1
|
Ma Y, Hossen MM, Huang JJ, Yin Z, Du J, Ye Z, Zeng M, Huang Z. Growth arrest and DNA damage-inducible 45: a new player on inflammatory diseases. Front Immunol 2025; 16:1513069. [PMID: 40083548 PMCID: PMC11903704 DOI: 10.3389/fimmu.2025.1513069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/07/2025] [Indexed: 03/16/2025] Open
Abstract
Growth arrest and DNA damage-inducible 45 (GADD45) proteins are critical stress sensors rapidly induced in response to genotoxic/physiological stress and regulate many cellular functions. Even though the primary function of the proteins is to block the cell cycle, inhibit cell proliferation, promote cell apoptosis, and repair DNA damage to cope with the damage caused by internal and external stress on the body, evidence has shown that GADD45 also has the function to modulate innate and adaptive immunity and plays a broader role in inflammatory and autoimmune diseases. In this review, we focus on the immunomodulatory role of GADD45 in inflammatory and autoimmune diseases. First, we describe the regulatory factors that affect the expression of GADD45. Then, we introduce its immunoregulatory roles on immune cells and the critical signaling pathways mediated by GADD45. Finally, we discuss its immunomodulatory effects in various inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Yanmei Ma
- Rheumatology Research Institute, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
- Department of Immunology, Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Health Science Center, Shenzhen University, Shenzhen, China
- Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Md Munnaf Hossen
- Rheumatology Research Institute, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
- Department of Immunology, Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Health Science Center, Shenzhen University, Shenzhen, China
- Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Jennifer Jin Huang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Zhihua Yin
- Rheumatology Research Institute, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
- Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Jing Du
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zhizhong Ye
- Rheumatology Research Institute, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
- Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Miaoyu Zeng
- Rheumatology Research Institute, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
- Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Zhong Huang
- Department of Immunology, Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Health Science Center, Shenzhen University, Shenzhen, China
- Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| |
Collapse
|
2
|
Verma M, Loganathan VA. Uranium removal from contaminated groundwater using goethite-loaded composite microporous membrane. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177075. [PMID: 39454795 DOI: 10.1016/j.scitotenv.2024.177075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/30/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
In this study, we have coupled adsorption and membrane separation for the removal of uranium from contaminated groundwater in environmentally relevant conditions at low energy requirements. The study mainly focuses on elucidating uranium [U(VI)] adsorption mechanisms using surface complexation modeling approach in a novel goethite-loaded composite microfiltration membrane (GLM). The experiments involved immobilizing goethite nanorods in a microporous (0.22 μm pore size) poly (vinylidene fluoride) (PVDF) membrane. The effect of varying goethite loading and hydraulic residence time on U(VI) removal was investigated at field-relevant pH (i.e. pH 8.5). U(VI) adsorption (i.e. 4.95 μg·mg-1) was optimum at a goethite loading of 1.20 mg·cm-2. The effect of varying hydraulic residence time had no impact on U(VI) removal which was also confirmed via performing batch adsorption kinetic experiments. GLM membrane loaded at 1.2 mg·cm-2 could treat 275 L of U(VI) contaminated water having 200 μg of U L-1 below WHO drinking water limit (i.e. 30 μg of U L-1) with 1 m2 of membrane surface area at a maximum adsorption capacity of 6.12 μg·mg-1. Varying the pH of aqueous solution, containing U(VI) from pH 4.0 to pH 10.0, showed a significant impact on uranium uptake ranging from 0.7 μg·mg-1 to 2.63 μg·mg-1 by the composite membrane. The adsorption mechanism of uranium onto goethite was explained via the formation of bidentate surface complexes using the Surface Complexation Model (SCM). The results of batch pH edge experiments and SCM have been compared with pH experiments performed using GLM. The results of SCM predicted the batch pH edge experiment within a RMSE of 0.055. The trend of U(VI) removal in membrane experiments was observed to be similar to that of batch pH edge experiments and was well predicted by the SCM model. Our results show that the novel goethite-loaded membrane has the potential for effective removal of uranium with a lower specific energy consumption.
Collapse
Affiliation(s)
- Mohit Verma
- Civil Engineering Department, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Vijay A Loganathan
- Civil Engineering Department, Indian Institute of Technology Ropar, Rupnagar, Punjab, India.
| |
Collapse
|
3
|
Verma M, Loganathan VA. U(VI) mitigation via forward osmosis: Elucidation of retention mechanisms and co-ion effects. CHEMOSPHERE 2024; 363:142742. [PMID: 38971441 DOI: 10.1016/j.chemosphere.2024.142742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/18/2024] [Accepted: 06/29/2024] [Indexed: 07/08/2024]
Abstract
Uranium (U) is a chemical and radioactive toxic contaminant affecting many groundwater systems. The focus of this study was to evaluate the suitability of forward osmosis (FO) for uranium rejection from contaminated groundwater under field-relevant conditions. Laboratory experiments with aqueous solution containing uranium were performed with FO membrane to understand the uranium rejection mechanism under varied pH, draw solution concentration, and presence of co-ions. Further, experiments were performed with U-contaminated field groundwater. Results of the hydrogeochemcial modelling using PHREEQC indicated that the rejection mechanism of uranium was highly dependent on aqueous speciation. Uranium rejection was maximum at alkaline pH with ca. 99% rejection due to charge-based interactions between membrane and dominant uranyl complexes. The results of the co-ion study indicated that nitrate and phosphate ions decrease uranium rejection. Whereas, bicarbonates, calcium, and magnesium ions concentrated uranium in feed solution. Further, the uranium adsorption onto the membrane surface primarily depended on pH of the aqueous solution with maximum adsorption at pH 5.5. Our results show that the World Health Organization's drinking water guideline value of 30 μgL-1 for U could be achieved via FO process in field groundwater containing low dissolved solids.
Collapse
Affiliation(s)
- Mohit Verma
- Civil Engineering Department, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Vijay A Loganathan
- Civil Engineering Department, Indian Institute of Technology Ropar, Rupnagar, Punjab, India.
| |
Collapse
|
4
|
Rumbo C, Bianchin A, Locci AM, Barros R, Martel Martín S, Tamayo-Ramos JA. Toxicological assessment of nanocrystalline metal alloys with potential applications in the aeronautical field. Sci Rep 2022; 12:1523. [PMID: 35087098 PMCID: PMC8795356 DOI: 10.1038/s41598-022-05406-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/11/2022] [Indexed: 12/02/2022] Open
Abstract
The development of new candidate alloys with outstanding characteristics for their use in the aeronautical field is one of the main priorities for the sector. In this context, nanocrystaline (nc) alloys are considered relevant materials due to their special features, such as their exceptional physical and mechanical properties. However, another important point that needs to be considered with newly developed alloys is the potential toxicological impact that these materials may have in humans and other living organisms. The aim of this work was to perform a preliminary toxicological evaluation of three nc metal alloys (WCu, WAl and TiAl) in powder form produced by mechanical alloying, applying different in vitro assays, including a mix of W-Cu powders with standard grain size in the experiments to stablish comparisons. The effects of the direct exposure to powder suspensions and/or to their derived leachates were analysed in three model organisms representative of human and environmental exposures (the adenocarcinomic human alveolar basal epithelial cell line A549, the yeast Saccharomyces cerevisiae and the Gram negative bacterium Vibrio fischeri). Altogether, the results obtained provide new insights about the potential harmful effects of the selected nc alloys, showing that, from a toxicological perspective, nc TiAl is the safest candidate in the model organisms and conditions tested.
Collapse
Affiliation(s)
- Carlos Rumbo
- International Research Center in Critical Raw Materials-ICCRAM, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain.
| | - Alvise Bianchin
- MBN Nanomaterialia S.P.A, 31050, Vascon Di Carbonera, TV, Italy
| | - Antonio Mario Locci
- Dipartimento Di Ingegneria Meccanica, Chimica, e dei Materiali, Università Degli Studi Di Cagliari, via Marengo 2, 09123, Cagliari, Italy
| | - Rocío Barros
- International Research Center in Critical Raw Materials-ICCRAM, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Sonia Martel Martín
- International Research Center in Critical Raw Materials-ICCRAM, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Juan Antonio Tamayo-Ramos
- International Research Center in Critical Raw Materials-ICCRAM, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain.
| |
Collapse
|
5
|
Adsorption of tungstate using cationic gemini surfactant-modified montmorillonite: Influence of alkyl chain length. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Skalny AV, Aschner M, Bobrovnitsky IP, Chen P, Tsatsakis A, Paoliello MMB, Buha Djordevic A, Tinkov AA. Environmental and health hazards of military metal pollution. ENVIRONMENTAL RESEARCH 2021; 201:111568. [PMID: 34174260 DOI: 10.1016/j.envres.2021.111568] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/18/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
An increasing body of literature has demonstrated that armed conflicts and military activity may contribute to environmental pollution with metals, although the existing data are inconsistent. Therefore, in this paper, we discuss potential sources of military-related metal emissions, environmental metal contamination, as well as routes of metal exposure and their health hazards in relation to military activities. Emission of metals into the environment upon military activity occurs from weapon residues containing high levels of particles containing lead (Pb; leaded ammunition), copper (Cu; unleaded), and depleted uranium (DU). As a consequence, military activity results in soil contamination with Pb and Cu, as well as other metals including Cd, Sb, Cr, Ni, Zn, with subsequent metal translocation to water, thus increasing the risk of human exposure. Biomonitoring studies have demonstrated increased accumulation of metals in plants, invertebrates, and vertebrate species (fish, birds, mammals). Correspondingly, military activity is associated with human metal exposure that results from inhalation or ingestion of released particles, as well as injuries with subsequent metal release from embedded fragments. It is also notable that local metal accumulation following military injury may occur even without detectable fragments. Nonetheless, data on health effects of military-related metal exposures have yet to be systematized. The existing data demonstrate adverse neurological, cardiovascular, and reproductive outcomes in exposed military personnel. Moreover, military-related metal exposures also result in adverse neurodevelopmental outcome in children living within adulterated territories. Experimental in vivo and in vitro studies also demonstrated toxic effects of specific metals as well as widely used metal alloys, although laboratory data report much wider spectrum of adverse effects as compared to epidemiological studies. Therefore, further epidemiological, biomonitoring and laboratory studies are required to better characterize military-related metal exposures and their underlying mechanisms of their adverse toxic effects.
