1
|
Chen C, Ma Y, Zuo L, Xiao Y, Jiang Y, Gao J. The CALCINEURIN B-LIKE 4/CBL-INTERACTING PROTEIN 3 module degrades repressor JAZ5 during rose petal senescence. PLANT PHYSIOLOGY 2023; 193:1605-1620. [PMID: 37403193 PMCID: PMC10517193 DOI: 10.1093/plphys/kiad365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023]
Abstract
Flower senescence is genetically regulated and developmentally controlled. The phytohormone ethylene induces flower senescence in rose (Rosa hybrida), but the underlying signaling network is not well understood. Given that calcium regulates senescence in animals and plants, we explored the role of calcium in petal senescence. Here, we report that the expression of calcineurin B-like protein 4 (RhCBL4), which encodes a calcium receptor, is induced by senescence and ethylene signaling in rose petals. RhCBL4 interacts with CBL-interacting protein kinase 3 (RhCIPK3), and both positively regulate petal senescence. Furthermore, we determined that RhCIPK3 interacts with the jasmonic acid response repressor jasmonate ZIM-domain 5 (RhJAZ5). RhCIPK3 phosphorylates RhJAZ5 and promotes its degradation in the presence of ethylene. Our results reveal that the RhCBL4-RhCIPK3-RhJAZ5 module mediates ethylene-regulated petal senescence. These findings provide insights into flower senescence, which may facilitate innovations in postharvest technology for extending rose flower longevity.
Collapse
Affiliation(s)
- Changxi Chen
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yanxing Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Lanxin Zuo
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yue Xiao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yunhe Jiang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Chakrabarti M, Bharti S. Role of EIN2-mediated ethylene signaling in regulating petal senescence, abscission, reproductive development, and hormonal crosstalk in tobacco. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 332:111699. [PMID: 37028457 DOI: 10.1016/j.plantsci.2023.111699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/14/2023] [Accepted: 04/04/2023] [Indexed: 05/27/2023]
Abstract
Ethylene plays a pivotal role in a wide range of developmental, physiological, and defense processes in plants. EIN2 (ETHYLENE INSENSITIVE2) is a key player in the ethylene signaling pathway. To characterize the role of EIN2 in processes, such as petal senescence, where it has been found to play important roles along with various other developmental and physiological processes, the tobacco (Nicotiana tabacum) ortholog of EIN2 (NtEIN2) was isolated and NtEIN2 silenced transgenic lines were generated using RNA interference (RNAi). Silencing of NtEIN2 compromised plant defense against pathogens. NtEIN2 silenced lines displayed significant delays in petal senescence, and pod maturation, and adversely affected pod and seed development. This study further dissected the petal senescence in ethylene insensitive lines, that displayed alteration in the pattern of petal senescence and floral organ abscission. Delay in petal senescence was possibly because of delayed aging processes within petal tissues. Possible crosstalk between EIN2 and AUXIN RESPONSE FACTOR 2 (ARF2) in regulating the petal senescence process was also investigated. Overall, these experiments indicated a crucial role for NtEIN2 in controlling diverse developmental and physiological processes, especially in petal senescence.
Collapse
Affiliation(s)
- Manohar Chakrabarti
- Department of Biology, University of Texas Rio Grande Valley, 1201 W. University Dr, Edinburg, TX 78539, USA.
| | - Shikha Bharti
- Department of Biology, University of Texas Rio Grande Valley, 1201 W. University Dr, Edinburg, TX 78539, USA
| |
Collapse
|
3
|
Nabipour Sanjbod R, Chamani E, Pourbeyrami Hir Y, Estaji A. Investigation of the cell structure and organelles during autolytic PCD of Antirrhinum majus "Legend White" petals. PROTOPLASMA 2023; 260:419-435. [PMID: 35759085 DOI: 10.1007/s00709-022-01788-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
One of the classes of the plant developmental programmed cell death (PCD) is vacuolar cell death or autolysis. The results of the transmission electron microscope (TEM) studies indicated that this type of PCD occurs during the petal senescence of Antirrhinum majus "Legend White" flowers. The major hallmarks of the process related to the ultrastructure of the cells involved chloroplast degradation, vacuolation, chromatin condensation, cell wall swelling, degradation of Golgi apparatus, protoplasmic shrinkage, degradation of the endoplasmic reticulum, nuclear fragmentation, rupture of tonoplast, and plasma membrane. Macroautophagy and microautophagy processes were also clearly observed during vacuole formation. As in yeasts, in the present study, Golgi apparatus became autophagosome-like structures during degradation that had autophagy activity and then disappeared. Our results revealed a type of selective microautophagy, piecemeal microautophagy of the nucleus (PMN), in nuclear degradation during PCD of petals that has not previously been reported in plants. Moreover, vesicular structures, such as paramural and multilamellar bodies, were observed in some stages.
Collapse
Affiliation(s)
- Roghayeh Nabipour Sanjbod
- Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Esmaeil Chamani
- Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Younes Pourbeyrami Hir
- Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Asghar Estaji
- Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| |
Collapse
|
4
|
Wu Y, Zuo L, Ma Y, Jiang Y, Gao J, Tao J, Chen C. Protein Kinase RhCIPK6 Promotes Petal Senescence in Response to Ethylene in Rose ( Rosa Hybrida). Genes (Basel) 2022; 13:1989. [PMID: 36360225 PMCID: PMC9689952 DOI: 10.3390/genes13111989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/06/2022] [Accepted: 10/26/2022] [Indexed: 05/19/2024] Open
Abstract
Cultivated roses have the largest global market share among ornamental crops. Postharvest release of ethylene is the main cause of accelerated senescence and decline in rose flower quality. To understand the molecular mechanism of ethylene-induced rose petal senescence, we analyzed the transcriptome of rose petals during natural senescence as well as with ethylene treatment. A large number of differentially expressed genes (DEGs) were observed between developmental senescence and the ethylene-induced process. We identified 1207 upregulated genes in the ethylene-induced senescence process, including 82 transcription factors and 48 protein kinases. Gene Ontology enrichment analysis showed that ethylene-induced senescence was closely related to stress, dehydration, and redox reactions. We identified a calcineurin B-like protein (CBL) interacting protein kinase (CIPK) family gene in Rosa hybrida, RhCIPK6, that was regulated by age and ethylene induction. Reducing RhCIPK6 expression through virus-induced gene silencing significantly delayed petal senescence, indicating that RhCIPK6 mediates petal senescence. In the RhCIPK6-silenced petals, several senescence associated genes (SAGs) and transcription factor genes were downregulated compared with controls. We also determined that RhCIPK6 directly binds calcineurin B-like protein 3 (RhCBL3). Our work thus offers new insights into the function of CIPKs in petal senescence and provides a genetic resource for extending rose vase life.
Collapse
Affiliation(s)
- Yanqing Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Lanxin Zuo
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yanxing Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yunhe Jiang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jun Tao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Changxi Chen
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Yao J, Li R, Cheng Y, Li Z. A combined transcriptomic and proteomic analysis of chrysanthemum provides new insights into petal senescence. PLANTA 2021; 255:22. [PMID: 34918180 DOI: 10.1007/s00425-021-03808-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Numerous transcription factor genes and methylation-related genes were differentially expressed in senescent petals compared with control petals. Studying petal senescence is crucial for extending the postharvest longevity of cut flowers, but petal senescence remains relatively unexplored compared to well-studied leaf senescence. In this study, a combined transcriptomic and proteomic analysis of senescent (22 days after cutting) and control (0 day after cutting) petals was performed to investigate the molecular processes underlying petal senescence of chrysanthemum (Chrysanthemum morifolium Ramat.), an important cut flower crop worldwide. A total of 11,324 differentially expressed genes (DEGs), including 4888 up-regulated and 6436 down-regulated genes, and 403 differentially expressed proteins (DEPs), including 210 up-regulated and 193 down-regulated proteins, were identified at transcript and protein levels, respectively. A cross-comparison of transcriptomic and proteomic data identified 257 consistent DEGs/DEPs, including 122 up-regulated and 135 down-regulated DEGs/DEPs. Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis showed that "cutin, suberine and wax biosynthesis" is a main pathway for both DEGs and DEPs, especially for down-regulated DEGs/DEPs. Functional analysis indicated that chrysanthemum genes mainly encoding putative cytochrome P450s, non-specific lipid-transfer proteins, subtilisin-like proteases, AAA-ATPases, proteins essential for cuticular wax biosynthesis, and proteins in hormone signal transduction or ubiquitination were differentially expressed at both transcript and protein levels. In addition, numerous transcription factor genes and methylation-related genes were also differentially expressed, inferring an involvement of transcriptional and epigenetic regulation in petal senescence. These results provide a valuable resource of studying chrysanthemum senescence and significant insights into petal senescence.
Collapse
Affiliation(s)
- Juanni Yao
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Rui Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Yulin Cheng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China.
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China.
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| |
Collapse
|
6
|
Malvestiti MC, Immink RGH, Arens P, Quiroz Monnens T, van Kan JAL. Fire Blight Susceptibility in Lilium spp. Correlates to Sensitivity to Botrytis elliptica Secreted Cell Death Inducing Compounds. FRONTIERS IN PLANT SCIENCE 2021; 12:660337. [PMID: 34262577 PMCID: PMC8273286 DOI: 10.3389/fpls.2021.660337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
Fire blight represents a widespread disease in Lilium spp. and is caused by the necrotrophic Ascomycete Botrytis elliptica. There are >100 Lilium species that fall into distinct phylogenetic groups and these have been used to generate the contemporary commercial genotypes. It is known among lily breeders and growers that different groups of lilies differ in susceptibility to fire blight, but the genetic basis and mechanisms of susceptibility to fire blight are unresolved. The aim of this study was to quantify differences in fire blight susceptibility between plant genotypes and differences in virulence between fungal isolates. To this end we inoculated, in four biological replicates over 2 years, a set of 12 B. elliptica isolates on a panel of 18 lily genotypes representing seven Lilium hybrid groups. A wide spectrum of variation in symptom severity was observed in different isolate-genotype combinations. There was a good correlation between the lesion diameters on leaves and flowers of the Lilium genotypes, although the flowers generally showed faster expanding lesions. It was earlier postulated that B. elliptica pathogenicity on lily is conferred by secreted proteins that induce programmed cell death in lily cells. We selected two aggressive isolates and one mild isolate and collected culture filtrate (CF) samples to compare the cell death inducing activity of their secreted compounds in lily. After leaf infiltration of the CFs, variation was observed in cell death responses between the diverse lilies. The severity of cell death responses upon infiltration of the fungal CF observed among the diverse Lilium hybrid groups correlated well to their fire blight susceptibility. These results support the hypothesis that susceptibility to fire blight in lily is mediated by their sensitivity to B. elliptica effector proteins in a quantitative manner. Cell death-inducing proteins may provide an attractive tool to predict fire blight susceptibility in lily breeding programs.
Collapse
Affiliation(s)
- Michele C. Malvestiti
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, Netherlands
| | - Richard G. H. Immink
- Department of Bioscience, Wageningen University & Research, Wageningen, Netherlands
- Laboratory of Molecular Biology, Wageningen University & Research, Wageningen, Netherlands
| | - Paul Arens
- Department of Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Thomas Quiroz Monnens
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, Netherlands
| | - Jan A. L. van Kan
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
7
|
Cavallini-Speisser Q, Morel P, Monniaux M. Petal Cellular Identities. FRONTIERS IN PLANT SCIENCE 2021; 12:745507. [PMID: 34777425 PMCID: PMC8579033 DOI: 10.3389/fpls.2021.745507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/04/2021] [Indexed: 05/14/2023]
Abstract
Petals are typified by their conical epidermal cells that play a predominant role for the attraction and interaction with pollinators. However, cell identities in the petal can be very diverse, with different cell types in subdomains of the petal, in different cell layers, and depending on their adaxial-abaxial or proximo-distal position in the petal. In this mini-review, we give an overview of the main cell types that can be found in the petal and describe some of their functions. We review what is known about the genetic basis for the establishment of these cellular identities and their possible relation with petal identity and polarity specifiers expressed earlier during petal development, in an attempt to bridge the gap between organ identity and cell identity in the petal.
