1
|
Tong J, Hu R, Hu C, Liu X, Cai H, Lin C, Zhong L, Wang J, Xie P. Development of a net ozone production rate detection system based on dual-channel cavity ring-down spectroscopy. J Environ Sci (China) 2025; 149:419-430. [PMID: 39181654 DOI: 10.1016/j.jes.2024.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 08/27/2024]
Abstract
A novel system for measuring net photochemical ozone production rates in the atmosphere based on cavity ring-down spectroscopy (OPR-CRDS) was developed. The system consists of two chambers (a reaction chamber and a reference chamber) and a dual-channel Ox-CRDS detector. To minimize the wall loss of Ox in the chambers, the inner surfaces of both chambers are coated with Teflon film. The performance of the OPR-CRDS system was characterized. It was found that even though the photolysis frequency (J value) decreased by 10%, the decrease in the P(O3) caused by the ultraviolet-blocking film coating was less than 3%. The two chambers had a good consistency in the mean residence time and the measurement of NO2 and Ox under the condition of no sunlight. The detection limit of the OPR-CRDS was determined to be 0.20 ppbv/hr. To further verify the accuracy of the system, the direct measurement values of the OPR-CRDS system were compared with the calculation results based on radical (OH, HO2, and RO2) reactions, and a good correlation was obtained between the measured and calculated values. Finally, the developed instrument was applied to obtain the comprehensive field observations at an urban site in the Yangtze River Delta (China) for 40 days, the time series and change characteristics of the P(O3) were obtained directly, and the good environmental adaptability and stability of the OPR-CRDS system were demonstrated. It is expected that the new instrument will be beneficial to investigations of the relationship between P(O3) and its precursors.
Collapse
Affiliation(s)
- Jinzhao Tong
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China; Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Renzhi Hu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| | - Changjin Hu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Xiaoyan Liu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Haotian Cai
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Chuan Lin
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Liujun Zhong
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jiawei Wang
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China; Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Pinhua Xie
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China; Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| |
Collapse
|
2
|
Yang X, Li Y, Ma X, Tan Z, Lu K, Zhang Y. Unclassical Radical Generation Mechanisms in the Troposphere: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15888-15909. [PMID: 39206567 DOI: 10.1021/acs.est.4c00742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Hydroxyl (OH) and hydroperoxyl (HO2) radicals, collectively known as HOx radicals, are crucial in removing primary pollutants, controlling atmospheric oxidation capacity, and regulating global air quality and climate. An imbalance between radical observations and simulations has been identified based on radical closure experiments, a valuable tool for accessing the state-of-the-art chemical mechanisms, demonstrating a deviation between the existing and actual tropospheric mechanisms. In the past decades, researchers have attempted to explain this deviation and proposed numerous radical generation mechanisms. However, these newly proposed unclassical radical generation mechanisms have not been systematically reviewed, and previous radical-related reviews dominantly focus on radical measurement instruments and radical observations in extensive field campaigns. Herein, we overview the unclassical generation mechanisms of radicals, mainly focusing on outlining the methodology and results of radical closure experiments worldwide and systematically introducing the mainstream mechanisms of unclassical radical generation, involving the bimolecular reaction of HO2 and organic peroxy radicals (RO2), RO2 isomerization, halogen chemistry, the reaction of H2O with O2 over soot, epoxide formation mechanism, mechanism of electronically excited NO2 and water, and prompt HO2 formation in aromatic oxidation. Finally, we highlight the existing gaps in the current studies and suggest possible directions for future research. This review of unclassical radical generation mechanisms will help promote a comprehensive understanding of the latest radical mechanisms and the development of additional new mechanisms to further explain deviations between the existing and actual mechanisms.
Collapse
Affiliation(s)
- Xinping Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100084, China
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Vehicle Emission Control Center, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100084, China
| | - Xuefei Ma
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100084, China
| | - Zhaofeng Tan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100084, China
| | - Keding Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100084, China
| | - Yuanhang Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100084, China
| |
Collapse
|
3
|
Wei N, Zhao W, Yao Y, Wang H, Liu Z, Xu X, Rahman M, Zhang C, Fittschen C, Zhang W. Peroxy radical chemistry during ozone photochemical pollution season at a suburban site in the boundary of Jiangsu-Anhui-Shandong-Henan region, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166355. [PMID: 37595920 DOI: 10.1016/j.scitotenv.2023.166355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/27/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Ambient peroxy radical (RO2⁎ = HO2 + RO2) concentrations were measured at a suburban site in a major prefecture-level city (Huaibei) in the boundary of Jiangsu-Anhui-Shandong-Henan region, which is the connecting belt of air pollution in the Beijing-Tianjin-Hebei region and the Yangtze River Delta. Measurements were carried out during the period of September to October 2021 to elucidate the formation mechanism of O3 pollution. The observed maximum concentration of peroxy radicals was 73.8 pptv. A zero-dimensional box model (Framework for 0-Dimensional Atmospheric Modeling, F0AM) based on Master Chemical Mechanism (MCM3.3.1) was used to predict radical concentrations for comparison with observations. The model reproduced the daily variation of peroxy radicals well, but discrepancies still appear in the morning hours. As in previous field campaigns, systematic discrepancies between modelled and measured RO2⁎ concentrations are observed in the morning for NO mixing ratios higher than 1 ppbv. Between 6:00 and 9:00 am, the model significantly underpredicts RO2⁎ by a mean factor of 7.2. This underprediction can be explained by a missing RO2⁎ source of 1.2 ppbv h-1 which originated from the photochemical conversion of an alkene-like chemical species. From the model results it shows that the main sources of ROx (= OH + HO2 + RO2) are the photolysis of oxygenated volatile organic compounds (OVOCs, 33 %), O3 and HONO (25 %), and HCHO (24 %). And the major sinks of ROx transitioned from a predominant reaction of radicals with NOx in the morning to a predominant peroxy self- and cross-reaction in the late afternoon. The introduction of an alkene-like species increased RO2 radical concentration and resulted in 14 % increase in net daily integrated ozone production, indicating the possible significance of the mechanism of alkene-like species oxidation to peroxy radicals. This study provides important information for subsequent ozone pollution control policies in Jiangsu-Anhui-Shandong-Henan region.
Collapse
Affiliation(s)
- Nana Wei
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Weixiong Zhao
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui, China.
| | - Yichen Yao
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui, China; School of Environmental Science and Optoelectronics Technology, University of Science and Technology of China, Hefei 230026, China
| | - Huarong Wang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui, China; School of Environmental Science and Optoelectronics Technology, University of Science and Technology of China, Hefei 230026, China
| | - Zheng Liu
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui, China; School of Environmental Science and Optoelectronics Technology, University of Science and Technology of China, Hefei 230026, China
| | - Xuezhe Xu
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Masudur Rahman
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui, China; Department of Electrical and Electronic Engineering, Pabna University of Science and Technology, Pabna 6600, Bangladesh
| | - Cuihong Zhang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui, China; School of Environmental Science and Optoelectronics Technology, University of Science and Technology of China, Hefei 230026, China; Université Lille, CNRS, UMR 8522 - PC2A -Physicochimie des Processus de Combustion et de l'Atmosphère, F-59000 Lille, France
| | - Christa Fittschen
- Université Lille, CNRS, UMR 8522 - PC2A -Physicochimie des Processus de Combustion et de l'Atmosphère, F-59000 Lille, France
| | - Weijun Zhang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui, China; School of Environmental Science and Optoelectronics Technology, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
4
|
Alton MW, Johnson VL, Sharma S, Browne EC. Volatile Methyl Siloxane Atmospheric Oxidation Mechanism from a Theoretical Perspective─How is the Siloxanol Formed? J Phys Chem A 2023; 127:10233-10242. [PMID: 38011037 DOI: 10.1021/acs.jpca.3c06287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Despite several investigations on the atmospheric fate of cyclic volatile methyl siloxanes (VMS), the oxidation chemistry of these purely anthropogenic, high production volume compounds is poorly understood. This led to uncertainties in the environmental impact and fate of the oxidation products. According to laboratory measurements, the main VMS oxidation product is the siloxanol (a -CH3 replaced with an -OH); however, none of the mechanisms proposed to date satisfactorily explain its formation. Motivated by our previous experimental observations of VMS oxidation products, we use theoretical quantum chemical calculations to (1) explore a previously unconsidered reaction pathway to form the siloxanol from a reaction of a siloxy radical with gas-phase water, (2) investigate differences in reaction rates of radical intermediates in hexamethylcyclotrisiloxane (D3) and octamethylcyclotetrasiloxane (D4) oxidation, and (3) attempt to explain the experimentally observed products. Our results suggest that while the proposed reaction of the siloxy radical with water to form the siloxanol can occur, it is too slow to compete with other unimolecular reactions and thus cannot explain the observed siloxanol formation. We also find that the reaction between the initial D3 peroxy radical (RO2•) with HO2• is slower than previously anticipated (calculated as 3 × 10-13 cm3 molecule-1 s-1 for D3 and 2 × 10-11 cm3 molecule-1 s-1 for D4 compared to the general rate of ∼1 × 10-11 cm3 molecule-1 s-1). Finally, we compare the anticipated fates of the RO2• under a variety of conditions and find that a reaction with NO (assuming a general RO2• + NO bimolecular rate constant of 9 × 10-12 cm3 molecule-1 s-1) will likely be the dominant fate in urban conditions, while isomerization can be important in cleaner environments.