Collapse
Affiliation(s)
- Anatoly V Skalny
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; KG Razumovsky Moscow State University of Technologies and Management, Moscow, Russia
| | - Michael Aschner
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Igor P Bobrovnitsky
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Centre for Strategic Planning of FMBA of Russia, Moscow, Russia
| | - Pan Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aristidis Tsatsakis
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Laboratory of Toxicology, Medical School, University of Crete, Voutes, Heraklion, Crete, Greece
| | - Monica M B Paoliello
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aleksandra Buha Djordevic
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Alexey A Tinkov
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, Russia.
| |
Collapse
|
7
|
Vechetti IJ, Wen Y, Hoffman JF, Alimov AP, Vergara VB, Kalinich JF, Gaitens JM, Hines SE, McDiarmid MA, McCarthy JJ, Peterson CA. Urine miRNAs as potential biomarkers for systemic reactions induced by exposure to embedded metal. Biomark Med 2021; 15:1397-1410. [PMID: 34541869 DOI: 10.2217/bmm-2021-0120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Aim: Explore the potential of urine microRNAs as biomarkers that may reflect the biological responses to pure metals embedded in skeletal muscle over time. Materials & methods: We tested a panel of military-relevant metals embedded in the gastrocnemius muscles of 3-month-old, male, Sprague-Dawley rats (n = 8/group) for a duration of 1, 3, 6 and 12 months, and performed small RNA-sequencing on the urine samples. Results: Results provide potential tissue targets affected by metal exposure and a list of unique or common urine microRNA biomarkers indicative of exposure to various metals, highlighting a complex systemic response. Conclusion: We have identified a panel of miRNAs as potential urine biomarkers to reflect the complex systemic response to embedded metal exposure.
Collapse
Affiliation(s)
- Ivan J Vechetti
- Department of Nutrition & Health Sciences, College of Education & Human Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Yuan Wen
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
- Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Jessica F Hoffman
- Internal Contamination & Metal Toxicity Program, Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, MD 20814, USA
| | - Alexander P Alimov
- Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Vernieda B Vergara
- Internal Contamination & Metal Toxicity Program, Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, MD 20814, USA
| | - John F Kalinich
- Internal Contamination & Metal Toxicity Program, Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, MD 20814, USA
| | - Joanna M Gaitens
- Department of Veterans Affairs Medical Center Baltimore, Baltimore, MD 21201, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Stella E Hines
- Department of Veterans Affairs Medical Center Baltimore, Baltimore, MD 21201, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Melissa A McDiarmid
- Department of Veterans Affairs Medical Center Baltimore, Baltimore, MD 21201, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - John J McCarthy
- Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Charlotte A Peterson
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
- Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
8
|
Bene BJ, Blakely WF, Burmeister DM, Cary L, Chhetri SJ, Davis CM, Ghosh SP, Holmes-Hampton GP, Iordanskiy S, Kalinich JF, Kiang JG, Kumar VP, Lowy RJ, Miller A, Naeem M, Schauer DA, Senchak L, Singh VK, Stewart AJ, Velazquez EM, Xiao M. Celebrating 60 Years of Accomplishments of the Armed Forces Radiobiology Research Institute1. Radiat Res 2021; 196:129-146. [PMID: 33979439 DOI: 10.1667/21-00064.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/20/2021] [Indexed: 11/03/2022]
Abstract
Chartered by the U.S. Congress in 1961, the Armed Forces Radiobiology Research Institute (AFRRI) is a Joint Department of Defense (DoD) entity with the mission of carrying out the Medical Radiological Defense Research Program in support of our military forces around the globe. In the last 60 years, the investigators at AFRRI have conducted exploratory and developmental research with broad application to the field of radiation sciences. As the only DoD facility dedicated to radiation research, AFRRI's Medical Radiobiology Advisory Team provides deployable medical and radiobiological subject matter expertise, advising commanders in the response to a U.S. nuclear weapon incident and other nuclear or radiological material incidents. AFRRI received the DoD Joint Meritorious Unit Award on February 17, 2004, for its exceptionally meritorious achievements from September 11, 2001 to June 20, 2003, in response to acts of terrorism and nuclear/radiological threats at home and abroad. In August 2009, the American Nuclear Society designated the institute a nuclear historic landmark as the U.S.'s primary source of medical nuclear and radiological research, preparedness and training. Since then, research has continued, and core areas of study include prevention, assessment and treatment of radiological injuries that may occur from exposure to a wide range of doses (low to high). AFRRI collaborates with other government entities, academic institutions, civilian laboratories and other countries to research the biological effects of ionizing radiation. Notable early research contributions were the establishment of dose limits for major acute radiation syndromes in primates, applicable to human exposures, followed by the subsequent evolution of radiobiology concepts, particularly the importance of immune collapse and combined injury. In this century, the program has been essential in the development and validation of prophylactic and therapeutic drugs, such as Amifostine, Neupogen®, Neulasta®, Nplate® and Leukine®, all of which are used to prevent and treat radiation injuries. Moreover, AFRRI has helped develop rapid, high-precision, biodosimetry tools ranging from novel assays to software decision support. New drug candidates and biological dose assessment technologies are currently being developed. Such efforts are supported by unique and unmatched radiation sources and generators that allow for comprehensive analyses across the various types and qualities of radiation. These include but are not limited to both 60Co facilities, a TRIGA® reactor providing variable mixed neutron and γ-ray fields, a clinical linear accelerator, and a small animal radiation research platform with low-energy photons. There are five major research areas at AFRRI that encompass the prevention, assessment and treatment of injuries resulting from the effects of ionizing radiation: 1. biodosimetry; 2. low-level and low-dose-rate radiation; 3. internal contamination and metal toxicity; 4. radiation combined injury; and 5. radiation medical countermeasures. These research areas are bolstered by an educational component to broadcast and increase awareness of the medical effects of ionizing radiation, in the mass-casualty scenario after a nuclear detonation or radiological accidents. This work provides a description of the military medical operations as well as the radiation facilities and capabilities present at AFRRI, followed by a review and discussion of each of the research areas.
Collapse
Affiliation(s)
| | | | | | - Lynnette Cary
- Scientific Research Department.,Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | - Catherine M Davis
- Scientific Research Department.,Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Sanchita P Ghosh
- Scientific Research Department.,Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Gregory P Holmes-Hampton
- Scientific Research Department.,Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Sergey Iordanskiy
- Scientific Research Department.,Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | - Juliann G Kiang
- Scientific Research Department.,Medicine.,Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | | | | | | | - David A Schauer
- Radiation Sciences Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | - Vijay K Singh
- Scientific Research Department.,Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | | | | |
Collapse
|
9
|
Wen Y, Vechetti IJ, Alimov AP, Hoffman JF, Vergara VB, Kalinich JF, McCarthy JJ, Peterson CA. Time-course analysis of the effect of embedded metal on skeletal muscle gene expression. Physiol Genomics 2020; 52:575-587. [PMID: 33017228 DOI: 10.1152/physiolgenomics.00096.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
As a consequence of military operations, many veterans suffer from penetrating wounds and long-term retention of military-grade heavy metal fragments. Fragments vary in size and location, and complete surgical removal may not be feasible or beneficial in all cases. Increasing evidence suggests retention of heavy metal fragments may have serious biological implications, including increased risks for malignant transformation. Previous studies assessed the tumorigenic effects of metal alloys in rats, demonstrating combinations of metals are sufficient to induce tumor formation after prolonged retention in skeletal muscle tissue. In this study, we analyzed transcriptional changes in skeletal muscle tissue in response to eight different military-relevant pure metals over 12 mo. We found that most transcriptional changes occur at 1 and 3 mo after metal pellets are embedded in skeletal muscle and these effects resolve at 6 and 12 mo. We also report significant immunogenic effects of nickel and cobalt and suppressive effects of lead and depleted uranium on gene expression. Overall, skeletal muscle exhibits a remarkable capacity to adapt to and recover from internalized metal fragments; however, the cellular response to chronic exposure may be restricted to the metal-tissue interface. These data suggest that unless affected regions are specifically captured by biopsy, it would be difficult to reliably detect changes in muscle gene expression that would be indicative of long-term adverse health outcomes.
Collapse
Affiliation(s)
- Yuan Wen
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, Kentucky.,Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Ivan J Vechetti
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky.,Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Alexander P Alimov
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky.,Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Jessica F Hoffman
- Internal Contamination and Metal Toxicity Program, Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, Maryland
| | - Vernieda B Vergara
- Internal Contamination and Metal Toxicity Program, Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, Maryland
| | - John F Kalinich
- Internal Contamination and Metal Toxicity Program, Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, Maryland
| | - John J McCarthy
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky.,Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Charlotte A Peterson
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, Kentucky.,Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
10
|
Potter BK. CORR Insights®: Do Battlefield Injury-acquired Indwelling Metal Fragments Induce Metal Immunogenicity? Clin Orthop Relat Res 2020; 478:767-769. [PMID: 32229748 PMCID: PMC7282581 DOI: 10.1097/corr.0000000000001065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 11/07/2019] [Indexed: 01/31/2023]
Affiliation(s)
- Benjamin K Potter
- B. K. Potter, Director, Musculoskeletal Oncology & Ortho Research; Chief Amputation Surg, Department of Orthopaedic Surgery, Uniformed Services University-Walter Reed Department of Surgery, Bethesda, MD, USA
| |
Collapse
|
11
|
Jirau-Colón H, Cosme A, Marcial-Vega V, Jiménez-Vélez B. Toxic Metals Depuration Profiles from a Population Adjacent to a Military Target Range (Vieques) and Main Island Puerto Rico. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 17:E264. [PMID: 31905976 PMCID: PMC6994965 DOI: 10.3390/ijerph17010264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/15/2019] [Accepted: 12/20/2019] [Indexed: 11/16/2022]
Abstract
Background: The island of Vieques (a municipality of Puerto Rico) was used as a military practice range by the US Navy for more than 60 years. Many studies have reported the presence of toxic metals in soil samples taken from Vieques. The bombing range is only 18 km upwind from the Vieques residential area and inhalable resuspended particles resulting from bombing are known to reach the populated area. The current study reports for the first time, the presence of toxic metals' depuration profiles obtained from Vieques and Main Island Puerto Rico human subjects. Objectives: This study was designed to evaluate the distribution of toxic metals in a random population exposed to contaminants originating from military activities and comparing it to a non-exposed random population from Main Island Puerto Rico. Methods: A total of 83 subjects studied; 32 were from Vieques and 51 were from Main Island Puerto Rico. A physician administrated chelation therapy to all subjects and collected urine samples during a 24-h period. A total of 20 trace elements associated with military activities were measured in urine by induced coupled plasma mass spectrometry (ICP-MS). The results were compared between both population samples. Results: Significant differences in the levels of eight trace elements associated with military practices were found between Vieques and Main Island Puerto Rico. Lead (Pb), aluminum (Al), uranium (U) (p < 0.001), arsenic (As), cadmium (Cd) (p = 0.02), and gadolinium (Gd) (p = 0.03) were significantly higher in Vieques while niobium (Nb) and platinum (Pt) levels (p < 0.006) were lower in the Vieques samples. Discussion: Higher concentrations of Pb, Al, As, Cd, Gd, and U were found in Vieques residents' urine samples compared to Main Island. Nonetheless, Pt and Ga were present in Main Island at higher concentrations than in Vieques. Although limited by its sample size, this report should set a basis for the importance of health assessment in these subjects exposed to military activities remnants throughout the years and further evaluation of their effects on the overall health of the population.