Collapse
|
8
|
Skutnik E, Jędrzejuk A, Rabiza-Świder J, Rochala-Wojciechowska J, Latkowska M, Łukaszewska A. Nanosilver as a novel biocide for control of senescence in garden cosmos. Sci Rep 2020; 10:10274. [PMID: 32581268 PMCID: PMC7314799 DOI: 10.1038/s41598-020-67098-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/01/2020] [Indexed: 11/09/2022] Open
Abstract
To prolong their vase life, cut flowers are commonly kept in holding solutions. These must include a biocide to retard bacterial growth. In this study, the effect of nanosilver (NS) on certain aspects of senescence in cut garden cosmos (Cosmos bipinnatus) flowers was compared to that of the commonly used 8-hydroxyquinoline citrate (8-HQC). In combination with sucrose, both biocides prolonged cosmos vase life but did not prevent the occurrence of stem blockages. NS was more effective in limiting a reduction in endogenous soluble carbohydrates. The malondialdehyde (MDA) contents increased in senescing ray florets, both in intact and control cut flowers held in water. Both biocides were comparably effective in limiting this effect. The hydrogen peroxide content tripled in intact flowers but dropped in flowers held in water or the 8-HQC solutions; in flowers kept in NS solutions its increase was moderate. Also, the catalase activity increased in intact flowers but dropped in all cut flowers. Both biocides had similar effects on the enzyme activity, in both pure solutions and with sucrose. Most of these parameters were not significantly correlated with vase life. Overall, the effect of nanosilver on senescence in cut cosmos flowers was similar to that of 8-HQC.
Collapse
Affiliation(s)
- Ewa Skutnik
- Section of Ornamental Plants, Institute of Horticultural Sciences, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787, Warsaw, Poland.
| | - Agata Jędrzejuk
- Section of Ornamental Plants, Institute of Horticultural Sciences, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787, Warsaw, Poland
| | - Julita Rabiza-Świder
- Section of Ornamental Plants, Institute of Horticultural Sciences, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787, Warsaw, Poland
| | - Julia Rochala-Wojciechowska
- Section of Ornamental Plants, Institute of Horticultural Sciences, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787, Warsaw, Poland
| | - Monika Latkowska
- Section of Ornamental Plants, Institute of Horticultural Sciences, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787, Warsaw, Poland
| | - Aleksandra Łukaszewska
- Section of Ornamental Plants, Institute of Horticultural Sciences, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787, Warsaw, Poland
| |
Collapse
|
9
|
Lu J, Xu Y, Fan Y, Wang Y, Zhang G, Liang Y, Jiang C, Hong B, Gao J, Ma C. Proteome and Ubiquitome Changes during Rose Petal Senescence. Int J Mol Sci 2019; 20:E6108. [PMID: 31817087 PMCID: PMC6940906 DOI: 10.3390/ijms20246108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 12/25/2022] Open
Abstract
Petal senescence involves numerous programmed changes in biological and biochemical processes. Ubiquitination plays a critical role in protein degradation, a hallmark of organ senescence. Therefore, we investigated changes in the proteome and ubiquitome of senescing rose (Rosa hybrida) petals to better understand their involvement in petal senescence. Of 3859 proteins quantified in senescing petals, 1198 were upregulated, and 726 were downregulated during senescence. We identified 2208 ubiquitinated sites, including 384 with increased ubiquitination in 298 proteins and 1035 with decreased ubiquitination in 674 proteins. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that proteins related to peptidases in proteolysis and autophagy pathways were enriched in the proteome, suggesting that protein degradation and autophagy play important roles in petal senescence. In addition, many transporter proteins accumulated in senescing petals, and several transport processes were enriched in the ubiquitome, indicating that transport of substances is associated with petal senescence and regulated by ubiquitination. Moreover, several components of the brassinosteroid (BR) biosynthesis and signaling pathways were significantly altered at the protein and ubiquitination levels, implying that BR plays an important role in petal senescence. Our data provide a comprehensive view of rose petal senescence at the posttranslational level.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Chao Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China; (J.L.); (Y.X.); (Y.F.); (Y.W.); (G.Z.); (Y.L.); (C.J.); (B.H.); (J.G.)
| |
Collapse
|
10
|
Trupkin SA, Astigueta FH, Baigorria AH, García MN, Delfosse VC, González SA, Pérez de la Torre MC, Moschen S, Lía VV, Fernández P, Heinz RA. Identification and expression analysis of NAC transcription factors potentially involved in leaf and petal senescence in Petunia hybrida. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 287:110195. [PMID: 31481223 DOI: 10.1016/j.plantsci.2019.110195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 05/23/2023]
Abstract
Progression of leaf senescence depends on several families of transcription factors. In Arabidopsis, the NAC family plays crucial roles in the modulation of leaf senescence; however, the mechanisms involved in this NAC-mediated regulation have not been extensively explored in agronomic species. Petunia hybrida is an ornamental plant that is commonly found worldwide. Decreasing the rate of leaf and petal senescence in P. hybrida is essential for maintaining plant quality. In this study, we examined the NAC-mediated networks involved in regulating senescence in this species. From 41 NAC genes, the expression of which changed in Arabidopsis during leaf senescence, we identified 29 putative orthologs in P. hybrida. Analysis using quantitative real-time-PCR indicated that 24 genes in P. hybrida changed their transcript levels during natural leaf senescence. Leaf-expressed genes were subsequently assessed in petals undergoing natural and pollination-induced senescence. Expression data and phylogenetic analysis were used to generate a list of 10-15 candidate genes; 7 of these were considered key regulatory candidates in senescence because of their consistent upregulation in the three senescence processes examined. Altogether, we identified common and distinct patterns of gene expression at different stages of leaf and petal development and during progression of senescence. The results obtained in this study will contribute to the understanding of NAC-mediated regulatory networks in petunia.
Collapse
Affiliation(s)
- Santiago A Trupkin
- Instituto de Floricultura, Centro de Investigación de Recursos Naturales, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Francisco H Astigueta
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina; Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Amilcar H Baigorria
- Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Martín N García
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo - INTA-CONICET), Centro de Investigaciones en Ciencias Agronómicas y Veterinarias, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina
| | - Verónica C Delfosse
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina; Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Sergio A González
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Mariana Cecilia Pérez de la Torre
- Instituto de Floricultura, Centro de Investigación de Recursos Naturales, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina
| | - Sebastián Moschen
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Verónica V Lía
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo - INTA-CONICET), Centro de Investigaciones en Ciencias Agronómicas y Veterinarias, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Paula Fernández
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo - INTA-CONICET), Centro de Investigaciones en Ciencias Agronómicas y Veterinarias, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina; Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina.
| | - Ruth A Heinz
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo - INTA-CONICET), Centro de Investigaciones en Ciencias Agronómicas y Veterinarias, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
11
|
Wojciechowska N, Sobieszczuk-Nowicka E, Bagniewska-Zadworna A. Plant organ senescence - regulation by manifold pathways. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:167-181. [PMID: 29178615 DOI: 10.1111/plb.12672] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/21/2017] [Indexed: 05/20/2023]
Abstract
Senescence is the final stage of plant ontogeny before death. Senescence may occur naturally because of age or may be induced by various endogenous and exogenous factors. Despite its destructive character, senescence is a precisely controlled process that follows a well-defined order. It is often inseparable from programmed cell death (PCD), and a correlation between these processes has been confirmed during the senescence of leaves and petals. Despite suggestions that senescence and PCD are two separate processes, with PCD occurring after senescence, cell death responsible for senescence is accompanied by numerous changes at the cytological, physiological and molecular levels, similar to other types of PCD. Independent of the plant organ analysed, these changes are focused on initiating the processes of cellular structural degradation via fluctuations in phytohormone levels and the activation of specific genes. Cellular structural degradation is genetically programmed and dependent on autophagy. Phytohormones/plant regulators are heavily involved in regulating the senescence of plant organs and can either promote [ethylene, abscisic acid (ABA), jasmonic acid (JA), and polyamines (PAs)] or inhibit [cytokinins (CKs)] this process. Auxins and carbohydrates have been assigned a dual role in the regulation of senescence, and can both inhibit and stimulate the senescence process. In this review, we introduce the basic pathways that regulate senescence in plants and identify mechanisms involved in controlling senescence in ephemeral plant organs. Moreover, we demonstrate a universal nature of this process in different plant organs; despite this process occurring in organs that have completely different functions, it is very similar. Progress in this area is providing opportunities to revisit how, when and which way senescence is coordinated or decoupled by plant regulators in different organs and will provide a powerful tool for plant physiology research.
Collapse
Affiliation(s)
- N Wojciechowska
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - E Sobieszczuk-Nowicka
- Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - A Bagniewska-Zadworna
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
12
|
Wang H, Chang X, Lin J, Chang Y, Chen JC, Reid MS, Jiang CZ. Transcriptome profiling reveals regulatory mechanisms underlying corolla senescence in petunia. HORTICULTURE RESEARCH 2018; 5:16. [PMID: 29619227 PMCID: PMC5878830 DOI: 10.1038/s41438-018-0018-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 01/09/2018] [Accepted: 01/12/2018] [Indexed: 05/08/2023]
Abstract
The genetic regulatory mechanisms that govern natural corolla senescence in petunia are not well understood. To identify key genes and pathways that regulate the process, we performed a transcriptome analysis in petunia corolla at four developmental stages, including corolla fully opening without anther dehiscence (D0), corolla expansion, 2 days after anthesis (D2), corolla with initial signs of senescence (D4), and wilting corolla (D7). We identified large numbers of differentially expressed genes (DEGs), ranging from 4626 between the transition from D0 and D2, 1116 between D2 and D4, a transition to the onset of flower senescence, and 327 between D4 and D7, a developmental stage representing flower senescence. KEGG analysis showed that the auxin- and ethylene-related hormone biosynthesis and signaling transduction pathways were significantly activated during the flower development and highly upregulated at onset of flower senescence. Ethylene emission was detected at the D2 to D4 transition, followed by a large eruption at the D4 to D7 transition. Furthermore, large numbers of transcription factors (TFs) were activated over the course of senescence. Functional analysis by virus-induced gene silencing (VIGS) experiments demonstrated that inhibition of the expression of TFs, such as ethylene-related ERF, auxin-related ARF, bHLH, HB, and MADS-box, significantly extended or shortened flower longevity. Our data suggest that hormonal interaction between auxin and ethylene may play critical regulatory roles in the onset of natural corolla senescence in petunia.
