1
|
Seeger CH, Grotzinger JP. Diagenesis of the Clay-Sulfate Stratigraphic Transition, Mount Sharp Group, Gale Crater, Mars. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2024; 129:e2024JE008531. [PMID: 39649802 PMCID: PMC11622355 DOI: 10.1029/2024je008531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 12/11/2024]
Abstract
The diversity and abundance of diagenetic textures observed in sedimentary rocks of the clay-sulfate transition recorded in the stratigraphic record of Gale crater are distinctive within the rover's traverse. This study catalogs all textures observed by the MAHLI instrument, including their abundances, morphologies, and cross-cutting relationships in order to suggest a paragenetic sequence in which multiple episodes of diagenetic fluid flow were required to form co-occurring color variations, pits, and nodules; secondary nodule populations; and two generations of Ca sulfate fracture-filling vein precipitation. Spatial heterogeneities in the abundance and diversity of these textures throughout the studied stratigraphic section loosely correlate with stratigraphic unit, suggesting that grain size and compaction controls on fluid pathways influenced their formation; these patterns are especially prevalent in the Pontours member, where primary stratigraphy is entirely overprinted by a nodular fabric, and the base of the stratigraphic section, where increased textural diversity may be influenced by the underlying less permeable clay-bearing rocks of the Glen Torridon region. Correlations between quantitative nodule abundance and subtle variations in measured bulk rock chemistry (especially MgO and SO3 enrichment) by the Alpha Particle X-Ray Spectrometer instrument suggest that an increase in Mg sulfate upsection is linked to precipitation of pore-filling diagenetic cement. Due to a lack of sedimentological evidence for widespread evaporite or near-surface crust formation of these Mg sulfates, we propose three alternative hypotheses for subsurface groundwater-related remobilization of pre-existing sulfates and reprecipitation at depth in pore spaces.
Collapse
Affiliation(s)
- C. H. Seeger
- Department of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - J. P. Grotzinger
- Department of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| |
Collapse
|
2
|
Heydari E, Schroeder JF, Calef FJ, Parker TJ, Fairén AG. Lacustrine sedimentation by powerful storm waves in Gale crater and its implications for a warming episode on Mars. Sci Rep 2023; 13:18715. [PMID: 37907611 PMCID: PMC10618461 DOI: 10.1038/s41598-023-45068-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 10/15/2023] [Indexed: 11/02/2023] Open
Abstract
This investigation documents that the Rugged Terrain Unit, the Stimson formation, and the Greenheugh sandstone were deposited in a 1200 m-deep lake that formed after the emergence of Mt. Sharp in Gale crater, Mars, nearly 4 billion years ago. In fact, the Curiosity rover traversed on a surface that once was the bottom of this lake and systematically examined the strata that were deposited in its deepest waters on the crater floor to layers that formed along its shoreline on Mt. Sharp. This provided a rare opportunity to document the evolution of one aqueous episode from its inception to its desiccation and to determine the warming mechanism that caused it. Deep water lacustrine siltstones directly overlie conglomerates that were deposited by mega floods on the crater floor. This indicates that the inception phase of the lake was sudden and took place when flood waters poured into the crater. The lake expanded quickly and its shoreline moved up the slope of Mt. Sharp during the lake-level rise phase and deposited a layer of sandstone with large cross beds under the influence of powerful storm waves. The lake-level highstand phase was dominated by strong bottom currents that transported sediments downhill and deposited one of the most distinctive sedimentological features in Gale crater: a layer of sandstone with a 3 km-long field of meter-high subaqueous antidunes (the Washboard) on Mt. Sharp. Bottom current continued downhill and deposited sandstone and siltstone on the foothills of Mt. Sharp and on the crater floor, respectively. The lake-level fall phase caused major erosion of lacustrine strata that resulted in their patchy distribution on Mt. Sharp. Eroded sediments were then transported to deep waters by gravity flows and were re-deposited as conglomerate and sandstone in subaqueous channels and in debris flow fans. The desiccation phase took place in calm waters of the lake. The aqueous episode we investigated was vigorous but short-lived. Its characteristics as determined by our sedimentological study matches those predicted by an asteroid impact. This suggests that the heat generated by an impact transformed Mars into a warm, wet, and turbulent planet. It resulted in planet-wide torrential rain, giant floods on land, powerful storms in the atmosphere, and strong waves in lakes. The absence of age dates prevents the determination of how long the lake existed. Speculative rates of lake-level change suggest that the lake could have lasted for a period ranging from 16 to 240 Ky.