Collapse
Affiliation(s)
- Héctor Jirau-Colón
- Department of Biochemistry, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan 00936, Puerto Rico;
- Center for Environmental and Toxicological Research, San Juan 00936, Puerto Rico; (A.C.); (V.M.-V.)
| | - Ashley Cosme
- Center for Environmental and Toxicological Research, San Juan 00936, Puerto Rico; (A.C.); (V.M.-V.)
| | - Víctor Marcial-Vega
- Center for Environmental and Toxicological Research, San Juan 00936, Puerto Rico; (A.C.); (V.M.-V.)
- Department of Radiology, School of Medicine, Universal Central del Caribe, Bayamón 00956, Puerto Rico
| | - Braulio Jiménez-Vélez
- Department of Biochemistry, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan 00936, Puerto Rico;
- Center for Environmental and Toxicological Research, San Juan 00936, Puerto Rico; (A.C.); (V.M.-V.)
| |
Collapse
|
12
|
Balabekova MK, Ostapchuk YO, Perfilyeva YV, Tokusheva AN, Nurmuhambetov A, Tuhvatshin RR, Trubachev VV, Akhmetov ZB, Abdolla N, Kairanbayeva GK, Sulev K, Belyaev NN. Oral administration of ammonium metavanadate and potassium dichromate distorts the inflammatory reaction induced by turpentine oil injection in male rats. Drug Chem Toxicol 2019; 44:277-285. [PMID: 30849244 DOI: 10.1080/01480545.2019.1585446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Heavy metal pollution is rapidly increasing in the environment. It has been shown that exposure to vanadium and chromium is able to alter the immune response. Nevertheless, the mechanisms by which these metal pollutants mediate their immunomodulatory effects are not completely understood. Herein, we examined the effect of ammonium metavanadate and potassium dichromate on the development of an inflammatory response caused by subcutaneous injection of turpentine oil. We demonstrated that pretreatment of rats with ammonium metavanadate and potassium dichromate for two weeks prior to initiation of the inflammatory response resulted in a wider zone of necrosis surrounding the site of inflammation. The acute inflammatory process in the combined model was characterized by elevated serum levels of IL-10 and decreased serum levels of IL-6 as compared to rats not treated with ammonium metavanadate and potassium dichromate. Ammonium metavanadate and potassium dichromate administration induced a decrease in the proportion of splenic His48HighCD11b/c+ myeloid cells accompanied by a reduced infiltration of the wound with neutrophils. Further analysis showed decreased proportions of CD3+CD4+IFNγ+ and CD3+CD4+IL-4+ T cells in the rats with combined model as compared to inflamed rats not treated with ammonium metavanadate and potassium dichromate. The data suggest that consumption of vanadium and chromium compounds disrupts the inflammatory response through an altered balance of pro- and anti-inflammatory cytokines and inhibition of effector T cell activation and neutrophil expansion.
Collapse
Affiliation(s)
- Marina K Balabekova
- Department of Pathological Physiology, S.D. Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Yekaterina O Ostapchuk
- Laboratory of Molecular Immunology and Immunobiotechnology, M.A. Aitkhozhin's Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Yuliya V Perfilyeva
- Laboratory of Molecular Immunology and Immunobiotechnology, M.A. Aitkhozhin's Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Aliya N Tokusheva
- Department of Pathological Physiology, S.D. Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Adilman Nurmuhambetov
- Department of Pathological Physiology, S.D. Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Rustam R Tuhvatshin
- Department of Pathophysiology, I.K. Akhunbaev Kyrgyz State Medical Academy, Bishkek, Kyrgyzstan
| | - Vasiliy V Trubachev
- Department of Pathological Physiology, S.D. Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Zhaugashty B Akhmetov
- Department of Pathological Physiology, S.D. Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Nurshat Abdolla
- Laboratory of Molecular Immunology and Immunobiotechnology, M.A. Aitkhozhin's Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Gulgul K Kairanbayeva
- Department of Pathological Physiology, S.D. Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Koks Sulev
- Department of Pathophysiology, University of Tartu, Tartu, Estonia
| | - Nikolai N Belyaev
- Department of New Technology, Saint-Petersburg Pasteur Institute, Saint-Petersburg, Russia
| |
Collapse
|
13
|
Depleted uranium induces human carcinogenesis involving the immune and chaperoning systems: Realities and working hypotheses. Med Hypotheses 2019; 124:26-30. [PMID: 30798910 DOI: 10.1016/j.mehy.2019.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/13/2019] [Accepted: 01/23/2019] [Indexed: 02/06/2023]
Abstract
Cancer is caused by a combination of factors, genetic, epigenetics and environmental. Among the latter, environmental pollutants absorbed by contact, inhalation, or ingestion are major proven or suspected culprits. Depleted uranium (DU) is one of them directly pertinent to the military and civilians working in militarized areas. It is considered a weak carcinogen but its implication in cancer development in exposed individuals is supported by various data. Since not all subjects exposed to DU develop cancer, it is likely that DU-dependent carcinogenesis requires cofactors, such as genetic predisposition and deficiencies of the chaperoning and immune systems. It is of the essence to adopt every possible protective measure as well as performing careful screening for early diagnosis to protect the military that work in war areas in which weapons with DU are, or have been, used. These topics are discussed here, along with a proposed working hypothesis for investigating the pathophysiology of DU-related carcinogenesis, including the possible role of the chaperoning system.
Collapse
|
14
|
Suhard D, Tessier C, Manens L, Rebière F, Tack K, Agarande M, Guéguen Y. Intracellular uranium distribution: Comparison of cryogenic fixation versus chemical fixation methods for SIMS analysis. Microsc Res Tech 2018; 81:855-864. [PMID: 29737608 PMCID: PMC6221105 DOI: 10.1002/jemt.23047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/30/2018] [Accepted: 04/17/2018] [Indexed: 12/30/2022]
Abstract
Localization of uranium within cells is mandatory for the comprehension of its cellular mechanism of toxicity. Secondary Ion Mass Spectrometry (SIMS) has recently shown its interest to detect and localize uranium at very low levels within the cells. This technique requires a specific sample preparation similar to the one used for Transmission Electronic Microscopy, achieved by implementing different chemical treatments to preserve as much as possible the living configuration uranium distribution into the observed sample. This study aims to compare the bioaccumulation sites of uranium within liver or kidney cells after chemical fixation and cryomethods preparations of the samples: SIMS analysis of theses samples show the localization of uranium soluble forms in the cell cytoplasm and nucleus with a more homogenous distribution when using cryopreparation probably due to the diffusible portion of uranium inside the cytoplasm.
Collapse
Affiliation(s)
- D Suhard
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SESANE, Fontenay-aux-Roses, France
| | - C Tessier
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SESANE, Fontenay-aux-Roses, France
| | - L Manens
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SESANE, Fontenay-aux-Roses, France
| | - F Rebière
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SESANE, Fontenay-aux-Roses, France
| | - K Tack
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SESANE, Fontenay-aux-Roses, France
| | - M Agarande
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SAME, Le Vésinet, France
| | - Y Guéguen
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SESANE, Fontenay-aux-Roses, France
| |
Collapse
|
15
|
Armant O, Gombeau K, Murat El Houdigui S, Floriani M, Camilleri V, Cavalie I, Adam-Guillermin C. Zebrafish exposure to environmentally relevant concentration of depleted uranium impairs progeny development at the molecular and histological levels. PLoS One 2017; 12:e0177932. [PMID: 28531178 PMCID: PMC5439696 DOI: 10.1371/journal.pone.0177932] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/05/2017] [Indexed: 12/12/2022] Open
Abstract
Uranium is an actinide naturally found in the environment. Anthropogenic activities lead to the release of increasing amounts of uranium and depleted uranium (DU) in the environment, posing potential risks to aquatic organisms due to radiological and chemical toxicity of this radionucleide. Although environmental contaminations with high levels of uranium have already been observed, chronic exposures of non-human species to levels close to the environmental quality standards remain scarcely characterized. The present study focused on the identification of the molecular pathways impacted by a chronic exposure of zebrafish to 20 μg/L of DU during 10 days. The transcriptomic effects were evaluated by the use of the mRNAseq analysis in three organs of adult zebrafish, the brain the testis and the ovaries, and two developmental stages of the adult fish progeny, two-cells embryo and four-days larvae. The results highlight generic effects on the cell adhesion process, but also specific transcriptomic responses depending on the organ or the developmental stage investigated. The analysis of the transgenerational effects of DU-exposure on the four-day zebrafish larvae demonstrate an induction of genes involved in oxidative response (cat, mpx, sod1 and sod2), a decrease of expression of the two hatching enzymes (he1a and he1b), the deregulation of the expression of gene coding for the ATPase complex and the induction of cellular stress. Electron microscopy analysis of skeletal muscles on the four-days larvae highlights significant histological impacts on the ultrastructure of both the mitochondria and the myofibres. In addition, the comparison with the transcriptomic data obtained for the acetylcholine esterase mutant reveals the induction of protein-chaperons in the skeletal muscles of the progeny of fish chronically exposed to DU, pointing towards long lasting effects of this chemical in the muscles. The results presented in this study support the hypothesis that a chronic parental exposure to an environmentally relevant concentration of DU could impair the progeny development with significant effects observed both at the molecular level and on the histological ultrastructure of organs. This study provides a comprehensive transcriptomic dataset useful for ecotoxicological studies on other fish species at the molecular level. It also provides a key DU responsive gene, egr1, which may be a candidate biomarker for monitoring aquatic pollution by heavy metals.