Collapse
Affiliation(s)
- Hong Wang
- Institute of Pomology/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, China
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616 USA
| | - XiaoXiao Chang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Science, 510640 Guangzhou, China
| | - Jing Lin
- Institute of Pomology/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, China
| | - Youhong Chang
- Institute of Pomology/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, China
| | - Jen-Chih Chen
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616 USA
- Institute of Biotechnology, National Taiwan University, 10617 Taipei, Taiwan
| | - Michael S. Reid
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616 USA
| | - Cai-Zhong Jiang
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616 USA
- United States Department of Agriculture, Crops Pathology and Genetics Research Unit, Agricultural Research Service, Davis, CA 95616 USA
| |
Collapse
|
13
|
O'Donoghue EM, Somerfield SD, Deroles SC, Sutherland PW, Hallett IC, Erridge ZA, Brummell DA, Hunter DA. Simultaneous knock-down of six β-galactosidase genes in petunia petals prevents loss of pectic galactan but decreases petal strength. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 113:208-221. [PMID: 28254702 DOI: 10.1016/j.plaphy.2017.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/05/2017] [Indexed: 05/02/2023]
Abstract
Galactose (Gal) is incorporated into cell wall polysaccharides as flowers open, but then is lost because of β-galactosidase activity as flowers mature and wilt. The significance of this for flower physiology resides in the role of galactan-containing polysaccharides in the cell wall, which is still largely unresolved. To investigate this, transcript accumulation of six cell wall-associated β-galactosidases was simultaneously knocked down in 'Mitchell' petunia (Petunia axillaris x (P. axillaris x P. hybrida)) flower petals. The multi-PhBGAL RNAi construct targeted three bud- and three senescence-associated β-galactosidase genes. The petals of the most down-regulated line (GA19) were significantly disrupted in galactose turnover during flower opening, and at the onset of senescence had retained 86% of their galactose compared with 20% in the controls. The Gal content of Na2CO3-soluble cell wall extracts and the highly insoluble polysaccharides associated with cellulose were particularly affected. Immunodetection with the antibody LM5 showed that much of the cell wall Gal in GA19 was retained as galactan, presumably the side-chains of rhamnogalacturonan-I. The flowers of GA19, despite having retained substantially more galactan, were no different from controls in their internal cell arrangement, dimensions, weight or timing of opening and senescence. However, the GA19 petals had less petal integrity (as judged by force required to cause petal fracture) after opening and showed a greater decline in this integrity with time than controls, raising the possibility that galactan loss is a mechanism for helping to maintain petal tissue cohesion after flower opening.
Collapse
Affiliation(s)
- Erin M O'Donoghue
- The New Zealand Institute for Plant & Food Research Limited, Food Industry Science Centre, Palmerston North, 4442, New Zealand.
| | - Sheryl D Somerfield
- The New Zealand Institute for Plant & Food Research Limited, Food Industry Science Centre, Palmerston North, 4442, New Zealand
| | - Simon C Deroles
- The New Zealand Institute for Plant & Food Research Limited, Food Industry Science Centre, Palmerston North, 4442, New Zealand
| | - Paul W Sutherland
- The New Zealand Institute for Plant & Food Research Limited, Mount Albert Research Centre, Auckland, 1142, New Zealand
| | - Ian C Hallett
- The New Zealand Institute for Plant & Food Research Limited, Mount Albert Research Centre, Auckland, 1142, New Zealand
| | - Zoë A Erridge
- The New Zealand Institute for Plant & Food Research Limited, Food Industry Science Centre, Palmerston North, 4442, New Zealand
| | - David A Brummell
- The New Zealand Institute for Plant & Food Research Limited, Food Industry Science Centre, Palmerston North, 4442, New Zealand
| | - Donald A Hunter
- The New Zealand Institute for Plant & Food Research Limited, Food Industry Science Centre, Palmerston North, 4442, New Zealand
| |
Collapse
|
14
|
Shibuya K, Yamada T, Ichimura K. Morphological changes in senescing petal cells and the regulatory mechanism of petal senescence. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5909-5918. [PMID: 27625416 DOI: 10.1093/jxb/erw337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Petal senescence, or programmed cell death (PCD) in petals, is a developmentally regulated and genetically programmed process. During petal senescence, petal cells show morphological changes associated with PCD: tonoplast rupture and rapid destruction of the cytoplasm. This type of PCD is classified as vacuolar cell death or autolytic PCD based on morphological criteria. In PCD of petal cells, characteristic morphological features including an autophagy-like process, chromatin condensation, and nuclear fragmentation are also observed. While the phytohormone ethylene is known to play a crucial role in petal senescence in some plant species, little is known about the early regulation of ethylene-independent petal senescence. Recently, a NAC (NAM/ATAF1,2/CUC2) transcription factor was reported to control the progression of PCD during petal senescence in Japanese morning glory, which shows ethylene-independent petal senescence. In ethylene-dependent petal senescence, functional analyses of transcription factor genes have revealed the involvement of a basic helix-loop-helix protein and a homeodomain-leucine zipper protein in the transcriptional regulation of the ethylene biosynthesis pathway. Here we review the recent advances in our knowledge of petal senescence, mostly focusing on the morphology of senescing petal cells and the regulatory mechanisms of PCD by senescence-associated transcription factors during petal senescence.
Collapse
Affiliation(s)
- Kenichi Shibuya
- Institute of Vegetable and Floriculture Science, NARO, Tsukuba 305-0852, Japan
| | - Tetsuya Yamada
- Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Kazuo Ichimura
- Institute of Vegetable and Floriculture Science, NARO, Tsukuba 305-0852, Japan
| |
Collapse
|
15
|
Prinsi B, Negri AS, Quattrocchio FM, Koes RE, Espen L. Proteomics of red and white corolla limbs in petunia reveals a novel function of the anthocyanin regulator ANTHOCYANIN1 in determining flower longevity. J Proteomics 2016; 131:38-47. [DOI: 10.1016/j.jprot.2015.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 09/23/2015] [Accepted: 10/08/2015] [Indexed: 01/11/2023]
|
16
|
TcCYPR04, a Cacao Papain-Like Cysteine-Protease Detected in Senescent and Necrotic Tissues Interacts with a Cystatin TcCYS4. PLoS One 2015; 10:e0144440. [PMID: 26641247 PMCID: PMC4671599 DOI: 10.1371/journal.pone.0144440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/18/2015] [Indexed: 11/19/2022] Open
Abstract
The interaction amongst papain-like cysteine-proteases (PLCP) and their substrates and inhibitors, such as cystatins, can be perceived as part of the molecular battlefield in plant-pathogen interaction. In cacao, four cystatins were identified and characterized by our group. We identified 448 proteases in cacao genome, whereof 134 were cysteine-proteases. We expressed in Escherichia coli a PLCP from cacao, named TcCYSPR04. Immunoblottings with anti-TcCYSPR04 exhibited protein increases during leaf development. Additional isoforms of TcCYSPR04 appeared in senescent leaves and cacao tissues infected by Moniliophthora perniciosa during the transition from the biotrophic to the saprophytic phase. TcCYSPR04 was induced in the apoplastic fluid of Catongo and TSH1188 cacao genotypes, susceptible and resistant to M. perniciosa, respectively, but greater intensity and additional isoforms were observed in TSH1188. The fungal protein MpNEP induced PLCP isoform expression in tobacco leaves, according to the cross reaction with anti-TcCYSPR04. Several protein isoforms were detected at 72 hours after treatment with MpNEP. We captured an active PLCP from cacao tissues, using a recombinant cacao cystatin immobilized in CNBr-Sepharose. Mass spectrometry showed that this protein corresponds to TcCYSPR04. A homology modeling was obtained for both proteins. In order to become active, TcCYSPR04 needs to lose its inhibitory domain. Molecular docking showed the physical-chemical complementarities of the interaction between the cacao enzyme and its inhibitor. We propose that TcCYSPR04 and its interactions with cacao cystatins are involved in the senescence and necrosis events related to witches' broom symptoms. This molecular interaction may be the target for future interventions to control witches' broom disease.
Collapse
|
17
|
Mochizuki-Kawai H, Niki T, Shibuya K, Ichimura K. Programmed Cell Death Progresses Differentially in Epidermal and Mesophyll Cells of Lily Petals. PLoS One 2015; 10:e0143502. [PMID: 26605547 PMCID: PMC4659684 DOI: 10.1371/journal.pone.0143502] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 11/05/2015] [Indexed: 01/05/2023] Open
Abstract
In the petals of some species of flowers, programmed cell death (PCD) begins earlier in mesophyll cells than in epidermal cells. However, PCD progression in each cell type has not been characterized in detail. We separately constructed a time course of biochemical signs and expression patterns of PCD-associated genes in epidermal and mesophyll cells in Lilium cv. Yelloween petals. Before visible signs of senescence could be observed, we found signs of PCD, including DNA degradation and decreased protein content in mesophyll cells only. In these cells, the total proteinase activity increased on the day after anthesis. Within 3 days after anthesis, the protein content decreased by 61.8%, and 22.8% of mesophyll cells was lost. A second peak of proteinase activity was observed on day 6, and the number of mesophyll cells decreased again from days 4 to 7. These biochemical and morphological results suggest that PCD progressed in steps during flower life in the mesophyll cells. PCD began in epidermal cells on day 5, in temporal synchrony with the time course of visible senescence. In the mesophyll cells, the KDEL-tailed cysteine proteinase (LoCYP) and S1/P1 nuclease (LoNUC) genes were upregulated before petal wilting, earlier than in epidermal cells. In contrast, relative to that in the mesophyll cells, the expression of the SAG12 cysteine proteinase homolog (LoSAG12) drastically increased in epidermal cells in the final stage of senescence. These results suggest that multiple PCD-associated genes differentially contribute to the time lag of PCD progression between epidermal and mesophyll cells of lily petals.
Collapse
Affiliation(s)
| | - Tomoko Niki
- NARO Institute of Floricultural Science, Tsukuba, 305–8519, Japan
| | - Kenichi Shibuya
- NARO Institute of Floricultural Science, Tsukuba, 305–8519, Japan
| | - Kazuo Ichimura
- NARO Institute of Floricultural Science, Tsukuba, 305–8519, Japan
| |
Collapse
|
18
|
Kamdee C, Kirasak K, Ketsa S, van Doorn WG. Vesicles between plasma membrane and cell wall prior to visible senescence of Iris and Dendrobium flowers. JOURNAL OF PLANT PHYSIOLOGY 2015; 188:37-43. [PMID: 26454639 DOI: 10.1016/j.jplph.2015.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/02/2015] [Accepted: 02/25/2015] [Indexed: 05/28/2023]
Abstract
Cut Iris flowers (Iris x hollandica, cv. Blue Magic) show visible senescence about two days after full opening. Epidermal cells of the outer tepals collapse due to programmed cell death (PCD). Transmission electron microscopy (TEM) showed irregular swelling of the cell walls, starting prior to cell collapse. Compared to cells in flowers that had just opened, wall thickness increased up to tenfold prior to cell death. Fibrils were visible in the swollen walls. After cell death very little of the cell wall remained. Prior to and during visible wall swelling, vesicles (paramural bodies) were observed between the plasma membrane and the cell walls. The vesicles were also found in groups and were accompanied by amorphous substance. They usually showed a single membrane, and had a variety of diameters and electron densities. Cut Dendrobium hybrid cv. Lucky Duan flowers exhibited visible senescence about 14 days after full flower opening. Paramural bodies were also found in Dendrobium tepal epidermis and mesophyll cells, related to wall swelling and degradation. Although alternative explanations are well possible, it is hypothesized that paramural bodies carry enzymes involved in cell wall breakdown. The literature has not yet reported such bodies in association with senescence/PCD.