Collapse
Affiliation(s)
- Ezat Heydari
- Department of Physics, Atmospheric Sciences, and Geoscience, Jackson State University, 1400 Lynch Street, Jackson, MS, 39217, USA.
| | - Jeffrey F Schroeder
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA
| | - Fred J Calef
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA
| | - Timothy J Parker
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA
| | - Alberto G Fairén
- Centro de Astrobiología (CSIC-INTA), Madrid, Spain
- Department of Astronomy, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
3
|
Meyer MJ, Milliken RE, Hurowitz JE, Robertson KM. Ancient Siliciclastic-Evaporites as Seen by Remote Sensing Instrumentation with Implications for the Rover-Scale Exploration of Sedimentary Environments on Mars. ASTROBIOLOGY 2023; 23:477-495. [PMID: 36944138 DOI: 10.1089/ast.2022.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Accurate interpretation of the martian sedimentary rock record-and by extension that planet's paleoenvironmental history and potential habitability-relies heavily on rover-based acquisition of textural and compositional data and researchers to properly interpret those data. However, the degree to which this type of remotely sensed information can be unambiguously resolved and accurately linked to geological processes in ancient sedimentary systems warrants further study. In this study, we characterize Mars-relevant siliciclastic-evaporite samples by traditional laboratory-based geological methods (thin section petrography, X-ray diffraction [XRD], backscattered electron imaging, microprobe chemical analyses) and remote sensing methods relevant to martian rover payloads (visible-near-mid infrared reflectance spectroscopy, X-ray fluorescence mapping, XRD). We assess each method's ability to resolve primary and secondary sedimentologic features necessary for the accurate interpretation of paleoenvironmental processes. While the most dominant textures and associated compositions (i.e., bedded gypsum evaporite) of the sample suite are readily identified by a combination of remote sensing techniques, equally important, although more subtle, components (i.e., interbedded windblown silt, meniscus cements) are not resolved unambiguously in bulk samples. However, rover-based techniques capable of coordinating spatially resolved compositional measurements with textural imaging reveal important features not readily detected using traditional assessments (i.e., subtle clay-organic associations, microscale diagenetic nodules). Our findings demonstrate the improved generational capacity of rovers to explore ancient sedimentary environments on Mars while also highlighting the complexities in extracting comprehensive paleoenvironmental information when limited to currently available rover-based techniques. Complete and accurate interpretation of ancient martian sedimentary environments, and by extension the habitability of those environments, likely requires sample return or in situ human exploration. Plain Language Summary Only when correctly translated can the ancient martian sedimentary rock record reveal the environmental evolution of the planet's surface through time. In this case study, we characterize Mars-relevant sedimentary rocks and evaluate the degree to which a comprehensive geological picture can be resolved unambiguously when limited to microscale remote sensing methods relevant to rovers on Mars. While the most dominant textural features and associated compositions of the sample suite are readily identified by a combination of remote sensing techniques, equally important but more subtle components are not resolved unambiguously in bulk samples. However, rover-based techniques capable of coordinating spatially resolved compositional measurements with textural imaging, such as Perseverance Rover's Planetary Instrument for X-Ray Lithochemistry instrument, reveal important features not readily detected by more traditional methods. We demonstrate that rovers have, generationally, improved in their capacity to resolve a true geological picture in ancient sedimentary environments, likely owing to an improved ability to coordinate spatially resolved compositional measurements with textural imaging at the microscale. However, our work also highlights the complexities involved in extracting subtle environmental information when limited to currently available rover-based techniques and suggests that comprehensive interpretation of ancient martian sedimentary systems likely requires sample return or in situ human exploration. Key Points Mars-relevant samples are characterized using both traditional laboratory and microscale rover-based remote sensing techniques to assess each method's ability to recognize features necessary for accurate paleoenvironmental process interpretation. While some key paleoenvironmental processes can reasonably be inferred via remote sensing methods, others cannot be resolved unambiguously. Perseverance Rover's Planetary Instrument for X-Ray Lithochemistry instrument reveals diagenetic features that would otherwise remain unseen by traditional thin section petrography.
