respectively. Eighty-nine of 186 (48%) cases had >10 CD34+ tumor vessels, while 97/186 (52%) had fewer CD34+ vessels in each TMA core. Of 169 analyzable cores in the VEGFR2 stained TMA, 90 (53%) showed 1–5 VEGFR2+ tumor vessels/TMA core, while 42/169 (25%) cores had no detectable VEGFR2+ tumor vessels. Thirteen of 169 (8%) cases also showed tumor cell (cytoplasmic/membrane) expression of VEGFR2. Triple-negative breast cancers (TNBCs) appeared to be less vascular (Mean VD = 9.8, range 0–34) than other breast cancer subtypes. Overall, VEGFR2+ tumor vessel counts were significantly higher in HER2+ as compared to HR+ (p = 0.04) and TNBC (p = 0.02) tissues. Compared to HER2− cases, HER2+ breast cancers had higher VEGFR2+ tumor vessel counts (p = 0.007). Conclusion Characterization of pathologic angiogenesis in HER2+ breast cancer provides scientific rationale for future investigation of clinical activity of agents targeting the VEGF/VEGFR2 axis in this clinically aggressive breast cancer subtype.
Collapse
Affiliation(s)
- Aejaz Nasir
- Diagnostic and Experimental Pathology, Eli Lilly and Company, Indianapolis, IN USA.,Eli Lilly and Company, Lilly Corporate Center, DC0424, Indianapolis, IN 46285 USA
| | - Timothy R Holzer
- Diagnostic and Experimental Pathology, Eli Lilly and Company, Indianapolis, IN USA
| | - Mia Chen
- Diagnostic and Experimental Pathology, Eli Lilly and Company, Indianapolis, IN USA
| | - Michael Z Man
- Oncology Statistics, Eli Lilly and Company, Indianapolis, IN USA
| | - Andrew E Schade
- Diagnostic and Experimental Pathology, Eli Lilly and Company, Indianapolis, IN USA
| |
Collapse
|
29
|
Immunoglobulin-like domain 4-mediated ligand-independent dimerization triggers VEGFR-2 activation in HUVECs and VEGFR2-positive breast cancer cells. Breast Cancer Res Treat 2017; 163:423-434. [PMID: 28303365 DOI: 10.1007/s10549-017-4189-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 03/06/2017] [Indexed: 02/07/2023]
Abstract
PURPOSE The extracellular region (EC) of the vascular endothelial growth factor (VEGF) receptor-2 (VEGFR-2) contains seven immunoglobulin-like (Ig-like) domains that are required for specific ligand binding and receptor dimerization. Studies of domain 4-7 deletions and substitutions provided insights into the interaction between receptors in the absence of VEGF. In this study, we investigated the effect of domain 4 in ligand-independent VEGFR-2 dimerization and activation in human vascular endothelial cells and human breast cancer cells. METHODS To confirm the role of domain 4 in ligand-independent receptor dimerization and activation, two VEGFR-2 fragments with and without domain 4, KFP1 and KFP2, were generated by recombinant DNA technology. We measured the affinity of KFP1 and KFP2 with VEGFR-2, and the roles of KFP1 and FKP2 in dimerization and phosphorylation of VEGFR-2. We also evaluated the effect of KFP1 and FKP2 on cell proliferation and migration in HUVECs and in human breast cancer cells. RESULTS We showed that KFP1 did not affect the interaction of VEGFR-2 and VEGF but bound VEGFR-2 in the absence of VEGF. Furthermore, cross-linking and cross-linking immunoblotting demonstrated that KFP1 could form a complex with VEGFR-2, which resulted in VEGFR-2 dimerization in the absence of VEGF. Importantly, we found that the KDR fragment with domain 4 induced phosphorylation of VEGFR-2, as well as phosphorylation of downstream receptor kinases in HUVECs and VEGFR-2-positive breast cancer cells. Consistent with these results, this ligand-independent activation of VEGFR-2 also promoted downstream signaling and cell proliferation and migration. CONCLUSIONS The domain 4 of VEGFR-2 plays an important role in the interaction between VEGFR receptors in the absence of VEGF.
Collapse
|
30
|
Role of high-fat diet on the effect of pioglitazone and melatonin in a rat model of breast cancer. Eur J Cancer Prev 2016; 25:395-403. [DOI: 10.1097/cej.0000000000000195] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
31
|
Taurone S, Galli F, Signore A, Agostinelli E, Dierckx RAJO, Minni A, Pucci M, Artico M. VEGF in nuclear medicine: Clinical application in cancer and future perspectives (Review). Int J Oncol 2016; 49:437-47. [PMID: 27277340 DOI: 10.3892/ijo.2016.3553] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/28/2016] [Indexed: 11/06/2022] Open
Abstract
Clinical trials using antiangiogenic drugs revealed their potential against cancer. Unfortunately, a large percentage of patients does not yet benefit from this therapeutic approach highlighting the need of diagnostic tools to non-invasively evaluate and monitor response to therapy. It would also allow to predict which kind of patient will likely benefit of antiangiogenic therapy. Reasons for treatment failure might be due to a low expression of the drug targets or prevalence of other pathways. Molecular imaging has been therefore explored as a diagnostic technique of choice. Since the vascular endothelial growth factor (VEGF/VEGFR) pathway is the main responsible of tumor angiogenesis, several new drugs targeting either the soluble ligand or its receptor to inhibit signaling leading to tumor regression could be involved. Up today, it is difficult to determine VEGF or VEGFR local levels and their non-invasive measurement in tumors might give insight into the available target for VEGF/VEGFR-dependent antiangiogenic therapies, allowing therapy decision making and monitoring of response.