Collapse
Affiliation(s)
- Channatika Kamdee
- Department of Horticulture, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
| | - Kanjana Kirasak
- Department of Horticulture, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
| | - Saichol Ketsa
- Department of Horticulture, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand; Academy of Science, The Royal Society, Dusit, Bangkok 10300, Thailand.
| | - Wouter G van Doorn
- Mann Laboratory, Department of Plant Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|
19
|
van Doorn WG, Kirasak K, Ketsa S. Macroautophagy and microautophagy in relation to vacuole formation in mesophyll cells of Dendrobium tepals. JOURNAL OF PLANT PHYSIOLOGY 2015; 177:67-73. [PMID: 25666541 DOI: 10.1016/j.jplph.2015.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/09/2015] [Accepted: 01/09/2015] [Indexed: 05/04/2023]
Abstract
Prior to flower opening, mesophyll cells at the vascular bundles of Dendrobium tepals showed a large increase in vacuolar volume, partially at the expense of the cytoplasm. Electron micrographs indicated that this increase in vacuolar volume was mainly due to vacuole fusion. Macroautophagous structures typical of plant cells were observed. Only a small part of the decrease in cytoplasmic volume seemed due to macroautophagy. The vacuoles contained vesicles of various types, including multilamellar bodies. It was not clear if these vacuolar inclusions were due to macroautophagy or microautophagy. Only a single structure was observed of a protruding vacuole, indicating microautophagy. It is concluded that macroautophagy occurs in these cells but its role in vacuole formation seems small, while a possible role of microautophagy in vacuole formation might be hypothesized. Careful labeling of organelle membranes seems required to advance our insight in plant macro- and microautophagy and their roles in vacuole formation.
Collapse
Affiliation(s)
- Wouter G van Doorn
- Mann Laboratory, Department of Plant Sciences, University of California, Davis, CA 95616, USA.
| | - Kanjana Kirasak
- Khon Kaen Field Crops Research Center, Amphur Muang, Khon Kaen 40000, Thailand
| | - Saichol Ketsa
- Department of Horticulture, Faculty of Agriculture, Kasetsart University, Bangkok Campus, Bangkok 10900, Thailand; Academy of Science, The Royal Institute, Dusit, Bangkok 10300, Thailand.
| |
Collapse
|
20
|
Pacifici S, Prisa D, Burchi G, van Doorn WG. Pollination increases ethylene production in Lilium hybrida cv. Brindisi flowers but does not affect the time to tepal senescence or tepal abscission. JOURNAL OF PLANT PHYSIOLOGY 2015; 173:116-119. [PMID: 25462085 DOI: 10.1016/j.jplph.2014.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/25/2014] [Accepted: 08/27/2014] [Indexed: 06/04/2023]
Abstract
In many species, pollination induces a rapid increase in ethylene production, which induces early petal senescence, petal abscission, or flower closure. Cross-pollination in Lilium hybrida cv. Brindisi resulted in a small increase in flower ethylene production. In intact plants and in isolated flowers, pollination had no effect on the time to tepal senescence or tepal abscission. When applied to closed buds of unpollinated flowers, exogenous ethylene slightly hastened the time to tepal senescence and abscission. However, exogenous ethylene had no effect when the flowers had just opened, i.e. at the time of pollination. Experiments with silver thiosulphate, which blocks the ethylene receptor, indicated that endogenous ethylene had a slight effect on the regulation of tepal senescence and tepal abscission, although only at the time the tepals were still inside buds and not in open flowers. Low ethylene-sensitivity after anthesis therefore explains why pollination had no effect on the processes studied.
Collapse
Affiliation(s)
- Silvia Pacifici
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura (CRA-VIV), Via dei Fiori 8, 51012 Pescia, Italy
| | - Domenico Prisa
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura (CRA-VIV), Via dei Fiori 8, 51012 Pescia, Italy
| | - Gianluca Burchi
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura (CRA-VIV), Via dei Fiori 8, 51012 Pescia, Italy
| | - Wouter G van Doorn
- Mann Laboratory, Department of Plant Sciences, University of California, Davis, CA 95616, USA.
| |
Collapse
|
21
|
Doniak M, Barciszewska MZ, Kaźmierczak J, Kaźmierczak A. The crucial elements of the 'last step' of programmed cell death induced by kinetin in root cortex of V. faba ssp. minor seedlings. PLANT CELL REPORTS 2014; 33:2063-76. [PMID: 25213134 DOI: 10.1007/s00299-014-1681-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 08/25/2014] [Accepted: 09/01/2014] [Indexed: 05/09/2023]
Abstract
Kinetin-induced programmed cell death, manifested by condensation, degradation and methylation of DNA and fluctuation of kinase activities and ATP levels, is an autolytic and root cortex cell-specific process. The last step of programmed cell death (PCD) induced by kinetin in the root cortex of V. faba ssp. minor seedlings was explained using morphologic (nuclear chromatin/aggregation) and metabolic (DNA degradation, DNA methylation and kinases activity) analyses. This step involves: (1) decrease in nuclear DNA content, (2) increase in the number of 4',6-diamidino-2-phenylindole (DAPI)-stained chromocenters, and decrease in chromomycin A3 (CMA3)-stained chromocenters, (3) increase in fluorescence intensity of CMA3-stained chromocenters, (4) condensation of DAPI-stained and loosening of CMA3-stained chromatin, (5) fluctuation of the level of DNA methylation, (6) fluctuation of activities of exo-/endonucleolytic Zn(2+) and Ca(2+)/Mg(2+)-dependent nucleases, (7) changes in H1 and core histone kinase activities and (8) decrease in cellular ATP amount. These results confirmed that kinetin-induced PCD was a specific process. Additionally, based on data presented in this paper (DNA condensation and ATP depletion) and previous studies [increase in vacuole, increase in amount of cytosolic calcium ions, ROS production and cytosol acidification "in Byczkowska et al. (Protoplasma 250:121-128, 2013)"], we propose that the process resembles autolytic type of cell death, the most common type of death during development of plants. Lastly, the observations also suggested that regulation of these processes might be under control of epigenetic (methylation/phosphorylation) mechanisms.
Collapse
Affiliation(s)
- Magdalena Doniak
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236, Lodz, Poland,
| | | | | | | |
Collapse
|
22
|
Broderick SR, Wijeratne S, Wijeratn AJ, Chapin LJ, Meulia T, Jones ML. RNA-sequencing reveals early, dynamic transcriptome changes in the corollas of pollinated petunias. BMC PLANT BIOLOGY 2014; 14:307. [PMID: 25403317 PMCID: PMC4245787 DOI: 10.1186/s12870-014-0307-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/27/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND Pollination reduces flower longevity in many angiosperms by accelerating corolla senescence. This response requires hormone signaling between the floral organs and results in the degradation of macromolecules and organelles within the petals to allow for nutrient remobilization to developing seeds. To investigate early pollination-induced changes in petal gene expression, we utilized high-throughput sequencing to identify transcripts that were differentially expressed between corollas of pollinated Petunia × hybrida flowers and their unpollinated controls at 12, 18, and 24 hours after opening. RESULTS In total, close to 0.5 billion Illumina 101 bp reads were generated, de novo assembled, and annotated, resulting in an EST library of approximately 33 K genes. Over 4,700 unique, differentially expressed genes were identified using comparisons between the pollinated and unpollinated libraries followed by pairwise comparisons of pollinated libraries to unpollinated libraries from the same time point (i.e. 12-P/U, 18-P/U, and 24-P/U) in the Bioconductor R package DESeq2. Over 500 gene ontology terms were enriched. The response to auxin stimulus and response to 1-aminocyclopropane-1-carboxylic acid terms were enriched by 12 hours after pollination (hap). Using weighted gene correlation network analysis (WGCNA), three pollination-specific modules were identified. Module I had increased expression across pollinated corollas at 12, 18, and 24 h, and modules II and III had a peak of expression in pollinated corollas at 18 h. A total of 15 enriched KEGG pathways were identified. Many of the genes from these pathways were involved in metabolic processes or signaling. More than 300 differentially expressed transcription factors were identified. CONCLUSIONS Gene expression changes in corollas were detected within 12 hap, well before fertilization and corolla wilting or ethylene evolution. Significant changes in gene expression occurred at 18 hap, including the up-regulation of autophagy and down-regulation of ribosomal genes and genes involved in carbon fixation. This transcriptomic database will greatly expand the genetic resources available in petunia. Additionally, it will guide future research aimed at identifying the best targets for increasing flower longevity by delaying corolla senescence.
Collapse
Affiliation(s)
- Shaun R Broderick
- />Department of Horticulture and Crop Science, The Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Ave, Wooster, OH 44691 USA
| | - Saranga Wijeratne
- />Molecular and Cellular Imaging Center, The Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Ave, Wooster, OH 44691 USA
| | - Asela J Wijeratn
- />Molecular and Cellular Imaging Center, The Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Ave, Wooster, OH 44691 USA
| | - Laura J Chapin
- />Department of Horticulture and Crop Science, The Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Ave, Wooster, OH 44691 USA
| | - Tea Meulia
- />Molecular and Cellular Imaging Center, The Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Ave, Wooster, OH 44691 USA
| | - Michelle L Jones
- />Department of Horticulture and Crop Science, The Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Ave, Wooster, OH 44691 USA
| |
Collapse
|
23
|
van Doorn WG, Prisa D. Lipid globules on the plastid surface in Iris tepal epidermis cells during tepal maturation and senescence. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1714-1721. [PMID: 25213705 DOI: 10.1016/j.jplph.2014.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/08/2014] [Accepted: 08/08/2014] [Indexed: 06/03/2023]
Abstract
Epidermis cells in the outer tepals of Iris flowers (Iris×hollandica, cv. Blue Magic) start programmed cell death (PCD) prior to floral opening. The tepals show visible senescence symptoms three days after full opening. Visible senescence coincides with collapse (death) of the upper epidermis cells. In these cells, electron-dense particles (plastoglobuli), membranes, and oil bodies were observed in the plastid interior. Electron-dense globules similar to plastoglobuli, thus apparently mainly consisting of lipids, were found on the plastid surface, from before flower opening until cell death. Such electron-dense globules were also present in the cytosol. The size of some of the globules on the plastid surface increased with time. The globules are likely involved in transfer of lipidic/proteinaceous material from the plastid to the cytosol. As the plastids contained ample oil bodies, up to the time of cell death, cell death was likely not due to lack of reserves. Mitochondrial ultrastructure also remained the same until cell death. The role of mitochondria in PCD is discussed.
Collapse
Affiliation(s)
- Wouter G van Doorn
- Mann Laboratory, Department of Plant Sciences, University of California, Davis, CA 95616, USA.
| | - Domenico Prisa
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura (CRA-VIV), Via dei Fiori 8, 51012 Pescia, Italy
| |
Collapse
|
24
|
|
25
|
Shibuya K, Shimizu K, Niki T, Ichimura K. Identification of a NAC transcription factor, EPHEMERAL1, that controls petal senescence in Japanese morning glory. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:1044-51. [PMID: 24961791 DOI: 10.1111/tpj.12605] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 06/06/2014] [Accepted: 06/18/2014] [Indexed: 05/22/2023]
Abstract
In flowering plants, floral longevity is species-specific and is closely linked to reproductive strategy; petal senescence, a type of programmed cell death (PCD), is a highly regulated developmental process. However, little is known about regulatory pathways for cell death in petal senescence, which is developmentally controlled in an age-dependent manner. Here, we show that a NAC transcription factor, designated EPHEMERAL1 (EPH1), positively regulates PCD during petal senescence in the ephemeral flowers of Japanese morning glory (Ipomoea nil). EPH1 expression is induced independently of ethylene signaling, and suppression of EPH1 resulted in Japanese morning glory flowers that are in bloom until the second day. The suppressed expression of EPH1 delays progression of PCD, possibly through suppression of the expression of PCD-related genes, including genes for plant caspase and autophagy in the petals. Our data further suggest that EPH1 is involved in the regulation of ethylene-accelerated petal senescence. In this study, we identified a key regulator of PCD in petal senescence, which will facilitate further elucidation of the regulatory network of petal senescence.