Collapse
Affiliation(s)
- Mitchell W Alton
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, United States
| | - Virginia L Johnson
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Sandeep Sharma
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Eleanor C Browne
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
5
|
Soni M, Girach I, Sahu LK, Ojha N. Photochemical evolution of air in a tropical urban environment of India: A model-based study. CHEMOSPHERE 2022; 297:134070. [PMID: 35231476 DOI: 10.1016/j.chemosphere.2022.134070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 05/25/2023]
Abstract
The photochemical processes over tropical Indian region impact the atmospheric composition and air quality over local to global scales; nevertheless, studies on detailed atmospheric chemistry remain sparse in this region. In this study, we investigate the photochemical evolution of air in the downwind of a tropical semi-arid urban environment (Ahmedabad) in India using the Master Mechanism model. The 5-days long chemical evolution has been simulated for the winter conditions - when this region experiences strong ozone build up. Model environment has been set up by including the meteorological conditions, overhead ozone, and aerosol loading, etc. Nitrogen oxides (NOx), carbon monoxide (CO), ozone (O3), and several volatile organic compounds (VOCs) have been initialized in the model based on the wintertime observations. The model predicts large O3 production (∼115 ppbv) in the downwind regions, followed by a gradual decrease from the 3rd day onwards. Additionally, significant amounts of the secondary inorganics, e.g. nitric acid (∼17 ppbv), hydrogen peroxide (∼9 ppbv), and organics, e.g. ketones (∼11 ppbv), are also simulated. The noontime maximum levels of hydroxyl (OH) and hydroperoxyl (HO2) radicals are simulated to be 0.3 and 44 pptv, respectively. While the production of OH is dominated by the reaction of NO with HO2 on the first day, photolysis of O3 dominates subsequently with reduction in NOx levels. VOCs are the major OH sink during day 1, however contribution of CO is greater on further days. The air mass trajectory analysis suggests the outflow of ozone-rich air over the rural areas and the Arabian Sea, in agreement with measurements and a global model. Our study highlights the strong impact of the urban outflows on the regional atmospheric composition. The continuous measurements of VOCs and radicals are needed over tropical regions to complement the models and further improve the understanding of air chemistry.
Collapse
Affiliation(s)
- Meghna Soni
- Physical Research Laboratory, Ahmedabad, India; Indian Institute of Technology, Gandhinagar, Gujarat, India
| | - Imran Girach
- Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram, India; Presently at Space Application Centre, Indian Space Research Organisation, Ahmedabad, India
| | | | | |
Collapse
|
6
|
Tan Z, Ma X, Lu K, Jiang M, Zou Q, Wang H, Zeng L, Zhang Y. Direct evidence of local photochemical production driven ozone episode in Beijing: A case study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:148868. [PMID: 34384967 DOI: 10.1016/j.scitotenv.2021.148868] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
We present a comprehensive field campaign conducted in Beijing, September 2016, to elucidate the photochemical smog pollution, i.e. Ozone (O3). The observed daily maximum hydroxyl radical (OH) and hydroperoxy radical (HO2) concentrations were up to 1 × 107 cm-3 and 6 × 108 cm-3, respectively, indicating the active photochemistry in autumn Beijing. Photolysis of nitrous acid (HONO) and O3 contributed 1-2 ppbv h-1 to OH primary production during daytime. OH termination were dominated by the reaction with nitric oxide (NO) and nitrogen dioxide (NO2), which were in general larger than primary production rates, indicating other primary radical sources maybe important. The measurement of radicals facilitates the direct determination of local ozone production rate P (Ox) (Ox = O3 + NO2). The integrated P(Ox) reached 75 ppbv in afternoon (for 4 h) when planetary boundary layer was well developed. At the same time period, the observed total oxidant concentrations Ox, increased significantly by 70 ppbv. In addition, the Ox measurement showed compact increase in 12 stations both temporally and spatially in Beijing, indicating that active photochemical production happened homogenously throughout the city. The back-trajectory analysis showed that Beijing was isolated from the other cities during the episode, which further proved that the fast ozone pollution was contributed by local photochemical production rather than regional advection.
Collapse
Affiliation(s)
- Zhaofeng Tan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Juelich GmbH, Juelich, Germany; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Xuefei Ma
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Keding Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China.
| | - Meiqing Jiang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Qi Zou
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Haichao Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Limin Zeng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Yuanhang Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China; Beijing Innovation Center for Engineering Sciences and Advanced Technology, Peking University, 100871 Beijing, China.
| |
Collapse
|
7
|
Guo W, Luo L, Zhang Z, Zheng N, Xiao H, Xiao H. The use of stable oxygen and nitrogen isotopic signatures to reveal variations in the nitrate formation pathways and sources in different seasons and regions in China. ENVIRONMENTAL RESEARCH 2021; 201:111537. [PMID: 34166667 DOI: 10.1016/j.envres.2021.111537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/06/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023]
Abstract
Nitrate (NO3-) is one of the most important inorganic ions in fine particulate (PM2.5) and drives regional haze formation; however, the NO3- sources and formation mechanisms in different seasons and regions are still debated. Here, PM2.5 samples were collected from Kunming and Nanning in southwestern China from September 1, 2017, to February 28, 2018 (spanning warm and cold months). We measured the daily O and N isotopic compositions of NO3- (δ18O-NO3- and δ15N-NO3-), estimated the δ18O-HNO3 values produced by different oxidation pathways, and quantified the NO3- formation pathways based on the isotope mass-balance equation. Our results showed that the δ18O-NO3- values in Kunming (65.3 ± 7.6‰) and Nanning (67.7 ± 10.1‰) are close to the δ18O-HNO3 values arising from the OH radical pathway (POH, 54.7 ± 1.2‰ to 61.2 ± 1.8‰), suggesting that the δ18O-NO3- values are mainly influenced by POH, which showed a contribution greater than 74%. Stronger surface solar radiation and higher air temperatures in low-latitude regions and warm months increased the amount of HNO3 produced by POH and reduced the amount of HNO3 produced by PN2O5, which produced low δ18O-NO3- values. Increased air pollution emissions decreased the contribution from POH and increased the contribution from N2O5 and NO3 pathways (PN2O5+NO3). The δ15N-NO3- values of PM2.5 in Kunming (7.3 ± 2.8‰) were slightly higher than those in Nanning (2.8 ± 2.7‰). The increased NOx emissions with positive isotopic values led to high δ15N-NO3- values in northern China and during cold months. A higher fNO2 (fNO2 = NO2/(NO + NO2), temperature, and contribution of POH produced lower N isotope fractionation between NOx and δ15N-NO3-, which was found to further decrease the δ15N-NO3- values in southwestern China and during warm months.
Collapse
Affiliation(s)
- Wei Guo
- Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang, 330013, China; College of Water Resources and environmental Engineering, East China University of Technology, Nanchang, 330013, China
| | - Li Luo
- Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang, 330013, China; College of Water Resources and environmental Engineering, East China University of Technology, Nanchang, 330013, China
| | - Zhongyi Zhang
- Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang, 330013, China; College of Water Resources and environmental Engineering, East China University of Technology, Nanchang, 330013, China
| | - Nengjian Zheng
- Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang, 330013, China; College of Water Resources and environmental Engineering, East China University of Technology, Nanchang, 330013, China
| | - Hongwei Xiao
- Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang, 330013, China; College of Water Resources and environmental Engineering, East China University of Technology, Nanchang, 330013, China
| | - Huayun Xiao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
8
|
Chen D, Xavier C, Clusius P, Nieminen T, Roldin P, Qi X, Pichelstorfer L, Kulmala M, Rantala P, Aalto J, Sarnela N, Kolari P, Keronen P, Rissanen MP, Taipale D, Foreback B, Baykara M, Zhou P, Boy M. A modelling study of OH, NO 3 and H 2SO 4 in 2007-2018 at SMEAR II, Finland: analysis of long-term trends. ENVIRONMENTAL SCIENCE: ATMOSPHERES 2021; 1:449-472. [PMID: 34604756 PMCID: PMC8459646 DOI: 10.1039/d1ea00020a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/13/2021] [Indexed: 11/21/2022]
Abstract
Major atmospheric oxidants (OH, O3 and NO3) dominate the atmospheric oxidation capacity, while H2SO4 is considered as a main driver for new particle formation. Although numerous studies have investigated the long-term trend of ozone in Europe, the trends of OH, NO3 and H2SO4 at specific sites are to a large extent unknown. The one-dimensional model SOSAA has been applied in several studies at the SMEAR II station and has been validated by measurements in several projects. Here, we applied the SOSAA model for the years 2007-2018 to simulate the atmospheric chemical components, especially the atmospheric oxidants OH and NO3, as well as H2SO4 at SMEAR II. The simulations were evaluated with observations from several shorter and longer campaigns at SMEAR II. Our results show that daily OH increased by 2.39% per year and NO3 decreased by 3.41% per year, with different trends of these oxidants during day and night. On the contrary, daytime sulfuric acid concentrations decreased by 2.78% per year, which correlated with the observed decreasing concentration of newly formed particles in the size range of 3-25 nm with 1.4% per year at SMEAR II during the years 1997-2012. Additionally, we compared our simulated OH, NO3 and H2SO4 concentrations with proxies, which are commonly applied in case a limited number of parameters are measured and no detailed model simulations are available.