Collapse
Affiliation(s)
| | - Filippo Galli
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and Translational Medicine, Faculty of Medicine and Psychology, 'Sapienza' University, Rome, Italy
| | - Alberto Signore
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and Translational Medicine, Faculty of Medicine and Psychology, 'Sapienza' University, Rome, Italy
| | - Enzo Agostinelli
- Department of Biochemical Sciences 'A. Rossi Fanelli', 'Sapienza' University, Rome, Italy
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Antonio Minni
- Department of Sensory Organs, 'Sapienza' University, Rome, Italy
| | - Marcella Pucci
- Department of Sensory Organs, 'Sapienza' University, Rome, Italy
| | - Marco Artico
- Department of Sensory Organs, 'Sapienza' University, Rome, Italy
| |
Collapse
|
32
|
Ehling J, Misiewicz M, von Stillfried S, Möckel D, Bzyl J, Pochon S, Lederle W, Knuechel R, Lammers T, Palmowski M, Kiessling F. In situ validation of VEGFR-2 and α v ß 3 integrin as targets for breast lesion characterization. Angiogenesis 2016; 19:245-254. [PMID: 26902100 DOI: 10.1007/s10456-016-9499-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 02/11/2016] [Indexed: 01/09/2023]
Abstract
Vascular endothelial growth factor receptor 2 (VEGFR-2) and α v ß 3 integrin are the most frequently addressed targets in molecular imaging of tumor angiogenesis. In preclinical studies, molecular imaging of angiogenesis has shown potential to detect and differentiate benign and malignant lesions of the breast. Thus, in this retrospective clinical study employing patient tissues, the diagnostic value of VEGFR-2, α v ß 3 integrin and vascular area fraction for the diagnosis and differentiation of breast neoplasia was evaluated. To this end, tissue sections of breast cancer (n = 40), pre-invasive ductal carcinoma in situ (DCIS; n = 8), fibroadenoma (n = 40), radial scar (n = 6) and normal breast tissue (n = 40) were used to quantify (1) endothelial VEGFR-2, (2) endothelial α v ß 3 integrin and (3) total α v ß 3 integrin expression, as well as (4) the vascular area fraction. Sensitivity and specificity to differentiate benign from malignant lesions were calculated for each marker by receiver operating characteristics (ROC) analyses. Whereas vessel density, as commonly used, did not significantly differ between benign and malignant lesions (AUROC: 0.54), VEGFR-2 and α v ß 3 integrin levels were gradually up-regulated in carcinoma versus fibroadenoma versus healthy tissue. The highest diagnostic accuracy for differentiating carcinoma from fibroadenoma was found for total α v ß 3 integrin expression (AUROC: 0.76), followed by VEGFR-2 (AUROC: 0.71) and endothelial α v ß 3 integrin expression (AUROC: 0.68). In conclusion, total α v ß 3 integrin expression is the best discriminator between breast cancer, fibroadenoma and normal breast tissue. With respect to vascular targeting and molecular imaging of angiogenesis, endothelial VEGFR-2 appeared to be slightly superior to endothelial α v ß 3 for differentiating benign from cancerous lesions.
Collapse
Affiliation(s)
- Josef Ehling
- Department of Experimental Molecular Imaging, Helmholtz Institute for Biomedical Engineering, Medical Faculty, RWTH Aachen University, Aachen, Germany.,Institute of Pathology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Matthias Misiewicz
- Department of Experimental Molecular Imaging, Helmholtz Institute for Biomedical Engineering, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | | | - Diana Möckel
- Department of Experimental Molecular Imaging, Helmholtz Institute for Biomedical Engineering, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Jessica Bzyl
- Department of Experimental Molecular Imaging, Helmholtz Institute for Biomedical Engineering, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | | | - Wiltrud Lederle
- Department of Experimental Molecular Imaging, Helmholtz Institute for Biomedical Engineering, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Ruth Knuechel
- Institute of Pathology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Twan Lammers
- Department of Experimental Molecular Imaging, Helmholtz Institute for Biomedical Engineering, Medical Faculty, RWTH Aachen University, Aachen, Germany.,Department of Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands.,Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Moritz Palmowski
- Department of Experimental Molecular Imaging, Helmholtz Institute for Biomedical Engineering, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Fabian Kiessling
- Department of Experimental Molecular Imaging, Helmholtz Institute for Biomedical Engineering, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
33
|
Zhu X, Zhou W. The Emerging Regulation of VEGFR-2 in Triple-Negative Breast Cancer. Front Endocrinol (Lausanne) 2015; 6:159. [PMID: 26500608 PMCID: PMC4598588 DOI: 10.3389/fendo.2015.00159] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/25/2015] [Indexed: 12/21/2022] Open
Abstract
Vascular endothelial growth factor-A (VEGF) signals vascular development and angiogenesis mainly by binding to VEGF receptor family member 2 (VEGFR-2). Adaptor proteins mediate many VEGFR-2's functions in the development of blood vessels. Cancer cells secrete VEGF to activate VEGFR-2 pathway in their neighboring endothelial cells in the process of cancer-related angiogenesis. Interestingly, activation of VEGFR-2 signaling is found in breast cancer cells, but its role and regulation are not clear. We highlighted research advances of VEGFR-2, with a focus on VEGFR-2's regulation by mutant p53 in breast cancer. In addition, we reviewed recent Food and Drug Administration-approved tyrosine kinase inhibitor drugs that can inhibit the function of VEGFR-2. Ongoing preclinical and clinical studies might prove that pharmaceutically targeting VEGFR-2 could be an effective therapeutic strategy in treating triple-negative breast cancer.
