1
|
Luo H, Wang J, Lin F, Liu Y, Wu X, Li G, Su C, Chen J, Xiong F, Mo J, Zheng Z, Zheng X, Li Q, Zha L. Macrophage exosomes mediate palmitic acid-induced metainflammation by transferring miR-3064-5p to target IκBα and activate NF-κB signaling. J Adv Res 2025; 71:501-519. [PMID: 38960278 DOI: 10.1016/j.jare.2024.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024] Open
Abstract
INTRODUCTION High palmitic acid (PA) levels trigger metainflammation, facilitating the onset and progression of chronic metabolic diseases. Recently, exosomes were identified as new inflammation mediators. However, the mechanism by which macrophage exosomes mediate PA-induced inflammation remains unclear. OBJECTIVES To explore how PA induces metainflammation through macrophage exosomes. METHODS Exosomes secreted by RAW264.7 mouse macrophages stimulated with PA (ExosPA) or not (Exos) were prepared by ultracentrifugation. The differential miRNAs between ExosPA and Exos were identified by high-throughput sequencing, and their targeted mRNAs and proteins were bioinformatically analyzed and verified by qPCR and western blot. Mouse macrophages and metabolic cells (AML-12 hepatocytes, C2C12 myocytes or 3T3-L1 adipocytes) were treated with ExosPA or Exos. The verified miRNAs and its targeted molecules related to inflammation were analyzed in recipient cells. Furthers, exosomes were prepared from primary peritoneal macrophages isolated from AIN93G diet-fed (Control PM-Exos) or HPD-fed (PA PM-Exos) mice. Control or PA PM-Exos were then tail vein injected (30 μg) into mice (n = 10), once a week for 2 weeks. The verified miRNA and its targets in blood, blood exosomes, and metabolic tissues were detected. Finally, measured the levels of miRNA, inflammatory factors, and fatty acids in the blood of 20 obese/overweight individuals and 20 healthy individuals. RESULTS ExoPA activate NF-κB signaling and enhance inflammatory enzyme/cytokine production in macrophages and metabolic cells. ExoPA enrich miR-3064-5p and target to inhibit IκBα as verified by exosome inhibitors and miR-3064-5p mimics and inhibitors. HPD elevates exosomal miR-3064-5p, macrophage exosomal miR-3064-5p, and inflammatory cytokine levels in mice circulation. PA PM-Exos from HPD-fed mice triggered inflammation in the circulation and metabolic tissues/organs of chow diet-fed mice. Overweight/obese individuals exhibit increased levels of circulating palmitoleic acid, exosomal miR-3064-5p, and high-sensitivity C-reactive proteins. CONCLUSIONS Macrophage exosomes transferring miR-3064-5p to target IκBα and activate NF-κB signaling in metabolic cells is a mechanism of PA-induced metainflammation.
Collapse
Affiliation(s)
- Huiyu Luo
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Jiexian Wang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Fengjuan Lin
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Yuguo Liu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Xinglong Wu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Gan Li
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, PR China; Department of Clinical Nutrition, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, 423000 Chenzhou, PR China
| | - Chuhong Su
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Junbin Chen
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Fei Xiong
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, PR China; Department of Clinical Nutrition, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Jiaqi Mo
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Zhongdaixi Zheng
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Xiangyi Zheng
- Department of Health Management Medicine, Guangzhou Panyu District Health Management Center (Guangzhou Panyu District Rehabilitation Hospital), Guangzhou 511450, Guangdong, PR China
| | - Qing Li
- Department of Clinical Nutrition, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Longying Zha
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, PR China.
| |
Collapse
|
2
|
Julio A, Guedes-Silva TC, Berni M, Bisch PM, Araujo H. A Rhodnius prolixus catalytically inactive Calpain protease patterns the insect embryonic dorsal-ventral axis. CURRENT RESEARCH IN INSECT SCIENCE 2024; 6:100094. [PMID: 39262636 PMCID: PMC11387712 DOI: 10.1016/j.cris.2024.100094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/13/2024]
Abstract
The calcium dependent Calpain proteases are modulatory enzymes with important roles in cell cycle control, development and immunity. In the fly model Drosophila melanogaster Calpain A cleaves Cactus/IkappaB and consequently modifies Toll signals during embryonic dorsal-ventral (DV) patterning. Here we explore the role of Calpains in the hemiptera Rhodnius prolixus, an intermediate germband insect where the Bone Morphogenetic Protein (BMP) instead of the Toll pathway plays a major role in DV patterning. Phylogenetic analysis of Calpains in species ranging from Isoptera to Diptera indicates an increase of Calpain sequences in the R. prolixus genome and other hemimetabolous species. One locus encoding each of the CalpC, CalpD and Calp7 families, and seven Calpain A/B loci are present in the R. prolixus genome. Several predicted R. prolixus Calpains display a unique architecture, such as loss of Calcium-binding EF-hand domains and loss of catalytic residues in the active site CysPc domain, yielding catalytically dead Calpains A/B. Knockdown for one of these inactive Calpains results in embryonic DV patterning defects, with expansion of ventral and lateral gene expression domains and consequent failure of germ band elongation. In conclusion, our results reveal that Calpains may exert a conserved function in insect DV patterning, despite the changing role of the Toll and BMP pathways in defining gene expression territories along the insect DV axis.
Collapse
Affiliation(s)
- Alison Julio
- Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tainan C Guedes-Silva
- Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mateus Berni
- Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brazil (INCT-EM)
| | | | - Helena Araujo
- Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brazil (INCT-EM)
| |
Collapse
|
3
|
‘t Hart DC, van der Vlag J, Nijenhuis T. A Putative Role for TRPC6 in Immune-Mediated Kidney Injury. Int J Mol Sci 2023; 24:16419. [PMID: 38003608 PMCID: PMC10671681 DOI: 10.3390/ijms242216419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Excessive activation of the immune system is the cause of a wide variety of renal diseases. However, the pathogenic mechanisms underlying the aberrant activation of the immune system in the kidneys often remain unknown. TRPC6, a member of the Ca2+-permeant family of TRPC channels, is important in glomerular epithelial cells or podocytes for the process of glomerular filtration. In addition, TRPC6 plays a crucial role in the development of kidney injuries by inducing podocyte injury. However, an increasing number of studies suggest that TRPC6 is also responsible for tightly regulating the immune cell functions. It remains elusive whether the role of TRPC6 in the immune system and the pathogenesis of renal inflammation are intertwined. In this review, we present an overview of the current knowledge of how TRPC6 coordinates the immune cell functions and propose the hypothesis that TRPC6 might play a pivotal role in the development of kidney injury via its role in the immune system.
Collapse
|
4
|
Chen Y, Wang P, Li Q, Yan X, Xu T. The protease calpain2a limits innate immunity by targeting TRAF6 in teleost fish. Commun Biol 2023; 6:355. [PMID: 37002312 PMCID: PMC10066338 DOI: 10.1038/s42003-023-04711-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
TNF receptor-associated factor 6 (TRAF6) plays a key signal transduction role in both antibacterial and antiviral signaling pathways. However, the regulatory mechanisms of TRAF6 in lower vertebrates are less reported. In this study, we identify calpain2a, is a member of the calcium-dependent proteases family with unique hydrolytic enzyme activity, functions as a key regulator for antibacterial and antiviral immunity in teleost fish. Upon lipopolysaccharide (LPS) stimulation, knockdown of calpain2a promotes the upregulation of inflammatory cytokines. Mechanistically, calpain2a interacts with TRAF6 and reduces the protein level of TRAF6 by hydrolyzing. After loss of enzymatic activity, mutant calpain2a competitively inhibits dimer formation and auto-ubiquitination of TRAF6. Knockdown of calpain2a also promotes cellular antiviral response. Mutant calpain2a lacking hydrolase activity represses ubiquitination of IFN regulatory factor (IRF) 3/7 from TRAF6. Taken together, these findings classify calpain2a is a negative regulator of innate immune responses by targeting TRAF6 in teleost fish.
Collapse
Affiliation(s)
- Yang Chen
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Pengfei Wang
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Qi Li
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xiaolong Yan
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
5
|
Morin post-treatment surpassed calpeptin in ameliorating 3-NP-induced cortical neurotoxicity via modulation of glutamate/calpain axis, Kidins220, and BDNF/TrkB/AKT/CREB trajectory. Int Immunopharmacol 2023; 116:109771. [PMID: 36736222 DOI: 10.1016/j.intimp.2023.109771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 02/04/2023]
Abstract
The neuroprotective capacity of morin hydrate (MH), a potent antioxidant flavonoid, and calpeptin (CP), a calpain inhibitor, was documented against different insults but not Huntington's disease (HD). Accordingly, we aim to assess the neuroprotective potential of MH and/or CP in a 3-nitropropionic acid (3-NP)-induced HD model. The 3-NP-treated rats were post-treated with saline, MH, CP, or MH + CP for a week. Post-treatment with MH and/or CP amended motor function (beam walking test) and short-/ long-term spatial memory (novel object recognition test) and improved cortical microscopic architecture. On the molecular level, MH, and to a lesser extent CP, inhibited the cortical content/expression of glutamate, calpain, and Kidins220 and abated the inflammatory molecules, nuclear factor (NF)-κB, tumor necrosis factor-α, and interleukin-1β, as well as lipid peroxidation. However, MH, but barely CP, activated the molecules of the neuroprotective trajectory; viz., brain-derived neurotrophic factor (BDNF), tropomyosin-related kinase receptor B (TrkB), protein kinase B (AKT), and cAMP response element-binding protein (CREB). Compared to the single treatments, the combination regimen mediated further reductions in the cortical contents of glutamate, calpain, and Kidins220, effects that extended to entail the anti-inflammatory/anti-oxidant potentials of MH and to a greater extent CP. However, the combination of MH strengthened the fair effect of CP on the survival signaling pathway BDNF/TrkB/AKT/CREB. In conclusion, MH, CP, and especially their combination, afforded neuroprotection against HD through curbing the glutamate/calpain axis, Kidins220, as well as NF-κB-mediated neuroinflammation/oxidative stress, besides activating the BDNF/TrkB/AKT/CREB hub that was partly dependent on calpain inhibition.
Collapse
|
6
|
Zhang X, Liu Z, Li W, Kang Y, Xu Z, Li X, Gao Y, Qi Y. MAPKs/AP-1, not NF-κB, is responsible for MCP-1 production in TNF-α-activated adipocytes. Adipocyte 2022; 11:477-486. [PMID: 35941819 PMCID: PMC9367654 DOI: 10.1080/21623945.2022.2107786] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Obesity is associated with the infiltration of monocytes/macrophages into adipose
tissue in which MCP-1 plays a crucial role. But the regulatory mechanism of
MCP-1 expression in adipocytes is not well defined. Our results demonstrated that TNF-α induced abundant MCP-1 production in adipocytes, including 3T3-L1 pre- (≈ 9 to 18-fold), mature adipocytes (≈ 4 to 6-fold), and primary adipocytes(< 2-fold), among which 3T3-L1 pre-adipocytes showed the best reactiveness. Thus, 3T3-L1 pre-adipocytes were used for the most of following experiments. At the transcriptional level, TNF-α (20 ng/mL) also promoted the mRNA expression of MCP-1. It is well recognized that the engagement of TNF-α with its receptor can trigger both NF-κB and AP-1 signalling, which was also confirmed in our study (5-fold and 2-fold). Unexpectedly and counterintuitively, multiple NF-κB inhibitors with different mechanisms failed to suppress TNF-α-induced MCP-1 production, but rather the inhibitors for any one of MAPKs (JNK, ERK and p38) could do. This study, for the first time, reveals that MAPKs/AP-1 but not NF-κB signalling is responsible for MCP-1 production in TNF-α-activated adipocytes. These findings provide important insight into the role of AP-1 signalling in adipose tissue, and may lead to the development of therapeutical repositioning strategies in metaflammation. Abbreviations:
AP-1, activator protein-1; CHX, cycloheximide; IR, insulin resistance; MAPK, mitogen-activated protein kinase; NF-κB, nuclear factor κB; RT-qPCR, quantitative real-time PCR; T2DM, type 2 diabetes mellitus; TRE, triphorbol acetate-response element.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, Haidian, China
| | - Zhuangzhuang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, Haidian, China
| | - Wenjing Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, Haidian, China
| | - Yuan Kang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, Haidian, China
| | - Zhenlu Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, Haidian, China
| | - Ximeng Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, Haidian, China
| | - Yuan Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, Haidian, China
| | - Yun Qi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, Haidian, China
| |
Collapse
|
7
|
Enomoto A, Fukasawa T. The role of calcium-calpain pathway in hyperthermia. FRONTIERS IN MOLECULAR MEDICINE 2022; 2:1005258. [PMID: 39086981 PMCID: PMC11285567 DOI: 10.3389/fmmed.2022.1005258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/12/2022] [Indexed: 08/02/2024]
Abstract
Hyperthermia is a promising anticancer treatment modality. Heat stress stimulates proteolytic machineries to regulate cellular homeostasis. Calpain, an intracellular calcium (Ca2+)-dependent cysteine protease, is a modulator that governs various cellular functions. Hyperthermia induces an increase in cytosolic Ca2+ levels and triggers calpain activation. Contrastingly, pre-exposure of cells to mild hyperthermia induces thermotolerance due to the presence of cellular homeostatic processes such as heat shock response and autophagy. Recent studies suggest that calpain is a potential key molecule that links autophagy and apoptosis. In this review, we briefly introduce the regulation of intracellular Ca2+ homeostasis, basic features of calpains with their implications in cancer, immune responses, and the roles and cross-talk of calpains in cellular protection and cell death in hyperthermia.