Collapse
Affiliation(s)
- Dean Chen
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki P.O. Box 64 00014 Helsinki Finland
| | - Carlton Xavier
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki P.O. Box 64 00014 Helsinki Finland
| | - Petri Clusius
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki P.O. Box 64 00014 Helsinki Finland
| | - Tuomo Nieminen
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki P.O. Box 64 00014 Helsinki Finland .,Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki P.O. Box 64 00014 Helsinki Finland
| | - Pontus Roldin
- Division of Nuclear Physics, Department of Physics, Lund University P.O. Box 118 SE-22100 Lund Sweden
| | - Ximeng Qi
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University Nanjing 210023 China
| | - Lukas Pichelstorfer
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki P.O. Box 64 00014 Helsinki Finland
| | - Markku Kulmala
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki P.O. Box 64 00014 Helsinki Finland .,Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University Nanjing 210023 China
| | - Pekka Rantala
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki P.O. Box 64 00014 Helsinki Finland
| | - Juho Aalto
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki P.O. Box 64 00014 Helsinki Finland
| | - Nina Sarnela
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki P.O. Box 64 00014 Helsinki Finland
| | - Pasi Kolari
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki P.O. Box 64 00014 Helsinki Finland
| | - Petri Keronen
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki P.O. Box 64 00014 Helsinki Finland
| | - Matti P Rissanen
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University Tampere Finland
| | - Ditte Taipale
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki P.O. Box 64 00014 Helsinki Finland
| | - Benjamin Foreback
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki P.O. Box 64 00014 Helsinki Finland
| | - Metin Baykara
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki P.O. Box 64 00014 Helsinki Finland .,Climate and Marine Sciences Department, Eurasia Institute of Earth Sciences, Istanbul Technical University Maslak 34469 Istanbul Turkey
| | - Putian Zhou
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki P.O. Box 64 00014 Helsinki Finland
| | - Michael Boy
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki P.O. Box 64 00014 Helsinki Finland
| |
Collapse
|
9
|
Robinson MA, Decker ZCJ, Barsanti KC, Coggon MM, Flocke FM, Franchin A, Fredrickson CD, Gilman JB, Gkatzelis GI, Holmes CD, Lamplugh A, Lavi A, Middlebrook AM, Montzka DM, Palm BB, Peischl J, Pierce B, Schwantes RH, Sekimoto K, Selimovic V, Tyndall GS, Thornton JA, Van Rooy P, Warneke C, Weinheimer AJ, Brown SS. Variability and Time of Day Dependence of Ozone Photochemistry in Western Wildfire Plumes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10280-10290. [PMID: 34255503 DOI: 10.1021/acs.est.1c01963] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Understanding the efficiency and variability of photochemical ozone (O3) production from western wildfire plumes is important to accurately estimate their influence on North American air quality. A set of photochemical measurements were made from the NOAA Twin Otter research aircraft as a part of the Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) experiment. We use a zero-dimensional (0-D) box model to investigate the chemistry driving O3 production in modeled plumes. Modeled afternoon plumes reached a maximum O3 mixing ratio of 140 ± 50 ppbv (average ± standard deviation) within 20 ± 10 min of emission compared to 76 ± 12 ppbv in 60 ± 30 min in evening plumes. Afternoon and evening maximum O3 isopleths indicate that plumes were near their peak in NOx efficiency. A radical budget describes the NOx volatile - organic compound (VOC) sensitivities of these plumes. Afternoon plumes displayed a rapid transition from VOC-sensitive to NOx-sensitive chemistry, driven by HOx (=OH + HO2) production from photolysis of nitrous acid (HONO) (48 ± 20% of primary HOx) and formaldehyde (HCHO) (26 ± 9%) emitted directly from the fire. Evening plumes exhibit a slower transition from peak NOx efficiency to VOC-sensitive O3 production caused by a reduction in photolysis rates and fire emissions. HOx production in evening plumes is controlled by HONO photolysis (53 ± 7%), HCHO photolysis (18 ± 9%), and alkene ozonolysis (17 ± 9%).
Collapse
Affiliation(s)
- Michael A Robinson
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Zachary C J Decker
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Kelley C Barsanti
- Department of Chemical and Environmental Engineering and College of Engineering-Center for Environmental Research and Technology (CE-CERT), University of California, Riverside, Riverside, California 92507, United States
| | - Matthew M Coggon
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Frank M Flocke
- Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, Colorado 80301, United States
| | - Alessandro Franchin
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Carley D Fredrickson
- Department of Atmospheric Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Jessica B Gilman
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
| | - Georgios I Gkatzelis
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Christopher D Holmes
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida 32306, United States
| | - Aaron Lamplugh
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Avi Lavi
- Department of Chemical and Environmental Engineering and College of Engineering-Center for Environmental Research and Technology (CE-CERT), University of California, Riverside, Riverside, California 92507, United States
| | - Ann M Middlebrook
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
| | - Denise M Montzka
- Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, Colorado 80301, United States
| | - Brett B Palm
- Department of Atmospheric Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Jeff Peischl
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Brad Pierce
- Space Science and Engineering Center, University of Wisconsin-Madison, Madison, Wisconsin 53715, United States
| | - Rebecca H Schwantes
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Kanako Sekimoto
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa 236-0027, Japan
| | - Vanessa Selimovic
- Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana 59812, United States
| | - Geoffrey S Tyndall
- Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, Colorado 80301, United States
| | - Joel A Thornton
- Department of Atmospheric Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Paul Van Rooy
- Department of Chemical and Environmental Engineering and College of Engineering-Center for Environmental Research and Technology (CE-CERT), University of California, Riverside, Riverside, California 92507, United States
| | - Carsten Warneke
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
| | - Andrew J Weinheimer
- Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, Colorado 80301, United States
| | - Steven S Brown
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
10
|
Yang X, Lu K, Ma X, Liu Y, Wang H, Hu R, Li X, Lou S, Chen S, Dong H, Wang F, Wang Y, Zhang G, Li S, Yang S, Yang Y, Kuang C, Tan Z, Chen X, Qiu P, Zeng L, Xie P, Zhang Y. Observations and modeling of OH and HO 2 radicals in Chengdu, China in summer 2019. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:144829. [PMID: 33578154 DOI: 10.1016/j.scitotenv.2020.144829] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
This study reports on the first continuous measurements of ambient OH and HO2 radicals at a suburban site in Chengdu, Southwest China, which were collected during 2019 as part of a comprehensive field campaign 'CompreHensive field experiment to explOre the photochemical Ozone formation mechaniSm in summEr - 2019 (CHOOSE-2019)'. The mean concentrations (11:00-15:00) of the observed OH and HO2 radicals were 9.5 × 106 and 9.0 × 108 cm-3, respectively. To investigate the state-of-the-art chemical mechanism of radical, closure experiments were conducted with a box model, in which the RACM2 mechanism updated with the latest isoprene chemistry (RACM2-LIM1) was used. In the base run, OH radicals were underestimated by the model for the low-NO regime, which was likely due to the missing OH recycling. However, good agreement between the observed and modeled OH concentrations was achieved when an additional species X (equivalent to 0.25 ppb of NO mixing ratio) from one new OH regeneration cycle (RO2 + X → HO2, HO2 + X → OH) was added into the model. Additionally, in the base run, the model could reproduce the observed HO2 concentrations. Discrepancies in the observed and modeled HO2 concentrations were found in the sensitivity runs with HO2 heterogeneous uptake, indicating that the impact of the uptake may be less significant in Chengdu because of the relatively low aerosol concentrations. The ROx (= OH + HO2 + RO2) primary source was dominated by photolysis reactions, in which HONO, O3, and HCHO photolysis accounted for 34%, 19%, and 23% during the daytime, respectively. The efficiency of radical cycling was quantified by the radical chain length, which was determined by the NO to NO2 ratio successfully. The parameterization of the radical chain length may be very useful for the further determinations of radical recycling.