Collapse
Affiliation(s)
- Kenichi Shibuya
- NARO Institute of Floricultural Science, Tsukuba, 305-8519, Japan
| | | | | | | |
Collapse
|
26
|
Tsanakas GF, Manioudaki ME, Economou AS, Kalaitzis P. De novo transcriptome analysis of petal senescence in Gardenia jasminoides Ellis. BMC Genomics 2014; 15:554. [PMID: 24993183 PMCID: PMC4108791 DOI: 10.1186/1471-2164-15-554] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 06/11/2014] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The petal senescence of ethylene insensitive species has not been investigated thoroughly while little is known about the temporal and tissue specific expression patterns of transcription factors (TFs) in this developmental process. Even less is known on flower senescence of the ornamental pot plant Gardenia jasminoides, a non climacteric flower with significant commercial value. RESULTS We initiated a de novo transcriptome study to investigate the petal senescence in four developmental stages of cut gardenia flowers considering that the visible symptoms of senescence appear within 4 days of flower opening. De novo assembly of transcriptome sequencing resulted in 102,263 contigs with mean length of 360 nucleotides that generated 57,503 unigenes. These were further clustered into 20,970 clusters and 36,533 singletons. The comparison of the consecutive developmental stages resulted in 180 common, differentially expressed unigenes. A large number of Simple Sequence Repeats were also identified comprising a large number of dinucleotides and trinucleotides. The prevailing families of differentially expressed TFs comprise the AP2/EREBP, WRKY and the bHLH. There are 81 differentially expressed TFs when the symptoms of flower senescence become visible with the most prevailing being the WRKY family with 19 unigenes. No other WRKY TFs had been identified up to now in petal senescence of ethylene insensitive species. A large number of differentially expressed genes were identified at the initiation of visible symptoms of senescence compared to the open flower stage indicating a significant shift in the expression profiles which might be coordinated by up-regulated and/or down-regulated TFs. The expression of 16 genes that belong to the TF families of WRKY, bHLH and the ethylene sensing pathway was validated using qRT--PCR. CONCLUSION This de novo transcriptome analysis resulted in the identification of TFs with specific temporal expression patterns such as two WRKYs and one bHLH, which might play the role of senescence progression regulators. Further research is required to investigate their role in gardenia flowers in order to develop tools to delay petal senescence.
Collapse
Affiliation(s)
| | | | | | - Panagiotis Kalaitzis
- Department of Horticultural Genetics & Biotechnology, Mediterranean Agronomic Institute of Chania (MAICh), Crete, Greece.
| |
Collapse
|
27
|
Shinozaki Y, Tanaka R, Ono H, Ogiwara I, Kanekatsu M, van Doorn WG, Yamada T. Length of the dark period affects flower opening and the expression of circadian-clock associated genes as well as xyloglucan endotransglucosylase/hydrolase genes in petals of morning glory (Ipomoea nil). PLANT CELL REPORTS 2014; 33:1121-1131. [PMID: 24682460 DOI: 10.1007/s00299-014-1601-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/05/2014] [Accepted: 03/12/2014] [Indexed: 06/03/2023]
Abstract
We isolated differentially expressed and dark-responsive genes during flower development and opening in petals of morning glory. Flower opening usually depends on petal expansion and is regulated by both genetic and environmental factors. Flower opening in morning glory (Ipomoea nil) is controlled by the dark/light regime just prior to opening. Opening was normal after 8- or 12-h dark periods but progressed very slowly after a 4-h dark period or in continuous light. Four genes (InXTH1-InXTH4) encoding xyloglucan endotransglucosylase/hydrolases (XTHs) and three genes (InEXPA1-InEXPA3) encoding alpha-expansins (EXPAs) were isolated. The expression patterns of InXTH2, InXTH3, and InXTH4 in petals were closely correlated with the rate of flower opening controlled by the length of the dark period prior to opening, but those of the EXPA genes were not. The expression pattern of InXTH1 gene was closely correlated with petal elongation. Suppression subtractive hybridization was used to isolate dark-responsive genes accompanying flower opening. The expressions of ten isolated genes were associated with the length of the dark period prior to flower opening. One gene was highly homologous to Arabidopsis pseudo-response regulator7, which is associated with the circadian clock and phytochrome signaling; another to Arabidopsis REVEILLE1, which affects the output of the circadian clock. Other genes were related to light responses, plant hormone effects and signal transduction. The possible roles of these genes in regulation of flower opening are discussed.
Collapse
Affiliation(s)
- Yoshihito Shinozaki
- Department of Plant Production, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Shinozaki Y, Tanaka T, Ogiwara I, Kanekatsu M, van Doorn WG, Yamada T. Expression of an AtNAP gene homolog in senescing morning glory (Ipomoea nil) petals of two cultivars with a different flower life span. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:633-638. [PMID: 24709156 DOI: 10.1016/j.jplph.2014.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/24/2014] [Accepted: 01/24/2014] [Indexed: 06/03/2023]
Abstract
AtNAP, a NAC family transcription factor, has been shown to promote leaf senescence in Arabidopsis. We isolated an AtNAP homolog in morning glory (Ipomoea nil), designated InNAP, and investigated its expression during petal senescence. We used two cultivars, one showing a normal short flower life span (cv. Peking Tendan) and another a longer life span (cv. Violet). InNAP was highly expressed in both cultivars. Expression was high before that of the senescence marker gene InSAG12. InNAP and InSAG12 expression was high in cv. Peking Tendan before cv. Violet. The expression of both genes was therefore temporally related to the onset of the visible senescence symptoms. An inhibitor of ethylene action (silver thiosulphate, STS) delayed petal senescence in cv. Peking Tendan but had no effect in cv. Violet. STS treatment had no clear effect on the InNAP expression in petals of both cultivars, suggesting that endogenous ethylene may not be necessary for its induction. These data suggest the hypothesis that InNAP plays a role in petal senescence, independent of the role of endogenous ethylene.
Collapse
Affiliation(s)
- Yoshihito Shinozaki
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Toshimitsu Tanaka
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Isao Ogiwara
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Motoki Kanekatsu
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Wouter G van Doorn
- Mann Laboratory, Department of Plant Sciences, University of California, Davis, CA 95615, USA
| | - Tetsuya Yamada
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan.
| |
Collapse
|
29
|
Shahri W, Tahir I. Flower senescence: some molecular aspects. PLANTA 2014; 239:277-97. [PMID: 24178586 DOI: 10.1007/s00425-013-1984-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 10/14/2013] [Indexed: 05/08/2023]
|
30
|
Liu D, Sui S, Ma J, Li Z, Guo Y, Luo D, Yang J, Li M. Transcriptomic analysis of flower development in wintersweet (Chimonanthus praecox). PLoS One 2014; 9:e86976. [PMID: 24489818 PMCID: PMC3906103 DOI: 10.1371/journal.pone.0086976] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 12/17/2013] [Indexed: 11/19/2022] Open
Abstract
Wintersweet (Chimonanthus praecox) is familiar as a garden plant and woody ornamental flower. On account of its unique flowering time and strong fragrance, it has a high ornamental and economic value. Despite a long history of human cultivation, our understanding of wintersweet genetics and molecular biology remains scant, reflecting a lack of basic genomic and transcriptomic data. In this study, we assembled three cDNA libraries, from three successive stages in flower development, designated as the flower bud with displayed petal, open flower and senescing flower stages. Using the Illumina RNA-Seq method, we obtained 21,412,928, 26,950,404, 24,912,954 qualified Illumina reads, respectively, for the three successive stages. The pooled reads from all three libraries were then assembled into 106,995 transcripts, 51,793 of which were annotated in the NCBI non-redundant protein database. Of these annotated sequences, 32,649 and 21,893 transcripts were assigned to gene ontology categories and clusters of orthologous groups, respectively. We could map 15,587 transcripts onto 312 pathways using the Kyoto Encyclopedia of Genes and Genomes pathway database. Based on these transcriptomic data, we obtained a large number of candidate genes that were differentially expressed at the open flower and senescing flower stages. An analysis of differentially expressed genes involved in plant hormone signal transduction pathways indicated that although flower opening and senescence may be independent of the ethylene signaling pathway in wintersweet, salicylic acid may be involved in the regulation of flower senescence. We also succeeded in isolating key genes of floral scent biosynthesis and proposed a biosynthetic pathway for monoterpenes and sesquiterpenes in wintersweet flowers, based on the annotated sequences. This comprehensive transcriptomic analysis presents fundamental information on the genes and pathways which are involved in flower development in wintersweet. And our data provided a useful database for further research of wintersweet and other Calycanthaceae family plants.
Collapse
Affiliation(s)
- Daofeng Liu
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Shunzhao Sui
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Jing Ma
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Zhineng Li
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Yulong Guo
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Dengpan Luo
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Jianfeng Yang
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Mingyang Li
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| |
Collapse
|
31
|
Battelli R, Lombardi L, Picciarelli P, Lorenzi R, Frigerio L, Rogers HJ. Expression and localisation of a senescence-associated KDEL-cysteine protease from Lilium longiflorum tepals. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 214:38-46. [PMID: 24268162 DOI: 10.1016/j.plantsci.2013.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 09/18/2013] [Accepted: 09/21/2013] [Indexed: 06/02/2023]
Abstract
Senescence is a tightly regulated process and both compartmentalisation and regulated activation of degradative enzymes is critical to avoid premature cellular destruction. Proteolysis is a key process in senescent tissues, linked to disassembly of cellular contents and nutrient remobilisation. Cysteine proteases are responsible for most proteolytic activity in senescent petals, encoded by a gene family comprising both senescence-specific and senescence up-regulated genes. KDEL cysteine proteases are present in senescent petals of several species. Isoforms from endosperm tissue localise to ricinosomes: cytosol acidification following vacuole rupture results in ricinosome rupture and activation of the KDEL proteases from an inactive proform. Here data show that a Lilium longiflorum KDEL protease gene (LlCYP) is transcriptionally up-regulated, and a KDEL cysteine protease antibody reveals post-translational processing in senescent petals. Plants over-expressing LlCYP lacking the KDEL sequence show reduced growth and early senescence. Immunogold staining and confocal analyses indicate that in young tissues the protein is retained in the ER, while during floral senescence it is localised to the vacuole. Our data therefore suggest that the vacuole may be the site of action for at least this KDEL cysteine protease during tepal senescence.
Collapse
Affiliation(s)
- Riccardo Battelli
- Department of Agricolture, food and environment, University of Pisa, Via del Borghetto 80, 56124, Italy.
| | | | | | | | | | | |
Collapse
|
32
|
Cavaiuolo M, Cocetta G, Ferrante A. The Antioxidants Changes in Ornamental Flowers during Development and Senescence. Antioxidants (Basel) 2013; 2:132-55. [PMID: 26784342 PMCID: PMC4665434 DOI: 10.3390/antiox2030132] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 07/24/2013] [Accepted: 07/26/2013] [Indexed: 11/16/2022] Open
Abstract
The concentration of antioxidant compounds is constitutive and variable from species to species and is also variable considering the development of the plant tissue. In this review, we take into consideration the antioxidant changes and the physiological, biochemical and molecular factors that are able to modulate the accumulation of antioxidant compounds in ornamental flowers during the whole development process until the senescence. Many ornamental flowers are natural sources of very important bioactive compounds with benefit to the human health and their possible role as dietary components has been reported. The most part of antioxidants are flower pigments such as carotenoids and polyphenols, often present in higher concentration compared with the most common fruits and vegetables. The antioxidants content changes during development and during senescence many biochemical systems and molecular mechanisms are activated to counteract the increase of reactive oxygen species and free radicals. There is a tight correlation between antioxidants and senescence processes and this aspect is detailed and appropriately discussed.