Collapse
Affiliation(s)
- Xiaoxia Zhu
- Molecular Oncology Program, Division of Surgical Oncology, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Wen Zhou
- Department of Biological Science, Columbia University, New York, NY, USA
| |
Collapse
|
34
|
Chiu YC, Wu CT, Hsiao TH, Lai YP, Hsiao C, Chen Y, Chuang EY. Co-modulation analysis of gene regulation in breast cancer reveals complex interplay between ESR1 and ERBB2 genes. BMC Genomics 2015; 16 Suppl 7:S19. [PMID: 26100352 PMCID: PMC4474423 DOI: 10.1186/1471-2164-16-s7-s19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Gene regulation is dynamic across cellular conditions and disease subtypes. From the aspect of regulation under modulation, regulation strength between a pair of genes can be modulated by (dependent on) expression abundance of another gene (modulator gene). Previous studies have demonstrated the involvement of genes modulated by single modulator genes in cancers, including breast cancer. However, analysis of multi-modulator co-modulation that can further delineate the landscape of complex gene regulation is, to our knowledge, unexplored previously. In the present study we aim to explore the joint effects of multiple modulator genes in modulating global gene regulation and dissect the biological functions in breast cancer. RESULTS To carry out the analysis, we proposed the Covariability-based Multiple Regression (CoMRe) method. The method is mainly built on a multiple regression model that takes expression levels of multiple modulators as inputs and regulation strength between genes as output. Pairs of genes were divided into groups based on their co-modulation patterns. Analyzing gene expression profiles from 286 breast cancer patients, CoMRe investigated ten candidate modulator genes that interacted and jointly determined global gene regulation. Among the candidate modulators, ESR1, ERBB2, and ADAM12 were found modulating the most numbers of gene pairs. The largest group of gene pairs was composed of ones that were modulated by merely ESR1. Functional annotation revealed that the group was significantly related to tumorigenesis and estrogen signaling in breast cancer. ESR1-ERBB2 co-modulation was the largest group modulated by more than one modulators. Similarly, the group was functionally associated with hormone stimulus, suggesting that functions of the two modulators are performed, at least partially, through modulation. The findings were validated in majorities of patients (> 99%) of two independent breast cancer datasets. CONCLUSIONS We have showed CoMRe is a robust method to discover critical modulators in gene regulatory networks, and it is capable of achieving reproducible and biologically meaningful results. Our data reveal that gene regulatory networks modulated by single modulator or co-modulated by multiple modulators play important roles in breast cancer. Findings of this report illuminate complex and dynamic gene regulation under modulation and its involvement in breast cancer.
Collapse
|
35
|
Pfister NT, Fomin V, Regunath K, Zhou JY, Zhou W, Silwal-Pandit L, Freed-Pastor WA, Laptenko O, Neo SP, Bargonetti J, Hoque M, Tian B, Gunaratne J, Engebraaten O, Manley JL, Børresen-Dale AL, Neilsen PM, Prives C. Mutant p53 cooperates with the SWI/SNF chromatin remodeling complex to regulate VEGFR2 in breast cancer cells. Genes Dev 2015; 29:1298-315. [PMID: 26080815 PMCID: PMC4495400 DOI: 10.1101/gad.263202.115] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/26/2015] [Indexed: 01/15/2023]
Abstract
In this study, Pfister et al. identified a new mutant p53 target gene, VEGFR2, and demonstrated that mutant p53 stimulates expression of VEGFR2 by cooperating with the SWI/SNF chromatin remodeling complex to superactivate the VEGFR2 gene. They also show that >50% of all mutant p53-regulated gene expression is mediated by SWI/SNF, providing insight into the observation that mutant p53 alters the expression of many genes. Mutant p53 impacts the expression of numerous genes at the level of transcription to mediate oncogenesis. We identified vascular endothelial growth factor receptor 2 (VEGFR2), the primary functional VEGF receptor that mediates endothelial cell vascularization, as a mutant p53 transcriptional target in multiple breast cancer cell lines. Up-regulation of VEGFR2 mediates the role of mutant p53 in increasing cellular growth in two-dimensional (2D) and three-dimensional (3D) culture conditions. Mutant p53 binds near the VEGFR2 promoter transcriptional start site and plays a role in maintaining an open conformation at that location. Relatedly, mutant p53 interacts with the SWI/SNF complex, which is required for remodeling the VEGFR2 promoter. By both querying individual genes regulated by mutant p53 and performing RNA sequencing, the results indicate that >40% of all mutant p53-regulated gene expression is mediated by SWI/SNF. We surmise that mutant p53 impacts transcription of VEGFR2 as well as myriad other genes by promoter remodeling through interaction with and likely regulation of the SWI/SNF chromatin remodeling complex. Therefore, not only might mutant p53-expressing tumors be susceptible to anti VEGF therapies, impacting SWI/SNF tumor suppressor function in mutant p53 tumors may also have therapeutic potential.