Collapse
Affiliation(s)
- Olivier Armant
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance, France
- * E-mail:
| | - Kewin Gombeau
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance, France
| | - Sophia Murat El Houdigui
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance, France
| | - Magali Floriani
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance, France
| | - Virginie Camilleri
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance, France
| | - Isabelle Cavalie
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance, France
| | - Christelle Adam-Guillermin
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance, France
| |
Collapse
|
16
|
Korashy HM, Attafi IM, Famulski KS, Bakheet SA, Hafez MM, Alsaad AMS, Al-Ghadeer ARM. Gene expression profiling to identify the toxicities and potentially relevant human disease outcomes associated with environmental heavy metal exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 221:64-74. [PMID: 27916491 DOI: 10.1016/j.envpol.2016.10.058] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 10/09/2016] [Accepted: 10/19/2016] [Indexed: 06/06/2023]
Abstract
Heavy metals are the most commonly encountered toxic substances that increase susceptibility to various diseases after prolonged exposure. We have previously shown that healthy volunteers living near a mining area had significant contamination with heavy metals associated with significant changes in the expression of some detoxifying genes, xenobiotic metabolizing enzymes, and DNA repair genes. However, alterations of most of the molecular target genes associated with diseases are still unknown. Thus, the aims of this study were to (a) evaluate the gene expression profile and (b) identify the toxicities and potentially relevant human disease outcomes associated with long-term human exposure to environmental heavy metals in mining area using microarray analysis. For this purpose, 40 healthy male volunteers who were residents of a heavy metal-polluted area (Mahd Al-Dhahab city, Saudi Arabia) and 20 healthy male volunteers who were residents of a non-heavy metal-polluted area were included in the study. Total RNA was isolated from whole blood using PAXgene Blood RNA tubes and then reversed transcribed and hybridized to the gene array using the Affymetrix U219 GeneChip. Microarray analysis showed about 2129 genes were identified and differentially altered, among which a shared set of 425 genes was differentially expressed in the heavy metal-exposed groups. Ingenuity pathway analysis revealed that the most altered gene-regulated diseases in heavy metal-exposed groups included hematological and developmental disorders and mostly renal and urological diseases. Quantitative real-time polymerase chain reaction closely matched the microarray data for some genes tested. Importantly, changes in gene-related diseases were attributed to alterations in the genes encoded for protein synthesis. Renal and urological diseases were the diseases that were most frequently associated with the heavy metal-exposed group. Therefore, there is a need for further studies to validate these genes, which could be used as early biomarkers to prevent renal injury.
Collapse
Affiliation(s)
- Hesham M Korashy
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| | - Ibraheem M Attafi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Konrad S Famulski
- Alberta Transplant Applied Genomics Centre, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Saleh A Bakheet
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammed M Hafez
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdulaziz M S Alsaad
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdul Rahman M Al-Ghadeer
- Central Laboratory, Research Center, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
17
|
Schulte-Herbrüggen HMA, Semião AJC, Chaurand P, Graham MC. Effect of pH and Pressure on Uranium Removal from Drinking Water Using NF/RO Membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:5817-5824. [PMID: 27144287 DOI: 10.1021/acs.est.5b05930] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Groundwater is becoming an increasingly important drinking water source. However, the use of groundwater for potable purposes can lead to chronic human exposure to geogenic contaminants, for example, uranium. Nanofiltration (NF) and reverse osmosis (RO) processes are used for drinking water purification, and it is important to understand how contaminants interact with membranes since accumulation of contaminants to the membrane surface can lead to fouling, performance decline and possible breakthrough of contaminants. During the current study laboratory experiments were conducted using NF (TFC-SR2) and RO (BW30) membranes to establish the behavior of uranium across pH (3-10) and pressure (5-15 bar) ranges. The results showed that important determinants of uranium-membrane sorption interactions were (i) the uranium speciation (uranium species valence and size in relation to membrane surface charge and pore size) and (ii) concentration polarization, depending on the pH values. The results show that it is important to monitor sorption of uranium to membranes, which is controlled by pH and concentration polarization, and, if necessary, adjust those parameters controlling uranium sorption.
Collapse
|
18
|
Bucher G, Mounicou S, Simon O, Floriani M, Lobinski R, Frelon S. Insights into the nature of uranium target proteins within zebrafish gills after chronic and acute waterborne exposures. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:736-741. [PMID: 26379116 DOI: 10.1002/etc.3249] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 05/21/2015] [Accepted: 09/06/2015] [Indexed: 06/05/2023]
Abstract
New data on the nature of the protein targets of uranium (U) within zebrafish gills were collected after waterborne exposure, with the aim of a better understanding of U toxicity mechanisms. Some common characteristics of the U protein target binding properties were found, such as their role in the regulation of other essential metals and their phosphorus content. In total, 21 potential protein targets, including hemoglobin, are identified and discussed in terms of the literature.
Collapse
Affiliation(s)
- Guillaume Bucher
- Institute of Radioprotection and Nuclear Safety/PRP-ENV/SERIS - Laboratoire de Biogéochimie, Biodisponibilité et Transferts des radionucléides, Saint Paul lès Durance, France
- Laboratory of Analytical, Bio-Inorganic, and Environmental Chemistry, Pau, France
| | - Sandra Mounicou
- Laboratory of Analytical, Bio-Inorganic, and Environmental Chemistry, Pau, France
| | - Olivier Simon
- Institute of Radioprotection and Nuclear Safety/PRP-ENV/SERIS - Laboratoire de Biogéochimie, Biodisponibilité et Transferts des radionucléides, Saint Paul lès Durance, France
| | - Magali Floriani
- Institute of Radioprotection and Nuclear Safety/PRP-ENV/SERIS - Laboratoire de Biogéochimie, Biodisponibilité et Transferts des radionucléides, Saint Paul lès Durance, France
| | - Ryszard Lobinski
- Laboratory of Analytical, Bio-Inorganic, and Environmental Chemistry, Pau, France
| | - Sandrine Frelon
- Institute of Radioprotection and Nuclear Safety/PRP-ENV/SERIS - Laboratoire de Biogéochimie, Biodisponibilité et Transferts des radionucléides, Saint Paul lès Durance, France
| |
Collapse
|
19
|
Elemental tungsten, tungsten–nickel alloys and shotgun ammunition: resolving issues of their relative toxicity. EUR J WILDLIFE RES 2015. [DOI: 10.1007/s10344-015-0979-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Song L, Wang Y, Wang J, Yang F, Li X, Wu Y. Trinitrotoluene Induces Endoplasmic Reticulum Stress and Apoptosis in HePG2 Cells. Med Sci Monit 2015; 21:3434-41. [PMID: 26551326 PMCID: PMC4644021 DOI: 10.12659/msm.894169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background This study aims to describe trinitrotoluene (TNT)-induced endoplasmic reticulum stress (ERS) and apoptosis in HePG2 cells. Material/Methods HePG2 cells were cultured in vitro with 0, 6, 12, or 24 μg/ml TNT solution for 12, 24, and 48 h. Western blotting was performed to detect intracellular ERS-related proteins, including glucose-regulated protein (GRP) 78, GRP94, Caspase 4, p-Jun N-terminal kinase (JNK), and C/EBP homologous protein (CHOP). Real-time PCR was used to measure mRNA expression from the respective genes. Results The expressions of ERS-related proteins GRP78 and GRP94 as well as mRNA and protein expression of ERS signaling apoptotic CHOP in the TNT treatment group were significantly increased. In addition, the mRNA and protein expression levels of ERS-induced apoptotic protein Caspase-4 were significantly increased. Flow cytometry revealed that after TNT treatment, the apoptosis rate also significantly increased. Conclusions TNT could increase the expression levels of GRP78, GRP94, Caspase-4, and CHOP in HePG2 cells; this increase in protein expression might be involved in HePG2 apoptosis through the induction of the ERS pathway.
Collapse
Affiliation(s)
- Li Song
- Department of Occupational and Environmental Health, School of Public Health, Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Yue Wang
- Department of Occupational and Environmental Health, School of Public Health, Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Jun Wang
- Department of Occupational and Environmental Health, School of Public Health, Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Fan Yang
- Department of Occupational Poisoning, Heilongjiang Institute of Labor, Health, and Occupational Disease, Harbin, Heilongjiang, China (mainland)
| | - Xiaojun Li
- Department of Occupational and Environmental Health, Heilongjiang Institute of Labor, Health, and Occupational Disease, Harbin, Heilongjiang, China (mainland)
| | - Yonghui Wu
- Department of Occupational and Environmental Health, School of Public Health, Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| |
Collapse
|
21
|
Low-concentration uranium enters the HepG2 cell nucleus rapidly and induces cell stress response. Toxicol In Vitro 2015; 30:552-60. [PMID: 26362510 DOI: 10.1016/j.tiv.2015.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 09/01/2015] [Accepted: 09/06/2015] [Indexed: 02/06/2023]
Abstract
This study aimed to compare the cell stress effects of low and high uranium concentrations and relate them to its localization, precipitate formation, and exposure time. The time-course analysis shows that uranium appears in cell nuclei as a soluble form within 5 min of exposure, and quickly induces expression of antioxidant and DNA repair genes. On the other hand, precipitate formations began at the very beginning of exposure at the 300-μM concentration, but took longer to appear at lower concentrations. Adaptive response might occur at low concentrations but are overwhelmed at high concentrations, especially when uranium precipitates are abundant.
Collapse
|
22
|
Harris RM, Williams TD, Waring RH, Hodges NJ. Molecular basis of carcinogenicity of tungsten alloy particles. Toxicol Appl Pharmacol 2015; 283:223-33. [PMID: 25620057 DOI: 10.1016/j.taap.2015.01.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/10/2015] [Accepted: 01/13/2015] [Indexed: 11/18/2022]
Abstract
The tungsten alloy of 91% tungsten, 6% nickel and 3% cobalt (WNC 91-6-3) induces rhabdomyosarcoma when implanted into a rat thigh muscle. To investigate whether this effect is species-specific human HSkMc primary muscle cells were exposed to WNC 91-6-3 particles and responses were compared with those from a rat skeletal muscle cell line (L6-C11). Toxicity was assessed by the adenylate kinase assay and microscopy, DNA damage by the Comet assay. Caspase 3 enzyme activity was measured and oligonucleotide microarrays were used for transcriptional profiling. WNC 91-6-3 particles caused toxicity in cells adjacent to the particles and also increased DNA strand breaks. Inhibition of caspase 3 by WNC 91-6-3 occurred in rat but not in human cells. In both rat and human cells, the transcriptional response to WNC 91-6-3 showed repression of transcripts encoding muscle-specific proteins with induction of glycolysis, hypoxia, stress responses and transcripts associated with DNA damage and cell death. In human cells, genes encoding metallothioneins were also induced, together with genes related to angiogenesis, dysregulation of apoptosis and proliferation consistent with pre-neoplastic changes. An alloy containing iron, WNF 97-2-1, which is non-carcinogenic in vivo in rats, did not show these transcriptional changes in vitro in either species while the corresponding cobalt-containing alloy, WNC 97-2-1 elicited similar responses to WNC 91-6-3. Tungsten alloys containing both nickel and cobalt therefore have the potential to be carcinogenic in man and in vitro assays coupled with transcriptomics can be used to identify alloys, which may lead to tumour formation, by dysregulation of biochemical processes.