Collapse
Affiliation(s)
- Melissa J Meyer
- Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, Rhode Island, USA
| | - Ralph E Milliken
- Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, Rhode Island, USA
| | - Joel E Hurowitz
- Department of Geosciences, Stony Brook University, Stony Brook, New York, USA
| | - Kevin M Robertson
- Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
4
|
Bennett KA, Fox VK, Bryk A, Dietrich W, Fedo C, Edgar L, Thorpe MT, Williams AJ, Wong GM, Dehouck E, McAdam A, Sutter B, Millan M, Banham SG, Bedford CC, Bristow T, Fraeman A, Vasavada AR, Grotzinger J, Thompson L, O’Connell‐Cooper C, Gasda P, Rudolph A, Sullivan R, Arvidson R, Cousin A, Horgan B, Stack KM, Treiman A, Eigenbrode J, Caravaca G. The Curiosity Rover's Exploration of Glen Torridon, Gale Crater, Mars: An Overview of the Campaign and Scientific Results. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2023; 128:e2022JE007185. [PMID: 37034460 PMCID: PMC10078523 DOI: 10.1029/2022je007185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 06/16/2023]
Abstract
The Mars Science Laboratory rover, Curiosity, explored the clay mineral-bearing Glen Torridon region for 1 Martian year between January 2019 and January 2021, including a short campaign onto the Greenheugh pediment. The Glen Torridon campaign sought to characterize the geology of the area, seek evidence of habitable environments, and document the onset of a potentially global climatic transition during the Hesperian era. Curiosity roved 5 km in total throughout Glen Torridon, from the Vera Rubin ridge to the northern margin of the Greenheugh pediment. Curiosity acquired samples from 11 drill holes during this campaign and conducted the first Martian thermochemolytic-based organics detection experiment with the Sample Analysis at Mars instrument suite. The lowest elevations within Glen Torridon represent a continuation of lacustrine Murray formation deposits, but overlying widespread cross bedded sandstones indicate an interval of more energetic fluvial environments and prompted the definition of a new stratigraphic formation in the Mount Sharp group called the Carolyn Shoemaker formation. Glen Torridon hosts abundant phyllosilicates yet remains compositionally and mineralogically comparable to the rest of the Mount Sharp group. Glen Torridon samples have a great diversity and abundance of sulfur-bearing organic molecules, which are consistent with the presence of ancient refractory organic matter. The Glen Torridon region experienced heterogeneous diagenesis, with the most striking alteration occurring just below the Siccar Point unconformity at the Greenheugh pediment. Results from the pediment campaign show that the capping sandstone formed within the Stimson Hesperian aeolian sand sea that experienced seasonal variations in wind direction.