Collapse
Affiliation(s)
- Neil T Pfister
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Vitalay Fomin
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Kausik Regunath
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Jeffrey Y Zhou
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Wen Zhou
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Laxmi Silwal-Pandit
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radiumhospital, 0310 Oslo, Norway; The K.G. Jebsen Center for Breast Cancer Research, Faculty of Medicine, Institute for Clinical Medicine, University of Oslo, 0450 Oslo, Norway
| | - William A Freed-Pastor
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA; Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Oleg Laptenko
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Suat Peng Neo
- Quantitative Proteomics Group, Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore S138673
| | - Jill Bargonetti
- Department of Biological Sciences, Hunter College, City University of New York, New York, New York 10065, USA
| | - Mainul Hoque
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Bin Tian
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Jayantha Gunaratne
- Quantitative Proteomics Group, Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore S138673; Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Olav Engebraaten
- The K.G. Jebsen Center for Breast Cancer Research, Faculty of Medicine, Institute for Clinical Medicine, University of Oslo, 0450 Oslo, Norway; Department of Oncology, Oslo University Hospital, 0424 Oslo, Norway
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Anne-Lise Børresen-Dale
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radiumhospital, 0310 Oslo, Norway; The K.G. Jebsen Center for Breast Cancer Research, Faculty of Medicine, Institute for Clinical Medicine, University of Oslo, 0450 Oslo, Norway
| | - Paul M Neilsen
- Swinburne University of Technology, Kuching 93350, Sarawak, Malaysia
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
36
|
Ptak A, Gregoraszczuk EL. Effects of bisphenol A and 17β-estradiol on vascular endothelial growth factor A and its receptor expression in the non-cancer and cancer ovarian cell lines. Cell Biol Toxicol 2015; 31:187-97. [DOI: 10.1007/s10565-015-9303-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/06/2015] [Indexed: 10/23/2022]
|
37
|
Yan JD, Liu Y, Zhang ZY, Liu GY, Xu JH, Liu LY, Hu YM. Expression and prognostic significance of VEGFR-2 in breast cancer. Pathol Res Pract 2015; 211:539-43. [PMID: 25976977 DOI: 10.1016/j.prp.2015.04.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 03/13/2015] [Accepted: 04/01/2015] [Indexed: 12/28/2022]
Abstract
Breast cancer is one of the most common cancers among women in the world. Vascular endothelial growth factor receptor 2 (VEGFR-2) was not only found to play a key role in the development of tumor angiogenesis, but has also been located in tumor cells of a variety of tumors. This study investigated the expression pattern of VEGFR-2 in breast cancer tissue specimens in order to evaluate the role of VEGFR-2 in the prognosis of breast cancer. Expression and localization of VEGFR-2 in tumor cells of breast cancer specimens from 98 invasive breast cancer patients were determined by immunohistochemistry. The relationships between VEGFR-2 expression and clinicopathological features were also analyzed. The results showed that VEGFR-2 expression correlated positively with lymph node (LN) metastasis of breast cancer. Patients with high expression of VEGFR-2 had a significantly worse OS. It was also observed that the expression of epithelial-mesenchymal transition (EMT) marker, including Twist1 and Vimentin, was higher in the tumors with higher VEGFR-2 expression, while the E-cadherin expression was lower in the same tumors, suggesting that VEGFR-2 may serve as a possible mediator of EMT in breast cancer.
Collapse
Affiliation(s)
- Ji-Dong Yan
- Department of Thoracic Surgery, Tangshan Gongren Hospital, Tangshan, China
| | - Yanrong Liu
- High-Throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Zhi-Yong Zhang
- Department of Pathology, Tangshan Gongren Hospital, Tangshan, China.
| | - Guang-Yin Liu
- Department of Mammary Surgery, Tangshan Gongren Hospital, Tangshan, China
| | - Jin-Heng Xu
- Department of Pathology, Tangshan Gongren Hospital, Tangshan, China
| | - Li-Yun Liu
- Department of Pathology, Tangshan Gongren Hospital, Tangshan, China
| | - Yue-Ming Hu
- Department of Pathology, Tangshan Gongren Hospital, Tangshan, China
| |
Collapse
|
38
|
Downregulation of KDR expression induces apoptosis in breast cancer cells. Cell Mol Biol Lett 2014; 19:527-41. [PMID: 25182240 PMCID: PMC6276020 DOI: 10.2478/s11658-014-0210-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 08/27/2014] [Indexed: 01/08/2023] Open
Abstract
Angiogenesis plays a crucial role in the growth, invasion and metastasis of breast cancer. Vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) are the key regulators of tumor angiogenesis. VEGFR-2, known as the kinase insert domain receptor (KDR), is a key receptor involved in malignant angiogenesis. We previously showed that knocking down KDR with short interference RNA (KDR-siRNA) markedly decreased KDR expression and suppressed tumor growth in a xenograft model. However, the mechanisms underlying the anti-cancer effects of KDR-siRNA are not clearly understood. This study aimed to elucidate the molecular mechanisms that induce apoptosis in human breast cancer MCF-7 cells after transfection with KDR-siRNA. We studied the effects of KDR-siRNA on proliferation, apoptosis, antiapoptotic and pro-apoptotic proteins, mitochondrial membrane permeability, cytochrome c release and caspase-3 activity. The results indicated that KDR-siRNA treatment significantly inhibited the proliferation and induced the apoptosis of MCF-7 cells, reduced the levels of the anti-apoptotic proteins, Bcl-2 and Bcl-xl, and increased the level of the pro-apoptotic protein Bax, resulting in a decreased Bcl-2/Bax ratio. KDR-siRNA also enhanced the mitochondrial membrane permeability, induced cytochrome c release from the mitochondria, upregulated apoptotic protease-activating factor-1 (Apaf-1), cleaved caspase-3, and increased caspase-3 activity in MCF-7 cells. Furthermore, KDR-siRNA-induced apoptosis in MCF-7 cells was blocked by the caspase inhibitor Z-VAD-FMK, suggesting a role of caspase activation in the induction of apoptosis. These results indicate that the Bcl-2 family proteins and caspase-related mitochondrial pathways are primarily involved in KDR-siRNAinduced apoptosis in MCF-7 cells and that KDR might be a potential therapeutic target for human breast cancer treatments.