Collapse
Affiliation(s)
- Robert M Harris
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Tim D Williams
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Rosemary H Waring
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Nikolas J Hodges
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
23
|
Wooten DC, Starr CR, Lyon WJ. A plasmid containing the human metallothionein II gene can function as an antibody-assisted electrophoretic biosensor for heavy metals. J Immunotoxicol 2015; 13:55-63. [PMID: 25594566 DOI: 10.3109/1547691x.2014.999295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Different forms of heavy metals affect biochemical systems in characteristic ways that cannot be detected with typical metal analysis methods like atomic absorption spectrometry. Further, using living systems to analyze interaction of heavy metals with biochemical systems can be laborious and unreliable. To generate a reliable easy-to-use biologically-based biosensor system, the entire human metallothionein-II (MT-II) gene was incorporated into a plasmid (pUC57-MT) easily replicated in Escherichia coli. In this system, a commercial polyclonal antibody raised against human metal-responsive transcription factor-1 protein (MTF-1 protein) could modify the electrophoretic migration patterns (i.e. cause specific decreases in agarose gel electrophoretic mobility) of the plasmid in the presence or absence of heavy metals other than zinc (Zn). In the study here, heavy metals, MTF-1 protein, and polyclonal anti-MTF-1 antibody were used to assess pUC57-MT plasmid antibody-assisted electrophoretic mobility. Anti-MTF-1 antibody bound both MTF-1 protein and pUC57-MT plasmid in a non-competitive fashion such that it could be used to differentiate specific heavy metal binding. The results showed that antibody-inhibited plasmid migration was heavy metal level-dependent. Zinc caused a unique mobility shift pattern opposite to that of other metals tested, i.e. Zn blocked the antibody ability to inhibit plasmid migration, despite a greatly increased affinity for DNA by the antibody when Zn was present. The Zn effect was reversed/modified by adding MTF-1 protein. Additionally, antibody inhibition of plasmid mobility was resistant to heat pre-treatment and trypsinization, indicating absence of residual DNA extraction-resistant bacterial DNA binding proteins. DNA binding by anti-DNA antibodies may be commonly enhanced by xenobiotic heavy metals and elevated levels of Zn, thus making them potentially effective tools for assessment of heavy metal bioavailability in aqueous solutions and fluid obtained from metal implant sites.
Collapse
Affiliation(s)
- Dennis C Wooten
- a United States Air Force School of Aerospace Medicine, Advanced Technology and Genetics Center, Wright-Patterson Air Force Base , OH , USA
| | - Clarise R Starr
- a United States Air Force School of Aerospace Medicine, Advanced Technology and Genetics Center, Wright-Patterson Air Force Base , OH , USA
| | - Wanda J Lyon
- a United States Air Force School of Aerospace Medicine, Advanced Technology and Genetics Center, Wright-Patterson Air Force Base , OH , USA
| |
Collapse
|
24
|
Emond CA, Vergara VB, Lombardini ED, Mog SR, Kalinich JF. Induction of Rhabdomyosarcoma by Embedded Military-Grade Tungsten/Nickel/Cobalt Not by Tungsten/Nickel/Iron in the B6C3F1 Mouse. Int J Toxicol 2014; 34:44-54. [DOI: 10.1177/1091581814565038] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Continued improvements in the ballistic properties of military munitions have led to metal formulations for which little are known about the long-term health effects. Previously we have shown that a military-grade tungsten alloy comprised of tungsten, nickel, and cobalt, when embedded into the leg muscle of F344 rats to simulate a fragment wound, induces highly aggressive metastatic rhabdomyosarcomas. An important follow-up when assessing a compound’s carcinogenic potential is to test it in a second rodent species. In this study, we assessed the health effects of embedded fragments of 2 military-grade tungsten alloys, tungsten/nickel/cobalt and tungsten/nickel/iron, in the B6C3F1 mouse. Implantation of tungsten/nickel/cobalt pellets into the quadriceps muscle resulted in the formation of a rhabdomyosarcoma around the pellet. Conversely, implantation of tungsten/nickel/iron did not result in tumor formation. Unlike what was seen in the rat model, the tumors induced by the tungsten/nickel/cobalt did not exhibit aggressive growth patterns and did not metastasize.
Collapse
Affiliation(s)
- Christy A. Emond
- Internal Contamination and Metal Toxicity Program, Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, MD, USA
| | - Vernieda B. Vergara
- Internal Contamination and Metal Toxicity Program, Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, MD, USA
| | - Eric D. Lombardini
- Division of Comparative Pathology, Veterinary Sciences Department, Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, MD, USA
- Current address: Comparative Pathology and Research Veterinary Medicine Department, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Steven R. Mog
- Division of Comparative Pathology, Veterinary Sciences Department, Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, MD, USA
- Current address: Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA
| | - John F. Kalinich
- Internal Contamination and Metal Toxicity Program, Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, MD, USA
| |
Collapse
|
25
|
Bardack S, Dalgard CL, Kalinich JF, Kasper CE. Genotoxic changes to rodent cells exposed in vitro to tungsten, nickel, cobalt and iron. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:2922-40. [PMID: 24619124 PMCID: PMC3987013 DOI: 10.3390/ijerph110302922] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/21/2014] [Accepted: 02/25/2014] [Indexed: 12/03/2022]
Abstract
Tungsten-based materials have been proposed as replacements for depleted uranium in armor-penetrating munitions and for lead in small-arms ammunition. A recent report demonstrated that a military-grade composition of tungsten, nickel, and cobalt induced a highly-aggressive, metastatic rhabdomyosarcoma when implanted into the leg muscle of laboratory rats to simulate a shrapnel wound. The early genetic changes occurring in response to embedded metal fragments are not known. In this study, we utilized two cultured rodent myoblast cell lines, exposed to soluble tungsten alloys and the individual metals comprising the alloys, to study the genotoxic effects. By profiling cell transcriptomes using microarray, we found slight, yet distinct and unique, gene expression changes in rat myoblast cells after 24 h metal exposure, and several genes were identified that correlate with impending adverse consequences of ongoing exposure to weapons-grade tungsten alloy. These changes were not as apparent in the mouse myoblast cell line. This indicates a potential species difference in the cellular response to tungsten alloy, a hypothesis supported by current findings with in vivo model systems. Studies examining genotoxic-associated gene expression changes in cells from longer exposure times are warranted.
Collapse
Affiliation(s)
- Stephanie Bardack
- Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, D.C. 20201, USA.
| | - Clifton L Dalgard
- Department of Anatomy, Physiology, and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - John F Kalinich
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA.
| | - Christine E Kasper
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| |
Collapse
|
26
|
1H NMR spectroscopic analysis detects metabolic disturbances in rat urine on acute exposure to heavy metal tungsten alloy based metals salt. Chem Biol Interact 2014; 211:20-8. [DOI: 10.1016/j.cbi.2013.12.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/13/2013] [Accepted: 12/30/2013] [Indexed: 02/02/2023]
|
27
|
Centeno JA, Rogers DA, van der Voet GB, Fornero E, Zhang L, Mullick FG, Chapman GD, Olabisi AO, Wagner DJ, Stojadinovic A, Potter BK. Embedded fragments from U.S. military personnel--chemical analysis and potential health implications. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:1261-78. [PMID: 24464236 PMCID: PMC3945537 DOI: 10.3390/ijerph110201261] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 12/27/2013] [Accepted: 01/02/2014] [Indexed: 11/23/2022]
Abstract
BACKGROUND The majority of modern war wounds are characterized by high-energy blast injuries containing a wide range of retained foreign materials of a metallic or composite nature. Health effects of retained fragments range from local or systemic toxicities to foreign body reactions or malignancies, and dependent on the chemical composition and corrosiveness of the fragments in vivo. Information obtained by chemical analysis of excised fragments can be used to guide clinical decisions regarding the need for fragment removal, to develop therapeutic interventions, and to better anticipate future medical problems from retained fragment related injuries. In response to this need, a new U.S Department of Defense (DoD) directive has been issued requiring characterization of all removed fragments to provide a database of fragment types occurring in combat injuries. OBJECTIVES The objective of this study is to determine the chemical composition of retained embedded fragments removed from injured military personnel, and to relate results to histological findings in tissue adjacent to fragment material. METHODS We describe an approach for the chemical analysis and characterization of retained fragments and adjacent tissues, and include case examples describing fragments containing depleted uranium (DU), tungsten (W), lead (Pb), and non-metal foreign bodies composed of natural and composite materials. Fragments obtained from four patients with penetrating blast wounds to the limbs were studied employing a wide range of chemical and microscopy techniques. Available adjacent tissues from three of the cases were histologically, microscopically, and chemically examined. The physical and compositional properties of the removed foreign material surfaces were examined with energy dispersive x-ray fluorescence spectrometry (EDXRF), scanning electron microscopy (SEM), laser ablation inductively-coupled plasma mass-spectrometry (LA-ICP-MS), and confocal laser Raman microspectroscopy (CLRM). Quantitative chemical analysis of both fragments and available tissues was conducted employing ICP-MS. RESULTS Over 800 fragments have been characterized and included as part of the Joint Pathology Center Embedded Fragment Registry. Most fragments were obtained from penetrating wounds sustained to the extremities, particularly soft tissue injuries. The majority of the fragments were primarily composed of a single metal such as iron, copper, or aluminum with traces of antimony, titanium, uranium, and lead. One case demonstrated tungsten in both the fragment and the connected tissue, together with lead. Capsular tissue and fragments from a case from the 1991 Kuwait conflict showed evidence of uranium that was further characterized by uranium isotopic ratios analysis to contain depleted uranium. CONCLUSIONS The present study provides a systematic approach for obtaining a full chemical characterization of retained embedded fragments. Given the vast number of combat casualties with retained fragments, it is expected that fragment analysis will have significant implications for the optimal short and long-term care of wounded service members.