Collapse
Affiliation(s)
- Xinping Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Keding Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China.
| | - Xuefei Ma
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Yanhui Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Haichao Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Renzhi Hu
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, China.
| | - Xin Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Shengrong Lou
- State Environmental Protection Key Laboratory of the Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai, China
| | - Shiyi Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Huabin Dong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Fengyang Wang
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, China
| | - Yihui Wang
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, China
| | - Guoxian Zhang
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, China
| | - Shule Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Suding Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Yiming Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Cailing Kuang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Zhaofeng Tan
- International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China; Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Juelich GmbH, Juelich, Germany
| | - Xiaorui Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Peipei Qiu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Limin Zeng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Pinhua Xie
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, China
| | - Yuanhang Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China; Beijing Innovation Center for Engineering Sciences and Advanced Technology, Peking University, Beijing, China; CAS Center for Excellence in Regional Atmospheric Environment, Chinese Academy of Science, Xiamen, China.
| |
Collapse
|
11
|
Zhao K, Luo H, Yuan Z, Xu D, Du Y, Zhang S, Hao Y, Wu Y, Huang J, Wang Y, Jiang R. Identification of close relationship between atmospheric oxidation and ozone formation regimes in a photochemically active region. J Environ Sci (China) 2021; 102:373-383. [PMID: 33637263 PMCID: PMC7575429 DOI: 10.1016/j.jes.2020.09.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 05/23/2023]
Abstract
Understanding ozone (O3) formation regime is a prerequisite in formulating an effective O3 pollution control strategy. Photochemical indicator is a simple and direct method in identifying O3 formation regimes. Most used indicators are derived from observations, whereas the role of atmospheric oxidation is not in consideration, which is the core driver of O3 formation. Thus, it may impact accuracy in signaling O3 formation regimes. In this study, an advanced three-dimensional numerical modeling system was used to investigate the relationship between atmospheric oxidation and O3 formation regimes during a long-lasting O3 exceedance event in September 2017 over the Pearl River Delta (PRD) of China. We discovered a clear relationship between atmospheric oxidative capacity and O3 formation regime. Over eastern PRD, O3 formation was mainly in a NOx-limited regime when HO2/OH ratio was higher than 11, while in a VOC-limited regime when the ratio was lower than 9.5. Over central and western PRD, an HO2/OH ratio higher than 5 and lower than 2 was indicative of NOx-limited and VOC-limited regime, respectively. Physical contribution, including horizontal transport and vertical transport, may pose uncertainties on the indication of O3 formation regime by HO2/OH ratio. In comparison with other commonly used photochemical indicators, HO2/OH ratio had the best performance in differentiating O3 formation regimes. This study highlighted the necessities in using an atmospheric oxidative capacity-based indicator to infer O3 formation regime, and underscored the importance of characterizing behaviors of radicals to gain insight in atmospheric processes leading to O3 pollution over a photochemically active region.
Collapse
Affiliation(s)
- Kaihui Zhao
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Huihong Luo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zibing Yuan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Danni Xu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yi Du
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Shu Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yuqi Hao
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yonghua Wu
- The City College of New York (CCNY), New York, NY 10031, USA; NOAA-Cooperative Science Center for Earth System Sciences and Remote Sensing Technologies, New York, NY 10031, USA
| | - Jianping Huang
- NOAA-NCEP Environmental Modeling Center and IM System Group Inc., College Park, MD 720740, USA; Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Ying Wang
- Xianyang Meteorological Bureau, Xianyang 712000, China
| | - Rongsheng Jiang
- Climate, Environment and Sustainability Center, Nanjing University of Information Science and Technology, Nanjing 210044, China
| |
Collapse
|
12
|
Li J, Sakamoto Y, Kohno N, Fujii T, Matsuoka K, Takemura M, Zhou J, Nakagawa M, Murano K, Sadanaga Y, Nakashima Y, Sato K, Takami A, Yoshino A, Nakayama T, Kato S, Kajii Y. Total hydroxyl radical reactivity measurements in a suburban area during AQUAS-Tsukuba campaign in summer 2017. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:139897. [PMID: 32563867 DOI: 10.1016/j.scitotenv.2020.139897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/19/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
Missing hydroxyl radical (OH) reactivity from unknown/unmeasured trace species empirically accounts for 10%-30% of total OH reactivity and may cause significant uncertainty regarding estimation of photochemical ozone production. Thus, it is essential to unveil the missing OH reactivity for developing an effective ozone mitigation strategy. In this study, we conducted simultaneous observations of total OH reactivity and 54 reactive trace species in a suburban area as part of the Air QUAlity Study (AQUAS)-Tsukuba campaign for the summer of 2017 to gain in-depth insight into total OH reactivity in an area that experienced relatively high contributions of secondary pollutants. The campaign identified on average 35.3% of missing OH reactivity among total OH reactivity (12.9 s-1). In general, ozone-production potential estimation categorized ozone formation in this area as volatile organic compound (VOC)-limited conditions, and missing OH reactivity may increase ozone production potential 40% on average if considered. Our results suggest the importance of photochemical processes of both AVOCs and BVOCs for the production of missing OH reactivity and that we may underestimate the importance of reducing precursors in approach to suppressing ozone production if we ignore the contribution of their photochemical products.
Collapse
Affiliation(s)
- Jiaru Li
- Graduate School of Global Environmental Studies, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yosuke Sakamoto
- Graduate School of Global Environmental Studies, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan; Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-Nihonmatsucho, Sakyo-ku, Kyoto 606-8316, Japan; Center for Regional Environmental Research, National Institute for Environmental Studies, Tsukuba City, Ibaraki 305-8506, Japan.
| | - Nanase Kohno
- Graduate School of Global Environmental Studies, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tomihide Fujii
- Graduate School of Global Environmental Studies, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kohei Matsuoka
- Graduate School of Global Environmental Studies, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Marina Takemura
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-Nihonmatsucho, Sakyo-ku, Kyoto 606-8316, Japan
| | - Jun Zhou
- Graduate School of Global Environmental Studies, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Maho Nakagawa
- Graduate School of Global Environmental Studies, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan; National Institute of Information and Communications Technology, 4-2-1 Nukui-kita, Koganei, Tokyo 184-8795, Japan
| | - Kentaro Murano
- Graduate School of Global Environmental Studies, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yasuhiro Sadanaga
- Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Yoshihiro Nakashima
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8538, Japan
| | - Kei Sato
- Center for Regional Environmental Research, National Institute for Environmental Studies, Tsukuba City, Ibaraki 305-8506, Japan
| | - Akinori Takami
- Center for Regional Environmental Research, National Institute for Environmental Studies, Tsukuba City, Ibaraki 305-8506, Japan
| | - Ayako Yoshino
- Center for Regional Environmental Research, National Institute for Environmental Studies, Tsukuba City, Ibaraki 305-8506, Japan
| | - Tomoki Nakayama
- Institute for Space-Earth Environmental Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Shungo Kato
- Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Yoshizumi Kajii
- Graduate School of Global Environmental Studies, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan; Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-Nihonmatsucho, Sakyo-ku, Kyoto 606-8316, Japan; Center for Regional Environmental Research, National Institute for Environmental Studies, Tsukuba City, Ibaraki 305-8506, Japan.
| |
Collapse
|
13
|
Ma X, Tan Z, Lu K, Yang X, Liu Y, Li S, Li X, Chen S, Novelli A, Cho C, Zeng L, Wahner A, Zhang Y. Winter photochemistry in Beijing: Observation and model simulation of OH and HO 2 radicals at an urban site. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 685:85-95. [PMID: 31174126 DOI: 10.1016/j.scitotenv.2019.05.329] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
A field campaign was conducted from November to December 2017 at the campus of Peking University (PKU) to investigate the formation mechanism of the winter air pollution in Beijing with the measurement of hydroxyl and hydroperoxyl radical (OH and HO2) with the support from comprehensive observation of trace gases compounds. The extent of air pollution depends on meteorological conditions. The daily maximum OH radical concentrations are on average 2.0 × 106 cm-3 and 1.5 × 106 cm-3 during the clean and polluted episodes, respectively. The daily maximum HO2 radical concentrations are on average 0.4 × 108 cm-3 and 0.3 × 108 cm-3 during the clean and polluted episodes, respectively (diurnal averaged for one hour bin). A box model based on RACM2-LIM1 mechanism can reproduce the OH concentrations but underestimate the HO2 concentrations by 50% during the clean episode. The OH and HO2 concentrations are underestimated by 50% and 12 folds during the polluted episode, respectively. Strong dependence on nitric oxide (NO) concentration is found for both observed and modeled HO2 concentrations, with the modeled HO2 decreasing more rapidly than observed HO2, leading to severe HO2 underestimation at higher NO concentrations. The OH reactivity is calculated from measured and modeled species and inorganic compounds (carbon monoxide (CO), NO, and nitrogen dioxide (NO2)) make up 69%-76% of the calculated OH reactivity. The photochemical oxidation rate denoted by the OH loss rate increases by 3 times from the clean to polluted episodes, indicating the strong oxidation capacity in polluted conditions. The comparison between measurements at PKU site and a suburban site from one previous study shows that chemical conditions are similar in both urban and suburban areas. Hence, the strong oxidation capacity and its potential contribution to the pollution bursts are relatively homogeneous over the whole Beijing city and its surrounding areas.