Collapse
Affiliation(s)
- Atsushi Enomoto
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takemichi Fukasawa
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Hamza A, Amit J, Elizabeth L. E, Medha M. P, Michael D. C, Wendy F. L. Ion channel mediated mechanotransduction in immune cells. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE 2021; 25:100951. [PMID: 35645593 PMCID: PMC9131931 DOI: 10.1016/j.cossms.2021.100951] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The immune system performs critical functions to defend against invading pathogens and maintain tissue homeostasis. Immune cells reside within or are recruited to a host of mechanically active tissues throughout the body and, as a result, are exposed to varying types and degrees of mechanical stimuli. Despite their abundance in such tissues, the role of mechanical stimuli in influencing immune cell function and the molecular mechanisms responsible for mechanics-mediated changes are still poorly understood. The recent emergence of mechanically-gated ion channels, particularly Piezo1, has provided an exciting avenue of research within the fields of mechanobiology and immunology. Numerous studies have identified roles for mechanically-gated ion channels in mechanotransduction within various different cell types, with a few recent studies in immune cells. These initial studies provide strong evidence that mechanically-gated ion channels play pivotal roles in regulating the immune system. In this review, we discuss characteristics of ion channel mediated force transduction, review the current techniques used to quantify and visualize ion channel activity in response to mechanical stimuli, and finally we provide an overview of recent studies examining the role of mechanically-gated ion channels in modulating immune cell function.
Collapse
Affiliation(s)
- Atcha Hamza
- Department of Biomedical Engineering, University of California Irvine, Irvine, USA
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, Irvine, USA
| | - Jairaman Amit
- Department of Physiology and Biophysics, University of California Irvine, Irvine, USA
| | - Evans Elizabeth L.
- Department of Physiology and Biophysics, University of California Irvine, Irvine, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, USA
| | - Pathak Medha M.
- Department of Biomedical Engineering, University of California Irvine, Irvine, USA
- Department of Physiology and Biophysics, University of California Irvine, Irvine, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, USA
| | - Cahalan Michael D.
- Department of Physiology and Biophysics, University of California Irvine, Irvine, USA
| | - Liu Wendy F.
- Department of Biomedical Engineering, University of California Irvine, Irvine, USA
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, Irvine, USA
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, USA
| |
Collapse
|
9
|
Schultz B, Taday J, Menezes L, Cigerce A, Leite MC, Gonçalves CA. Calpain-Mediated Alterations in Astrocytes Before and During Amyloid Chaos in Alzheimer's Disease. J Alzheimers Dis 2021; 84:1415-1430. [PMID: 34719501 DOI: 10.3233/jad-215182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
One of the changes found in the brain in Alzheimer's disease (AD) is increased calpain, derived from calcium dysregulation, oxidative stress, and/or neuroinflammation, which are all assumed to be basic pillars in neurodegenerative diseases. The role of calpain in synaptic plasticity, neuronal death, and AD has been discussed in some reviews. However, astrocytic calpain changes sometimes appear to be secondary and consequent to neuronal damage in AD. Herein, we explore the possibility of calpain-mediated astroglial reactivity in AD, both preceding and during the amyloid phase. We discuss the types of brain calpains but focus the review on calpains 1 and 2 and some important targets in astrocytes. We address the signaling involved in controlling calpain expression, mainly involving p38/mitogen-activated protein kinase and calcineurin, as well as how calpain regulates the expression of proteins involved in astroglial reactivity through calcineurin and cyclin-dependent kinase 5. Throughout the text, we have tried to provide evidence of the connection between the alterations caused by calpain and the metabolic changes associated with AD. In addition, we discuss the possibility that calpain mediates amyloid-β clearance in astrocytes, as opposed to amyloid-β accumulation in neurons.
Collapse
Affiliation(s)
- Bruna Schultz
- Postgraduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jéssica Taday
- Postgraduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Leonardo Menezes
- Postgraduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Anderson Cigerce
- Postgraduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marina C Leite
- Postgraduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carlos-Alberto Gonçalves
- Postgraduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
10
|
Péladeau C, Sandhu JK. Aberrant NLRP3 Inflammasome Activation Ignites the Fire of Inflammation in Neuromuscular Diseases. Int J Mol Sci 2021; 22:ijms22116068. [PMID: 34199845 PMCID: PMC8200055 DOI: 10.3390/ijms22116068] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 12/24/2022] Open
Abstract
Inflammasomes are molecular hubs that are assembled and activated by a host in response to various microbial and non-microbial stimuli and play a pivotal role in maintaining tissue homeostasis. The NLRP3 is a highly promiscuous inflammasome that is activated by a wide variety of sterile triggers, including misfolded protein aggregates, and drives chronic inflammation via caspase-1-mediated proteolytic cleavage and secretion of proinflammatory cytokines, interleukin-1β and interleukin-18. These cytokines further amplify inflammatory responses by activating various signaling cascades, leading to the recruitment of immune cells and overproduction of proinflammatory cytokines and chemokines, resulting in a vicious cycle of chronic inflammation and tissue damage. Neuromuscular diseases are a heterogeneous group of muscle disorders that involve injury or dysfunction of peripheral nerves, neuromuscular junctions and muscles. A growing body of evidence suggests that dysregulation, impairment or aberrant NLRP3 inflammasome signaling leads to the initiation and exacerbation of pathological processes associated with neuromuscular diseases. In this review, we summarize the available knowledge about the NLRP3 inflammasome in neuromuscular diseases that affect the peripheral nervous system and amyotrophic lateral sclerosis, which affects the central nervous system. In addition, we also examine whether therapeutic targeting of the NLRP3 inflammasome components is a viable approach to alleviating the detrimental phenotype of neuromuscular diseases and improving clinical outcomes.
Collapse
Affiliation(s)
- Christine Péladeau
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada;
| | - Jagdeep K. Sandhu
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Correspondence: ; Tel.: +1-613-993-5304
| |
Collapse
|
11
|
A reaction-diffusion network model predicts a dual role of Cactus/IκB to regulate Dorsal/NFκB nuclear translocation in Drosophila. PLoS Comput Biol 2021; 17:e1009040. [PMID: 34043616 PMCID: PMC8189453 DOI: 10.1371/journal.pcbi.1009040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/09/2021] [Accepted: 05/03/2021] [Indexed: 11/19/2022] Open
Abstract
Dorsal-ventral patterning of the Drosophila embryo depends on the NFκB superfamily transcription factor Dorsal (Dl). Toll receptor activation signals for degradation of the IκB inhibitor Cactus (Cact), leading to a ventral-to-dorsal nuclear Dl gradient. Cact is critical for Dl nuclear import, as it binds to and prevents Dl from entering the nuclei. Quantitative analysis of cact mutants revealed an additional Cact function to promote Dl nuclear translocation in ventral regions of the embryo. To investigate this dual Cact role, we developed a predictive model based on a reaction-diffusion regulatory network. This network distinguishes non-uniform Toll-dependent Dl nuclear import and Cact degradation, from the Toll-independent processes of Cact degradation and reversible nuclear-cytoplasmic Dl flow. In addition, it incorporates translational control of Cact levels by Dl. Our model successfully reproduces wild-type data and emulates the Dl nuclear gradient in mutant dl and cact allelic combinations. Our results indicate that the dual role of Cact depends on the dynamics of Dl-Cact trimers along the dorsal-ventral axis: In the absence of Toll activation, free Dl-Cact trimers retain Dl in the cytoplasm, limiting the flow of Dl into the nucleus; in ventral-lateral regions, Dl-Cact trimers are recruited by Toll activation into predominant signaling complexes and promote Dl nuclear translocation. Simulations suggest that the balance between Toll-dependent and Toll-independent processes are key to this dynamics and reproduce the full assortment of Cact effects. Considering the high evolutionary conservation of these pathways, our analysis should contribute to understanding NFκB/c-Rel activation in other contexts such as in the vertebrate immune system and disease. In Drosophila, Toll pathway establishes spatially distinct gene expression territories that define the embryonic dorsal-ventral axis. Toll activation leads to degradation of the IκB inhibitor Cactus, releasing the NFκB superfamily transcription factor Dorsal for nuclear entry. Recently, quantitative analysis of cact mutants revealed that Cact displays an additional function to promote Dl nuclear translocation in ventral regions of the embryo. To understand this novel activity, we developed a predictive theoretical model that shows that the kinetics of Dorsal-Cactus complex formation prior to their recruitment to Toll-signaling complexes is an essential regulatory hub. Cactus controls the balance between the recruitment of these complexes by active Toll receptor and association-dissociation events that generate free Dorsal for direct nuclear import.
Collapse
|
12
|
Fu YL, Harrison RE. Microbial Phagocytic Receptors and Their Potential Involvement in Cytokine Induction in Macrophages. Front Immunol 2021; 12:662063. [PMID: 33995386 PMCID: PMC8117099 DOI: 10.3389/fimmu.2021.662063] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/30/2021] [Indexed: 11/13/2022] Open
Abstract
Phagocytosis is an essential process for the uptake of large (>0.5 µm) particulate matter including microbes and dying cells. Specialized cells in the body perform phagocytosis which is enabled by cell surface receptors that recognize and bind target cells. Professional phagocytes play a prominent role in innate immunity and include macrophages, neutrophils and dendritic cells. These cells display a repertoire of phagocytic receptors that engage the target cells directly, or indirectly via opsonins, to mediate binding and internalization of the target into a phagosome. Phagosome maturation then proceeds to cause destruction and recycling of the phagosome contents. Key subsequent events include antigen presentation and cytokine production to alert and recruit cells involved in the adaptive immune response. Bridging the innate and adaptive immunity, macrophages secrete a broad selection of inflammatory mediators to orchestrate the type and magnitude of an inflammatory response. This review will focus on cytokines produced by NF-κB signaling which is activated by extracellular ligands and serves a master regulator of the inflammatory response to microbes. Macrophages secrete pro-inflammatory cytokines including TNFα, IL1β, IL6, IL8 and IL12 which together increases vascular permeability and promotes recruitment of other immune cells. The major anti-inflammatory cytokines produced by macrophages include IL10 and TGFβ which act to suppress inflammatory gene expression in macrophages and other immune cells. Typically, macrophage cytokines are synthesized, trafficked intracellularly and released in response to activation of pattern recognition receptors (PRRs) or inflammasomes. Direct evidence linking the event of phagocytosis to cytokine production in macrophages is lacking. This review will focus on cytokine output after engagement of macrophage phagocytic receptors by particulate microbial targets. Microbial receptors include the PRRs: Toll-like receptors (TLRs), scavenger receptors (SRs), C-type lectin and the opsonic receptors. Our current understanding of how macrophage receptor stimulation impacts cytokine production is largely based on work utilizing soluble ligands that are destined for endocytosis. We will instead focus this review on research examining receptor ligation during uptake of particulate microbes and how this complex internalization process may influence inflammatory cytokine production in macrophages.
Collapse
Affiliation(s)
- Yan Lin Fu
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Rene E. Harrison
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| |
Collapse
|
13
|
Chen Y, Su Z, Liu F. Effects of functionally diverse calpain system on immune cells. Immunol Res 2021; 69:8-17. [PMID: 33483937 DOI: 10.1007/s12026-021-09177-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022]
Abstract
Calpains are a family of nonlysosomal cysteine proteases, which play important roles in numerous physiological and pathological processes. Locations of them dictates the functions so that they are classified as ubiquitously expressed calpains and tissue-specific calpains. Recent studies are mainly focused on conventional calpains (calpain-1,2) in development and diseases, and increasing people pay attention to other subtypes of calpains but may not been summarized appropriately. Growing evidence suggests that calpains are also involved in immune regulation. However, seldom articles review the regulation of calpains on immune cells. The aim of this article is to review the research progress of each calpain isozyme and the effect of calpains on immune cells, especially the promotion effect of calpains on the immune response of macrophage, neutrophils, dendritic cells, mast cells, natural killed cells, and lymphocytes. These effects would hold great promise for the clinical application of calpains as a practicable therapeutic option in the treatment of immune related diseases.