Collapse
|
39
|
Santos A, Lopes C, Gärtner F, Matos AJF. VEGFR-2 expression in malignant tumours of the canine mammary gland: a prospective survival study. Vet Comp Oncol 2014; 14:e83-92. [PMID: 24976305 DOI: 10.1111/vco.12107] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/14/2014] [Accepted: 06/04/2014] [Indexed: 12/17/2022]
Abstract
Vascular endothelial growth factor receptor-2 (VEGFR-2) is the main receptor activated by vascular endothelial growth factor -A (VEGF-A) to promote tumour angiogenesis. Its clinical prognostic value has not been studied in canine mammary tumours (CMTs). Dogs with mammary cancer were enrolled in a survival study and the immunohistochemical expressions of VEGFR-2 and VEGF-A were analysed and associated with clinicopathological features. VEGFR-2 expression was associated with VEGF immunoreactivity in cancer cells, supporting the presence of an autocrine loop that may be involved in CMTs growth and survival. VEGFR-2 was also expressed by endothelial cells from tumour vasculature and positively associated with stromal matrix metalloproteinase-9 (MMP-9), suggesting the existence of a link between endothelial cells activation and up-regulation of matrix degrading proteins. Carcinosarcomas exhibited high VEGFR-2 expression suggesting that it may be one of the activated molecular pathways in this aggressive histological type and that VEGFR-2 inhibitors may constitute a potential treatment to improve the prognosis of these patients. Both VEGF and VEGFR-2 immunoreactivities were independent of patients' overall survival (OS) and disease-free survival (DFS).
Collapse
Affiliation(s)
- A Santos
- Faculty of Veterinary Medicine, University Lusófona of Humanites and Technologies, Lisbon, Portugal
| | - C Lopes
- Department of Molecular Pathology and Immunology, Biomedical Sciences Institute of Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - F Gärtner
- Department of Molecular Pathology and Immunology, Biomedical Sciences Institute of Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - A J F Matos
- Department of Veterinary Clinics, Biomedical Sciences Institute of Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,Animal Science and Study Centre/Food and Agrarian Sciences and Technologies Institute (CECA/ICETA), University of Porto, Porto, Portugal
| |
Collapse
|
40
|
Holzer TR, Fulford AD, Nedderman DM, Umberger TS, Hozak RR, Joshi A, Melemed SA, Benjamin LE, Plowman GD, Schade AE, Ackermann BL, Konrad RJ, Nasir A. Tumor cell expression of vascular endothelial growth factor receptor 2 is an adverse prognostic factor in patients with squamous cell carcinoma of the lung. PLoS One 2013; 8:e80292. [PMID: 24244672 PMCID: PMC3828187 DOI: 10.1371/journal.pone.0080292] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 10/02/2013] [Indexed: 11/19/2022] Open
Abstract
A robust immunohistochemical (IHC) assay for VEGFR2 was developed to investigate its utility for patient tailoring in clinical trials. The sensitivity, specificity, and selectivity of the IHC assay were established by siRNA knockdown, immunoblotting, mass spectrometry, and pre-absorption experiments. Characterization of the assay included screening a panel of multiple human cancer tissues and an independent cohort of non-small cell lung carcinoma (NSCLC, n = 118) characterized by TTF-1, p63, CK5/6, and CK7 IHC. VEGFR2 immunoreactivity was interpreted qualitatively (VEGFR2 positive/negative) in blood vessels and by semi-quantitative evaluation using H-scores in tumor cells (0-300). Associations were determined among combinations of VEGFR2 expression in blood vessels and tumor cells, and clinico-pathologic characteristics (age, sex, race, histologic subtype, disease stage) and overall survival using Kaplan-Meier analyses and appropriate statistical models. VEGFR2 expression both in blood vessels and in tumor cells in carcinomas of the lung, cervix, larynx, breast, and others was demonstrated. In the validation cohort, 99/118 (83.9%) NSCLC tissues expressed VEGFR2 in the blood vessels and 46/118 (39.0%) showed high tumor cell positivity (H-score ≥10). Vascular and tumor cell expression were inversely correlated (p = 0.0175). High tumor cell expression of VEGFR2 was associated with a 3.7-fold reduction in median overall survival in lung squamous-cell carcinoma (SCC, n = 25, p = 0.0134). The inverse correlation between vascular and tumor cell expression of VEGFR2 and the adverse prognosis associated with high VEGFR2 expression in immunohistochemically characterized pulmonary SCC are new findings with potential therapeutic implications. The robustness of this novel IHC assay will support further evaluation of its utility for patient tailoring in clinical trials of antiangiogenic agents.