Collapse
Affiliation(s)
| | - Valerie K. Fox
- Department of Earth and Environmental SciencesUniversity of MinnesotaMinneapolisMNUSA
- Division of Geologic and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - Alex Bryk
- Department of Earth and Planetary ScienceUniversity of California, BerkeleyBerkeleyCAUSA
| | - William Dietrich
- Department of Earth and Planetary ScienceUniversity of California, BerkeleyBerkeleyCAUSA
| | - Christopher Fedo
- Department of Earth and Planetary SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Lauren Edgar
- Astrogeology Science CenterU.S. Geological SurveyFlagstaffAZUSA
| | | | - Amy J. Williams
- Department of Geological SciencesUniversity of FloridaGainesvilleFLUSA
| | - Gregory M. Wong
- Department of GeosciencesThe Pennsylvania State UniversityUniversity ParkPAUSA
| | - Erwin Dehouck
- Université de LyonUCBLENSLUJMCNRSLGL‐TPEVilleurbanneFrance
| | - Amy McAdam
- NASA Goddard Space Flight CenterGreenbeltMDUSA
| | - Brad Sutter
- Jacobs TechnologyHoustonTXUSA
- NASA Johnson Space CenterHoustonTXUSA
| | - Maëva Millan
- NASA Goddard Space Flight CenterGreenbeltMDUSA
- Department of BiologyGeorgetown UniversityWashingtonDCUSA
- Laboratoire Atmosphère, Observations Spatiales (LATMOS), LATMOS/IPSLUVSQ Université Paris‐Saclay, Sorbonne Université, CNRSGuyancourtFrance
| | - Steven G. Banham
- Department of Earth Sciences and EngineeringImperial College LondonLondonUK
| | - Candice C. Bedford
- NASA Johnson Space CenterHoustonTXUSA
- Lunar and Planetary InstituteHoustonTXUSA
| | | | - Abigail Fraeman
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - Ashwin R. Vasavada
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - John Grotzinger
- Division of Geologic and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - Lucy Thompson
- Planetary and Space Science CentreUniversity of New BrunswickFrederictonNBCanada
| | | | | | - Amanda Rudolph
- Earth Atmosphere and Planetary SciencePurdue UniversityWest LafayetteINUSA
| | | | - Ray Arvidson
- Department of Earth and Planetary SciencesWashington University in St. LouisSt. LouisMOUSA
| | - Agnes Cousin
- IRAPUniversité de ToulouseCNRSCNESToulouseFrance
| | - Briony Horgan
- Earth Atmosphere and Planetary SciencePurdue UniversityWest LafayetteINUSA
| | - Kathryn M. Stack
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | | | | | | |
Collapse
|
5
|
Khan SY, Stack KM, Yingst RA, Bergmann K. Characterization of Clasts in the Glen Torridon Region of Gale Crater Observed by the Mars Science Laboratory Curiosity Rover. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2022; 127:e2021JE007095. [PMID: 36588802 PMCID: PMC9788136 DOI: 10.1029/2021je007095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 10/18/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
The morphology and composition of clasts have the potential to reveal the nature and extent of erosional processes acting in a region. Dense accumulations of granule- to pebble-sized clasts covering the ground throughout the Glen Torridon region of Gale crater on Mars were studied using data acquired by the Mars Science Laboratory Curiosity rover between sols 2300 and 2593. In this study, measurements of shape, size, texture, and elemental abundance of unconsolidated granules and pebbles within northern Glen Torridon were compiled. Nine primary clast types were identified through stepwise hierarchical clustering, all of which are sedimentary and can be compositionally linked to local bedrock, suggesting relatively short transport distances. Several clast types display features associated with fragmentation along bedding planes and existing cracks in bedrock. These results indicate that Glen Torridon clasts are primarily the product of in-situ physical weathering of local bedrock.
Collapse
Affiliation(s)
- Sabrina Y. Khan
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyCAPasadenaUSA
- Department of Earth, Atmospheric, and Planetary SciencesMassachusetts Institute of TechnologyMACambridgeUSA
- Department of Earth and Planetary SciencesJohns Hopkins UniversityMDBaltimoreUSA
| | - Kathryn M. Stack
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyCAPasadenaUSA
| | | | - Kristin Bergmann
- Department of Earth, Atmospheric, and Planetary SciencesMassachusetts Institute of TechnologyMACambridgeUSA
| |
Collapse
|
6
|
Caravaca G, Mangold N, Dehouck E, Schieber J, Zaugg L, Bryk AB, Fedo CM, Le Mouélic S, Le Deit L, Banham SG, Gupta S, Cousin A, Rapin W, Gasnault O, Rivera‐Hernández F, Wiens RC, Lanza NL. From Lake to River: Documenting an Environmental Transition Across the Jura/Knockfarril Hill Members Boundary in the Glen Torridon Region of Gale Crater (Mars). JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2022; 127:e2021JE007093. [PMID: 36246083 PMCID: PMC9541347 DOI: 10.1029/2021je007093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 06/16/2023]
Abstract
Between January 2019 and January 2021, the Mars Science Laboratory team explored the Glen Torridon (GT) region in Gale crater (Mars), known for its orbital detection of clay minerals. Mastcam, Mars Hand Lens Imager, and ChemCam data are used in an integrated sedimentological and geochemical study to characterize the Jura member of the upper Murray formation and the Knockfarril Hill member of the overlying Carolyn Shoemaker formation in northern GT. The studied strata show a progressive transition represented by interfingering beds of fine-grained, recessive mudstones of the Jura member and coarser-grained, cross-stratified sandstones attributed to the Knockfarril Hill member. Whereas the former are interpreted as lacustrine deposits, the latter are interpreted as predominantly fluvial deposits. The geochemical composition seen by the ChemCam instrument show K2O-rich mudstones (∼1-2 wt.%) versus MgO-rich sandstones (>6 wt.%), relative to the average composition of the underlying Murray formation. We document consistent sedimentary and geochemical data sets showing that low-energy mudstones of the Jura member are associated with the K-rich endmember, and that high-energy cross-stratified sandstones of the Knockfarril Hill member are associated with the Mg-rich endmember, regardless of stratigraphic position. The Jura to Knockfarril Hill transition therefore marks a significant paleoenvironmental change, where a long-lived and comparatively quiescent lacustrine setting progressively changes into a more energetic fluvial setting, as a consequence of shoreline regression due to either increased sediment supply or lake-level drop.