Collapse
Affiliation(s)
- Yueqi Chen
- International Genome Center, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.,Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.,Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - Fang Liu
- International Genome Center, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
14
|
Tian X, Inoue K, Zhang Y, Wang Y, Sperati CJ, Pedigo CE, Zhao T, Yan M, Groener M, Moledina DG, Ebenezer K, Li W, Zhang Z, Liebermann DA, Greene L, Greer P, Parikh CR, Ishibe S. Inhibiting calpain 1 and 2 in cyclin G associated kinase-knockout mice mitigates podocyte injury. JCI Insight 2020; 5:142740. [PMID: 33208557 PMCID: PMC7710277 DOI: 10.1172/jci.insight.142740] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/08/2020] [Indexed: 12/27/2022] Open
Abstract
Evidence for reduced expression of cyclin G associated kinase (GAK) in glomeruli of patients with chronic kidney disease was observed in the Nephroseq human database, and GAK was found to be associated with the decline in kidney function. To examine the role of GAK, a protein that functions to uncoat clathrin during endocytosis, we generated podocyte-specific Gak-knockout mice (Gak-KO), which developed progressive proteinuria and kidney failure with global glomerulosclerosis. We isolated glomeruli from the mice carrying the mutation to perform messenger RNA profiling and unearthed evidence for dysregulated podocyte calpain protease activity as an important contributor to progressive podocyte damage. Treatment with calpain inhibitor III specifically inhibited calpain-1/-2 activities, mitigated the degree of proteinuria and glomerulosclerosis, and led to a striking increase in survival in the Gak-KO mice. Podocyte-specific deletion of Capns1, essential for calpain-1 and calpain-2 activities, also improved proteinuria and glomerulosclerosis in Gak-KO mice. Increased podocyte calpain activity-mediated proteolysis of IκBα resulted in increased NF-κB p65-induced expression of growth arrest and DNA-damage-inducible 45 beta in the Gak-KO mice. Our results suggest that loss of podocyte-associated Gak induces glomerular injury secondary to calcium dysregulation and aberrant calpain activation, which when inhibited, can provide a protective role.
Collapse
MESH Headings
- Animals
- Calpain/antagonists & inhibitors
- Diabetic Nephropathies/etiology
- Diabetic Nephropathies/metabolism
- Diabetic Nephropathies/pathology
- Diabetic Nephropathies/therapy
- Female
- Glomerulosclerosis, Focal Segmental/etiology
- Glomerulosclerosis, Focal Segmental/metabolism
- Glomerulosclerosis, Focal Segmental/pathology
- Glomerulosclerosis, Focal Segmental/therapy
- Humans
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Podocytes/metabolism
- Podocytes/pathology
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Protein Serine-Threonine Kinases/physiology
- Renal Insufficiency, Chronic/etiology
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/therapy
Collapse
Affiliation(s)
- Xuefei Tian
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kazunori Inoue
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yan Zhang
- State Key Laboratory of Organ Failure Research, Southern Medical University, Nanfang Hospital, Guangzhou, China
- Center for Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ying Wang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - C. John Sperati
- Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christopher E. Pedigo
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Tingting Zhao
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Meihua Yan
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Marwin Groener
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Dennis G. Moledina
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Karen Ebenezer
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Wei Li
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Zhenhai Zhang
- State Key Laboratory of Organ Failure Research, Southern Medical University, Nanfang Hospital, Guangzhou, China
- Center for Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Dan A. Liebermann
- Fels Institute of Cancer Research and Molecular Biology and Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania USA
| | - Lois Greene
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Peter Greer
- Queen’s Cancer Research Institute, Kingston, Ontario, Canada
| | - Chirag R. Parikh
- Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shuta Ishibe
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
15
|
Shams R, Banik NL, Haque A. Calpain in the cleavage of alpha-synuclein and the pathogenesis of Parkinson's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 167:107-124. [PMID: 31601400 PMCID: PMC8434815 DOI: 10.1016/bs.pmbts.2019.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Parkinson's disease (PD) devastates 6.3 million people, ranking it as one of the most prevalent neurodegenerative motor disorders worldwide. PD patients may manifest symptoms of postural instability, bradykinesia, and resting tremors as a result of increasing α-synuclein aggregation and neuron death with disease progression. Therapy options are limited, and those available to patients may worsen their condition. Thus, investigations to understand disease progression may help develop therapeutic strategies for improvement of quality of life for patients suffering from PD. This review provides an overview of α-synuclein, a presynaptic neuronal protein whose function in the healthy brain and PD pathology remains a mystery. This review also focuses on calcium-induced activation of calpain, a neutral protease, and the subsequent cascade of cellular processing of α-synuclein and emerging defense responses observed in experimental models of PD: microglial activation, dysregulation of T cells, and inflammatory responses in the brain. In addition, this review discusses the events of cross presentation of synuclein peptides by professional antigen presenting cells and microglia, induction of inflammatory responses in the periphery and brain, and emerging calpain-targeted therapeutic strategies to attenuate neuronal death in PD.
Collapse
Affiliation(s)
- Ramsha Shams
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Naren L Banik
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States; Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, United States
| | - Azizul Haque
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
16
|
Latour A, Gu Y, Kassis N, Daubigney F, Colin C, Gausserès B, Middendorp S, Paul JL, Hindié V, Rain JC, Delabar JM, Yu E, Arbones M, Mallat M, Janel N. LPS-Induced Inflammation Abolishes the Effect of DYRK1A on IkB Stability in the Brain of Mice. Mol Neurobiol 2019; 56:963-975. [PMID: 29850989 DOI: 10.1007/s12035-018-1113-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/09/2018] [Indexed: 12/21/2022]
Abstract
Down syndrome is characterized by premature aging and dementia with neurological features that mimic those found in Alzheimer's disease. This pathology in Down syndrome could be related to inflammation, which plays a role in other neurodegenerative diseases. We previously found a link between the NFkB pathway, long considered a prototypical proinflammatory signaling pathway, and the dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A). DYRK1A is associated with early onset of Alzheimer's disease in Down syndrome patients. Here, we sought to determine the role of DYRK1A on regulation of the NFkB pathway in the mouse brain. We found that over-expression of Dyrk1A (on a C57BL/6J background) stabilizes IκBα protein levels by inhibition of calpain activity and increases cytoplasmic p65 sequestration in the mouse brain. In contrast, Dyrk1A-deficient mice (on a CD1 background) have decreased IκBα protein levels with an increased calpain activity and decreased cytoplasmic p65 sequestration in the brain. Taken together, our results demonstrate a role of DYRK1A in regulation of the NFkB pathway. However, decreased IκBα and DYRK1A protein levels associated with an increased calpain activity were found in the brains of mice over-expressing Dyrk1A after lipopolysaccharide treatment. Although inflammation induced by lipopolysaccharide treatment has a positive effect on calpastatin and a negative effect on DYRK1A protein level, a positive effect on microglial activation is maintained in the brains of mice over-expressing Dyrk1A.
Collapse
Affiliation(s)
- Alizée Latour
- Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), Université Paris Diderot, UMR 8251, 75205, Paris, France
| | - Yuchen Gu
- Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), Université Paris Diderot, UMR 8251, 75205, Paris, France
| | - Nadim Kassis
- Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), Université Paris Diderot, UMR 8251, 75205, Paris, France
| | - Fabrice Daubigney
- Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), Université Paris Diderot, UMR 8251, 75205, Paris, France
| | - Catherine Colin
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Blandine Gausserès
- Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), Université Paris Diderot, UMR 8251, 75205, Paris, France
| | - Sandrine Middendorp
- Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), Université Paris Diderot, UMR 8251, 75205, Paris, France
| | - Jean-Louis Paul
- AP-HP, Hôpital Européen Georges Pompidou, Service de Biochimie, 75015, Paris, France
| | | | | | - Jean-Maurice Delabar
- Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), Université Paris Diderot, UMR 8251, 75205, Paris, France
| | - Eugene Yu
- Children's Guild Foundation Down Syndrome Research Program, Department of Cancer Genetics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Mariona Arbones
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
- Institut de Biologia Molecular de Barcelona (IBMB), 08028, Barcelona, Spain
| | - Michel Mallat
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Nathalie Janel
- Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), Université Paris Diderot, UMR 8251, 75205, Paris, France.
- Laboratoire BFA, Université Paris Diderot - Paris 7, Case 7104, 3 rue Marie-Andrée Lagroua Weill Hallé, 75205, Paris Cedex 13, France.
| |
Collapse
|
17
|
Translating genetic, biochemical and structural information to the calpain view of development. Mech Dev 2018; 154:240-250. [DOI: 10.1016/j.mod.2018.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/31/2018] [Accepted: 07/31/2018] [Indexed: 01/30/2023]
|
18
|
Zuo J, Hu Z, Liu T, Chen C, Tao Z, Chen S, Li F. Calpeptin attenuates cigarette smoke-induced pulmonary inflammation via suppressing calpain/IκBα signaling in mice and BEAS-2B cells. Pathol Res Pract 2018; 214:1199-1209. [PMID: 30078403 DOI: 10.1016/j.prp.2018.06.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/19/2018] [Accepted: 06/25/2018] [Indexed: 11/29/2022]
Abstract
Exposure to cigarette smoke including secondhand smoking is the most important risk factor in the development of chronic obstructive pulmonary disease where incidence has substantially increased in recent decades. The mechanisms responsible for cigarette smoke-induced pulmonary inflammation remain unclear, and thus lack of effective treatment. The present study investigated the effect of calpeptin on attenuating cigarette smoke induced pulmonary inflammation and its potential mechanism and function. When BALB/c mice were exposed to cigarette smoke and received calpeptin intraperitoneally injection after 90 days, calpeptin histologically attenuated the accumulation of neutrophils (P < 0.001), eosinophils (P < 0.001), macrophages (P < 0.01), fibrinous exudation and proliferation within the interstitial and alveolar spaces. BEAS-2B cells were added with cigarette smoke extract in vitro and treated with calpeptin for 24 h in the treatment group. The markedly upregulation of μ-calpain (P < 0.01), m-calpain (P < 0.001) and IκBα (P < 0.01) in cigarette smoke-induced lungs were simultaneously decreased by calpeptin treatment (P < 0.05). The increased expression of μ-calpain, m-calpain and IκBα (P < 0.05) in cigarette smoke extract-stimulated BEAS-2B cells were also decreased by calpeptin treatment (P < 0.05). These data indicated that calpeptin attenuated cigarette smoke-induced pulmonary inflammation by suppressing the pathway of μ-calpain, m-calpain and IκBα in vivo and in vitro. Calpeptin might have a potential for prevention of the development of inflammatory pulmonary diseases and warrant further pharmaceutical investigation.
Collapse
Affiliation(s)
- Jingjing Zuo
- Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China; Research Institute of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Zhangwei Hu
- Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China; Research Institute of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Tao Liu
- Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China; Research Institute of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Chen Chen
- Research Institute of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Zezhang Tao
- Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China; Research Institute of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China.
| | - Shiming Chen
- Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China; Research Institute of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Fen Li
- Research Institute of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| |
Collapse
|
19
|
Bian ZM, Field MG, Elner SG, Elner VM. Expression and regulation of alarmin cytokine IL-1α in human retinal pigment epithelial cells. Exp Eye Res 2018; 172:10-20. [PMID: 29551335 DOI: 10.1016/j.exer.2018.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 02/08/2023]
Abstract
Human retinal pigment epithelial (hRPE) cells play important immune-regulatory roles in a variety of retinal pathologic processes, including the production of inflammatory cytokines that are essential mediators of the innate immune response within the ocular microenvironment. The pro-inflammatory "alarmin" cytokine IL-1α has been implicated in both infectious and non-infectious retinal diseases, but its regulation in the retina is poorly understood. The purpose of this study was to elucidate the expression and regulation of IL-1α within hRPE cells. To do this, IL-1α mRNA and protein in hRPE cells was assessed by RT-PCR, qPCR, ELISA, Western blot, and immunofluorescence following treatment with a variety of stimuli and inhibitors. ER stress, LPS, IL-1β, and TLR2 activation all significantly increased intracellular IL-1α protein. Increasing intracellular calcium synergized both LPS- and Pam3CSK4-induced IL-1α protein production. Accordingly, blocking calcium signaling and calpain activity strongly suppressed IL-1α protein expression. Significant but more moderate inhibition occurred following blockage of TLR4, caspase-4, or caspase-1. Neutralizing antibodies to IL-1β and TLR2 partially eliminated LPS- and TLR2 ligand Pam3CSK4-stimulated IL-1α protein production. IFN-β induced caspase-4 expression and activation, and also potentiated LPS-induced IL-1α expression, but IFN-β alone had no effect on IL-1α protein production. Interestingly, all inhibitors targeting the PI3K/Akt pathway, with the exception of Ly294002, strongly increased IL-1α protein expression. This study improves understanding of the complex mechanisms regulating IL-1α protein expression in hRPE cells by demonstrating that TLR4 and TLR2 stimulation and exposure to IL-1β, ER stress and intracellular calcium all induce hRPE cells to produce intracellular IL-1α, which is negatively regulated by the PI3K/Akt pathway. Additionally, the non-canonical inflammasome pathway was shown to be involved in LPS-induced hRPE IL-1α expression through caspase-4 signaling.