Collapse
Affiliation(s)
- Xuefei Ma
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Zhaofeng Tan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Juelich GmbH, Juelich, Germany; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Keding Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China.
| | - Xinping Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Yuhan Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Shule Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Xin Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Shiyi Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Anna Novelli
- Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Juelich GmbH, Juelich, Germany; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Changmin Cho
- Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Juelich GmbH, Juelich, Germany; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Limin Zeng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Andreas Wahner
- Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Juelich GmbH, Juelich, Germany; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Yuanhang Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China; Beijing Innovation Center for Engineering Sciences and Advanced Technology, Peking University, Beijing, China; CAS Center for Excellence in Regional Atmospheric Environment, Chinese Academy of Science, Xiamen, China.
| |
Collapse
|
14
|
Lu K, Guo S, Tan Z, Wang H, Shang D, Liu Y, Li X, Wu Z, Hu M, Zhang Y. Exploring atmospheric free-radical chemistry in China: the self-cleansing capacity and the formation of secondary air pollution. Natl Sci Rev 2019; 6:579-594. [PMID: 34691906 PMCID: PMC8291643 DOI: 10.1093/nsr/nwy073] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/12/2018] [Accepted: 07/18/2018] [Indexed: 11/14/2022] Open
Abstract
Since 1971, it has been known that the atmospheric free radicals play a pivotal role in maintaining the oxidizing power of the troposphere. The existence of the oxidizing power is an important feature of the troposphere to remove primary air pollutants emitted from human beings as well as those from the biosphere. Nevertheless, serious secondary air-pollution incidents can take place due to fast oxidation of the primary pollutants. Elucidating the atmospheric free-radical chemistry is a demanding task in the field of atmospheric chemistry worldwide, which includes two kinds of work: first, the setup of reliable radical detection systems; second, integrated field studies that enable closure studies on the sources and sinks of targeted radicals such as OH and NO3. In this review, we try to review the Chinese efforts to explore the atmospheric free-radical chemistry in such chemical complex environments and the possible link of this fast gas-phase oxidation with the fast formation of secondary air pollution in the city-cluster areas in China.
Collapse
Affiliation(s)
- Keding Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Song Guo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhaofeng Tan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Haichao Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Dongjie Shang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yuhan Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xin Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhijun Wu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Min Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yuanhang Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- CAS Center for Excellence in Regional Atmospheric Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
15
|
Pfeifle M, Ma YT, Jasper AW, Harding LB, Hase WL, Klippenstein SJ. Nascent energy distribution of the Criegee intermediate CH2OO from direct dynamics calculations of primary ozonide dissociation. J Chem Phys 2018; 148:174306. [DOI: 10.1063/1.5028117] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Mark Pfeifle
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Yong-Tao Ma
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA
| | - Ahren W. Jasper
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Lawrence B. Harding
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - William L. Hase
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA
| | - Stephen J. Klippenstein
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| |
Collapse
|
16
|
Cholesterol provides nonsacrificial protection of membrane lipids from chemical damage at air-water interface. Proc Natl Acad Sci U S A 2018; 115:3255-3260. [PMID: 29507237 DOI: 10.1073/pnas.1722323115] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The role of cholesterol in bilayer and monolayer lipid membranes has been of great interest. On the biophysical front, cholesterol significantly increases the order of the lipid packing, lowers the membrane permeability, and maintains membrane fluidity by forming liquid-ordered-phase lipid rafts. However, direct observation of any influence on membrane chemistry related to these cholesterol-induced physical properties has been absent. Here we report that the addition of 30 mol % cholesterol to 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG) monolayers at the air-water interface greatly reduces the oxidation and ester linkage cleavage chemistries initiated by potent chemicals such as OH radicals and HCl vapor, respectively. These results shed light on the indispensable chemoprotective function of cholesterol in lipid membranes. Another significant finding is that OH oxidation of unsaturated lipids generates Criegee intermediate, which is an important radical involved in many atmospheric processes.
Collapse
|
17
|
Mao J, Carlton A, Cohen RC, Brune WH, Brown SS, Wolfe GM, Jimenez JL, Pye HOT, Ng NL, Xu L, McNeill VF, Tsigaridis K, McDonald BC, Warneke C, Guenther A, Alvarado MJ, de Gouw J, Mickley LJ, Leibensperger EM, Mathur R, Nolte CG, Portmann RW, Unger N, Tosca M, Horowitz LW. Southeast Atmosphere Studies: learning from model-observation syntheses. ATMOSPHERIC CHEMISTRY AND PHYSICS 2018; 18:2615-2651. [PMID: 29963079 PMCID: PMC6020695 DOI: 10.5194/acp-18-2615-2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Concentrations of atmospheric trace species in the United States have changed dramatically over the past several decades in response to pollution control strategies, shifts in domestic energy policy and economics, and economic development (and resulting emission changes) elsewhere in the world. Reliable projections of the future atmosphere require models to not only accurately describe current atmospheric concentrations, but to do so by representing chemical, physical and biological processes with conceptual and quantitative fidelity. Only through incorporation of the processes controlling emissions and chemical mechanisms that represent the key transformations among reactive molecules can models reliably project the impacts of future policy, energy and climate scenarios. Efforts to properly identify and implement the fundamental and controlling mechanisms in atmospheric models benefit from intensive observation periods, during which collocated measurements of diverse, speciated chemicals in both the gas and condensed phases are obtained. The Southeast Atmosphere Studies (SAS, including SENEX, SOAS, NOMADSS and SEAC4RS) conducted during the summer of 2013 provided an unprecedented opportunity for the atmospheric modeling community to come together to evaluate, diagnose and improve the representation of fundamental climate and air quality processes in models of varying temporal and spatial scales. This paper is aimed at discussing progress in evaluating, diagnosing and improving air quality and climate modeling using comparisons to SAS observations as a guide to thinking about improvements to mechanisms and parameterizations in models. The effort focused primarily on model representation of fundamental atmospheric processes that are essential to the formation of ozone, secondary organic aerosol (SOA) and other trace species in the troposphere, with the ultimate goal of understanding the radiative impacts of these species in the southeast and elsewhere. Here we address questions surrounding four key themes: gas-phase chemistry, aerosol chemistry, regional climate and chemistry interactions, and natural and anthropogenic emissions. We expect this review to serve as a guidance for future modeling efforts.
Collapse
Affiliation(s)
- Jingqiu Mao
- Geophysical Institute and Department of Chemistry, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Annmarie Carlton
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Ronald C. Cohen
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, USA
| | - William H. Brune
- Department of Meteorology, Pennsylvania State University, University Park, PA, USA
| | - Steven S. Brown
- Department of Chemistry and CIRES, University of Colorado Boulder, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Boulder, CO, USA
| | - Glenn M. Wolfe
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
- Joint Center for Earth Systems Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Jose L. Jimenez
- Department of Chemistry and CIRES, University of Colorado Boulder, Boulder, CO, USA
| | - Havala O. T. Pye
- National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Nga Lee Ng
- School of Chemical and Biomolecular Engineering and School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Lu Xu
- School of Chemical and Biomolecular Engineering and School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - V. Faye McNeill
- Department of Chemical Engineering, Columbia University, New York, NY USA
| | - Kostas Tsigaridis
- Center for Climate Systems Research, Columbia University, New York, NY, USA
- NASA Goddard Institute for Space Studies, New York, NY, USA
| | - Brian C. McDonald
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Boulder, CO, USA
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - Carsten Warneke
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Boulder, CO, USA
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - Alex Guenther
- Department of Earth System Science, University of California, Irvine, CA, USA
| | | | - Joost de Gouw
- Department of Chemistry and CIRES, University of Colorado Boulder, Boulder, CO, USA
| | - Loretta J. Mickley
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | | | - Rohit Mathur
- National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Christopher G. Nolte
- National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Robert W. Portmann
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Boulder, CO, USA
| | - Nadine Unger
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Mika Tosca
- School of the Art Institute of Chicago (SAIC), Chicago, IL 60603, USA
| | - Larry W. Horowitz
- Geophysical Fluid Dynamics Laboratory–National Oceanic and Atmospheric Administration, Princeton, NJ, USA
| |
Collapse
|
18
|
Jeon W, Choi Y, Souri AH, Roy A, Diao L, Pan S, Lee HW, Lee SH. Identification of chemical fingerprints in long-range transport of burning induced upper tropospheric ozone from Colorado to the North Atlantic Ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 613-614:820-828. [PMID: 28942315 DOI: 10.1016/j.scitotenv.2017.09.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/15/2017] [Accepted: 09/18/2017] [Indexed: 05/12/2023]
Abstract
This study investigates a significant biomass burning (BB) event occurred in Colorado of the United States in 2012 using the Community Multi-scale Air Quality (CMAQ) model. The simulation reasonably reproduced the significantly high upper tropospheric O3 concentrations (up to 145ppb) caused by BB emissions. We find the BB-induced O3 was primarily affected by chemical reactions and dispersion during its transport. In the early period of transport, high NOx and VOCs emissions caused O3 production due to reactions with the peroxide and hydroxyl radicals, HO2 and OH. Here, NOx played a key role in O3 formation in the BB plume. The results indicated that HO2 in the BB plume primarily came from formaldehyde (HCHO+hv=2HO2+CO), a secondary alkoxy radical (ROR=HO2). CO played an important role in the production of recycled HO2 (OH+CO=HO2) because of its abundance in the BB plume. The chemically produced HO2 was largely converted to OH by the reactions with NO (HO2+NO=OH+NO2) from BB emissions. This is in contrast to the surface, where HO2 and OH are strongly affected by VOC and HONO, respectively. In the late stages of transport, the O3 concentration was primarily controlled by dispersion. It stayed longer in the upper troposphere compared to the surface due to sustained depletion of NOx. Sensitivity analysis results support that O3 in the BB plume is significantly more sensitive to NOx than VOCs.