Collapse
Affiliation(s)
- Timothy R. Holzer
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Angie D. Fulford
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Drew M. Nedderman
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Tara S. Umberger
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Rebecca R. Hozak
- Oncology Statistics-Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Adarsh Joshi
- Oncology Statistics-Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Symantha A. Melemed
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Laura E. Benjamin
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Gregory D. Plowman
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Andrew E. Schade
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Bradley L. Ackermann
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Robert J. Konrad
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Aejaz Nasir
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
41
|
Cediranib in combination with fulvestrant in hormone-sensitive metastatic breast cancer: a randomized Phase II study. Invest New Drugs 2013; 31:1345-54. [DOI: 10.1007/s10637-013-9991-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 06/12/2013] [Indexed: 10/26/2022]
|
42
|
Hein M, Graver S. Tumor cell response to bevacizumab single agent therapy in vitro. Cancer Cell Int 2013; 13:94. [PMID: 24059699 PMCID: PMC3849065 DOI: 10.1186/1475-2867-13-94] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 09/05/2013] [Indexed: 11/17/2022] Open
Abstract
Background Angiogenesis represents a highly multi-factorial and multi-cellular complex (patho-) physiologic event involving endothelial cells, tumor cells in malignant conditions, as well as bone marrow derived cells and stromal cells. One main driver is vascular endothelial growth factor (VEGFA), which is known to interact with endothelial cells as a survival and mitogenic signal. The role of VEGFA on tumor cells and /or tumor stromal cell interaction is less clear. Condition specific (e.g. hypoxia) or tumor specific expression of VEGFA, VEGF receptors and co-receptors on tumor cells has been reported, in addition to the expression on the endothelium. This suggests a potential paracrine/autocrine loop that could affect changes specific to tumor cells. Methods We used the monoclonal antibody against VEGFA, bevacizumab, in various in vitro experiments using cell lines derived from different tumor entities (non small cell lung cancer (NSCLC), colorectal cancer (CRC), breast cancer (BC) and renal cell carcinoma (RCC)) in order to determine if potential VEGFA signaling could be blocked in tumor cells. The experiments were done under hypoxia, a major inducer of VEGFA and angiogenesis, in an attempt to mimic the physiological tumor condition. Known VEGFA induced endothelial biological responses such as proliferation, migration, survival and gene expression changes were evaluated. Results Our study was able to demonstrate expression of VEGF receptors on tumor cells as well as hypoxia regulated angiogenic gene expression. In addition, there was a cell line specific effect in tumor cells by VEGFA blockade with bevacizumab in terms of proliferation; however overall, there was a limited measurable consequence of bevacizumab therapy detected by migration and survival. Conclusion The present study showed in a variety of in vitro experiments with several tumor cell lines from different tumor origins, that by blocking VEGFA with bevacizumab, there was a limited autocrine or cell-autonomous function of VEGFA signaling in tumor cells, when evaluating VEGFA induced downstream outputs known in endothelial cells.
Collapse
Affiliation(s)
- Melanie Hein
- Physiological Chemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany.
| | | |
Collapse
|
43
|
Abstract
INTRODUCTION Ramucirumab (IMC-1121B) is a fully humanized IgG1 monoclonal antibody, targeting the extracellular domain of VEGF receptor 2 (VEGFR2). Numerous Phase I - II trials in various malignancies have shown promising clinical antitumor efficacy and tolerability. Most recently, the large Phase III REGARD trial evaluated ramucirumab in patients with refractory metastatic gastric cancer. Patients receiving ramucirumab experienced a median overall survival of 5.2 months compared to 3.8 months on placebo. AREAS COVERED The purpose of this article is to review the preclinical motivation for VEGFR2-targeted therapies and survey recent data from clinical trials involving ramucirumab, as well as highlight ongoing studies. EXPERT OPINION Rational multi-target approaches to angiogenesis are needed to overcome resistance mechanisms. Predictive angiogenic biomarkers are also needed to optimize patient selection for novel anti-angiogenic agents.
Collapse
|
44
|
Ran S, Montgomery KE. Macrophage-mediated lymphangiogenesis: the emerging role of macrophages as lymphatic endothelial progenitors. Cancers (Basel) 2012; 4:618-57. [PMID: 22946011 PMCID: PMC3430523 DOI: 10.3390/cancers4030618] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
It is widely accepted that macrophages and other inflammatory cells support tumor progression and metastasis. During early stages of neoplastic development, tumor-infiltrating macrophages (TAMs) mount an immune response against transformed cells. Frequently, however, cancer cells escape the immune surveillance, an event that is accompanied by macrophage transition from an anti-tumor to a pro-tumorigenic type. The latter is characterized by high expression of factors that activate endothelial cells, suppress immune response, degrade extracellular matrix, and promote tumor growth. Cumulatively, these products of TAMs promote tumor expansion and growth of both blood and lymphatic vessels that facilitate metastatic spread. Breast cancers and other epithelial malignancies induce the formation of new lymphatic vessels (i.e., lymphangiogenesis) that leads to lymphatic and subsequently, to distant metastasis. Both experimental and clinical studies have shown that TAMs significantly promote tumor lymphangiogenesis through paracrine and cell autonomous modes. The paracrine effect consists of the expression of a variety of pro-lymphangiogenic factors that activate the preexisting lymphatic vessels. The evidence for cell-autonomous contribution is based on the observed tumor mobilization of macrophage-derived lymphatic endothelial cell progenitors (M-LECP) that integrate into lymphatic vessels prior to sprouting. This review will summarize the current knowledge of macrophage-dependent growth of new lymphatic vessels with specific emphasis on an emerging role of macrophages as lymphatic endothelial cell progenitors (M-LECP).