Collapse
Affiliation(s)
- Zong-Mei Bian
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI, 48105, United States
| | - Matthew G Field
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI, 48105, United States.
| | - Susan G Elner
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI, 48105, United States
| | - Victor M Elner
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI, 48105, United States
| |
Collapse
|
20
|
Mikosik A, Jasiulewicz A, Daca A, Henc I, Frąckowiak JE, Ruckemann-Dziurdzińska K, Foerster J, Le Page A, Bryl E, Fulop T, Witkowski JM. Roles of calpain-calpastatin system (CCS) in human T cell activation. Oncotarget 2018; 7:76479-76495. [PMID: 27835610 PMCID: PMC5363525 DOI: 10.18632/oncotarget.13259] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/02/2016] [Indexed: 11/25/2022] Open
Abstract
The immune response is determined by the speed of the T cell reaction to antigens assured by a state of readiness for proliferation and cytokine secretion. Proliferation, apoptosis and motion of many cell types are controlled by cytoplasmic proteases - μ- and m-calpain - and their inhibitor calpastatin, together forming the “calpain-calpastatin system” (CCS), assumed to modify their targets only upon activation-dependent cytoplasmic Ca2+ increase. Contrastingly to this notion, using quantitative real time PCR and semiquantitative flow cytometry respectively, we show here that the CCS genes are constitutively expressed, and that both calpains are constitutively active in resting, circulating human CD4+ and CD8+ lymphocytes. Furthermore, we demonstrate that calpain inhibition in the resting T cells prevents them from proliferation in vitro and greatly reduces secretion of multiple cytokines. The mechanistic reason for these effects of calpain inhibition on T cell functions might be the demonstrated significant reduction of the expression of active (phosphorylated) upstream signalling molecules, including the phospholipase C gamma, p56Lck and NFκB, in the inhibitor-treated cells. Thus, we propose that the constitutive, self-regulatory calpain-calpastatin system activity in resting human T cells is a necessary, controlling element of their readiness for complex and effective response to antigenic challenge.
Collapse
Affiliation(s)
- Anna Mikosik
- Department of Pathophysiology, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Agnieszka Daca
- Department of Pathology and Experimental Rheumatology, Medical University of Gdańsk, Gdańsk, Poland
| | - Izabella Henc
- Department of Pathology and Experimental Rheumatology, Medical University of Gdańsk, Gdańsk, Poland
| | | | | | - Jerzy Foerster
- Department of Clinical and Social Gerontology, Medical University of Gdańsk, Gdańsk, Poland
| | - Aurelie Le Page
- Research Center on Ageing, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Ewa Bryl
- Department of Pathology and Experimental Rheumatology, Medical University of Gdańsk, Gdańsk, Poland
| | - Tamas Fulop
- Research Center on Ageing, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
21
|
Smith AW, Ray SK, Das A, Nozaki K, Rohrer B, Banik NL. Calpain inhibition as a possible new therapeutic target in multiple sclerosis. AIMS MOLECULAR SCIENCE 2017; 4:446-462. [PMID: 40181912 PMCID: PMC11967729 DOI: 10.3934/molsci.2017.4.446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
Multiple sclerosis (MS), the most common chronic autoimmune inflammatory disease of the central nervous system (CNS), is characterized by demyelination and neurodegeneration. In particular, neurodegeneration is a major factor in disease progression with neuronal death and irreversible axonal damage leading to disability. MS is manageable with current therapies that are directed towards immunomodulation but there are no available therapies for neuroprotection. The complex pathophysiology and heterogeneity of MS indicate that therapeutic agents should be directed to both the inflammatory and neurodegenerative arms of the disease. Activity of the Ca2+ activated protease calpain has been previously implicated in progression of MS and its primary animal model, experimental autoimmune encephalomyelitis (EAE). The effects of calpain inhibitors in EAE involve downregulation of Th1/Th17 inflammatory responses and promotion of regulatory T cells, overall leading to decreased inflammatory cell infiltration in CNS tissues. Furthermore, analysis of brains, spinal cords and optic nerves from EAE animals revealed decreases in axon degeneration, motor neuron and retinal ganglion cell death. This resulted in improved severity of paralysis and preservation of visual function. Taken together, the studies presented in this brief review suggest that use of calpain inhibitors in combination with an immunomodulatory agent may be a potential therapeutic strategy for MS and optic neuritis.
Collapse
Affiliation(s)
- Amena W. Smith
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - Swapan K. Ray
- Department of Pathology, Microbiology and Immunology, University of South Carolina, Columbia, SC, USA
| | - Arabinda Das
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
| | - Kenkichi Nozaki
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - Baerbel Rohrer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA
| | - Naren L. Banik
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
- Research Service, Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| |
Collapse
|
22
|
Jang J, Yoon Y, Oh DJ. A calpain inhibitor protects against fractalkine production in lipopolysaccharide-treated endothelial cells. Kidney Res Clin Pract 2017; 36:224-231. [PMID: 28904873 PMCID: PMC5592889 DOI: 10.23876/j.krcp.2017.36.3.224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 04/20/2017] [Accepted: 05/10/2017] [Indexed: 11/06/2022] Open
Abstract
Background Fractalkine (CX3CL1) is a chemokine with a unique CX3C motif and is produced by endothelial cells stimulated with lipopolysaccharide (LPS), tumor necrosis factor (TNF)-α, interleukin (IL)-1, and interferon-γ. There have been several reports that the caspase/calpain system is activated in endotoxemia, which leads to cellular apoptosis and acute inflammatory processes. We aimed to determine the role of the caspase/calpain system in cell viability and regulation of fractalkine production in LPS-treated endothelial cells. Methods Human umbilical vein endothelial cells (HUVECs) were stimulated with 0.01–100 μg/mL of LPS to determine cell viability. The changes of CX3CL1 expression were compared in control, LPS (1 μg/mL)-, IL-1α (1 μg/mL)-, and IL-1β (1 μg/mL)-treated HUVECs. Cell viability and CX3CL1 production were compared with 50 μM of inhibitors of caspase-1, caspase-3, caspase-9, and calpain in LPS-treated HUVECs. Results Cell viability was significantly decreased from 1 to 100 μg/mL of LPS. Cell viability was significantly restored with inhibitors of caspase-1, caspase-3, caspase-9, and calpain in LPS-treated HUVECs. The expression of CX3CL1 was highest in IL-1β-treated HUVECs. CX3CL1 production was highly inhibited with a calpain inhibitor and significantly decreased with the individual inhibitors of caspase-1, caspase-3, and caspase-9. Conclusion The caspase/calpain system is an important modulator of cell viability and CX3CL1 production in LPS-treated endothelial cells.
Collapse
Affiliation(s)
- Jaewoong Jang
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Yoosik Yoon
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Dong-Jin Oh
- Department of Internal Medicine, Myongji Hospital, Seonam University College of Medicine, Goyang, Korea
| |
Collapse
|
23
|
Cardoso MA, Fontenele M, Lim B, Bisch PM, Shvartsman SY, Araujo HM. A novel function for the IκB inhibitor Cactus in promoting Dorsal nuclear localization and activity in the Drosophila embryo. Development 2017; 144:2907-2913. [PMID: 28705899 DOI: 10.1242/dev.145557] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 07/05/2017] [Indexed: 12/29/2022]
Abstract
The evolutionarily conserved Toll signaling pathway controls innate immunity across phyla and embryonic patterning in insects. In the Drosophila embryo, Toll is required to establish gene expression domains along the dorsal-ventral axis. Pathway activation induces degradation of the IκB inhibitor Cactus, resulting in a ventral-to-dorsal nuclear gradient of the NFκB effector Dorsal. Here, we investigate how cactus modulates Toll signals through its effects on the Dorsal gradient and on Dorsal target genes. Quantitative analysis using a series of loss- and gain-of-function conditions shows that the ventral and lateral aspects of the Dorsal gradient can behave differently with respect to Cactus fluctuations. In lateral and dorsal embryo domains, loss of Cactus allows more Dorsal to translocate to the nucleus. Unexpectedly, cactus loss-of-function alleles decrease Dorsal nuclear localization ventrally, where Toll signals are high. Overexpression analysis suggests that this ability of Cactus to enhance Toll stems from the mobilization of a free Cactus pool induced by the Calpain A protease. These results indicate that Cactus acts to bolster Dorsal activation, in addition to its role as a NFκB inhibitor, ensuring a correct response to Toll signals.
Collapse
Affiliation(s)
- Maira Arruda Cardoso
- Instituto de Ciências Biomédicas, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.,Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Marcio Fontenele
- Instituto de Ciências Biomédicas, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.,Institute of Molecular Entomology, Brazil
| | - Bomyi Lim
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Paulo Mascarello Bisch
- Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Stanislav Y Shvartsman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Helena Marcolla Araujo
- Instituto de Ciências Biomédicas, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil .,Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| |
Collapse
|
24
|
Butler CT, Reynolds AL, Tosetto M, Dillon ET, Guiry PJ, Cagney G, O'Sullivan J, Kennedy BN. A Quininib Analogue and Cysteinyl Leukotriene Receptor Antagonist Inhibits Vascular Endothelial Growth Factor (VEGF)-independent Angiogenesis and Exerts an Additive Antiangiogenic Response with Bevacizumab. J Biol Chem 2016; 292:3552-3567. [PMID: 28035003 DOI: 10.1074/jbc.m116.747766] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 12/19/2016] [Indexed: 12/31/2022] Open
Abstract
Excess blood vessel growth contributes to the pathology of metastatic cancers and age-related retinopathies. Despite development of improved treatments, these conditions are associated with high economic costs and drug resistance. Bevacizumab (Avastin®), a monoclonal antibody against vascular endothelial growth factor (VEGF), is used clinically to treat certain types of metastatic cancers. Unfortunately, many patients do not respond or inevitably become resistant to bevacizumab, highlighting the need for more effective antiangiogenic drugs with novel mechanisms of action. Previous studies discovered quininib, an antiangiogenic small molecule antagonist of cysteinyl leukotriene receptors 1 and 2 (CysLT1 and CysLT2). Here, we screened a series of quininib analogues and identified a more potent antiangiogenic novel chemical entity (IUPAC name (E)-2-(2-quinolin-2-yl-vinyl)-benzene-1,4-diol HCl) hereafter designated Q8. Q8 inhibits developmental angiogenesis in Tg(fli1:EGFP) zebrafish and inhibits human microvascular endothelial cell (HMEC-1) proliferation, tubule formation, and migration. Q8 elicits antiangiogenic effects in a VEGF-independent in vitro model of angiogenesis and exerts an additive antiangiogenic response with the anti-VEGF biologic bevacizumab. Cell-based receptor binding assays confirm that Q8 is a CysLT1 antagonist and is sufficient to reduce cellular levels of NF-κB and calpain-2 and secreted levels of the proangiogenic proteins intercellular adhesion molecule-1, vascular cell adhesion protein-1, and VEGF. Distinct reductions of VEGF by bevacizumab explain the additive antiangiogenic effects observed in combination with Q8. In summary, Q8 is a more effective antiangiogenic drug compared with quininib. The VEGF-independent activity coupled with the additive antiangiogenic response observed in combination with bevacizumab demonstrates that Q8 offers an alternative therapeutic strategy to combat resistance associated with conventional anti-VEGF therapies.
Collapse
Affiliation(s)
- Clare T Butler
- From the UCD School of Biomolecular and Biomedical Science, UCD Conway Institute and
| | - Alison L Reynolds
- From the UCD School of Biomolecular and Biomedical Science, UCD Conway Institute and
| | - Miriam Tosetto
- Centre for Colorectal Disease, St. Vincent's University Hospital, Dublin 4, Ireland, and
| | - Eugene T Dillon
- From the UCD School of Biomolecular and Biomedical Science, UCD Conway Institute and
| | - Patrick J Guiry
- UCD School of Chemistry, UCD Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Gerard Cagney
- From the UCD School of Biomolecular and Biomedical Science, UCD Conway Institute and
| | - Jacintha O'Sullivan
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland
| | - Breandán N Kennedy
- From the UCD School of Biomolecular and Biomedical Science, UCD Conway Institute and
| |
Collapse
|
25
|
Potz BA, Sabe AA, Elmadhun NY, Sabe SA, Braun BJV, Clements RT, Usheva A, Sellke FW. Calpain inhibition decreases inflammatory protein expression in vessel walls in a model of chronic myocardial ischemia. Surgery 2016; 161:1394-1404. [PMID: 28024857 DOI: 10.1016/j.surg.2016.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 11/03/2016] [Accepted: 11/05/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Emerging data suggest a link between calpain activation and the enhanced inflammatory response of the cardiovascular system. We hypothesize that calpain activation associates with altered inflammatory protein expression in correlation with the proinflammatory profile of the myocardium. Our pig hypercholesterolemic model with chronic myocardial ischemia was treated with calpain inhibitors to establish their potential to improve cardiac function. METHODS Yorkshire swine, fed a high cholesterol diet for 4 weeks then underwent placement of an ameroid constrictor on the left circumflex artery. Two weeks later, animals received either no drug (high-cholesterol control group, n = 8), a low dose of calpain inhibitors (0.12 mg/kg, n = 9), or a high dose of calpain inhibitors (0.25 mg/kg; n = 8). The high-cholesterol diet and calpain inhibitors were continued for 5 weeks, after which the pig was euthanized. The left ventricular myocardial tissue (ischemic and nonischemic) was harvested and analyzed for inflammatory protein expression. Data were statistically analyzed via the Kruskal-Wallis and Dunn post hoc test. RESULTS Calpain inhibitor treatment coincides with increased expression of IKB-α and decreased expression of macrophages, NFkB, IL-1, and tumor necrosis factor (TNF)-α in the ischemic myocardial tissue as compared with the control group. An NFkB array revealed decreased expression of IRF5, JNK1/2, JNK2, CD18, NFkB p65, c-Rel, Sharpin, TNF R1, TNF R2, and DR5 in the ischemic myocardium of the group treated with a high dose of calpain inhibitors compared with the control. CONCLUSION Calpain activation in metabolic syndrome is a potential contributor to cardiac dysfunction in metabolic disorders with ischemic background. We suggest that calpain inhibition downregulates NFkB signaling in the vessel walls, which might be useful for improving myocardial blood flow in ischemic conditions.