Collapse
Affiliation(s)
- Gwénaël Caravaca
- UMR 5277 CNRSUPSCNES Institut de Recherche en Astrophysique et PlanétologieUniversité Paul Sabatier Toulouse IIIToulouseFrance
- UMR 6112 CNRS Laboratoire de Planétologie et GéosciencesNantes UniversitéUniversité d’AngersNantesFrance
- Now at Institut de Recherche en Astrophysique et PlanétologieToulouseFrance
| | - Nicolas Mangold
- UMR 6112 CNRS Laboratoire de Planétologie et GéosciencesNantes UniversitéUniversité d’AngersNantesFrance
| | - Erwin Dehouck
- Université de LyonUCBLENSLUJMCNRSLGL‐TPEVilleurbanneFrance
| | - Juergen Schieber
- Department of Geological SciencesIndiana University BloomingtonBloomingtonINUSA
| | - Louis Zaugg
- UMR 6112 CNRS Laboratoire de Planétologie et GéosciencesNantes UniversitéUniversité d’AngersNantesFrance
| | | | - Christopher M. Fedo
- Department of Earth & Planetary SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Stéphane Le Mouélic
- UMR 6112 CNRS Laboratoire de Planétologie et GéosciencesNantes UniversitéUniversité d’AngersNantesFrance
| | - Laetitia Le Deit
- UMR 6112 CNRS Laboratoire de Planétologie et GéosciencesNantes UniversitéUniversité d’AngersNantesFrance
| | - Steven G. Banham
- Department of Earth Sciences and EngineeringImperial College LondonLondonUK
| | - Sanjeev Gupta
- Department of Earth Sciences and EngineeringImperial College LondonLondonUK
| | - Agnès Cousin
- UMR 5277 CNRSUPSCNES Institut de Recherche en Astrophysique et PlanétologieUniversité Paul Sabatier Toulouse IIIToulouseFrance
| | - William Rapin
- UMR 5277 CNRSUPSCNES Institut de Recherche en Astrophysique et PlanétologieUniversité Paul Sabatier Toulouse IIIToulouseFrance
| | - Olivier Gasnault
- UMR 5277 CNRSUPSCNES Institut de Recherche en Astrophysique et PlanétologieUniversité Paul Sabatier Toulouse IIIToulouseFrance
| | | | - Roger C. Wiens
- Earth, Atmospheric, and Planetary SciencesPurdue UniversityWest LafayetteINUSA
| | | |
Collapse
|
7
|
Royle SH, Salter TL, Watson JS, Sephton MA. Mineral Matrix Effects on Pyrolysis Products of Kerogens Infer Difficulties in Determining Biological Provenance of Macromolecular Organic Matter at Mars. ASTROBIOLOGY 2022; 22:520-540. [PMID: 35171040 DOI: 10.1089/ast.2021.0074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ancient martian organic matter is likely to take the form of kerogen-like recalcitrant macromolecular organic matter (MOM), existing in close association with reactive mineral surfaces, especially iron oxides. Detecting and identifying a biological origin for martian MOM will therefore be of utmost importance for life-detection efforts at Mars. We show that Type I and Type IV kerogens provide effective analogues for putative martian MOM of biological and abiological (meteoric) provenances, respectively. We analyze the pyrolytic breakdown products when these kerogens are mixed with mineral matrices highly relevant for the search for life on Mars. We demonstrate that, using traditional thermal techniques as generally used by the Sample Analysis at Mars and Mars Organic Molecule Analyser instruments, even the breakdown products of highly recalcitrant MOM are transformed during analysis in the presence of reactive mineral surfaces, particularly iron. Analytical transformation reduces the diagnostic ability of this technique, as detected transformation products of both biological and abiological MOM may be identical (low molecular weight gas phases and benzene) and indistinguishable. The severity of transformational effects increased through calcite < kaolinite < hematite < nontronite < magnetite < goethite. Due to their representation of various habitable aqueous environments and the preservation potential of organic matter by iron, it is not advisable to completely avoid iron-rich strata. We conclude that hematite-rich localities, with evidence of extensive aqueous alteration of originally reducing phases, such as the Vera Rubin Ridge, may be relatively promising targets for identifying martian biologically sourced MOM.