Collapse
Affiliation(s)
- Wonbae Jeon
- Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX 77204, USA; Institute of Environmental Studies, Pusan National University, Busan 46241, Republic of Korea
| | - Yunsoo Choi
- Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX 77204, USA.
| | - Amir Hossein Souri
- Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX 77204, USA
| | - Anirban Roy
- Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX 77204, USA
| | - Lijun Diao
- Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX 77204, USA
| | - Shuai Pan
- Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX 77204, USA
| | - Hwa Woon Lee
- Division of Earth Environmental System, Pusan National University, Busan 46241, Republic of Korea
| | - Soon-Hwan Lee
- Department of Earth Science Education, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
19
|
Li Z, Xue L, Yang X, Zha Q, Tham YJ, Yan C, Louie PKK, Luk CWY, Wang T, Wang W. Oxidizing capacity of the rural atmosphere in Hong Kong, Southern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 612:1114-1122. [PMID: 28892855 DOI: 10.1016/j.scitotenv.2017.08.310] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 06/07/2023]
Abstract
Atmospheric oxidizing capacity (AOC), dominated by the hydroxyl radical (OH), is an important index of the self-cleaning capacity of atmosphere and plays a vital role in the tropospheric chemistry. To better understand the key processes governing the chemistry of rural atmosphere of southern China, we analyzed the oxidation capacity and radical chemistry at a regional background site in Hong Kong from 23 August to 22 December 2012, which covered the summer, autumn and winter seasons. A chemical box model built on the latest Master Chemical Mechanism (v3.3) was used to elucidate the OH reactivity and sources of ROX radicals (ROX=OH+HO2+RO2). The AOC showed a clear seasonal pattern with stronger intensity in late summer compared to autumn and winter. Reactions with NO2 (30%) and oxygenated volatile organic compounds (OVOCs) (31%) together dominated the OH loss in summer, while reactions with CO (38% in autumn and 39% in winter) and OVOCs (34% in autumn and 25% in winter) made larger contributions in autumn and winter. Photolysis of O3 (36%-47%) presented the major ROX source during all three seasons. The second largest ROx source was HONO photolysis (25%) in summer compared to HCHO photolysis in autumn (20%) and winter (21%). Besides, photolysis of other OVOCs was another important primary source of ROx radicals with average contributions of 14%, 13% and 20% for the summer, autumn and winter cases, respectively. Overall, the present study evaluates the oxidizing capacity of the rural atmosphere of South China and elucidates the varying characteristics of photochemical processes in different air masses.
Collapse
Affiliation(s)
- Zeyuan Li
- Environment Research Institute, Shandong University, Ji'nan, Shandong, China
| | - Likun Xue
- Environment Research Institute, Shandong University, Ji'nan, Shandong, China.
| | - Xue Yang
- Environment Research Institute, Shandong University, Ji'nan, Shandong, China
| | - Qiaozhi Zha
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong, China
| | - Yee Jun Tham
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong, China
| | - Chao Yan
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong, China
| | - Peter K K Louie
- Environmental Protection Department, the Government of the Hong Kong Special Administrative Region, Hong Kong, China
| | - Connie W Y Luk
- Environmental Protection Department, the Government of the Hong Kong Special Administrative Region, Hong Kong, China
| | - Tao Wang
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong, China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Ji'nan, Shandong, China
| |
Collapse
|
20
|
Chen D, Huey LG, Tanner DJ, Li J, Ng NL, Wang Y. Derivation of Hydroperoxyl Radical Levels at an Urban Site via Measurement of Pernitric Acid by Iodide Chemical Ionization Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:3355-3363. [PMID: 28212018 DOI: 10.1021/acs.est.6b05169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Hydroperoxyl radical (HO2) is a key species to atmospheric chemistry. At warm temperatures, the HO2 and NO2 come to a rapid steady state with pernitric acid (HO2NO2). This paper presents the derivation of HO2 from observations of HO2NO2 and NO2 in metropolitan Atlanta, US, in winter 2014 and summer 2015. HO2 was observed to have a diurnal cycle with morning concentrations suppressed by high NO from the traffic. At night, derived HO2 levels were nonzero and exhibited correlations with O3 and NO3, consistent with previous studies that ozonolysis and oxidation by NO3 are sources of nighttime HO2. Measured and model calculated HO2 were in reasonable agreement: Without the constraint of measured HO2NO2, the model reproduced HO2 with a model-to-observed ratio (M/O) of 1.27 (r = 0.54) for winter, 2014, and 0.70 (r = 0.80) for summer, 2015. Adding measured HO2NO2 as a constraint, the model predicted HO2 with M/O = 1.13 (r = 0.77) for winter 2014 and 0.90 (r = 0.97) for summer 2015. These results demonstrate the feasibility of deriving HO2 from HO2NO2 measurements in warm regions where HO2NO2 has a short lifetime.
Collapse
Affiliation(s)
- Dexian Chen
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology , 311 Ferst Drive, Atlanta, Georgia 30332, United States
| | - L Gregory Huey
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology , 311 Ferst Drive, Atlanta, Georgia 30332, United States
| | - David J Tanner
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology , 311 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Jianfeng Li
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology , 311 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Nga L Ng
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology , 311 Ferst Drive, Atlanta, Georgia 30332, United States
- School of Chemical and Biochemical Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Yuhang Wang
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology , 311 Ferst Drive, Atlanta, Georgia 30332, United States
| |
Collapse
|
21
|
Ji D, Gao W, Zhang J, Morino Y, Zhou L, Yu P, Li Y, Sun J, Ge B, Tang G, Sun Y, Wang Y. Investigating the evolution of summertime secondary atmospheric pollutants in urban Beijing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 572:289-300. [PMID: 27505262 DOI: 10.1016/j.scitotenv.2016.07.153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 06/06/2023]
Abstract
Understanding the formation of tropospheric ozone (O3) and secondary particulates is essential for controlling secondary pollution in megacities. Intensive observations were conducted to investigate the evolution of O3, nitrate (NO3-), sulfate (SO42-) and oxygenated organic aerosols ((OOAs), a proxy for secondary organic aerosols) and the interactions between O3, NOx oxidation products (NOz) and OOA in urban Beijing in August 2012. The O3 concentrations exhibited similar variations at both the urban and urban background sites in Beijing. Regarding the O3 profile, the O3 concentrations increased with increasing altitude. The peaks in O3 on the days exceeding the 1h or 8h O3 standards (polluted days) were substantially wider than those on normal days. Significant increases in the NOz mixing ratio (i.e., NOy - NOx) were observed between the morning and early afternoon, which were consistent with the increasing oxidant level. A discernable NO3- peak was also observed in the morning on the polluted days, and this peak was attributed to vertical mixing and strong photochemical production. In addition, a SO42- peak at 18:00 was likely caused by a combination of local generation and regional transport. The OOA concentration cycle exhibited two peaks at approximately 10:00 and 19:00. The OOA concentrations were correlated well with SO42- ([OOA]=0.55×[SO42-]+2.1, r2=0.69) because they both originated from secondary transformations that were dependent on the ambient oxidization level and relative humidity. However, the slope between OOA and SO42- was only 0.35, which was smaller than the slope observed for all of the OOA and SO42- data, when the RH ranged from 40 to 50%. In addition, a photochemical episode was selected for analysis. The results showed that regional transport played an important role in the evolution of the investigated secondary pollutants. The measured OOA and Ox concentrations were well correlated at the daily scale, whereas the hourly OOA and Ox concentrations were insignificantly correlated in urban Beijing. The synoptic situation and the differences in the VOC oxidation contributing to O3 and SOAs may have resulted in the differences among the correlations between OOA and Ox at different time scale. We calculated OOA production rates using the photochemical age (defined as -log10(NOx/NOy)) in urban plumes. The CO-normalized OOA concentration increased with increasing photochemical age, with production rates ranging from 1.1 to 8.5μgm-3ppm-1h-1 for the plume from the NCP.