Collapse
Affiliation(s)
- Brittany A Potz
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI
| | - Ashraf A Sabe
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI
| | - Nassrene Y Elmadhun
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI
| | - Sharif A Sabe
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI
| | - Benedikt J V Braun
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI
| | - Richard T Clements
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI
| | - Anny Usheva
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI
| | - Frank W Sellke
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI.
| |
Collapse
|
26
|
Miyatake S, Shimizu-Motohashi Y, Takeda S, Aoki Y. Anti-inflammatory drugs for Duchenne muscular dystrophy: focus on skeletal muscle-releasing factors. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:2745-58. [PMID: 27621596 PMCID: PMC5012616 DOI: 10.2147/dddt.s110163] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Duchenne muscular dystrophy (DMD), an incurable and a progressive muscle wasting disease, is caused by the absence of dystrophin protein, leading to recurrent muscle fiber damage during contraction. The inflammatory response to fiber damage is a compelling candidate mechanism for disease exacerbation. The only established pharmacological treatment for DMD is corticosteroids to suppress muscle inflammation, however this treatment is limited by its insufficient therapeutic efficacy and considerable side effects. Recent reports show the therapeutic potential of inhibiting or enhancing pro- or anti-inflammatory factors released from DMD skeletal muscles, resulting in significant recovery from muscle atrophy and dysfunction. We discuss and review the recent findings of DMD inflammation and opportunities for drug development targeting specific releasing factors from skeletal muscles. It has been speculated that nonsteroidal anti-inflammatory drugs targeting specific inflammatory factors are more effective and have less side effects for DMD compared with steroidal drugs. For example, calcium channels, reactive oxygen species, and nuclear factor-κB signaling factors are the most promising targets as master regulators of inflammatory response in DMD skeletal muscles. If they are combined with an oligonucleotide-based exon skipping therapy to restore dystrophin expression, the anti-inflammatory drug therapies may address the present therapeutic limitation of low efficiency for DMD.
Collapse
Affiliation(s)
- Shouta Miyatake
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Yuko Shimizu-Motohashi
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| |
Collapse
|
27
|
Samantaray S, Das A, Matzelle DC, Yu SP, Wei L, Varma A, Ray SK, Banik NL. Administration of low dose estrogen attenuates persistent inflammation, promotes angiogenesis, and improves locomotor function following chronic spinal cord injury in rats. J Neurochem 2016; 137:604-17. [PMID: 26998684 DOI: 10.1111/jnc.13610] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/22/2016] [Accepted: 02/17/2016] [Indexed: 02/06/2023]
Abstract
Spinal cord injury (SCI) causes loss of neurological function and, depending upon the severity of injury, may lead to paralysis. Currently, no FDA-approved pharmacotherapy is available for SCI. High-dose methylprednisolone is widely used, but this treatment is controversial. We have previously shown that low doses of estrogen reduces inflammation, attenuates cell death, and protects axon and myelin in SCI rats, but its effectiveness in recovery of function is not known. Therefore, the goal of this study was to investigate whether low doses of estrogen in post-SCI would reduce inflammation, protect cells and axons, and improve locomotor function during the chronic phase of injury. Injury (40 g.cm force) was induced at thoracic 10 in young adult male rats. Rats were treated with 10 or 100 μg 17β-estradiol (estrogen) for 7 days following SCI and compared with vehicle-treated injury and laminectomy (sham) controls. Histology (H&E staining), immunohistofluorescence, Doppler laser technique, and Western blotting were used to monitor tissue integrity, gliosis, blood flow, angiogenesis, the expression of angiogenic factors, axonal degeneration, and locomotor function (Basso, Beattie, and Bresnahan rating) following injury. To assess the progression of recovery, rats were sacrificed at 7, 14, or 42 days post injury. A reduction in glial reactivity, attenuation of axonal and myelin damage, protection of cells, increased expression of angiogenic factors and microvessel growth, and improved locomotor function were found following estrogen treatment compared with vehicle-treated SCI rats. These results suggest that treatment with a very low dose of estrogen has significant therapeutic implications for the improvement of locomotor function in chronic SCI. Experimental studies with low dose estrogen therapy in chronic spinal cord injury (SCI) demonstrated the potential for multi-active beneficial outcomes that could ameliorate the degenerative pathways in chronic SCI as shown in (a). Furthermore, the alterations in local spinal blood flow could be significantly alleviated with low dose estrogen therapy. This therapy led to the preservation of the structural integrity of the spinal cord (b), which in turn led to the improved functional recovery as shown (c).
Collapse
Affiliation(s)
- Supriti Samantaray
- Department of Neurology and Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Arabinda Das
- Department of Neurology and Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Denise C Matzelle
- Department of Neurology and Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Shan P Yu
- Department of Anesthesia, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ling Wei
- Department of Anesthesia, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Abhay Varma
- Department of Neurology and Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Swapan K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Naren L Banik
- Department of Neurology and Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA.,Ralph H. Johnson Veterans Administration Medical Center, Charleston, South Carolina, USA
| |
Collapse
|
28
|
Henríquez-Olguín C, Altamirano F, Valladares D, López JR, Allen PD, Jaimovich E. Altered ROS production, NF-κB activation and interleukin-6 gene expression induced by electrical stimulation in dystrophic mdx skeletal muscle cells. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1410-9. [PMID: 25857619 DOI: 10.1016/j.bbadis.2015.03.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/06/2015] [Accepted: 03/30/2015] [Indexed: 01/08/2023]
Abstract
Duchenne muscular dystrophy is a fatal X-linked genetic disease, caused by mutations in the dystrophin gene, which cause functional loss of this protein. This pathology is associated with an increased production of reactive oxygen (ROS) and nitrogen species. The aim of this work was to study the alterations in NF-κB activation and interleukin-6 (IL-6) expression induced by membrane depolarization in dystrophic mdx myotubes. Membrane depolarization elicited by electrical stimulation increased p65 phosphorylation, NF-κB transcriptional activity and NF-κB-dependent IL-6 expression in wt myotubes, whereas in mdx myotubes it had the opposite effect. We have previously shown that depolarization-induced intracellular Ca2+ increases and ROS production are necessary for NF-κB activation and stimulation of gene expression in wt myotubes. Dystrophic myotubes showed a reduced amplitude and area under the curve of the Ca2+ transient elicited by electrical stimulation. On the other hand, electrical stimuli induced higher ROS production in mdx than wt myotubes, which were blocked by NOX2 inhibitors. Moreover, mRNA expression and protein levels of the NADPH oxidase subunits: p47phox and gp91phox were increased in mdx myotubes. Looking at ROS-dependence of NF-κB activation we found that in wt myotubes external administration of 50 μM H2O2 increased NF-κB activity; after administration of 100 and 200 μM H2O2 there was no effect. In mdx myotubes there was a dose-dependent reduction in NF-κB activity in response to external administration of H2O2, with a significant effect of 100 μM and 200 μM, suggesting that ROS levels are critical for NF-κB activity. Prior blockage with NOX2 inhibitors blunted the effects of electrical stimuli in both NF-κB activation and IL-6 expression. Finally, to ascertain whether stimulation of NF-κB and IL-6 gene expression by the inflammatory pathway is also impaired in mdx myotubes, we studied the effect of lipopolysaccharide on both NF-κB activation and IL-6 expression. Exposure to lipopolysaccharide induced a dramatic increase in both NF-κB activation and IL-6 expression in both wt and mdx myotubes, suggesting that the altered IL-6 gene expression after electrical stimulation in mdx muscle cells is due to dysregulation of Ca2+ release and ROS production, both of which impinge on NF-κB signaling. IL-6 is a key metabolic modulator that is released by the skeletal muscle to coordinate a multi-systemic response (liver, muscle, and adipocytes) during physical exercise; the alteration of this response in dystrophic muscles may contribute to an abnormal response to contraction and exercise.
Collapse
Affiliation(s)
- Carlos Henríquez-Olguín
- Centro de Estudios Moleculares de la Célula, ICBM, Facultad de Medicina, Universidad de Chile, Santiago 8389100, Chile; Laboratorio Ciencias del Ejercicio, Clínica MEDS, Santiago, Chile
| | - Francisco Altamirano
- Centro de Estudios Moleculares de la Célula, ICBM, Facultad de Medicina, Universidad de Chile, Santiago 8389100, Chile; Department of Molecular Biosciences, School of Veterinary Medicine, University of California at Davis, Davis, CA, USA.
| | - Denisse Valladares
- Centro de Estudios Moleculares de la Célula, ICBM, Facultad de Medicina, Universidad de Chile, Santiago 8389100, Chile
| | - José R López
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California at Davis, Davis, CA, USA
| | - Paul D Allen
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California at Davis, Davis, CA, USA
| | - Enrique Jaimovich
- Centro de Estudios Moleculares de la Célula, ICBM, Facultad de Medicina, Universidad de Chile, Santiago 8389100, Chile.
| |
Collapse
|
29
|
Zang Y, Chen SX, Liao GJ, Zhu HQ, Wei XH, Cui Y, Na XD, Pang RP, Xin WJ, Zhou LJ, Liu XG. Calpain-2 contributes to neuropathic pain following motor nerve injury via up-regulating interleukin-6 in DRG neurons. Brain Behav Immun 2015; 44:37-47. [PMID: 25150005 DOI: 10.1016/j.bbi.2014.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/25/2014] [Accepted: 08/12/2014] [Indexed: 01/09/2023] Open
Abstract
Motor nerve injury by L5 ventral root transection (L5-VRT) initiates interleukin-6 (IL-6) up-regulation in primary afferent system contributing to neuropathic pain. However, the early upstream regulatory mechanisms of IL-6 after L5-VRT are still unknown. Here, we monitored both the activity of calpain, a calcium-dependent protease suggested as one of the earliest mediators for cytokine regulation, and the expression of IL-6 in bilateral L4-L6 dorsal root ganglias (DRGs) soon after L5-VRT. We found that the protein level of calpain-2 in DRGs, but not calpain-1 was increased transiently in the first 10 min(-1)h ipsilaterally and 20 min(-1)h contralaterally after L5-VRT, long before mechanical allodynia was initiated (5-15 h ipsilaterally and 15 h(-1)d contralaterally). The early activation of calpain evaluated by the generation of spectrin breakdown products (SBDP) correlated well with IL-6 up-regulation in bilateral DRGs. Double immunofluorescence staining revealed that almost all the calpain-2 positive neurons expressed IL-6, indicating an association between calpain-2 and IL-6. Inhibition of calpain by pre-treatment with MDL28170 (25mg/kg, i.p.) attenuated the rat mechanical allodynia and prevented the early up-regulation of IL-6 following L5-VRT. Addition of exogenous calpain-2 onto the surface of left L5 DRG triggered a temporal allodynia and increased IL-6 in bilateral DRGs simultaneously. Taken together, the early increase of calpain-2 in L5-VRT rats might be responsible for the induction of allodynia via up-regulating IL-6 in DRG neurons.