Collapse
Affiliation(s)
- José A Centeno
- Division of Biophysical Toxicology, Joint Pathology Center, Silver Spring, MD 20910, USA.
| | - Duane A Rogers
- Division of Biophysical Toxicology, Joint Pathology Center, Silver Spring, MD 20910, USA.
| | | | - Elisa Fornero
- Division of Biophysical Toxicology, Joint Pathology Center, Silver Spring, MD 20910, USA.
| | - Lingsu Zhang
- Division of Biophysical Toxicology, Joint Pathology Center, Silver Spring, MD 20910, USA.
| | - Florabel G Mullick
- Division of Biophysical Toxicology, Joint Pathology Center, Silver Spring, MD 20910, USA.
| | - Gail D Chapman
- Naval Medical Research Unit Dayton, Wright Patterson AFB, OH 45433, USA.
| | - Ayodele O Olabisi
- Naval Medical Research Unit Dayton, Wright Patterson AFB, OH 45433, USA.
| | - Dean J Wagner
- Naval Medical Research Unit Dayton, Wright Patterson AFB, OH 45433, USA.
| | - Alexander Stojadinovic
- Combat Wound Initiative Program, Walter Reed Army Medical Center, Washington, DC 20307, USA.
| | - Benjamin K Potter
- Integrated Department of Orthopaedics and Rehabilitation, Walter Reed Army Medical Center, Washington, DC 20307, USA.
| |
Collapse
|
28
|
Molecular, cellular, and tissue impact of depleted uranium on xenobiotic-metabolizing enzymes. Arch Toxicol 2013; 88:227-39. [DOI: 10.1007/s00204-013-1145-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 10/07/2013] [Indexed: 12/19/2022]
|
29
|
Schuster B, Roszell L, Murr L, Ramirez D, Demaree J, Klotz B, Rosencrance A, Dennis W, Bao W, Perkins E, Dillman J, Bannon D. In vivo corrosion, tumor outcome, and microarray gene expression for two types of muscle-implanted tungsten alloys. Toxicol Appl Pharmacol 2012; 265:128-38. [DOI: 10.1016/j.taap.2012.08.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 08/17/2012] [Accepted: 08/27/2012] [Indexed: 11/25/2022]
|
30
|
Pleil JD, Sobus JR, Sheppard PR, Ridenour G, Witten ML. Strategies for evaluating the environment–public health interaction of long-term latency disease: The quandary of the inconclusive case–control study. Chem Biol Interact 2012; 196:68-78. [DOI: 10.1016/j.cbi.2011.02.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 01/18/2011] [Accepted: 02/16/2011] [Indexed: 10/18/2022]
|
31
|
Rouas C, Bensoussan H, Suhard D, Tessier C, Grandcolas L, Rebiere F, Dublineau I, Taouis M, Pallardy M, Lestaevel P, Gueguen Y. Distribution of soluble uranium in the nuclear cell compartment at subtoxic concentrations. Chem Res Toxicol 2012; 23:1883-9. [PMID: 21067124 DOI: 10.1021/tx100168c] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Uranium is naturally found in the environment, and its extensive use results in an increased risk of human exposure. Kidney cells have mainly been used as in vitro models to study effects of uranium exposure, and very little about the effects on other cell types is known. The aim of this study was to assess the impact of depleted uranium exposure at the cellular level in human kidney (HEK-293), liver (HepG2), and neuronal (IMR-32) cell lines. Cytotoxicity studies showed that these cell lines reacted in a roughly similar manner to depleted uranium exposure, responding at a cytotoxicity threshold of 300-500 μM. Uranium was localized in cells with secondary ion mass spectrometry technology. Results showed that uranium precipitates at subtoxic concentrations (>100 μM). With this approach, we were able for the first time to observe the soluble form of uranium in the cell at low concentrations (10-100 μM). Moreover, this technique allows us to localize it mainly in the nucleus. These innovative results raise the question of how uranium penetrates into cells and open new perspectives for studying the mechanisms of uranium chemical toxicity.
Collapse
Affiliation(s)
- Caroline Rouas
- Institut de RadioProtection et de Sureté Nucléaire, Direction de la Radioprotection de l’Homme, Service de Radiobiologie et d’Epidémiologie, Laboratoire de Radiotoxicologie Expérimentale, BP17, F-92262 Fontenay-aux-Roses, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Comparison of size and geography of airborne tungsten particles in Fallon, Nevada, and Sweet Home, Oregon, with implications for public health. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2012; 2012:509458. [PMID: 22523506 PMCID: PMC3317226 DOI: 10.1155/2012/509458] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 11/21/2011] [Indexed: 12/02/2022]
Abstract
To improve understanding of possible connections between airborne tungsten and public health, size and geography of airborne tungsten particles collected in Fallon, Nevada, and Sweet Home, Oregon, were compared. Both towns have industrial tungsten facilities, but only Fallon has experienced a cluster of childhood leukemia. Fallon and Sweet Home are similar to one another by their particles of airborne tungsten being generally small in size. Meteorologically, much, if not most, of residential Fallon is downwind of its hard metal facility for at least some fraction of time at the annual scale, whereas little of residential Sweet Home is downwind of its tungsten facility. Geographically, most Fallon residents potentially spend time daily within an environment containing elevated levels of airborne tungsten. In contrast, few Sweet Home residents potentially spend time daily within an airborne environment with elevated levels of airborne tungsten. Although it cannot be concluded from environmental data alone that elevated airborne tungsten causes childhood leukemia, the lack of excessive cancer in Sweet Home cannot logically be used to dismiss the possibility of airborne tungsten as a factor in the cluster of childhood leukemia in Fallon. Detailed modeling of all variables affecting airborne loadings of heavy metals would be needed to legitimately compare human exposures to airborne tungsten in Fallon and Sweet Home.
Collapse
|
33
|
Roedel EQ, Cafasso DE, Lee KW, Pierce LM. Pulmonary toxicity after exposure to military-relevant heavy metal tungsten alloy particles. Toxicol Appl Pharmacol 2012; 259:74-86. [DOI: 10.1016/j.taap.2011.12.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 12/06/2011] [Accepted: 12/08/2011] [Indexed: 01/06/2023]
|
34
|
McDiarmid MA, Albertini RJ, Tucker JD, Vacek PM, Carter EW, Bakhmutsky MV, Oliver MS, Engelhardt SM, Squibb KS. Measures of genotoxicity in Gulf war I veterans exposed to depleted uranium. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2011; 52:569-581. [PMID: 21728185 DOI: 10.1002/em.20658] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 04/12/2011] [Accepted: 04/13/2011] [Indexed: 05/31/2023]
Abstract
Exposure to depleted uranium (DU), an alpha-emitting heavy metal, has prompted the inclusion of markers of genotoxicity in the long-term medical surveillance of a cohort of DU-exposed Gulf War veterans followed since 1994. Using urine U (uU) concentration as the measure of U body burden, the cohort has been stratified into low-u (<0.10 μg U/g creatinine) and high-u groups (≥ 0.10 μg U/g creatinine). Surveillance outcomes for this cohort have historically included markers of mutagenicity and clastogenicity, with past results showing generally nonsignificant differences between low- vs. high-U groups. However, mean hypoxanthine-guanine phosphoribosyl transferase (HPRT) mutant frequencies (MFs) have been almost 50% higher in the high-U group. We report here results of a more comprehensive protocol performed in a 2009 evaluation of a subgroup (N = 35) of this cohort. Four biomarkers of genotoxicity [micronuclei (MN), chromosome aberrations, and MFs of HPRT and PIGA] were examined. There were no statistically significant differences in any outcome measure when results were compared between the low- vs. high-U groups. However, modeling of the HPRT MF results suggests a possible threshold effect for MFs occurring in the highest U exposed cohort members. Mutational spectral analysis of HPRT mutations is underway to clarify a potential clonal vs. a threshold uU effect to explain this observation. This study provides a comprehensive evaluation of a human population chronically exposed to DU and demonstrates a relatively weak genotoxic effect of the DU exposure. These results may explain the lack of clear epidemiologic evidence for U carcinogenicity in humans. Environ. Mol. Mutagen., 2011. © 2011 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Melissa A McDiarmid
- Occupational Health Program, Department of Medicine, University of Maryland School of Medicine, Baltimore, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Al-Mumen MM, Al-Janabi AA, Jumaa AS, Al-Toriahi KM, Yasseen AA. Exposure to depleted uranium does not alter the co-expression of HER-2/neu and p53 in breast cancer patients. BMC Res Notes 2011; 4:87. [PMID: 21443808 PMCID: PMC3072333 DOI: 10.1186/1756-0500-4-87] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Accepted: 03/29/2011] [Indexed: 01/12/2023] Open
Abstract
Background Amongst the extensive literature on immunohistochemical profile of breast cancer, very little is found on populations exposed to a potential risk factor such as depleted uranium. This study looked at the immunohistochemical expression of HER-2/neu (c-erbB2) and p53 in different histological types of breast cancer found in the middle Euphrates region of Iraq, where the population has been exposed to high levels of depleted uranium. Findings The present investigation was performed over a period starting from September 2008 to April 2009. Formalin-fixed, paraffin-embedded blocks from 70 patients with breast cancer (62 ductal and 8 lobular carcinoma) were included in this study. A group of 25 patients with fibroadenoma was included as a comparative group, and 20 samples of normal breast tissue sections were used as controls. Labeled streptavidin-biotin (LSAB+) complex method was employed for immunohistochemical detection of HER-2/neu and p53. The detection rate of HER-2/neu and p53 immunohistochemical expression were 47.14% and 35.71% respectively in malignant tumors; expression was negative in the comparative and control groups (p < 0.05). HER-2/neu immunostaining was significantly associated with histological type, tumor size, nodal involvement, and recurrence of breast carcinoma (p < 0.05), p53 immunostaining was significantly associated with tumor size, nodal involvement and recurrence of breast cancer (p < 0.05). There was greater immunoexpression of HER-2/neu in breast cancer in this population, compared with findings in other populations. Both biomarkers were positively correlated with each other. Furthermore, all the cases that co-expressed both HER-2/neu and p53 showed the most unfavorable biopathological profile. Conclusion P53 and HER-2/neu over-expression play an important role in pathogenesis of breast carcinoma. The findings indicate that in regions exposed to high levels of depleted uranium, although p53 and HER-2/neu overexpression are both high, correlation of their expression with age, grade, tumor size, recurrence and lymph node involvement is similar to studies that have been conducted on populations not exposed to depleted uranium. HER-2/neu expression in breast cancer was higher in this population, compared with results on non-exposed populations.