Collapse
Affiliation(s)
- Marina Cavaiuolo
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, via Celoria 2, Milano 20133, Italy.
| | - Giacomo Cocetta
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, via Celoria 2, Milano 20133, Italy.
| | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, via Celoria 2, Milano 20133, Italy.
| |
Collapse
|
33
|
Rogers HJ. From models to ornamentals: how is flower senescence regulated? PLANT MOLECULAR BIOLOGY 2013; 82:563-74. [PMID: 22983713 DOI: 10.1007/s11103-012-9968-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 09/05/2012] [Indexed: 05/20/2023]
Abstract
Floral senescence involves an ordered set of events coordinated at the plant, flower, organ and cellular level. This review assesses our current understanding of the input signals, signal transduction and cellular processes that regulate petal senescence and cell death. In many species a visible sign of petal senescence is wilting. This is accompanied by remobilization of nutrients from the flower to the developing ovary or to other parts of the plant. In other species, petals abscise while still turgid. Coordinating signals for floral senescence also vary across species. In some species ethylene acts as a central regulator, in others floral senescence is ethylene insensitive and other growth regulators are implicated. Due to the variability in this coordination and sequence of events across species, identifying suitable models to study petal senescence has been challenging, and the best candidates are reviewed. Transcriptomic studies provide an overview of the MAP kinases and transcription factors that are activated during petal senescence in several species including Arabidopsis. Our understanding of downstream regulators such as autophagy genes and proteases is also improving. This gives us insights into possible signalling cascades that regulate initiation of senescence and coordination of cell death processes. It also identifies the gaps in our knowledge such as the role of microRNAs. Finally future prospects for using all this information from model to non-model species to extend vase life in ornamental species is reviewed.
Collapse
Affiliation(s)
- Hilary J Rogers
- School of Biosciences, Cardiff University, Main Building Park Place, Cardiff, CF10 3TL, UK.
| |
Collapse
|
34
|
Wang H, Stier G, Lin J, Liu G, Zhang Z, Chang Y, Reid MS, Jiang CZ. Transcriptome changes associated with delayed flower senescence on transgenic petunia by inducing expression of etr1-1, a mutant ethylene receptor. PLoS One 2013; 8:e65800. [PMID: 23874385 PMCID: PMC3706537 DOI: 10.1371/journal.pone.0065800] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 04/26/2013] [Indexed: 11/18/2022] Open
Abstract
Flowers of ethylene-sensitive ornamental plants transformed with ethylene-insensitive 1-1(etr1-1), a mutant ethylene receptor first isolated from Arabidopsis, are known to have longer shelf lives. We have generated petunia plants in which the etr1-1 gene was over-expressed under the control of a chemically-inducible promoter, which would allow expression of etr1-1 to be initiated at the desired time and stage of development. Here, we showed that transgenic plants grew and developed normally without a chemical inducer. Semi-quantitative RT-PCR demonstrated that the abundance of transcripts of Arabidopsis etr1-1 gene was substantially induced in flowers with 30 μM dexamethasone (DEX). Consequently, t he life of the flowers was almost doubled and the peak of ethylene production was delayed. We compared gene expression changes of petals with DEX to those without DEX at 24 h and 48 h by microarray. Our results indicated that transcripts of many putative genes encoding transcription factors were down-regulated by etr1-1 induced expression at the early stage. In addition, putative genes involved in gibberellin biosynthesis, response to jasmonic acid/gibberellins stimulus, cell wall modification, ethylene biosynthesis, and cell death were down-regulated associating with etr1-1 induced expression. We investigated time-course gene expression profiles and found two profiles which displayed totally opposite expression patterns under these two treatments. In these profiles, 'the regulation of transcription' was predominant in GO categories. Taking all results together, we concluded those transcription factors down-regulated at early stage might exert a major role in regulating the senescence process which were consequently characterized by cell wall modification and cell death.
Collapse
Affiliation(s)
- Hong Wang
- Institute of Horticulture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
| | - Genevieve Stier
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
| | - Jing Lin
- Institute of Horticulture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Gang Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhen Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Youhong Chang
- Institute of Horticulture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- * E-mail: (YHC); (MSR); (CZJ)
| | - Michael S. Reid
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
- * E-mail: (YHC); (MSR); (CZJ)
| | - Cai-Zhong Jiang
- Crops Pathology and Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, California, United States of America
- * E-mail: (YHC); (MSR); (CZJ)
| |
Collapse
|
35
|
van Doorn WG, Çelikel FG, Pak C, Harkema H. Delay of iris flower senescence by cytokinins and jasmonates. PHYSIOLOGIA PLANTARUM 2013; 148:105-20. [PMID: 22974423 DOI: 10.1111/j.1399-3054.2012.01690.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 07/10/2012] [Indexed: 05/18/2023]
Abstract
It is not known whether tepal senescence in Iris flowers is regulated by hormones. We applied hormones and hormone inhibitors to cut flowers and isolated tepals of Iris × hollandica cv. Blue Magic. Treatments with ethylene or ethylene antagonists indicated lack of ethylene involvement. Auxins or auxin inhibitors also did not change the time to senescence. Abscisic acid (ABA) hastened senescence, but an inhibitor of ABA synthesis (norflurazon) had no effect. Gibberellic acid (GA3 ) slightly delayed senescence in some experiments, but in other experiments it was without effect, and gibberellin inhibitors [ancymidol or 4-hydroxy-5-isopropyl-2-methylphenyltrimethyl ammonium chloride-1-piperidine carboxylate (AMO-1618)] were ineffective as well. Salicylic acid (SA) also had no effect. Ethylene, auxins, GA3 and SA affected flower opening, therefore did reach the flower cells. Jasmonates delayed senescence by about 2.0 days. Similarly, cytokinins delayed senescence by about 1.5-2.0 days. Antagonists of the phosphatidylinositol signal transduction pathway (lithium), calcium channels (niguldipine and verapamil), calmodulin action [fluphenazine, trifluoroperazine, phenoxybenzamide and N-(6-aminohexyl)-5-chloro-1-naphtalenesulfonamide hydrochloride (W-7)] or protein kinase activity [1-(5-isoquinolinesulfonyl)-2-methylpiperazine hydrochloride (H-7), N-[2-(methylamino)ethyl]-5-isoquinolinesulfonamide hydrochloride (H-8) and N-(2-aminoethyl)-5-isoquinolinesulfonamide dihydrochloride (H-9)] had no effect on senescence, indicating no role of a few common signal transduction pathways relating to hormone effects on senescence. The results indicate that tepal senescence in Iris cv. Blue Magic is not regulated by endogenous ethylene, auxin, gibberellins or SA. A role of ABA can at present not be excluded. The data suggest the hypothesis that cytokinins and jasmonates are among the natural regulators.
Collapse
Affiliation(s)
- Wouter G van Doorn
- Agrotechnology and Food Sciences Group (AFSG), Wageningen University Research Centre, Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
36
|
Labellum transcriptome reveals alkene biosynthetic genes involved in orchid sexual deception and pollination-induced senescence. Funct Integr Genomics 2012; 12:693-703. [PMID: 22706647 DOI: 10.1007/s10142-012-0288-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 05/17/2012] [Accepted: 05/28/2012] [Indexed: 12/11/2022]
Abstract
One of the most remarkable pollination strategy in orchids biology is pollination by sexual deception, in which the modified petal labellum lures pollinators by mimicking the chemical (e.g. sex pheromones), visual (e.g. colour and shape/size) and tactile (e.g. labellum trichomes) cues of the receptive female insect species. The present study aimed to characterize the transcriptional changes occurring after pollination in the labellum of a sexually deceptive orchid (Ophrys fusca Link) in order to identify genes involved on signals responsible for pollinator attraction, the major goal of floral tissues. Novel information on alterations in the orchid petal labellum gene expression occurring after pollination demonstrates a reduction in the expression of alkene biosynthetic genes using O. fusca Link as the species under study. Petal labellum transcriptional analysis revealed downregulation of transcripts involved in both pigment machinery and scent compounds, acting as visual and olfactory cues, respectively, important in sexual mimicry. Regulation of petal labellum senescence was revealed by transcripts related to macromolecules breakdown, protein synthesis and remobilization of nutrients.
Collapse
|
37
|
Aros D, Gonzalez V, Allemann RK, Müller CT, Rosati C, Rogers HJ. Volatile emissions of scented Alstroemeria genotypes are dominated by terpenes, and a myrcene synthase gene is highly expressed in scented Alstroemeria flowers. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:2739-52. [PMID: 22268153 PMCID: PMC3346232 DOI: 10.1093/jxb/err456] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 12/02/2011] [Accepted: 12/21/2011] [Indexed: 05/23/2023]
Abstract
Native to South America, Alstroemeria flowers are known for their colourful tepals, and Alstroemeria hybrids are an important cut flower. However, in common with many commercial cut flowers, virtually all the commercial Alstroemeria hybrids are not scented. The cultivar 'Sweet Laura' is one of very few scented commercial Alstroemeria hybrids. Characterization of the volatile emission profile of these cut flowers revealed three major terpene compounds: (E)-caryophyllene, humulene (also known as α-caryophyllene), an ocimene-like compound, and several minor peaks, one of which was identified as myrcene. The profile is completely different from that of the parental scented species A. caryophyllaea. Volatile emission peaked at anthesis in both scented genotypes, coincident in cv. 'Sweet Laura' with the maximal expression of a putative terpene synthase gene AlstroTPS. This gene was preferentially expressed in floral tissues of both cv. 'Sweet Laura' and A. caryophyllaea. Characterization of the AlstroTPS gene structure from cv. 'Sweet Laura' placed it as a member of the class III terpene synthases, and the predicted 567 amino acid sequence placed it into the subfamily TPS-b. The conserved sequences R(28)(R)X(8)W and D(321)DXXD are the putative Mg(2+)-binding sites, and in vitro assay of AlstroTPS expressed in Escherichia coli revealed that the encoded enzyme possesses myrcene synthase activity, consistent with a role for AlstroTPS in scent production in Alstroemeria cv. 'Sweet Laura' flowers.
Collapse
Affiliation(s)
- Danilo Aros
- School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3TL, UK
| | - Veronica Gonzalez
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
| | - Rudolf K. Allemann
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
| | - Carsten T. Müller
- School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3TL, UK
| | - Carlo Rosati
- ENEA, Trisaia Research Centre, S. S. 106 km 419+500, 75026 Rotondella (MT), Italy
| | - Hilary J. Rogers
- School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3TL, UK
| |
Collapse
|
38
|
Rogers HJ. Is there an important role for reactive oxygen species and redox regulation during floral senescence? PLANT, CELL & ENVIRONMENT 2012; 35:217-33. [PMID: 21635270 DOI: 10.1111/j.1365-3040.2011.02373.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Senescence is a highly regulated process terminating with programmed cell death (PCD). Floral senescence, and in particular petal senescence, forms an interesting model to study this process in that floral lifespan is species specific and linked to biological function. A feature of petal senescence is a rise in reactive oxygen species (ROS) and a change in redox balance. A key question is whether this is merely a consequence of de-regulation of antioxidant systems as cells enter PCD, or whether the rise in ROS may have a regulatory or signalling function. An important division in the physiology of floral senescence is between species in which ethylene is a key regulator, and those in which it appears not to perform an important regulatory role. Another important question we can therefore ask is whether the redox and ROS changes have the same significance in species with different physiologies. Transcriptomic studies in ethylene-sensitive and -insensitive species allow us to further determine whether changes in the activity of ROS-scavenging enzymes are transcriptionally regulated during floral senescence. Finally, it is important to assess how a signalling role for ROS or redox status would fit with known plant growth regulator (PGR) control of floral senescence.