Collapse
Affiliation(s)
- Ying Zang
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China.
| | - Shao-Xia Chen
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Guang-Jie Liao
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China; Department of Pathology, The Red Cross Hospital of Yulin, 1 Jinwang Rd., Yulin 537000, China
| | - He-Quan Zhu
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Xu-Hong Wei
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Yu Cui
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Xiao-Dong Na
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China; Department of Pathophysiology, Zhongshan Medical School of Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Rui-Ping Pang
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Wen-Jun Xin
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Li-Jun Zhou
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Xian-Guo Liu
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| |
Collapse
|
30
|
Decreased c-rel activation contributes to aberrant interleukin-2 expression in CD4+T cells of aged rats. Mol Immunol 2014; 61:1-6. [DOI: 10.1016/j.molimm.2014.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 04/14/2014] [Accepted: 04/24/2014] [Indexed: 01/08/2023]
|
31
|
Calpain-generated natural protein fragments as short-lived substrates of the N-end rule pathway. Proc Natl Acad Sci U S A 2014; 111:E817-26. [PMID: 24550490 DOI: 10.1073/pnas.1401639111] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Calpains are Ca(2+)-dependent intracellular proteases. We show here that calpain-generated natural C-terminal fragments of proteins that include G protein-coupled receptors, transmembrane ion channels, transcriptional regulators, apoptosis controllers, kinases, and phosphatases (Phe-GluN2a, Lys-Ica512, Arg-Ankrd2, Tyr-Grm1, Arg-Atp2b2, Glu-Bak, Arg-Igfbp2, Glu-IκBα, and Arg-c-Fos), are short-lived substrates of the Arg/N-end rule pathway, which targets destabilizing N-terminal residues. We also found that the identity of a fragment's N-terminal residue can change during evolution, but the residue's destabilizing activity is virtually always retained, suggesting selection pressures that favor a short half-life of the calpain-generated fragment. It is also shown that a self-cleavage of a calpain can result in an N-end rule substrate. Thus, the autoprocessing of calpains can control them by making active calpains short-lived. These and related results indicate that the Arg/N-end rule pathway mediates the remodeling of oligomeric complexes by eliminating protein fragments that are produced in these complexes through cleavages by calpains or other nonprocessive proteases. We suggest that this capability of the Arg/N-end rule pathway underlies a multitude of its previously known but mechanistically unclear functions.
Collapse
|
32
|
Trager N, Smith A, Wallace Iv G, Azuma M, Inoue J, Beeson C, Haque A, Banik NL. Effects of a novel orally administered calpain inhibitor SNJ-1945 on immunomodulation and neurodegeneration in a murine model of multiple sclerosis. J Neurochem 2014; 130:268-79. [PMID: 24447070 DOI: 10.1111/jnc.12659] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 12/27/2013] [Accepted: 01/15/2014] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis (MS) pathology is marked by the massive infiltration of myelin-specific T cells into the CNS. Hallmarks of T helper (Th) cells during active disease are pro-inflammatory Th1/Th17 cells that predominate over immunoregulatory Th2/Treg cells. Neurodegeneration, a major factor in progressive MS, is often overlooked when considering drug prescription. Here, we show that oral dosing with SNJ-1945, a novel water-soluble calpain inhibitor, reduces experimental autoimmune encephalomyelitis clinical scores in vivo and has a two pronged effect via anti-inflammation and protection against neurodegeneration. We also show that SNJ-1945 treatment down-regulates Th1/Th17 inflammatory responses, and promotes regulatory T cells (Tregs) and myeloid-derived suppressor cells in vivo, which are known to have the capacity to suppress helper as well as cytotoxic T cell functions. Through analysis of spinal cord samples, we show a reduction in calpain expression, decreased infiltration of inflammatory cells, and signs of inhibition of neurodegeneration. We also show a marked reduction in neuronal cell death in spinal cord (SC) sections. These results suggest that calpain inhibition attenuates experimental autoimmune encephalomyelitis pathology by reducing both inflammation and neurodegeneration, and could be used in clinical settings to augment the efficacy of standard immunomodulatory agents used to treat MS. Multiple sclerosis (MS) pathology is marked by inflammation and infiltration of myelin-specific T cells into the central nervous system. Inflammation leads to neurodegeneration in progressive MS which also leads to epitope spreading, feedback looping to more inflammation. Calpain can play a role in both arms of the disease. Here, oral dosing with SNJ-1945, a novel water-soluble calpain inhibitor, reduces experimental autoimmune encephalomyelitis clinical scores in vivo and has a two-pronged effect via anti-inflammation and protection against neurodegeneration.
Collapse
Affiliation(s)
- Nicole Trager
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, USA; Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Fontenele M, Lim B, Oliveira D, Buffolo M, Perlman DH, Schupbach T, Araujo H. Calpain A modulates Toll responses by limited Cactus/IκB proteolysis. Mol Biol Cell 2013; 24:2966-80. [PMID: 23864715 PMCID: PMC3771957 DOI: 10.1091/mbc.e13-02-0113] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Calcium-dependent cysteine proteases of the calpain family are modulatory proteases that cleave their substrates in a limited manner. Among their substrates, calpains target vertebrate and invertebrate IκB proteins. Because proteolysis by calpains potentially generates novel protein functions, it is important to understand how this affects NFκB activity. We investigate the action of Calpain A (CalpA) on the Drosophila melanogaster IκB homologue Cactus in vivo. CalpA alters the absolute amounts of Cactus protein. Our data indicate, however, that CalpA uses additional mechanisms to regulate NFκB function. We provide evidence that CalpA interacts physically with Cactus, recognizing a Cactus pool that is not bound to Dorsal, a fly NFκB/Rel homologue. We show that proteolytic cleavage by CalpA generates Cactus fragments lacking an N-terminal region required for Toll responsiveness. These fragments are generated in vivo and display properties distinct from those of full-length Cactus. We propose that CalpA targets free Cactus, which is incorporated into and modulates Toll-responsive complexes in the embryo and immune system.
Collapse
Affiliation(s)
- Marcio Fontenele
- Institute for Biomedical Sciences, Federal University of Rio de Janeiro, CEP 21941-902 Rio de Janeiro, Brazil Chemistry Institute, Federal University of Rio de Janeiro, CEP 21941-902 Rio de Janeiro, Brazil Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544 Princeton Collaborative Proteomics and Mass Spectrometry Center, Princeton University, Princeton, NJ 08544 Molecular Biology Department, Princeton University, Princeton, NJ 08544 Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | | | | | | | | | | | | |
Collapse
|
34
|
Fei B, Yu S, Geahlen RL. Modulation by Syk of Bcl-2, calcium and the calpain-calpastatin proteolytic system in human breast cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2153-64. [PMID: 23684705 DOI: 10.1016/j.bbamcr.2013.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/07/2013] [Accepted: 05/09/2013] [Indexed: 01/02/2023]
Abstract
Syk is a 72kDa non-receptor tyrosine kinase that is best characterized in hematopoietic cells. While Syk is pro-tumorigenic in some cancer cell types, it also has been reported as a negative regulator of metastatic cell growth in others. An examination of the RelA (p65) subunit of NF-κB expressed in MCF7 breast cancer cells indicated that either treatment with pervanadate or stable expression of Syk protected RelA from calpain-mediated proteolysis. Similar results were observed with the tyrosine phosphatase, PTP1B, another sensitive calpain substrate. The activity of calpain in MCF7 cell lysates was inhibited by both treatment with hydrogen peroxide and expression of Syk, the former due to oxidative inactivation of calpain and the latter to enhanced expression of calpastatin (CAST), the endogenous calpain inhibitor. The level of CAST was elevated in the cytosolic fraction of Syk-positive breast cancer cells resulting in more CAST present in complex with calpain in cell lysates. The high levels of CAST coincided with elevated basal levels of calcium-and of intracellular calpain activity-in Syk-expressing cells resulting from decreased levels of Bcl-2, an inhibitor of IP3-receptor-mediated calcium release. The inhibition of cellular calpain stimulated the Syk-mediated enhancement of NF-κB induced by TNF-α, enhanced tyrosine phosphorylation resulting from integrin crosslinking, and increased the localization of Syk to the plasma membrane.
Collapse
Affiliation(s)
- Bei Fei
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
35
|
Park S, Nozaki K, Guyton MK, Smith JA, Ray SK, Banik NL. Calpain inhibition attenuated morphological and molecular changes in skeletal muscle of experimental allergic encephalomyelitis rats. J Neurosci Res 2012; 90:2134-45. [PMID: 22715087 PMCID: PMC12010168 DOI: 10.1002/jnr.23096] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 04/30/2012] [Accepted: 05/09/2012] [Indexed: 12/22/2022]
Abstract
Muscle weakness and atrophy are important manifestations of multiple sclerosis (MS). To investigate the pathophysiological mechanisms of skeletal muscle change in MS, we induced experimental autoimmune encephalomyelitis (EAE) in Lewis male rats and examined morphological and molecular changes in skeletal muscle. We also treated EAE rats with calpepetin, a calpain inhibitor, to examine its beneficial effects on skeletal muscle damage. Morphological changes in muscle tissue of EAE rats included smaller and irregularly shaped muscle fibers and fibrosis. Western blot analysis demonstrated increased calpain:calpastatin ratio, inflammation-related transcription factors (nuclear factor-κB:inhibitor of κB α ratio), and proinflammatory enzymes (cyclooxygenase-2). TUNEL-positive myonuclei in skeletal muscle cells of EAE rats indicated cell death. In addition, markers of apoptotic cell death (Bax:Bcl-2 ratio and caspase-12 protein levels) were elevated. Expression of muscle-specific ubiquitin ligases (muscle atrophy F-box and muscle ring finger protein 1), was upregulated in muscle tissue of EAE-vehicle animals. Both prophylactic and therapeutic treatment with calpeptin partially attenuated muscle changes noted in EAE animals. These results indicate that morphological and molecular changes including apoptotic cell death and protein breakdown develop in skeletal muscle of EAE animals and that these changes can be reversed by calpain inhibition.
Collapse
Affiliation(s)
- Sookyoung Park
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| | - Kenkichi Nozaki
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| | - M. Kelly Guyton
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| | - Joshua A. Smith
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| | - Swapan K. Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Naren L. Banik
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
36
|
Varshavsky A. Augmented generation of protein fragments during wakefulness as the molecular cause of sleep: a hypothesis. Protein Sci 2012; 21:1634-61. [PMID: 22930402 PMCID: PMC3527701 DOI: 10.1002/pro.2148] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 08/21/2012] [Indexed: 02/05/2023]
Abstract
Despite extensive understanding of sleep regulation, the molecular-level cause and function of sleep are unknown. I suggest that they originate in individual neurons and stem from increased production of protein fragments during wakefulness. These fragments are transient parts of protein complexes in which the fragments were generated. Neuronal Ca²⁺ fluxes are higher during wakefulness than during sleep. Subunits of transmembrane channels and other proteins are cleaved by Ca²⁺-activated calpains and by other nonprocessive proteases, including caspases and secretases. In the proposed concept, termed the fragment generation (FG) hypothesis, sleep is a state during which the production of fragments is decreased (owing to lower Ca²⁺ transients) while fragment-destroying pathways are upregulated. These changes facilitate the elimination of fragments and the remodeling of protein complexes in which the fragments resided. The FG hypothesis posits that a proteolytic cleavage, which produces two fragments, can have both deleterious effects and fitness-increasing functions. This (previously not considered) dichotomy can explain both the conservation of cleavage sites in proteins and the evolutionary persistence of sleep, because sleep would counteract deleterious aspects of protein fragments. The FG hypothesis leads to new explanations of sleep phenomena, including a longer sleep after sleep deprivation. Studies in the 1970s showed that ethanol-induced sleep in mice can be strikingly prolonged by intracerebroventricular injections of either Ca²⁺ alone or Ca²⁺ and its ionophore (Erickson et al., Science 1978;199:1219-1221; Harris, Pharmacol Biochem Behav 1979;10:527-534; Erickson et al., Pharmacol Biochem Behav 1980;12:651-656). These results, which were never interpreted in connection to protein fragments or the function of sleep, may be accounted for by the FG hypothesis about molecular causation of sleep.
Collapse
Affiliation(s)
- Alexander Varshavsky
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA.
| |
Collapse
|
37
|
Abstract
Calpains, a family of Ca(2+)-dependent cytosolic cysteine proteases, can modulate their substrates' structure and function through limited proteolytic activity. In the human genome, there are 15 calpain genes. The most-studied calpains, referred to as conventional calpains, are ubiquitous. While genetic studies in mice have improved our understanding about the conventional calpains' physiological functions, especially those essential for mammalian life as in embryogenesis, many reports have pointed to overactivated conventional calpains as an exacerbating factor in pathophysiological conditions such as cardiovascular diseases and muscular dystrophies. For treatment of these diseases, calpain inhibitors have always been considered as drug targets. Recent studies have introduced another aspect of calpains that calpain activity is required to protect the heart and skeletal muscle against stress. This review summarizes the functions and regulation of calpains, focusing on the relevance of calpains to cardiovascular disease.