Collapse
Affiliation(s)
- Mais M Al-Mumen
- Department of Pathology and Forensic Medicine, Faculty of Medicine, Kufa, University, Kufa, P,O, Box 18, Iraq.
| | | | | | | | | |
Collapse
|
36
|
Brugge D, Buchner V. Health effects of uranium: new research findings. REVIEWS ON ENVIRONMENTAL HEALTH 2011; 26:231-49. [PMID: 22435323 DOI: 10.1515/reveh.2011.032] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Recent plans for a nuclear renaissance in both established and emerging economies have prompted increased interest in uranium mining. With the potential for more uranium mining worldwide and a growth in the literature on the toxicology and epidemiology of uranium and uranium mining, we found it timely to review the current state of knowledge. Here, we present a review of the health effects of uranium mining, with an emphasis on newer findings (2005-2011). Uranium mining can contaminate air, water, and soil. The chemical toxicity of the metal constitutes the primary environmental health hazard, with the radioactivity of uranium a secondary concern. The update of the toxicologic evidence on uranium adds to the established findings regarding nephrotoxicity, genotoxicity, and developmental defects. Additional novel toxicologic findings, including some at the molecular level, are now emerging that raise the biological plausibility of adverse effects on the brain, on reproduction, including estrogenic effects, on gene expression, and on uranium metabolism. Historically, most epidemiology on uranium mining has focused on mine workers and radon exposure. Although that situation is still overwhelmingly true, a smaller emerging literature has begun to form around environmental exposure in residential areas near uranium mining and processing facilities. We present and critique such studies. Clearly, more epidemiologic research is needed to contribute to causal inference. As much damage is irreversible, and possibly cumulative, present efforts must be vigorous to limit environmental uranium contamination and exposure.
Collapse
Affiliation(s)
- Doug Brugge
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA.
| | | |
Collapse
|
37
|
Jergovic M, Miskulin M, Puntaric D, Gmajnic R, Milas J, Sipos L. Cross-sectional biomonitoring of metals in adult populations in post-war eastern Croatia: differences between areas of moderate and heavy combat. Croat Med J 2010; 51:451-60. [PMID: 20960595 PMCID: PMC2969140 DOI: 10.3325/cmj.2010.51.451] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 08/27/2010] [Indexed: 11/05/2022] Open
Abstract
AIM To determine differences in metal and metalloid exposure between residents of areas in eastern Croatia exposed to heavy fighting during the war in Croatia and residents of areas exposed to moderate fighting. METHODS Concentrations of aluminum (Al), arsenic (As), barium (Ba), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), nickel (Ni), lead (Pb), uranium (U), vanadium (V), and zinc (Zn), reported to be associated with military operations, were determined in hair, serum, and urine samples using inductively-coupled plasma mass spectroscopy. A total of 127 and 46 participants from areas of heavy and moderate fighting, respectively, were included. RESULTS Compared with participants from areas exposed to moderate fighting, participants from areas exposed to heavy fighting had significantly higher serum concentrations of Al (87.61 vs 42.75 μg/L, P=0.007), As (5.05 ∓ 1.79 vs 4.16 ∓ 1.55 μg/L, P=0.003), Ba (7.12 vs 6.01 μg/L, P=0.044), and V (17.98 vs 16.84 μg/L, P=0.008); significantly higher urine concentrations of As (43.90 vs 11.51 μg/L, P<0.001) and Cd (0.67 vs 0.50 μg/L, P=0.031); and significantly higher hair concentrations of Al (12.61 vs 7.33 μg/L, P<0.001), As (0.32 vs 0.05 μg/L, P<0.001), Cd (0.03 vs 0.02 μg/L, P=0.002), Fe (22.58 vs 12.68 μg/L, P=0.001), Pb (1.04 vs 0.69 μg/L, P=0.006), and V (0.07 vs 0.03 μg/L, P<0.001). CONCLUSION Differences between populations from eastern Croatian areas exposed to heavy and populations exposed to moderate fighting point to the need for extensive monitoring of metal and metalloid exposure, emphasizing the role of biomonitoring through ecologic and preventive activities.
Collapse
|
38
|
Miller AC, Stewart M, Rivas R. Preconceptional paternal exposure to depleted uranium: transmission of genetic damage to offspring. HEALTH PHYSICS 2010; 99:371-379. [PMID: 20699700 DOI: 10.1097/hp.0b013e3181cfe0dd] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Depleted uranium (DU) is an alpha particle emitter and radioactive heavy metal used in military applications. Due to internalization of DU during military operations and the ensuing chronic internal exposure to DU, there are concerns regarding its potential health effects. Preconceptional paternal irradiation has been implicated as a causal factor in childhood cancer and it has been suggested that this paternal exposure to radiation may play a role in the occurrence of leukemia and other cancers to offspring. Similarly, in vivo heavy metal studies have demonstrated that carcinogenic effects can occur in unexposed offspring. Using a transgenic mouse system employing a lambda shuttle vector allowing mutations (in the lacI gene) to be analyzed in vitro, we have investigated the possibility that chronic preconceptional paternal DU exposure can lead to transgenerational transmission of genomic instability. The mutation frequencies in vector recovered from the bone marrow cells of the F1 offspring of male parents exposed to low, medium, and high doses of internalized DU for 7 mo were evaluated and compared to control, tantalum, nickel, and gamma radiation F1 samples. Results demonstrate that as paternal DU-dose increased there was a trend towards higher mutation frequency in vector recovered from the DNA obtained from bone marrow of F1 progeny; medium and high dose DU exposure to P1 fathers resulted in a significant increase in mutation frequency in F1 offspring (3.57 +or - 0.37 and 4.81 + or - 0.43 x 10; p < 0.001) in comparison to control (2.28 + or - 0.31 x 10). The mutation frequencies from F1 offspring of low dose DU, Ta- or Ni-implanted fathers (2. 71 + or - 0.35, 2.38 + or - 0.35, and 2.93 + or - 0.39 x 10, respectively) were not significantly different than control levels (2.28 + or - 0.31 x 10). Offspring from Co (4 Gy) irradiated fathers did demonstrate an increased lacI mutation frequency (4.69 + or - 0.48 x 10) as had been shown previously. To evaluate the role of radiation involved in the observed DU effects, males were exposed to equal concentrations (50 mg U L) of either enriched uranium or DU in their drinking water for 2 mo prior to breeding. A comparison of these offspring indicated that there was a specific-activity dependent increase in offspring bone marrow mutation frequency. Taken together these uranyl nitrate data support earlier results in other model systems showing that radiation can play a role in DU-induced biological effects in vitro. However, since the lacI mutation model measures point mutations and cannot measure large deletions that are characteristic of radiation damage, the role of DU chemical effects in the observed offspring mutation frequency increase may also be significant. Regardless of the question of DU-radiation vs. DU-chemical effects, the data indicate that there exists a route for transgenerational transmission of factor(s) leading to genomic instability in F1 progeny from DU-exposed fathers.
Collapse
Affiliation(s)
- Alexandra C Miller
- Scientific Research Department, Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University, Bethesda, MD 20889-5603, USA.
| | | | | |
Collapse
|
39
|
Skaik S, Abu-Shaban N, Abu-Shaban N, Barbieri M, Barbieri M, Giani U, Manduca P. Metals detected by ICP/MS in wound tissue of war injuries without fragments in Gaza. BMC INTERNATIONAL HEALTH AND HUMAN RIGHTS 2010; 10:17. [PMID: 20579349 PMCID: PMC2903525 DOI: 10.1186/1472-698x-10-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 06/25/2010] [Indexed: 11/20/2022]
Abstract
BACKGROUND The amount and identity of metals incorporated into "weapons without fragments" remain undisclosed to health personnel. This poses a long-term risk of assumption and contributes to additional hazards for victims because of increased difficulties with clinical management. We assessed if there was evidence that metals are embedded in "wounds without fragments" of victims of the Israeli military operations in Gaza in 2006 and 2009. METHODS Biopsies of "wounds without fragments" from clinically classified injuries, amputation (A), charred (C), burns (B), multiple piercing wounds by White Phosphorus (WP) (M), were analyzed by ICP/MS for content in 32 metals. RESULTS Toxic and carcinogenic metals were detected in folds over control tissues in wound tissues from all injuries: in A and C wounds (Al, Ti, Cu, Sr, Ba, Co, Hg, V, Cs and Sn), in M wounds (Al, Ti, Cu, Sr, Ba, Co and Hg) and in B wounds (Co, Hg, Cs, and Sn); Pb and U in wounds of all classes; B, As, Mn, Rb, Cd, Cr, Zn in wounds of all classes, but M; Ni was in wounds of class A. Kind and amounts of metals correlate with clinical classification of injuries, exposing a specific metal signature, similar for 2006 and 2009 samples. CONCLUSIONS The presence of toxic and carcinogenic metals in wound tissue is indicative of the presence in weapon inducing the injury. Metal contamination of wounds carries unknown long term risks for survivors, and can imply effects on populations from environmental contamination. We discuss remediation strategies, and believe that these data suggest the need for epidemiological and environmental surveys.
Collapse
Affiliation(s)
| | - Nafiz Abu-Shaban
- Plastic surgery Dept. and Burn Unit, Shifa Hospital, Gaza, Palestine
| | | | - Mario Barbieri
- Istituto di Geologia Ambientale e Geoingegneria, C.N.R., Rome, Italy
| | | | - Umberto Giani
- Dept. of Preventive Medical Sciences, Faculty of Medicine, University Federico II, Naples, Italy
| | | |
Collapse
|
40
|
Johnson DR, Ang C, Bednar AJ, Inouye LS. Tungsten effects on phosphate-dependent biochemical pathways are species and liver cell line dependent. Toxicol Sci 2010; 116:523-32. [PMID: 20421338 DOI: 10.1093/toxsci/kfq124] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Tungsten, in the form of tungstate, polymerizes with phosphate, and as extensive polymerization occurs, cellular phosphorylation and dephosphorylation reactions may be disrupted, resulting in negative effects on cellular functions. A series of studies were conducted to evaluate the effect of tungsten on several phosphate-dependent intracellular functions, including energy cycling (ATP), regulation of enzyme activity (cytosolic protein tyrosine kinase [cytPTK] and tyrosine phosphatase), and intracellular secondary messengers (cyclic adenosine monophosphate [cAMP]). Rat noncancerous hepatocyte (Clone-9), rat cancerous hepatocyte (H4IIE), and human cancerous hepatocyte (HepG2) cells were exposed to 1-1000 mg/l tungsten (in the form of sodium tungstate) for 24 h, lysed, and analyzed for the above biochemical parameters. Cellular ATP levels were not significantly affected in any cell line. After 4 h, tungsten significantly decreased cytPTK activity in Clone-9 cells at >or= 18 mg/l, had no effect in H4IIE cells, and significantly increased cytPTK activity by 70% in HepG2 cells at >or= 2 mg/l. CytPTK displayed a slight hormetic response to tungsten after 24-h exposure yet returned to normal after 48-h exposure. Tungsten significantly increased cAMP by over 60% in Clone-9 cells at >or= 100 mg/l, significantly increased cAMP in H4IIE cells at only 100 mg/l, and significantly increased cAMP in HepG2 cells between 1-100 mg/l but at much more modest levels (8-20%). In conclusion, these data indicate that tungsten produces complex results that must be carefully interpreted in the context of their respective animal models, as well as the phenotype of the cell lines (i.e., normal vs. cancerous).