Collapse
Affiliation(s)
- Hilary J Rogers
- School of Biosciences, Cardiff University (Main Building), Cardiff, CF10 3TL, UK.
| |
Collapse
|
39
|
|
40
|
Ahrazem O, Rubio-Moraga A, Trapero A, Gómez-Gómez L. Developmental and stress regulation of gene expression for a 9-cis-epoxycarotenoid dioxygenase, CstNCED, isolated from Crocus sativus stigmas. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:681-94. [PMID: 22048040 DOI: 10.1093/jxb/err293] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Oxidative cleavage of cis-epoxycarotenoids by 9-cis-epoxycarotenoid dioxygenase (NCED) is the critical step in the regulation of abscisic acid (ABA) synthesis in higher plants. ABA has been associated with dormancy and flower senescence, while also regulating plant adaptive responses to various environmental stresses. An NCED gene, CstNCED, was cloned from Crocus sativus stigmas. The deduced amino acid sequence of the CstNCED protein shared high identity with other monocot NCEDs, and was closely related to the liliopsida enzymes. At the N-terminus of CstNCED a chloroplast transit peptide sequence is located. However, its expression in chloroplast-free tissues suggested localization in other plastid types. The relationship between expression of CstNCED and the endogenous ABA level was investigated in the stigma and corms, where it was developmentally regulated. The senescence of the unpollinated stigma is preceded by an increase in ABA levels and CstNCED expression. In corms, a correlation was observed between CstNCED expression and dormancy. Furthermore, CstNCED expression was correlated with the presence of zeaxanthin in the dormant corms. When detached C. sativus leaves and stigmas were water and salt stressed, increases in CstNCED mRNA were observed. The results provided evidence of the involvement of CstNCED in the regulation of ABA-associated processes such as flower senescence and corm dormancy in monocotyledonous saffron.
Collapse
Affiliation(s)
- Oussama Ahrazem
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | | | | | | |
Collapse
|
41
|
van Doorn WG. Classes of programmed cell death in plants, compared to those in animals. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:4749-61. [PMID: 21778180 DOI: 10.1093/jxb/err196] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Relatively little is known about programmed cell death (PCD) in plants. It is nonetheless suggested here that tonoplast rupture and the subsequent rapid destruction of the cytoplasm can distinguish two large PCD classes. One class, which is here called 'autolytic', shows this feature, whilst the second class (called 'non-autolytic') can include tonoplast rupture but does not show the rapid cytoplasm clearance. Examples of the 'autolytic' PCD class mainly occur during normal plant development and after mild abiotic stress. The 'non-autolytic' PCD class is mainly found during PCD that is due to plant-pathogen interactions. Three categories of PCD are currently recognized in animals: apoptosis, autophagy, and necrosis. An attempt is made to reconcile the recognized plant PCD classes with these groups. Apoptosis is apparently absent in plants. Autophagic PCD in animals is defined as being accompanied by an increase in the number of autophagosomes, autolysosomes, and small lytic vacuoles produced by autolysosomes. When very strictly adhering to this definition, there is no (proof for) autophagic PCD in plants. Upon a slightly more lenient definition, however, the 'autolytic' class of plant PCD can be merged with the autophagic PCD type in animal cells. The 'non-autolytic' class of plant PCD, as defined here, can be merged with necrotic PCD in animals.
Collapse
Affiliation(s)
- Wouter G van Doorn
- Mann Laboratory, Department of Plant Sciences, University of California, Davis, CA 95616, USA.
| |
Collapse
|
42
|
Spatial and temporal distribution of mineral nutrients and sugars throughout the lifespan of Hibiscus rosa-sinensis L. flower. Open Life Sci 2011. [DOI: 10.2478/s11535-011-0025-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AbstractAlthough the physiological and molecular mechanisms of flower development and senescence have been extensively investigated, a whole-flower partitioning study of mineral concentrations has not been carried out. In this work, the distribution of sucrose, total reducing sugars, dry and fresh weight and macro and micronutrients were analysed in Hibiscus rosa-sinensis L. petals, stylestigma including stamens and ovary at different developmental stages (bud, open and senescent flowers). Total reducing sugars showed the highest value in petals of bud flowers, then fell during the later stages of flower development whereas sucrose showed the highest value in petals of senescent flowers. In petals, nitrogen and phosphorus content increased during flower opening, then nitrogen level decreased in senescent flowers. The calcium, phosphorus and boron concentrations were highest in ovary tissues whatever the developmental stage. Overall, the data presented suggests that the high level of total reducing sugars prior the onset of flower opening contributes to support petal cells expansion, while the high amount of sucrose at the time of petal wilting may be viewed as a result of senescence. Furthermore, this study discusses how the accumulation of particular mineral nutrients can be considered in a tissue specific manner for the activation of processes directly connected with reproduction.
Collapse
|
43
|
Battelli R, Lombardi L, Rogers HJ, Picciarelli P, Lorenzi R, Ceccarelli N. Changes in ultrastructure, protease and caspase-like activities during flower senescence in Lilium longiflorum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 180:716-725. [PMID: 21421423 DOI: 10.1016/j.plantsci.2011.01.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 01/27/2011] [Accepted: 01/31/2011] [Indexed: 05/28/2023]
Abstract
The last phase of flower development is senescence during which nutrients are recycled to developing tissues. The ultimate fate of petal cells is cell death. In this study we used the ethylene-insensitive Lilium longiflorum as a model system to characterize Lily flower senescence from the physiological, biochemical and ultrastructural point of view. Lily flower senescence is highly predictable: it starts three days after flower opening, before visible signs of wilting, and ends with the complete wilting of the corolla within 10 days. The earliest events in L. longiflorum senescence include a fall in fresh and dry weight, fragmentation of nuclear DNA and cellular disruption. Mesophyll cell degradation is associated with vacuole permeabilization and rupture. Protein degradation starts later, coincident with the first visible signs of tepal senescence. A fall in total protein is accompanied by a rise in total proteases, and also by a rise of three classes of caspase-like activity with activities against YVAD, DEVD and VEID. The timing of the appearance of these caspase-like activities argues against their involvement in the regulation of the early stages of senescence, but their possible role in the regulation of the final stages of senescence and cell death is discussed.
Collapse
Affiliation(s)
- Riccardo Battelli
- Department of Crop Plant Biology, University of Pisa, Via Mariscoglio 34, 56124 Pisa, Italy
| | | | | | | | | | | |
Collapse
|
44
|
Müller GL, Drincovich MF, Andreo CS, Lara MV. Role of photosynthesis and analysis of key enzymes involved in primary metabolism throughout the lifespan of the tobacco flower. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:3675-88. [PMID: 20591899 DOI: 10.1093/jxb/erq187] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Although the physiological and economical relevance of flowers is recognized, their primary metabolism during development has not been characterized, especially combining protein, transcript, and activity levels of the different enzymes involved. In this work, the functional characterization of the photosynthetic apparatus, pigment profiles, and the main primary metabolic pathways were analysed in tobacco sepals and petals at different developmental stages. The results indicate that the corolla photosynthetic apparatus is functional and capable of fixing CO(2); with its photosynthetic activity mainly involved in pigment biosynthesis. The particular pattern of expression, across the tobacco flower lifespan, of several proteins involved in respiration and primary metabolism, indicate that petal carbon metabolism is highest at the anthesis stage; while some enzymes are activated at the later stages, along with senescence. The first signs of corolla senescence in attached flowers are observed after anthesis; however, molecular data suggest that senescence is already onset at this stage. Feeding experiments to detached flowers at anthesis indicate that sugars, but not photosynthetic activity of the corolla, are capable of delaying the senescence process. On the other hand, photosynthetic activity and CO(2) fixation is active in sepals, where high expression levels of particular enzymes were detected. Sepals remained green and did not show signs of senescence in all the flower developmental stages analysed. Overall, the data presented contribute to an understanding of the metabolic processes operating during tobacco flower development, and identify key enzymes involved in the different stages.
Collapse
Affiliation(s)
- Gabriela Leticia Müller
- Centro de Estudios Fotosintéticos y Bioquímicos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Rosario (2000), Argentina
| | | | | | | |
Collapse
|
45
|
Wagstaff C, Bramke I, Breeze E, Thornber S, Harrison E, Thomas B, Buchanan-Wollaston V, Stead T, Rogers H. A specific group of genes respond to cold dehydration stress in cut Alstroemeria flowers whereas ambient dehydration stress accelerates developmental senescence expression patterns. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2905-21. [PMID: 20457576 PMCID: PMC2892140 DOI: 10.1093/jxb/erq113] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 03/31/2010] [Accepted: 03/31/2010] [Indexed: 05/07/2023]
Abstract
Petal development and senescence entails a normally irreversible process. It starts with petal expansion and pigment production, and ends with nutrient remobilization and ultimately cell death. In many species this is accompanied by petal abscission. Post-harvest stress is an important factor in limiting petal longevity in cut flowers and accelerates some of the processes of senescence such as petal wilting and abscission. However, some of the effects of moderate stress in young flowers are reversible with appropriate treatments. Transcriptomic studies have shown that distinct gene sets are expressed during petal development and senescence. Despite this, the overlap in gene expression between developmental and stress-induced senescence in petals has not been fully investigated in any species. Here a custom-made cDNA microarray from Alstroemeria petals was used to investigate the overlap in gene expression between developmental changes (bud to first sign of senescence) and typical post-harvest stress treatments. Young flowers were stressed by cold or ambient temperatures without water followed by a recovery and rehydration period. Stressed flowers were still at the bud stage after stress treatments. Microarray analysis showed that ambient dehydration stress accelerates many of the changes in gene expression patterns that would normally occur during developmental senescence. However, a higher proportion of gene expression changes in response to cold stress were specific to this stimulus and not senescence related. The expression of 21 transcription factors was characterized, showing that overlapping sets of regulatory genes are activated during developmental senescence and by different stresses.