Collapse
Affiliation(s)
- Hiroyuki Sorimachi
- Calpain Project, Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | | |
Collapse
|
38
|
Kim SJ, Jeong HJ, Park SU, Moon BS, Moon PD, An NH, Lee KM, Hong SH, Kim HM, Um JY. Anti-Inflammatory Effect of Dohongsamultang through Inhibition of Nuclear Factor-κB Activation in Peripheral Blood Mononuclear Cells of Patients with Cerebral Infarction. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 35:415-26. [PMID: 17597500 DOI: 10.1142/s0192415x0700493x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Korean indigenous medicine "Dohongsamultang (DHSMT)" has long been used for various cerebrovascular diseases. However, the exact mechanism for the anti-inflammatory effect of DHSMT is not completely understood. The aim of the present study is to elucidate how DHSMT modulates the inflammatory reaction in lipopolysaccaride (LPS)-stimulated peripheral mononuclear cells from cerebral infarction (CI) patients. Production and expression of cytokine was measured via the ELISA and RT-PCR methods. The level of nuclear factor-kappa B (NF-κB)/Rel A protein and NF-κB DNA binding activity were determined via the Western blot analysis and transcription factor enzyme-linked immunoassay. It showed that DHSMT inhibited the production of TNF-α, IL-1β, and IL-6 induced by LPS in a dose-dependent manner ( p < 0.05). The maximal inhibition rates for TNF-α, IL-1β, and IL-6 production by DHSMT were about 50.18%, 32.13%, and 38.03%, respectively. DHSMT inhibited the TNF-α mRNA expression in a dose-dependent manner. We also showed that the inhibitory effect of DHSMT is through the suppression of the NF-κB pathway. The study suggests an important molecular mechanism by GMGHT to reduce inflammation, which might explain its beneficial effect in the regulation of inflammatory reactions.
Collapse
Affiliation(s)
- Su-Jin Kim
- College of Oriental Medicine, Institute of Oriental Medicine, Kyung Hee University, Seoul, 130-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Fenouille N, Grosso S, Yunchao S, Mary D, Pontier-Bres R, Imbert V, Czerucka D, Caroli-Bosc FX, Peyron JF, Lagadec P. Calpain 2-dependent IκBα degradation mediates CPT-11 secondary resistance in colorectal cancer xenografts. J Pathol 2012; 227:118-29. [PMID: 22069124 DOI: 10.1002/path.3034] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 09/20/2011] [Accepted: 10/21/2011] [Indexed: 12/12/2022]
Abstract
CPT-11 (irinotecan), the first-line chemotherapy for advanced stage colorectal cancer, remains inactive in about half of patients (primary chemoresistance) and almost all initial responders develop secondary resistance after several courses of treatment (8 months on average). Nude mice bearing HT-29 colon cancer xenografts were treated with CPT-11 and/or an NF-κB inhibitor for two courses. We confirm that NF-κB inhibition potentiated CPT-11 anti-tumoural effect after the first course of treatment. However, tumours grew again at the end of the second course of treatment, generating resistant tumours. We observed an increase in the basal NF-κB activation in resistant tumours and in two resistant sublines, either obtained from resistant HT-29 tumours (HT-29R cells) or generated in vitro (RSN cells). The decrease of NF-κB activation in HT-29R and RSN cells by stable transfections with the super-repressor form of IκBα augmented their sensitivity to CPT-11. Comparing gene expression profiles of HT-29 and HT-29R cells, we identified the S100A10/Annexin A2 complex and calpain 2 as over-expressed potential NF-κB inducers. SiRNA silencing of calpain 2 but not of S100A10 and/or annexin A2, resulted in a decrease in NF-κB activation, an increase in cellular levels of IκBα and a partial restoration of the CPT-11 sensitivity in both HT-29R and RSN cells, suggesting that calpain 2-dependent IκBα degradation mediates CPT-11 secondary resistance. Thus, targeted therapies directed against calpain 2 may represent a novel strategy to enhance the anti-cancer efficacy of CPT-11.
Collapse
Affiliation(s)
- Nina Fenouille
- INSERM, U895, Centre Méditerranéen de Médecine Moléculaire (C3M), Equipe Inflammation, Cancer, Cellules Souches Cancéreuses, Nice, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kim SJ, Kim YG, Kim DS, Jeon YD, Kim MC, Kim HL, Kim SY, Jang HJ, Lee BC, Hong SH, Um JY. Oldenlandia diffusa Ameliorates Dextran Sulphate Sodium-Induced Colitis Through Inhibition of NF-κB Activation. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2011; 39:957-69. [PMID: 21905285 DOI: 10.1142/s0192415x11009330] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease, which is a chronic gastrointestinal disorder. Oldenlandia diffusa (OD) has been used as a traditional oriental medicine for inflammation. However, the regulatory effect and molecular mechanism of OD in intestinal inflammation are not yet understood. This study investigated the protective effect of OD in dextran sulfate sodium (DSS)-induced colitis. Mice treated with DSS showed remarkable clinical signs, including weight loss, and reduced colon length. Administration of OD attenuated these signs and significantly suppressed levels of interleukin (IL)-6, IL-1β and expression of cyclooxygenase-2 in DSS-treated colon tissues. OD also reduced the activation of transcription nuclear factor-κB p65 in DSS-treated colon tissues. Hentriacontane, a constituent of OD, attenuated weight loss, colon shortening, and levels of IL-6 caused by DSS. Taken together, the results provide experimental evidence that OD might be a useful therapeutic medicine for patients with UC.
Collapse
Affiliation(s)
- Su-Jin Kim
- Department of Cosmeceutical Science, Daegu Hanny University, Kyungsan 712-715, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kim SJ, Kim KW, Kim DS, Kim MC, Jeon YD, Kim SG, Jung HJ, Jang HJ, Lee BC, Chung WS, Hong SH, Chung SH, Um JY. The protective effect of Cassia obtusifolia on DSS-induced colitis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2011; 39:565-77. [PMID: 21598422 DOI: 10.1142/s0192415x11009032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cassia obtusifolia (CO) has been traditionally used in Korea to treat eye inflammation, photophobia, and lacrimation. However, the regulatory effect and molecular mechanism of CO in intestinal inflammation has not been understood. In this study, we investigate the protective effect of CO in dextran sulfate sodium (DSS)-induced colitis. CO reduced clinical signs of DSS-induced colitis, including body weight loss, shortened colon length, and increased disease activity index. The results show that CO significantly suppressed the levels of interleukin (IL)-6 and expression of cyclooxygenase-2 in DSS-treated colon tissues. Additionally, we observed that CO reduced the activation of transcription nuclear factor-κB p65 in DSS-treated colon tissues. Taken together, these findings suggest that CO has improving effects on DSS-induced ulcerative colitis, which may explain its beneficial effect in the regulation of chronic intestinal inflammation.
Collapse
Affiliation(s)
- Su-Jin Kim
- Department of Pharmacology, Kyung Hee University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Iguchi-Hashimoto M, Usui T, Yoshifuji H, Shimizu M, Kobayashi S, Ito Y, Murakami K, Shiomi A, Yukawa N, Kawabata D, Nojima T, Ohmura K, Fujii T, Mimori T. Overexpression of a minimal domain of calpastatin suppresses IL-6 production and Th17 development via reduced NF-κB and increased STAT5 signals. PLoS One 2011; 6:e27020. [PMID: 22046434 PMCID: PMC3203168 DOI: 10.1371/journal.pone.0027020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 10/07/2011] [Indexed: 12/14/2022] Open
Abstract
Calpain, a calcium-dependent cysteine protease, is reportedly involved in the pathophysiology of autoimmune diseases such as rheumatoid arthritis (RA). In addition, autoantibodies against calpastatin, a natural and specific inhibitor of calpain, are widely observed in RA. We previously reported that E-64-d, a membrane-permeable cysteine protease inhibitor, is effective in treating experimental arthritis. However, the exact role of the calpastatin-calpain balance in primary inflammatory cells remains unclear. Here we investigated the effect of calpain-specific inhibition by overexpressing a minimal functional domain of calpastatin in primary helper T (Th) cells, primary fibroblasts from RA patients, and fibroblast cell lines. We found that the calpastatin-calpain balance varied during Th1, Th2, and Th17 development, and that overexpression of a minimal domain of calpastatin (by retroviral gene transduction) or the inhibition of calpain by E-64-d suppressed the production of IL-6 and IL-17 by Th cells and the production of IL-6 by fibroblasts. These suppressions were associated with reductions in RORγt expression and STAT3 phosphorylation. Furthermore, inhibiting calpain by silencing its small regulatory subunit (CPNS) suppressed Th17 development. We also confirmed that overexpressing a minimal domain of calpastatin suppressed IL-6 by reducing NF-κB signaling via the stabilization of IκBα, without affecting the upstream signal. Moreover, our findings indicated that calpastatin overexpression suppressed IL-17 production by Th cells by up-regulating the STAT5 signal. Finally, overexpression of a minimal domain of calpastatin suppressed IL-6 production efficiently in primary fibroblasts derived from the RA synovium. These findings suggest that inhibiting calpain by overexpressing a minimal domain of calpastatin could coordinately suppress proinflammatory activities, not only those of Th cells but also of synovial fibroblasts. Thus, this strategy may prove viable as a candidate treatment for inflammatory diseases such as RA.
Collapse
Affiliation(s)
- Mikiko Iguchi-Hashimoto
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Usui
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hajime Yoshifuji
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masakazu Shimizu
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shio Kobayashi
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshinaga Ito
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kosaku Murakami
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Aoi Shiomi
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naoichiro Yukawa
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Daisuke Kawabata
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takaki Nojima
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koichiro Ohmura
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takao Fujii
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tsuneyo Mimori
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
43
|
Smith AW, Das A, Guyton MK, Ray SK, Rohrer B, Banik NL. Calpain inhibition attenuates apoptosis of retinal ganglion cells in acute optic neuritis. Invest Ophthalmol Vis Sci 2011; 52:4935-41. [PMID: 21613375 DOI: 10.1167/iovs.10-7027] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
PURPOSE Optic neuritis (ON), inflammation of the optic nerve, is strongly associated with the pathogenesis of multiple sclerosis (MS) and is initiated by the attack of autoreactive T cells against self-myelin antigens, resulting in demyelination, degeneration of retinal ganglion cells (RGCs), and cumulative visual impairment. METHODS Experimental autoimmune encephalomyelitis (EAE) was induced in Lewis rats on day 0, and animals received daily intraperitoneal injections of calpain inhibitor (calpeptin) or vehicle from day 1 until killed. Retinal cell death was analyzed by DNA fragmentation, and surviving ganglion cells were quantified after double labeling of retinal tissue with TUNEL and Brn3a. The expression of apoptotic and inflammatory proteins was determined by Western blotting. RESULTS It was demonstrated that calpain inhibition downregulates expression of proapoptotic proteins and the proinflammatory molecule nuclear factor-kappa B (NF-κB) in the retina of Lewis rats with acute EAE. Immunofluorescent labeling revealed that apoptotic cells in the RGC layer of vehicle-treated EAE animals were Brn3a positive, and a moderate dose of calpeptin dramatically reduced the frequency of apoptotic RGCs. CONCLUSIONS These results suggest that calpain inhibition might be a useful supplement to immunomodulatory therapies such as corticosteroids in ON, due to its neuroprotective effect on RGCs.
Collapse
Affiliation(s)
- Amena W Smith
- Departments of Neurosciences, Division of Neurology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | |
Collapse
|
44
|
Kim MC, Lee GH, Kim SJ, Chung WS, Kim SS, Ko SG, Um JY. Immune-enhancing effect of Danggwibohyeoltang, an extract from Astragali Radix and Angelicae gigantis Radix, in vitro and in vivo. Immunopharmacol Immunotoxicol 2011; 34:66-73. [PMID: 21561325 DOI: 10.3109/08923973.2011.576254] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Danggwibohyeoltang (DGBHT) is an oriental herbal prescription consisting of two herbs: Astragali Radix and Angelicae gigantis Radix. We examined the immune-enhancing effect of DGBHT in mice using the forced swimming test (FST) and in vitro tests in peritoneal macrophages. After daily oral administration of DGBHT, blood biochemical parameters related to fatigue were measured after the FST. The immobility time in the FST was significantly decreased in the DGBHT-treated group (200 mg/kg) on the 10th and 14th days. DGBHT (100~~200 mg/kg) treatment significantly increased glucose levels, acting as an energy source. Lactic dehydrogenase levels, which are accurate indicators of muscle damage, tended to decline after DGBHT administration (100~200 mg/kg). When DGBHT (200 mg/kg) was orally administered to mice, creatine kinase levels tended to decrease; however, this decrease was not significant. DGBHT did not have any effects on the variation of total protein and blood urea nitrogen levels. Further, we examined how DGBHT regulates cytokine production, nitric oxide (NO) production, and nuclear factor-kappa B (NF-κB) activation in mouse peritoneal macrophages. When DGBHT was used in combination with recombinant interferon-gamma (rIFN-γ), there was a noticeable cooperative induction of NO production and NF-κB activation. Moreover, rIFN-γ plus DGBHT treatment of peritoneal macrophages significantly increased the production of tumor necrosis factor-alpha (TNF-α) and interleukin-12 (IL-12). These results suggest that DGBHT improves immune function through the changes in indicators related to fatigue and the regulatory effects on immunological parameters, such as TNF-α, IL-12, NO production, and NF-κB activation.