Collapse
Affiliation(s)
- David R Johnson
- Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, Mississippi 39180, USA.
| | | | | | | |
Collapse
|
41
|
The toxicity of depleted uranium. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2010; 7:303-13. [PMID: 20195447 PMCID: PMC2819790 DOI: 10.3390/ijerph7010303] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 01/20/2010] [Indexed: 12/22/2022]
Abstract
Depleted uranium (DU) is an emerging environmental pollutant that is introduced into the environment primarily by military activity. While depleted uranium is less radioactive than natural uranium, it still retains all the chemical toxicity associated with the original element. In large doses the kidney is the target organ for the acute chemical toxicity of this metal, producing potentially lethal tubular necrosis. In contrast, chronic low dose exposure to depleted uranium may not produce a clear and defined set of symptoms. Chronic low-dose, or subacute, exposure to depleted uranium alters the appearance of milestones in developing organisms. Adult animals that were exposed to depleted uranium during development display persistent alterations in behavior, even after cessation of depleted uranium exposure. Adult animals exposed to depleted uranium demonstrate altered behaviors and a variety of alterations to brain chemistry. Despite its reduced level of radioactivity evidence continues to accumulate that depleted uranium, if ingested, may pose a radiologic hazard. The current state of knowledge concerning DU is discussed.
Collapse
|
42
|
Rossiter HM, Graham MC, Schäfer AI. Impact of speciation on behaviour of uranium in a solar powered membrane system for treatment of brackish groundwater. Sep Purif Technol 2010. [DOI: 10.1016/j.seppur.2009.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Yang Z, Song L, Huang C. Gadd45 proteins as critical signal transducers linking NF-kappaB to MAPK cascades. Curr Cancer Drug Targets 2009; 9:915-30. [PMID: 20025601 PMCID: PMC3762688 DOI: 10.2174/156800909790192383] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The growth arrest and DNA damage-inducible 45 (Gadd45) proteins are a group of critical signal transducers that are involved in regulations of many cellular functions. Accumulated data indicate that all three Gadd45 proteins (i.e., Gadd45alpha, Gadd45beta, and Gadd45gamma) play essential roles in connecting an upstream sensor module, the transcription Nuclear Factor-kappaB (NF-kappaB), to a transcriptional regulating module, mitogen-activated protein kinase (MAPK). This NF-kappaB-Gadd45(s)-MAPK pathway responds to various kinds of extracellular stimuli and regulates such cell activities as growth arrest, differentiation, cell survival, and apoptosis. Defects in this pathway can also be related to oncogenesis. In the first part of this review, the functions of Gadd45 proteins, and briefly NF-kappaB and MAPK, are summarized. In the second part, the mechanisms by which Gadd45 proteins are regulated by NF-kappaB, and how they affect MAPK activation, are reviewed.
Collapse
Affiliation(s)
- Z. Yang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | - L. Song
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
- Department of Cellular Immunology, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, China
| | - C. Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| |
Collapse
|
44
|
Rouas C, Souidi M, Grandcolas L, Grison S, Baudelin C, Gourmelon P, Pallardy M, Gueguen Y. Acetaminophen induces xenobiotic-metabolizing enzymes in rat: Impact of a uranium chronic exposure. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2009; 28:363-369. [PMID: 21784028 DOI: 10.1016/j.etap.2009.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 06/02/2009] [Accepted: 06/13/2009] [Indexed: 05/31/2023]
Abstract
The extensive use of uranium in civilian and military applications increases the risk of human chronic exposure. Uranium is a slightly radioactive heavy metal with a predominantly chemical toxicity, especially in kidney but also in liver. Few studies have previously shown some effects of uranium on xenobiotic-metabolizing enzymes (XME) that might disturb drug pharmacokinetic. The aim of this study was to determine whether a chronic (9 months) non-nephrotoxic low dose exposure to depleted uranium (DU, 1mg/rat/day) could modify the liver XME, using a single non-hepatotoxic acetaminophen (APAP) treatment (50mg/kg). Most of XME analysed were induced by APAP treatment at the gene expression level but at the protein level only CYP3A2 was significantly increased 3h after APAP treatment in DU-exposed rats whereas it remained at a basal level in unexposed rats. In conclusion, these results showed that a chronic non-nephrotoxic DU exposure specially modify CYP3A2 after a single therapeutic APAP treatment.
Collapse
Affiliation(s)
- Caroline Rouas
- Institute for Radiological Protection and Nuclear Safety, Radiological Protection and Human Health Division, Radiobiology and Epidemiology Department, Laboratory of Experimental Toxicology, BP no. 17, F-92262 Fontenay-aux-Roses Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
This article describes uranium and depleted uranium (DU), their similar isotopic compositions, how DU arises, its use in munitions and armour-proofing, and its pathways for human exposures. Particular attention is paid to the evidence of DU's health effects from cell and animal experiments and from epidemiology studies. It is concluded that a precautionary approach should be adopted to DU and that there should be a moratorium on its use by military forces. International efforts to this end are described.
Collapse
Affiliation(s)
- Ian Fairlie
- Independent Consultant on Radioactivity in the Environment, London, UK.
| |
Collapse
|
46
|
Garcia-Reyero N, Poynton HC, Kennedy AJ, Guan X, Escalon BL, Chang B, Varshavsky J, Loguinov AV, Vulpe CD, Perkins EJ. Biomarker discovery and transcriptomic responses in Daphnia magna exposed to munitions constituents. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:4188-4193. [PMID: 19569350 DOI: 10.1021/es803702a] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Ecotoxicogenomic approaches are emerging as alternative methods in environmental monitoring because they allow insight into pollutant modes of action and help assess the causal agents and potential toxicity beyond the traditional end points of death, growth, and reproduction. Gene expression analysis has shown particular promise for identifying gene expression biomarkers of chemical exposure that can be further used to monitor specific chemical exposures in the environment. We focused on the development of gene expression markers to detect and discriminate between chemical exposures. Using a custom cDNA microarray for Daphnia magna, we identified distinct expression fingerprints in response to exposure at sublethal concentrations of Cu, Zn, Pb, and munitions constituents. Using the results obtained from microarray analysis, we chose a suite of potential biomarkers for each of the specific exposures. The selected potential biomarkers were tested in independent chemical exposures for specificity using quantitative reverse transcription polymerase chain reaction. Six genes were confirmed as differentially regulated bythe selected chemical exposures. Furthermore, each exposure was identified by response of a unique combination (suite) of individual gene expression biomarkers. These results demonstrate the potential for discovery and validation of novel biomarkers of chemical exposures using gene expression analysis, which could have broad applicability in environmental monitoring.
Collapse
|
47
|
Thomas VG, Roberts MJ, Harrison PTC. Assessment of the environmental toxicity and carcinogenicity of tungsten-based shot. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2009; 72:1031-7. [PMID: 19232723 DOI: 10.1016/j.ecoenv.2009.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 11/03/2008] [Accepted: 01/10/2009] [Indexed: 05/08/2023]
Abstract
The toxicity of elemental tungsten released from discharged shot was assessed against previous studies that established a 1% toxic threshold for soil organisms. Extremely heavy theoretical shot loadings of 69,000shot/ha were used to generate estimated environmental concentrations (EEC) for two brands of tungsten-based shot containing 51% and 95% tungsten. The corresponding tungsten EEC values were 6.5-13.5mg W/kg soil, far below the 1% toxic threshold. The same shot loading in water produced tungsten EEC values of 2.1-4.4mg W/L, levels that are not toxic under experimental conditions. Pure tungsten has not been shown to exhibit carcinogenic properties when ingested or embedded in animal tissues, but nickel, with which it is often alloyed, has known carcinogenicity. Given the large number of waterfowl that carry shot embedded in their body, it is advisable to screen lead shot substitutes for their carcinogenic potential through intra-muscular implantation.
Collapse
Affiliation(s)
- Vernon G Thomas
- Department of Integrative Biology, College of Biological Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1.
| | | | | |
Collapse
|
48
|
|
49
|
Marshall AC. Gulf war depleted uranium risks. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2008; 18:95-108. [PMID: 17299528 DOI: 10.1038/sj.jes.7500551] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
US and British forces used depleted uranium (DU) in armor-piercing rounds to disable enemy tanks during the Gulf and Balkan Wars. Uranium particulate is generated by DU shell impact and particulate entrained in air may be inhaled or ingested by troops and nearby civilian populations. As uranium is slightly radioactive and chemically toxic, a number of critics have asserted that DU exposure has resulted in a variety of adverse health effects for exposed veterans and nearby civilian populations. The study described in this paper used mathematical modeling to estimate health risks from exposure to DU during the 1991 Gulf War for both US troops and nearby Iraqi civilians. The analysis found that the risks of DU-induced leukemia or birth defects are far too small to result in an observable increase in these health effects among exposed veterans or Iraqi civilians. The analysis indicated that only a few ( approximately 5) US veterans in vehicles accidentally targeted by US tanks received significant exposure levels, resulting in about a 1.4% lifetime risk of DU radiation-induced fatal cancer (compared with about a 24% risk of a fatal cancer from all other causes). These veterans may have also experienced temporary kidney damage. Iraqi children playing for 500 h in DU-destroyed vehicles are predicted to incur a cancer risk of about 0.4%. In vitro and animal tests suggest the possibility of chemically induced health effects from DU internalization, such as immune system impairment. Further study is needed to determine the applicability of these findings for Gulf War exposure to DU. Veterans and civilians who did not occupy DU-contaminated vehicles are unlikely to have internalized quantities of DU significantly in excess of normal internalization of natural uranium from the environment.
Collapse
Affiliation(s)
- Albert C Marshall
- Consultant for Sandia National Laboratories, Albuquerque, New Mexico 87047, USA.
| |
Collapse
|
50
|
Miller AC, Stewart M, Rivas R, Marino S, Randers-Pehrson G, Shi L. Observation of radiation-specific damage in cells exposed to depleted uranium: hprt gene mutation frequency. RADIAT MEAS 2007. [DOI: 10.1016/j.radmeas.2007.05.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|