Collapse
Affiliation(s)
- Dongsheng Ji
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China.
| | - Wenkang Gao
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Junke Zhang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| | - Yu Morino
- Center for Regional Environmental Research, National Institute for Environmental Studies, Tsukuba, Japan
| | - Luxi Zhou
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Pengfei Yu
- National Oceanic and Atmospheric Administration, Boulder, CO, USA; Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
| | - Ying Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China; Center for Regional Environmental Research, National Institute for Environmental Studies, Tsukuba, Japan
| | - Jiaren Sun
- South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, China
| | - Baozhu Ge
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| | - Guiqian Tang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| | - Yuesi Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
22
|
Brune WH, Baier BC, Thomas J, Ren X, Cohen RC, Pusede SE, Browne EC, Goldstein AH, Gentner DR, Keutsch FN, Thornton JA, Harrold S, Lopez-Hilfiker FD, Wennberg PO. Ozone production chemistry in the presence of urban plumes. Faraday Discuss 2016; 189:169-89. [DOI: 10.1039/c5fd00204d] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ozone pollution affects human health, especially in urban areas on hot sunny days. Its basic photochemistry has been known for decades and yet it is still not possible to correctly predict the high ozone levels that are the greatest threat. The CalNex_SJV study in Bakersfield CA in May/June 2010 provided an opportunity to examine ozone photochemistry in an urban area surrounded by agriculture. The measurement suite included hydroxyl (OH), hydroperoxyl (HO2), and OH reactivity, which are compared with the output of a photochemical box model. While the agreement is generally within combined uncertainties, measured HO2 far exceeds modeled HO2 in NOx-rich plumes. OH production and loss do not balance as they should in the morning, and the ozone production calculated with measured HO2 is a decade greater than that calculated with modeled HO2 when NO levels are high. Calculated ozone production using measured HO2 is twice that using modeled HO2, but this difference in calculated ozone production has minimal impact on the assessment of NOx-sensitivity or VOC-sensitivity for midday ozone production. Evidence from this study indicates that this important discrepancy is not due to the HO2 measurement or to the sampling of transported plumes but instead to either emissions of unknown organic species that accompany the NO emissions or unknown photochemistry involving nitrogen oxides and hydrogen oxides, possibly the hypothesized reaction OH + NO + O2 → HO2 + NO2.
Collapse
|
23
|
Pusede SE, Steiner AL, Cohen RC. Temperature and recent trends in the chemistry of continental surface ozone. Chem Rev 2015; 115:3898-918. [PMID: 25950502 DOI: 10.1021/cr5006815] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Allison L Steiner
- §Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | |
Collapse
|
24
|
Young CJ, Washenfelder RA, Roberts JM, Mielke LH, Osthoff HD, Tsai C, Pikelnaya O, Stutz J, Veres PR, Cochran AK, VandenBoer TC, Flynn J, Grossberg N, Haman CL, Lefer B, Stark H, Graus M, de Gouw J, Gilman JB, Kuster WC, Brown SS. Vertically resolved measurements of nighttime radical reservoirs in Los Angeles and their contribution to the urban radical budget. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:10965-73. [PMID: 23013316 DOI: 10.1021/es302206a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Photolabile nighttime radical reservoirs, such as nitrous acid (HONO) and nitryl chloride (ClNO(2)), contribute to the oxidizing potential of the atmosphere, particularly in early morning. We present the first vertically resolved measurements of ClNO(2), together with vertically resolved measurements of HONO. These measurements were acquired during the California Nexus (CalNex) campaign in the Los Angeles basin in spring 2010. Average profiles of ClNO(2) exhibited no significant dependence on height within the boundary layer and residual layer, although individual vertical profiles did show variability. By contrast, nitrous acid was strongly enhanced near the ground surface with much smaller concentrations aloft. These observations are consistent with a ClNO(2) source from aerosol uptake of N(2)O(5) throughout the boundary layer and a HONO source from dry deposition of NO(2) to the ground surface and subsequent chemical conversion. At ground level, daytime radical formation calculated from nighttime-accumulated HONO and ClNO(2) was approximately equal. Incorporating the different vertical distributions by integrating through the boundary and residual layers demonstrated that nighttime-accumulated ClNO(2) produced nine times as many radicals as nighttime-accumulated HONO. A comprehensive radical budget at ground level demonstrated that nighttime radical reservoirs accounted for 8% of total radicals formed and that they were the dominant radical source between sunrise and 09:00 Pacific daylight time (PDT). These data show that vertical gradients of radical precursors should be taken into account in radical budgets, particularly with respect to HONO.
Collapse
Affiliation(s)
- Cora J Young
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Tatum Ernest C, Bauer D, Hynes AJ. Radical quantum yields from formaldehyde photolysis in the 30,400-32,890 cm(-1) (304-329 nm) spectral region: detection of radical photoproducts using pulsed laser photolysis-pulsed laser induced fluorescence. J Phys Chem A 2012; 116:6983-95. [PMID: 22625180 DOI: 10.1021/jp2117399] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The relative quantum yield for the production of radical products, H + HCO, from the UV photolysis of formaldehyde (HCHO) has been measured using a pulsed laser photolysis–pulsed laser induced fluorescence (PLP–PLIF) technique across the 30,400–32,890 cm(–1) (304–329 nm) spectral region of the Ã(1)A2–X̃(1)A1 electronic transition. The photolysis laser had a bandwidth of 0.09 cm(–1), which is slightly broader than the Doppler width of a rotational line of formaldehyde at 300 K (0.07 cm(–1)), and the yield spectrum shows detailed rotational structure. The H and HCO photofragments were monitored using LIF of the OH radical as a spectroscopic marker. The OH radicals were produced by rapid reaction of the H and HCO photofragments with NO2. This technique produced an “action” spectrum that at any photolysis wavelength is the product of the H + HCO radical quantum yield and HCHO absorption cross section at the photolysis wavelength and is a relative measurement. Using the HCHO absorption cross section previously obtained in this laboratory, the relative quantum yield was determined two different ways. One produced band specific yields, and the other produced yields averaged over each 100 cm(–1). Yields were normalized to a value of 0.69 at 31,750 cm(–1) based on the current recommendation of Sander et al. (Sander, S. P.; Abbatt, J.; Barker, J. R.; Burkholder, J. B.; Friedl, R. R.; Golden, D. M.; Huie, R. E.; Kolb, C. E.; Kurylo, M. J.; Moortgat, G. K.; et al. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 17; Jet Propulsion Laboratory: Pasadena, CA, USA, 2011). The resulting radical quantum yields agree well with previous experimental studies and the current JPL recommendation but show greater wavelength dependent structure. A significant decrease in the quantum yield was observed for the 5(0)(1) + 1(0)(1)4(0)(1) combination band centered at 31,125 cm(–1). This band has a low absorption cross section and has little impact on the calculated atmospheric photodissociation rate but is a further indication of the complexity of HCHO photodissociation dynamics.
Collapse
Affiliation(s)
- Cheryl Tatum Ernest
- Division of Marine and Atmospheric Chemistry, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, Florida 33149, United States
| | | | | |
Collapse
|
26
|
Stone D, Whalley LK, Heard DE. Tropospheric OH and HO2 radicals: field measurements and model comparisons. Chem Soc Rev 2012; 41:6348-404. [DOI: 10.1039/c2cs35140d] [Citation(s) in RCA: 332] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Wolfe GM, Crounse JD, Parrish JD, St. Clair JM, Beaver MR, Paulot F, Yoon TP, Wennberg PO, Keutsch FN. Photolysis, OH reactivity and ozone reactivity of a proxy for isoprene-derived hydroperoxyenals (HPALDs). Phys Chem Chem Phys 2012; 14:7276-86. [DOI: 10.1039/c2cp40388a] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Khan MAH, Hoque MMN, Alam SS, Ashfold MJ, Nickless G, Shallcross DE. Estimation and comparison of night-time OH levels in the UK urban atmosphere using two different analysis methods. J Environ Sci (China) 2011; 23:60-64. [PMID: 21476341 DOI: 10.1016/s1001-0742(10)60373-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Night-time OH levels have been determined for UK urban surface environments using two methods, the decay and steady state approximation methods. Measurement data from the UK National Environmental Technology Centre archive for four urban sites (Bristol, Harwell, London Eltham and Edinburgh) over the time period of 1996 to 2000 have been used in this study. Three reactive alkenes, namely isoprene, 1,3-butadiene and trans-2-pentene were chosen for the calculation of OH levels by the decay method. Hourly measurements of NO, NO2, O3, CO and 20 VOCs were used to determine night-time OH level using the steady state approximation method. Our results showed that the night-time OH levels were in the range of 1 x 10(5) - 1 x 10(6) molecules/cm3 at these four urban sites in the UK. The application of a t-test of these analyses indicated that except Bristol, there was no significant difference between the OH levels found from the decay and steady state approximation methods. Night-time levels of the OH radical appeared to peak in summer and spring time tracking the night-time O3 levels which also passed through a maximum at this time.