Collapse
Affiliation(s)
- Min-Cheol Kim
- Department of Pharmacology, College of Oriental Medicine, Institute of Oriental Medicine, Kyung Hee University, Hoegi-Dong, Dongdaemun-Gu, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
45
|
Nozaki K, Das A, Ray SK, Banik NL. Calpeptin attenuated apoptosis and intracellular inflammatory changes in muscle cells. J Neurosci Res 2011; 89:536-43. [PMID: 21290412 DOI: 10.1002/jnr.22585] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 11/22/2010] [Accepted: 11/22/2010] [Indexed: 12/24/2022]
Abstract
In idiopathic inflammatory myopathies (IIMs), extracellular inflammatory stimulation is considered to induce secondary intracellular inflammatory changes including expression of major histocompatibility complex class-I (MHC-I) and to produce a self-sustaining loop of inflammation. We hypothesize that activation of calpain, a Ca(2+) -sensitive protease, bridges between these extracellular inflammatory stress and intracellular secondary inflammatory changes in muscle cells. In this study, we demonstrated that treatment of rat L6 myoblast cells with interferon-γ (IFN-γ) caused expression of MHC-I and inflammation-related transcription factors (phosphorylated-extracellular signal-regulated kinase 1/2 and nuclear factor-κB). We also demonstrated that treatment with tumor necrosis factor-α (TNF-α) induced apoptotic changes and activation of calpain and cyclooxygenase-2. Furthermore, we found that posttreatment with calpeptin attenuated the intracellular changes induced by IFN-γ or TNF-α. Our results indicate that calpain inhibition attenuates apoptosis and secondary inflammatory changes induced by extracellular inflammatory stimulation in the muscle cells. These results suggest calpain as a potential therapeutic target for treatment of IIMs.
Collapse
Affiliation(s)
- Kenkichi Nozaki
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | |
Collapse
|
46
|
Chen X, Zhou C, Guo J, Sun K, Zhao N, Yang J, Sun Y, Liu X, Hibi T, Liu Z, Han J. Effects of dihydroxylphenyl lactic acid on inflammatory responses in spinal cord injury. Brain Res 2010; 1372:160-8. [PMID: 21134362 DOI: 10.1016/j.brainres.2010.11.089] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 11/21/2010] [Accepted: 11/25/2010] [Indexed: 11/27/2022]
Abstract
The initial mechanical tissue disruption of spinal cord injury (SCI) is followed by a period of secondary injury that increases the size of the lesion. Secondary injuries are associated with edema, inflammation, excessive cytokine release, excitotoxicity and cell apoptosis. 3,4-dihydroxyphenyl lactic acid (DLA) is one of the major water-soluble components of chemical constituents from Salvia miltiorrhiza (SM). To investigate the inhibition effects of DLA on secondary injury of SCI, focusing especially on suppression of inflammatory responses and the mechanism of this effect, the following studies were performed: Basso, Beattie, and Bresnahan (BBB) scores to assess motor functions till 10 days after SCI; Nissl and Fast Blue histological staining and immunohistochemistry of inhibitory-kappa B-alpha (IκB-α) and nuclear factor-kappa B (NF-κB) p65 subunit protein; levels of myeloperoxidase (MPO) activity analysis as an indicator of polymorphonuclear infiltration; IL-6 production in plasma 10 days after SCI; Western blot analysis to determine cytoplasm levels of IκB-α and NF-κB p65 subunit proteins in the nuclear fractions 10 days after SCI. DLA significantly attenuated the motor function and tissue damage following SCI in rats, significant reduced polymorphonuclear cell infiltration and IL-6 production, as well as reduced cytoplasm IκB-α degradation and the nuclear translocation of NF-κB p65 subunit protein after SCI. In conclusion, the results clearly demonstrate that DLA inhibit the inflammation responses induced by SCI via inhibiting effect of production of IL-6 and nuclear translocation of NF-κB.
Collapse
Affiliation(s)
- Xin Chen
- Orthopaedic Department, Peking University Third Hospital, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Smith AW, Doonan BP, Tyor WR, Abou-Fayssal N, Haque A, Banik NL. Regulation of Th1/Th17 cytokines and IDO gene expression by inhibition of calpain in PBMCs from MS patients. J Neuroimmunol 2010; 232:179-85. [PMID: 21075457 DOI: 10.1016/j.jneuroim.2010.09.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 09/16/2010] [Accepted: 09/30/2010] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis (MS) pathology is marked by the massive infiltration of myelin-specific T cells into the central nervous system (CNS). During active disease, pro-inflammatory Th1/Th17 cells predominate over immunoregulatory Th2/Treg cells. Here, we show that calpain inhibition downregulates Th1/Th17 inflammatory cytokines and mRNA in MS patient peripheral blood mononuclear cells (PBMCs) activated with anti-CD3/28 or MBP. Interestingly, calpain inhibition elevated IDO gene expression in MS PBMCs, which was markedly decreased in calpain expressing cells. Functional assay showed that incubation of MS patient PBMCs with calpain inhibitor or recombinant IDO attenuates T cell proliferation. These results suggest that calpain inhibition may attenuate MS pathology and augment the efficacy of standard immunomodulatory agents used to treat this disease.
Collapse
Affiliation(s)
- Amena W Smith
- Department of Neurosciences, Division of Neurology, Medical University of South Carolina, 96 Jonathan Lucas St, Charleston, SC 29425, USA
| | | | | | | | | | | |
Collapse
|
48
|
Kim SJ, Kim MC, Um JY, Hong SH. The beneficial effect of vanillic acid on ulcerative colitis. Molecules 2010; 15:7208-17. [PMID: 20959795 PMCID: PMC6259113 DOI: 10.3390/molecules15107208] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 10/08/2010] [Accepted: 10/18/2010] [Indexed: 12/20/2022] Open
Abstract
Vanillic acid, an oxidized form of vanillin, is a benzoic acid derivative used as a flavoring agent. The objective of this study was to determine whether vanillic acid has beneficial effects against dextran sulfate sodium (DSS)-induced ulcerative colitis. Our results showed that vanillic acid reduced the severity of the clinical signs of DSS-induced colitis, including weight loss and shortening of colon length, and the disease activity index. The results of this study showed that vanillic acid significantly suppressed the expression of cyclooxygenase-2 and the activation of transcription nuclear factor-κB p65 in DSS-treated colon tissues. In addition, we observed that the plasma levels of interleukin (IL)-6 were higher in the DSS-treated group than in the control group, but these increased levels were reduced by the administration of vanillic acid. Taken together, these findings suggest that vanillic acid has a beneficial effect on DSS-induced ulcerative colitis, thereby indicating its usefulness in the regulation of chronic intestinal inflammation.
Collapse
Affiliation(s)
- Su-Jin Kim
- Department of Pharmacology, College of Oriental Medicine, Institute of Oriental Medicine, Kyung Hee University; Dongdaemun-Gu, Seoul 130-701, Korea; E-Mails: (S.-J.K); (J.-Y.U)
| | - Min-Cheol Kim
- Wonkwang Oriental Medicines Research Institute, Department of Oriental Pharmacy, College of Pharmacy, Wonkwang University, Iksan, Jeonbuk 570-749, Korea; E-Mail: (M.-C.K)
| | - Jae-Young Um
- Department of Pharmacology, College of Oriental Medicine, Institute of Oriental Medicine, Kyung Hee University; Dongdaemun-Gu, Seoul 130-701, Korea; E-Mails: (S.-J.K); (J.-Y.U)
| | - Seung-Heon Hong
- Wonkwang Oriental Medicines Research Institute, Department of Oriental Pharmacy, College of Pharmacy, Wonkwang University, Iksan, Jeonbuk 570-749, Korea; E-Mail: (M.-C.K)
- Author to whom correspondence should be addressed; E-Mail: (S.-H.H.); Tel.: +82-63-850-6805; Fax: +82-63-843-3421
| |
Collapse
|
49
|
Sribnick EA, Samantaray S, Das A, Smith J, Matzelle DD, Ray SK, Banik NL. Postinjury estrogen treatment of chronic spinal cord injury improves locomotor function in rats. J Neurosci Res 2010; 88:1738-50. [PMID: 20091771 PMCID: PMC3127445 DOI: 10.1002/jnr.22337] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Spinal cord injury (SCI) causes loss of neurological function and, depending on serverity, may cause paralysis. The only recommended pharmacotherapy for the treatment of SCI is high-dose methylprednisolone, and its use is controversial. We have previously shown that estrogen treatment attenuated cell death, axonal and myelin damage, calpain and caspase activities, and inflammation in acute SCI. The aim of this study was to examine whether posttreatment of SCI with estrogen would improve locomotor function by protecting cells and axons and reducing inflammation during the chronic phase following injury. Moderately severe injury (40 g . cm force) was induced in male Sprague-Dawley rats following laminectomy at T10. Three groups of animals were used: sham (laminectomy only), vehicle (dimethyl sulfoxide; DMSO)-treated injury group, and estrogen-treated injury group. Animals were treated with 4 mg/kg estrogen at 15 min and 24 hr postnjury, followed by 2 mg/kg estrogen daily for the next 5 days. After treatment, animals were sacrificed at the end of 6 weeks following injury, and 1-cm segments of spinal cord (lesion, rostral to lesion, and caudal to lesion) were removed for biochemical analyses. Estrogen treatment reduced COX-2 activity, blocked nuclear factor-kappaB translocation, prevented glial reactivity, attenuated neuron death, inhibited activation and activity of calpain and caspase-3, decreased axonal damage, reduced myelin loss in the lesion and penumbra, and improved locomotor function compared with vehicle-treated animals. These findings suggest that estrogen may be useful as a promising therapeutic agent for prevention of damage and improvement of locomotor function in chronic SCI. (c) 2010 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Eric A. Sribnick
- Department of Neurosciences, Division of Neurology, Medical University of South Carolina, Charleston, South Carolina
| | - Supriti Samantaray
- Department of Neurosciences, Division of Neurology, Medical University of South Carolina, Charleston, South Carolina
| | - Arabinda Das
- Department of Neurosciences, Division of Neurology, Medical University of South Carolina, Charleston, South Carolina
| | - Joshua Smith
- Department of Neurosciences, Division of Neurology, Medical University of South Carolina, Charleston, South Carolina
| | - D. Denise Matzelle
- Department of Neurosciences, Division of Neurology, Medical University of South Carolina, Charleston, South Carolina
| | - Swapan K. Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Naren L. Banik
- Department of Neurosciences, Division of Neurology, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
50
|
Li C, Chen S, Yue P, Deng X, Lonial S, Khuri FR, Sun SY. Proteasome inhibitor PS-341 (bortezomib) induces calpain-dependent IkappaB(alpha) degradation. J Biol Chem 2010; 285:16096-16104. [PMID: 20335171 PMCID: PMC2871478 DOI: 10.1074/jbc.m109.072694] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 02/17/2010] [Indexed: 11/06/2022] Open
Abstract
The proteasome, a key component of the ubiquitin-proteasome pathway, has emerged as an important cancer therapeutic target. PS-341 (also called Bortezomib or Velcade) is the first proteasome inhibitor approved for newly diagnosed and relapsed multiple myeloma and is currently being tested in many clinical trials against other types of cancers. One proposed mechanism by which PS-341 exerts its anticancer effect is inactivation of nuclear factor-kappaB (NF-kappaB) through prevention of IkappaB(alpha) degradation. In this study, we show that PS-341 at concentrations that effectively inhibited the growth of human cancer cells, instead of increasing IkappaB(alpha) stability, paradoxically induced IkappaB(alpha) degradation. As a result, PS-341 facilitated p65 nuclear translocation and increased NF-kappaB activity. Moreover, IkappaB(alpha) degradation by PS-341 occurred early before induction of apoptosis and could not be inhibited by a pan-caspase inhibitor or caspase-8 silencing; however, it could be prevented with calpain inhibitors, calcium-chelating agents, calpain knockdown, or calpastatin overexpression. In agreement, PS-341 increased calpain activity. These data together indicate that PS-341 induces a calpain-mediated IkappaB(alpha) degradation independent of caspases. In the presence of a calpain inhibitor, the apoptosis-inducing activity of PS-341 was dramatically enhanced. Collectively, these unexpected findings suggest not only a novel paradigm regarding the relationship between proteasome inhibition and NF-kappaB activity but also a strategy to enhance the anticancer efficacy of PS-341.
Collapse
Affiliation(s)
- Chunyang Li
- From the Departments of Hematology and Medical Oncology and
| | - Shuzhen Chen
- From the Departments of Hematology and Medical Oncology and
| | - Ping Yue
- From the Departments of Hematology and Medical Oncology and
| | - Xingming Deng
- Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia 30322
| | - Sagar Lonial
- From the Departments of Hematology and Medical Oncology and
| | - Fadlo R. Khuri
- From the Departments of Hematology and Medical Oncology and
| | - Shi-Yong Sun
- From the Departments of Hematology and Medical Oncology and
| |
Collapse
|