Collapse
Affiliation(s)
- Sophia Ran
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-217-545-7026; Fax: +1-217-545-7333
| | | |
Collapse
|
45
|
Dhakal HP, Naume B, Synnestvedt M, Borgen E, Kaaresen R, Schlichting E, Wiedswang G, Bassarova A, Holm R, Giercksky KE, Nesland JM. Expression of vascular endothelial growth factor and vascular endothelial growth factor receptors 1 and 2 in invasive breast carcinoma: prognostic significance and relationship with markers for aggressiveness. Histopathology 2012; 61:350-64. [PMID: 22690749 DOI: 10.1111/j.1365-2559.2012.04223.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
AIMS Vascular endothelial growth factor (VEGF), VEGF receptor 1 (VEGFR-1) and VEGF receptor 2 (VEGFR-2) play a role in breast cancer growth and angiogenesis. We examined the expression and relationship with clinical outcome and other prognostic factors. METHODS AND RESULTS Tumour sections from 468 breast cancer patients were immunostained for VEGF, VEGFR-1, and VEGFR-2, and their relationships with tumour vascularity, disseminated tumour cells (DTCs) in bone marrow and other clinicopathological parameters were evaluated. VEGF, VEGFR-1 and VEGFR-2 immunoreactivities were observed in invasive breast carcinoma cells. VEGF expression was significantly associated with VEGFR-1 and VEGFR-2 expression (P < 0.001). High-level cytoplasmic expression of VEGFR-1 was associated with significantly reduced distant disease-free survival (DDFS) (P = 0.017, log-rank) and breast cancer-specific survival (BCSS) (P = 0.005, log-rank) for all patients, and for node-negative patients without systemic treatment (DDFS, P = 0.03, log-rank; BCSS, P = 0.009, log-rank). VEGFR-1 expression was significantly associated with histopathological markers of aggressiveness (P < 0.05). Significantly reduced survival was observed in DTC-positive patients as compared with DTC-negative patients in the combined moderate/high VEGFR-1 group (P < 0.001 for DDFS and BCSS), and the same was true for DDFS in the moderate VEGFR-2 group (P = 0.006). CONCLUSIONS High-level expression of VEGFR-1 indicates reduced survival. Higher-level expression of VEGFR-1 or VEGFR-2 in primary breast carcinomas combined with the presence of DTC selects a prognostically unfavourable patient group.
Collapse
Affiliation(s)
- Hari Prasad Dhakal
- Department of Pathology, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Miettinen M, Rikala MS, Rys J, Lasota J, Wang ZF. Vascular endothelial growth factor receptor 2 as a marker for malignant vascular tumors and mesothelioma: an immunohistochemical study of 262 vascular endothelial and 1640 nonvascular tumors. Am J Surg Pathol 2012; 36:629-39. [PMID: 22314185 PMCID: PMC3310951 DOI: 10.1097/pas.0b013e318243555b] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Vascular endothelial growth factor receptor 2 (VEGFR2) is a primary responder to vascular endothelial growth factor signal and thereby regulates endothelial migration and proliferation. This receptor is expressed in endothelial cells and in some vascular tumors, but many reports also detail its expression in carcinomas and lymphomas. VEGFR2 is a potential cell-type marker, and data on VEGFR2 expression may also have therapeutic significance in view of recent availability of VEGFR2 inhibitors. In this study, we immunohistochemically examined 262 vascular endothelial and 1640 nonvascular tumors and selected non-neoplastic tissues with a VEGFR2-specific rabbit monoclonal antibody 55B11. In early human embryo, VEFGR2 was expressed in endothelia of developing capillaries and in the thoracic duct, great vessels, hepatic sinusoids, epidermis, and mesothelia. In late first trimester fetus peripheral soft tissues, VEGFR2 was restricted to capillary endothelia, chondrocytes, and superficial portion of the epidermis. In normal adult tissues, it was restricted to endothelia and mesothelia. VEGFR2 was consistently expressed in angiosarcomas, Kaposi sarcomas, and retiform hemangioendotheliomas. It was detected in only half of epithelioid hemangioendotheliomas (15/27), usually focally. VEGFR2 was strongly expressed in most capillary hemangiomas and weakly or focally in cavernous, venous, and spindle cell hemangiomas and in lymphangiomas. Malignant epithelial mesothelioma was found to be a unique epithelial neoplasm with a strong and nearly consistent VEGFR2 expression, including membrane staining (35/38). Approximately 10% of squamous cell carcinomas and 23% of pulmonary adenocarcinomas contained focal positivity. The only nonendothelial mesenchymal tumors found to be VEGFR2 positive were biphasic synovial sarcoma (focal epithelial expression) and chordoma. All melanomas and lymphomas were negative. VEGFR2 is a promising marker for malignant vascular tumors and malignant epithelioid mesothelioma. Expression in biphasic synovial sarcoma epithelium, chordoma, and some carcinomas has to be considered in differential diagnosis. Information on VEGFR2 tissue expression may be useful in development of targeted oncologic therapy through VEGFR2-specific tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Markku Miettinen
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
47
|
Brennan DJ, O'Connor DP, Laursen H, McGee SF, McCarthy S, Zagozdzon R, Rexhepaj E, Culhane AC, Martin FM, Duffy MJ, Landberg G, Ryden L, Hewitt SM, Kuhar MJ, Bernards R, Millikan RC, Crown JP, Jirström K, Gallagher WM. The cocaine- and amphetamine-regulated transcript mediates ligand-independent activation of ERα, and is an independent prognostic factor in node-negative breast cancer. Oncogene 2011; 31:3483-94. [PMID: 22139072 DOI: 10.1038/onc.2011.519] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Personalized medicine requires the identification of unambiguous prognostic and predictive biomarkers to inform therapeutic decisions. Within this context, the management of lymph node-negative breast cancer is the subject of much debate with particular emphasis on the requirement for adjuvant chemotherapy. The identification of prognostic and predictive biomarkers in this group of patients is crucial. Here, we demonstrate by tissue microarray and automated image analysis that the cocaine- and amphetamine-regulated transcript (CART) is expressed in primary and metastatic breast cancer and is an independent poor prognostic factor in estrogen receptor (ER)-positive, lymph node-negative tumors in two separate breast cancer cohorts (n=690; P=0.002, 0.013). We also show that CART increases the transcriptional activity of ERα in a ligand-independent manner via the mitogen-activated protein kinase pathway and that CART stimulates an autocrine/paracrine loop within tumor cells to amplify the CART signal. Additionally, we demonstrate that CART expression in ER-positive breast cancer cell lines protects against tamoxifen-mediated cell death and that high CART expression predicts disease outcome in tamoxifen-treated patients in vivo in three independent breast cancer cohorts. We believe that CART profiling will help facilitate stratification of lymph node-negative breast cancer patients into high- and low-risk categories and allow for the personalization of therapy.