Collapse
Affiliation(s)
- M Anwar H Khan
- School of Chemistry, University of Bristol, BS8 1TS, United Kingdom.
| | | | | | | | | | | |
Collapse
|
29
|
da Silva G. Kinetics and Mechanism of the Glyoxal + HO2 Reaction: Conversion of HO2 to OH by Carbonyls. J Phys Chem A 2010; 115:291-7. [DOI: 10.1021/jp108358y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gabriel da Silva
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville 3010, Victoria, Australia
| |
Collapse
|
30
|
da Silva G. Oxidation of Carboxylic Acids Regenerates Hydroxyl Radicals in the Unpolluted and Nighttime Troposphere. J Phys Chem A 2010; 114:6861-9. [DOI: 10.1021/jp101279p] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gabriel da Silva
- Department of Chemical and Biomolecular Engineering, The University of Melbourne. Parkville 3010, Victoria, Australia
| |
Collapse
|
31
|
Lu K, Zhang Y, Su H, Brauers T, Chou CC, Hofzumahaus A, Liu SC, Kita K, Kondo Y, Shao M, Wahner A, Wang J, Wang X, Zhu T. Oxidant (O3+ NO2) production processes and formation regimes in Beijing. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd012714] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Regional ozone pollution and key controlling factors of photochemical ozone production in Pearl River Delta during summer time. Sci China Chem 2010. [DOI: 10.1007/s11426-010-0055-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Olaguer EP, Rappenglück B, Lefer B, Stutz J, Dibb J, Griffin R, Brune WH, Shauck M, Buhr M, Jeffries H, Vizuete W, Pinto JP. Deciphering the role of radical precursors during the Second Texas Air Quality Study. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2009; 59:1258-1277. [PMID: 19947108 DOI: 10.3155/1047-3289.59.11.1258] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The Texas Environmental Research Consortium (TERC) funded significant components of the Second Texas Air Quality Study (TexAQS II), including the TexAQS II Radical and Aerosol Measurement Project (TRAMP) and instrumented flights by a Piper Aztec aircraft. These experiments called attention to the role of short-lived radical sources such as formaldehyde (HCHO) and nitrous acid (HONO) in increasing ozone productivity. TRAMP instruments recorded daytime HCHO pulses as large as 32 parts per billion (ppb) originating from upwind industrial activities in the Houston Ship Channel, where in situ surface monitors detected HCHO peaks as large as 52 ppb. Moreover, Ship Channel petrochemical flares were observed to produce plumes of apparent primary HCHO. In one such combustion plume that was depleted of ozone by large emissions of oxides of nitrogen (NOx), the Piper Aztec measured a ratio of HCHO to carbon monoxide (CO) 3 times that of mobile sources. HCHO from uncounted primary sources or ozonolysis of underestimated olefin emissions could significantly increase ozone productivity in Houston beyond previous expectations. Simulations with the CAMx model show that additional emissions of HCHO from industrial flares or mobile sources can increase peak ozone in Houston by up to 30 ppb. Other findings from TexAQS II include significant concentrations of HONO throughout the day, well in excess of current air quality model predictions, with large nocturnal vertical gradients indicating a surface or near-surface source of HONO, and large concentrations of nighttime radicals (approximately30 parts per trillion [ppt] HO2). HONO may be formed heterogeneously on urban canopy or particulate matter surfaces and may be enhanced by organic aerosol of industrial or motor vehicular origin, such as through conversion of nitric acid (HNO3). Additional HONO sources may increase daytime ozone by more than 10 ppb. Improving the representation of primary and secondary HCHO and HONO in air quality models could enhance the simulated effectiveness of control strategies.
Collapse
|
34
|
Carbajo PG, Smith SC, Holloway AL, Smith CA, Pope FD, Shallcross DE, Orr-Ewing AJ. Ultraviolet Photolysis of HCHO: Absolute HCO Quantum Yields by Direct Detection of the HCO Radical Photoproduct. J Phys Chem A 2008; 112:12437-48. [DOI: 10.1021/jp8070508] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Shona C. Smith
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
| | - Anne-Louise Holloway
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
| | - Carina A. Smith
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
| | - Francis D. Pope
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
| | - Dudley E. Shallcross
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
| | - Andrew J. Orr-Ewing
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
| |
Collapse
|
35
|
Kanaya Y, Fukuda M, Akimoto H, Takegawa N, Komazaki Y, Yokouchi Y, Koike M, Kondo Y. Urban photochemistry in central Tokyo: 2. Rates and regimes of oxidant (O3+ NO2) production. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd008671] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Kanaya Y, Cao R, Akimoto H, Fukuda M, Komazaki Y, Yokouchi Y, Koike M, Tanimoto H, Takegawa N, Kondo Y. Urban photochemistry in central Tokyo: 1. Observed and modeled OH and HO2radical concentrations during the winter and summer of 2004. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2007jd008670] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
37
|
Kanaya Y, Cao R, Kato S, Miyakawa Y, Kajii Y, Tanimoto H, Yokouchi Y, Mochida M, Kawamura K, Akimoto H. Chemistry of OH and HO2radicals observed at Rishiri Island, Japan, in September 2003: Missing daytime sink of HO2and positive nighttime correlations with monoterpenes. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd007987] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Olson JR, Crawford JH, Chen G, Brune WH, Faloona IC, Tan D, Harder H, Martinez M. A reevaluation of airborne HOxobservations from NASA field campaigns. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005jd006617] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jennifer R. Olson
- Atmospheric Sciences Division, Langley Research Center; NASA; Hampton Virginia USA
| | - James H. Crawford
- Atmospheric Sciences Division, Langley Research Center; NASA; Hampton Virginia USA
| | - Gao Chen
- Atmospheric Sciences Division, Langley Research Center; NASA; Hampton Virginia USA
| | - William H. Brune
- Department of Meteorology; Pennsylvania State University; University Park Pennsylvania USA
| | - Ian C. Faloona
- Department of Land, Air and Water Resources; University of California; Davis California USA
| | - David Tan
- School of Earth and Atmospheric Sciences; Georgia Institute of Technology; Atlanta Georgia USA
| | | | | |
Collapse
|
39
|
Ren X, Brune WH, Oliger A, Metcalf AR, Simpas JB, Shirley T, Schwab JJ, Bai C, Roychowdhury U, Li Y, Cai C, Demerjian KL, He Y, Zhou X, Gao H, Hou J. OH, HO2, and OH reactivity during the PMTACS-NY Whiteface Mountain 2002 campaign: Observations and model comparison. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005jd006126] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xinrong Ren
- Department of Meteorology; Pennsylvania State University; University Park Pennsylvania USA
| | - William H. Brune
- Department of Meteorology; Pennsylvania State University; University Park Pennsylvania USA
| | - Angelique Oliger
- Department of Meteorology; Pennsylvania State University; University Park Pennsylvania USA
| | - Andrew R. Metcalf
- Department of Meteorology; Pennsylvania State University; University Park Pennsylvania USA
| | - James B. Simpas
- Department of Meteorology; Pennsylvania State University; University Park Pennsylvania USA
| | - Terry Shirley
- Department of Meteorology; Pennsylvania State University; University Park Pennsylvania USA
| | - James J. Schwab
- Atmospheric Sciences Research Center; State University of New York; Albany New York USA
| | - Chunhong Bai
- Atmospheric Sciences Research Center; State University of New York; Albany New York USA
| | - Utpal Roychowdhury
- Atmospheric Sciences Research Center; State University of New York; Albany New York USA
| | - Yongquan Li
- Atmospheric Sciences Research Center; State University of New York; Albany New York USA
| | - Chenxia Cai
- Atmospheric Sciences Research Center; State University of New York; Albany New York USA
| | - Kenneth L. Demerjian
- Atmospheric Sciences Research Center; State University of New York; Albany New York USA
| | - Yi He
- Department of Environmental Health and Toxicology; State University of New York; Albany New York USA
| | - Xianliang Zhou
- Department of Environmental Health and Toxicology; State University of New York; Albany New York USA
| | - Honglian Gao
- Department of Environmental Health and Toxicology; State University of New York; Albany New York USA
| | - Jian Hou
- Department of Environmental Health and Toxicology; State University of New York; Albany New York USA
| |
Collapse
|
40
|
Sadanaga Y, Yoshino A, Kato S, Kajii Y. Measurements of OH reactivity and photochemical ozone production in the urban atmosphere. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2005; 39:8847-52. [PMID: 16323785 DOI: 10.1021/es049457p] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Measurements of OH reactivity (i.e., OH loss rates) in the troposphere are essential for discussing tropospheric OH photochemistry. In July and August 2003, we observed the total OH reactivity in a suburban area of Tokyo. More than 90% of the data of the measured OH loss rates were higher than the calculated values with simultaneously measured concentrations of various trace species even though the rate coefficient of the OH + NO2 reaction was measured by us. We concluded that this discrepancy is due to the existence of unmeasured volatile organic compounds (VOCs). We estimated the potential of the photochemical ozone production in the case of including the unknown species as VOCs and excluding the missing sink, respectively. When the unknown species were included as VOCs, the potential increases from 32% to 88%. This result indicates the photochemical production rates of ozone in the urban air are substantially greater than expected.
Collapse
Affiliation(s)
- Yasuhiro Sadanaga
- Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan.
| | | | | | | |
Collapse
|
41
|
Kleinman LI. A comparative study of ozone production in five U.S. metropolitan areas. ACTA ACUST UNITED AC 2005. [DOI: 10.1029/2004jd005096] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Jobson BT. Hydrocarbon source signatures in Houston, Texas: Influence of the petrochemical industry. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2004jd004887] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
|
44
|
Affiliation(s)
- Dwayne E Heard
- Department of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
| | | |
Collapse
|
45
|
Ren X. Intercomparison of peroxy radical measurements at a rural site using laser-induced fluorescence and Peroxy Radical Chemical Ionization Mass Spectrometer (PerCIMS) techniques. ACTA ACUST UNITED AC 2003. [DOI: 10.1029/2003jd003644] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|