Collapse
Affiliation(s)
- Carol Wagstaff
- Cardiff School of Biosciences, Main Building, Cardiff University, Park Place, Cardiff CF10 3TL, UK
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| | - Irene Bramke
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| | - Emily Breeze
- Warwick HRI, University of Warwick, Wellesbourne, Warwickshire CV35 9EF, UK
| | - Sarah Thornber
- Warwick HRI, University of Warwick, Wellesbourne, Warwickshire CV35 9EF, UK
| | - Elizabeth Harrison
- Warwick HRI, University of Warwick, Wellesbourne, Warwickshire CV35 9EF, UK
| | - Brian Thomas
- Warwick HRI, University of Warwick, Wellesbourne, Warwickshire CV35 9EF, UK
| | | | - Tony Stead
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| | - Hilary Rogers
- Cardiff School of Biosciences, Main Building, Cardiff University, Park Place, Cardiff CF10 3TL, UK
| |
Collapse
|
46
|
Harada T, Torii Y, Morita S, Masumura T, Satoh S. Differential expression of genes identified by suppression subtractive hybridization in petals of opening carnation flowers. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2345-54. [PMID: 20308205 PMCID: PMC2877890 DOI: 10.1093/jxb/erq064] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 02/25/2010] [Accepted: 03/01/2010] [Indexed: 05/18/2023]
Abstract
Flower opening is an event accompanied by morphological changes in petals which include elongation, expansion, and outward-curving. Petal cell growth is a fundamental process that underlies such phenomena, but its molecular mechanism remains largely unknown. Suppression subtractive hybridization was performed between petals during the early elongation period (stage 1) and during the opening period (stage 5) in carnation flowers and a pair of subtraction libraries abundant in differentially expressed genes was constructed at each stage. 393 cDNA clones picked up by differential screening out of 1728 clones were sequenced and 235 different cDNA fragments were identified, among which 211 did not match any known nucleotide sequence of carnation genes in the databases. BLASTX search of nucleotide sequences revealed that putative functions of the translational products can be classified into several categories including transcription, signalling, cell wall modification, lipid metabolism, and transport. Open reading frames of 15 selected genes were successfully determined by rapid amplification of cDNA ends (RACE). Time-course analysis of these genes by real-time RT-PCR showed that transcript levels of several genes correlatively fluctuate in petals of opening carnation flowers, suggesting an association with the morphological changes by elongation or curving. Based on the results, it is suggested that the growth of carnation petals is controlled by co-ordinated gene expression during the progress of flower opening. In addition, the possible roles of some key genes in the initiation of cell growth, the construction of the cell wall and cuticle, and transport across membranes were discussed.
Collapse
Affiliation(s)
- Taro Harada
- Laboratory of Genetic Engineering, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Yuka Torii
- Laboratory of Genetic Engineering, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Shigeto Morita
- Laboratory of Genetic Engineering, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
- Kyoto Prefectural Institute of Agricultural Biotechnology, Seika-cho 619-0224, Kyoto Prefecture, Japan
| | - Takehiro Masumura
- Laboratory of Genetic Engineering, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
- Kyoto Prefectural Institute of Agricultural Biotechnology, Seika-cho 619-0224, Kyoto Prefecture, Japan
| | - Shigeru Satoh
- Laboratory of Genetic Engineering, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
- Kyoto Prefectural Institute of Agricultural Biotechnology, Seika-cho 619-0224, Kyoto Prefecture, Japan
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
47
|
Kirasak K, Ketsa S, Imsabai W, van Doorn WG. Do mitochondria in Dendrobium petal mesophyll cells form vacuole-like vesicles? PROTOPLASMA 2010; 241:51-61. [PMID: 20162306 DOI: 10.1007/s00709-010-0105-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 01/01/2010] [Indexed: 05/28/2023]
Abstract
Using transmission electron microscopy, we investigated the ultrastructure of mitochondria in petal mesophyll cells of the orchid Dendrobium cv. Lucky Duan, from the time of floral opening to visible petal senescence. Cells close to the vascular bundle contained many mitochondria, some of which showed internal degeneration. This inner mitochondrial breakdown was accompanied by an eightfold increase in mitochondrial volume. Small electron-dense granules (approximately 0.04 mum in diameter) at the periphery of the mitochondrial matrix remained. These granules were used as an indicator of still later stages of mitochondrial development in these cells. The apparent final stage of mitochondrial degeneration was a single-membrane-bound vesicle, resembling a vacuole. No evidence was found for the idea that mitochondria became transferred (intact or degenerated) into a lytic vacuole. Taken together, the data suggest the hypotheses that (a) mitochondria in cells close to the vascular bundle in petals of open Dendrobium cv. Lucky Duan flowers undergo large-scale internal degeneration and that (b) such degenerating mitochondria form vacuole-like vesicles.
Collapse
Affiliation(s)
- Kanjana Kirasak
- Department of Horticulture, Kasetsart University, Kamphaeng Saen campus, Nakhon Pathom 73140, Thailand
| | | | | | | |
Collapse
|
48
|
Bai S, Willard B, Chapin LJ, Kinter MT, Francis DM, Stead AD, Jones ML. Proteomic analysis of pollination-induced corolla senescence in petunia. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:1089-109. [PMID: 20110265 PMCID: PMC2826652 DOI: 10.1093/jxb/erp373] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Senescence represents the last phase of petal development during which macromolecules and organelles are degraded and nutrients are recycled to developing tissues. To understand better the post-transcriptional changes regulating petal senescence, a proteomic approach was used to profile protein changes during the senescence of Petuniaxhybrida 'Mitchell Diploid' corollas. Total soluble proteins were extracted from unpollinated petunia corollas at 0, 24, 48, and 72 h after flower opening and at 24, 48, and 72 h after pollination. Two-dimensional gel electrophoresis (2-DE) was used to identify proteins that were differentially expressed in non-senescing (unpollinated) and senescing (pollinated) corollas, and image analysis was used to determine which proteins were up- or down-regulated by the experimentally determined cut-off of 2.1-fold for P <0.05. One hundred and thirty-three differentially expressed protein spots were selected for sequencing. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to determine the identity of these proteins. Searching translated EST databases and the NCBI non-redundant protein database, it was possible to assign a putative identification to greater than 90% of these proteins. Many of the senescence up-regulated proteins were putatively involved in defence and stress responses or macromolecule catabolism. Some proteins, not previously characterized during flower senescence, were identified, including an orthologue of the tomato abscisic acid stress ripening protein 4 (ASR4). Gene expression patterns did not always correlate with protein expression, confirming that both proteomic and genomic approaches will be required to obtain a detailed understanding of the regulation of petal senescence.
Collapse
Affiliation(s)
- Shuangyi Bai
- Department of Horticulture and Crop Science, The Ohio State University, OARDC, 1680 Madison Ave, Wooster, Ohio 44691, USA
| | - Belinda Willard
- Proteomics Laboratory, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | - Laura J. Chapin
- Department of Horticulture and Crop Science, The Ohio State University, OARDC, 1680 Madison Ave, Wooster, Ohio 44691, USA
| | - Michael T. Kinter
- Proteomics Laboratory, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | - David M. Francis
- Department of Horticulture and Crop Science, The Ohio State University, OARDC, 1680 Madison Ave, Wooster, Ohio 44691, USA
| | - Anthony D. Stead
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | | |
Collapse
|
49
|
Tang S, Okashah RA, Cordonnier-Pratt MM, Pratt LH, Ed Johnson V, Taylor CA, Arnold ML, Knapp SJ. EST and EST-SSR marker resources for Iris. BMC PLANT BIOLOGY 2009; 9:72. [PMID: 19515254 PMCID: PMC2703627 DOI: 10.1186/1471-2229-9-72] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 06/10/2009] [Indexed: 05/02/2023]
Abstract
BACKGROUND Limited DNA sequence and DNA marker resources have been developed for Iris (Iridaceae), a monocot genus of 200-300 species in the Asparagales, several of which are horticulturally important. We mined an I. brevicaulis-I. fulva EST database for simple sequence repeats (SSRs) and developed ortholog-specific EST-SSR markers for genetic mapping and other genotyping applications in Iris. Here, we describe the abundance and other characteristics of SSRs identified in the transcript assembly (EST database) and the cross-species utility and polymorphisms of I. brevicaulis-I. fulva EST-SSR markers among wild collected ecotypes and horticulturally important cultivars. RESULTS Collectively, 6,530 ESTs were produced from normalized leaf and root cDNA libraries of I. brevicaulis (IB72) and I. fulva (IF174), and assembled into 4,917 unigenes (1,066 contigs and 3,851 singletons). We identified 1,447 SSRs in 1,162 unigenes and developed 526 EST-SSR markers, each tracing a different unigene. Three-fourths of the EST-SSR markers (399/526) amplified alleles from IB72 and IF174 and 84% (335/399) were polymorphic between IB25 and IF174, the parents of I. brevicaulis x I. fulva mapping populations. Forty EST-SSR markers were screened for polymorphisms among 39 ecotypes or cultivars of seven species - 100% amplified alleles from wild collected ecotypes of Louisiana Iris (I.brevicaulis, I.fulva, I. nelsonii, and I. hexagona), whereas 42-52% amplified alleles from cultivars of three horticulturally important species (I. pseudacorus, I. germanica, and I. sibirica). Ecotypes and cultivars were genetically diverse - the number of alleles/locus ranged from two to 18 and mean heterozygosity was 0.76. CONCLUSION Nearly 400 ortholog-specific EST-SSR markers were developed for comparative genetic mapping and other genotyping applications in Iris, were highly polymorphic among ecotypes and cultivars, and have broad utility for genotyping applications within the genus.
Collapse
Affiliation(s)
- Shunxue Tang
- Institute of Plant Breeding, Genetics, and Genomics, The University of Georgia, Athens, GA 30602, USA
| | - Rebecca A Okashah
- Institute of Plant Breeding, Genetics, and Genomics, The University of Georgia, Athens, GA 30602, USA
| | | | - Lee H Pratt
- Laboratory for Genomics and Bioinformatics, The University of Georgia, Athens, GA 30602, USA
| | - Virgil Ed Johnson
- Laboratory for Genomics and Bioinformatics, The University of Georgia, Athens, GA 30602, USA
| | - Christopher A Taylor
- Institute of Plant Breeding, Genetics, and Genomics, The University of Georgia, Athens, GA 30602, USA
| | - Michael L Arnold
- Department of Genetics, The University of Georgia, Athens, GA 30602, USA
| | - Steven J Knapp
- Institute of Plant Breeding, Genetics, and Genomics, The University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
50
|
Shibuya K, Yamada T, Suzuki T, Shimizu K, Ichimura K. InPSR26, a putative membrane protein, regulates programmed cell death during petal senescence in Japanese morning glory. PLANT PHYSIOLOGY 2009; 149:816-24. [PMID: 19036837 PMCID: PMC2633835 DOI: 10.1104/pp.108.127415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The onset and progression of petal senescence, which is a type of programmed cell death (PCD), are highly regulated. Genes showing changes in expression during petal senescence in Japanese morning glory (Ipomoea nil) were isolated and examined to elucidate their function in PCD. We show here that a putative membrane protein, InPSR26, regulates progression of PCD during petal senescence in Japanese morning glory. InPSR26 is dominantly expressed in petal limbs and its transcript level increases prior to visible senescence symptoms. Transgenic plants with reduced InPSR26 expression (PSR26r lines) showed accelerated petal wilting, with PCD symptoms including cell collapse, ion and anthocyanin leakage, and DNA degradation accelerated in petals compared to wild-type plants. Transcript levels of autophagy- and PCD-related genes (InATG4, InATG8, InVPE, and InBI-1) were reduced in the petals of PSR26r plants. Autophagy visualized by monodansylcadaverine staining confirmed that autophagy is induced in senescing petal cells of wild-type plants and that the percentage of cells containing monodansylcadaverine-stained structures, most likely autophagosomes, was significantly lower in the petals of PSR26r plants, indicating reduced autophagic activity in the PSR26r plants. These results suggest that InPSR26 acts to delay the progression of PCD during petal senescence, possibly through regulation of the autophagic process. Our data also suggest that autophagy delays PCD in petal senescence.
Collapse
Affiliation(s)
- Kenichi Shibuya
- National Institute of Floricultural Science, National Agriculture and Food Research Organization, Tsukuba 305-8519, Japan.
| | | | | | | | | |
Collapse
|