Collapse
Affiliation(s)
- D J Brennan
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hasan MR, Ho SHY, Owen DA, Tai IT. Inhibition of VEGF induces cellular senescence in colorectal cancer cells. Int J Cancer 2011; 129:2115-23. [PMID: 21618508 DOI: 10.1002/ijc.26179] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 05/02/2011] [Indexed: 01/07/2023]
Abstract
Vascular endothelial growth factor (VEGF) inhibitors, such as bevacizumab, have improved outcomes in metastatic colorectal cancer (CRC). Recent studies have suggested that VEGF can delay the onset of cellular senescence in human endothelial cells. As VEGF receptors are known to be upregulated in CRC, we hypothesized that VEGF inhibition may directly influence cellular senescence in this disease. In our study, we observed that treatment with bevacizumab caused a significant increase (p < 0.05) in cellular senescence in vitro in several CRC cells, such as MIP101, RKO, SW620 and SW480 cells, compared to untreated or human IgG-treated control cells. Similar results were also obtained from cells treated with a VEGFR2 kinase inhibitor Ki8751. In vivo, cellular senescence was detected in MIP101 tumor xenografts from 75% of mice treated with bevacizumab, while cellular senescence was undetectable in xenografts from mice treated with saline or human IgG (p < 0.05). Interestingly, we also observed that the proportion of senescent cells in colon cancer tissues obtained from patients treated with bevacizumab was 4.4-fold higher (p < 0.01) than those of untreated patients. To understand how VEGF inhibitors may regulate cellular senescence, we noted that among the two important regulators of senescent growth arrest of tumor cells, bevacizumab-associated increase in cellular senescence coincided with an upregulation of p16 but appeared to be independent of p53. siRNA silencing of p16 gene in MIP101 cells suppressed bevacizumab-induced cellular senescence, while silencing of p53 had no effect. These findings demonstrate a novel antitumor activity of VEGF inhibitors in CRC, involving p16.
Collapse
Affiliation(s)
- Mohammad R Hasan
- Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
49
|
Maae E, Nielsen M, Steffensen KD, Jakobsen EH, Jakobsen A, Sørensen FB. Estimation of immunohistochemical expression of VEGF in ductal carcinomas of the breast. J Histochem Cytochem 2011; 59:750-60. [PMID: 21606203 DOI: 10.1369/0022155411412599] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Vascular endothelial growth factor A (VEGF-A) is a very important growth factor in angiogenesis and holds potential as both a predictive marker for anti-angiogenic cancer treatment and a prognostic variable. Consequently, reliable estimation of VEGF expression is crucial. Investigators immunostained whole tumor sections for VEGF-A, VEGF-B, and VEGFR-1 of invasive ductal carcinomas of the breast and scored the tumors manually with staining intensity as the only parameter and by a combination of qualitative and quantitative information. The investigators also introduce an automated method for analyzing VEGF expression (so-called AI score) using the same tumor sections. Analysis of 100% of the tumor area was performed and the results were compared with the reduced analysis of 25% of the tumor area. These analyses were performed at ×5 and ×10 magnification, and each analysis was repeated in a second run with a new delineation of the tumor area. The AI scores were correlated to the manual scoring of VEGF intensity, but reproducibility of manual IHC scores was rather poor. The AI scores were reproducible, and the restricted analysis of 25% of the tumor area at ×5 magnifications was the most efficient considering time consumption and data load.
Collapse
Affiliation(s)
- Else Maae
- Department of Oncology, Vejle Hospital, Vejle, Denmark.
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Attempts to find genes contribution to complex diseases, such as cancer, require new study designs which incorporate an efficient use of population resources and modern genotyping technologies. We describe here two approaches, used by us for the study of breast cancer, both of which take the use of biobanks. One uses a cancer registry as a source of case information, which is then linked to a biobank on blood DNA. The biobank provides also samples from matched controls. After genotyping, clinical data are retrieved from hospital records, and the results can be presented for genotype-specific cancer risks, or similarly for genotype-specific clinical and survival parameters. The second approach uses registered data on cancer in families or among twins. On defined groups of patients, paraffin tissue is collected by contacting the pathology departments of the hospitals where the patients were diagnosed. Tumor and healthy tissue is prepared and used for mutation, the loss of heterozygosity, or copy number analysis. We believe that in the era of whole-genome genotyping technologies, the importance of well-characterized sample sets cannot be overemphasized. Samples rather than technologies limit the rate of gene discovery in complex diseases.
Collapse
Affiliation(s)
- Asta Försti
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | |
Collapse
|