Collapse
Affiliation(s)
- Samuel H Royle
- Department of Earth Science and Engineering, Imperial College London, London, UK
| | - Tara L Salter
- Department of Earth Science and Engineering, Imperial College London, London, UK
| | - Jonathan S Watson
- Department of Earth Science and Engineering, Imperial College London, London, UK
| | - Mark A Sephton
- Department of Earth Science and Engineering, Imperial College London, London, UK
| |
Collapse
|
8
|
Vasavada AR. Mission Overview and Scientific Contributions from the Mars Science Laboratory Curiosity Rover After Eight Years of Surface Operations. SPACE SCIENCE REVIEWS 2022; 218:14. [PMID: 35399614 PMCID: PMC8981195 DOI: 10.1007/s11214-022-00882-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
UNLABELLED NASA's Mars Science Laboratory mission, with its Curiosity rover, has been exploring Gale crater (5.4° S, 137.8° E) since 2012 with the goal of assessing the potential of Mars to support life. The mission has compiled compelling evidence that the crater basin accumulated sediment transported by marginal rivers into lakes that likely persisted for millions of years approximately 3.6 Ga ago in the early Hesperian. Geochemical and mineralogical assessments indicate that environmental conditions within this timeframe would have been suitable for sustaining life, if it ever were present. Fluids simultaneously circulated in the subsurface and likely existed through the dry phases of lake bed exposure and aeolian deposition, conceivably creating a continuously habitable subsurface environment that persisted to less than 3 Ga in the early Amazonian. A diversity of organic molecules has been preserved, though degraded, with evidence for more complex precursors. Solid samples show highly variable isotopic abundances of sulfur, chlorine, and carbon. In situ studies of modern wind-driven sediment transport and multiple large and active aeolian deposits have led to advances in understanding bedform development and the initiation of saltation. Investigation of the modern atmosphere and environment has improved constraints on the timing and magnitude of atmospheric loss, revealed the presence of methane and the crater's influence on local meteorology, and provided measurements of high-energy radiation at Mars' surface in preparation for future crewed missions. Rover systems and science instruments remain capable of addressing all key scientific objectives. Emphases on advance planning, flexibility, operations support work, and team culture have allowed the mission team to maintain a high level of productivity in spite of declining rover power and funding. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11214-022-00882-7.
Collapse
Affiliation(s)
- Ashwin R. Vasavada
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| |
Collapse
|
9
|
Depleted carbon isotope compositions observed at Gale crater, Mars. Proc Natl Acad Sci U S A 2022; 119:2115651119. [PMID: 35042808 PMCID: PMC8795525 DOI: 10.1073/pnas.2115651119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2021] [Indexed: 11/20/2022] Open
Abstract
Carbon isotopic analysis is among the most pervasive geochemical approaches because the fractionation of carbon isotopes produces a natural tracer of biological and chemical processes. Rover-based carbon isotopic analyses of sedimentary rocks on Mars have the potential to reveal modes of Martian carbon cycling. We report carbon isotopic values of the methane released during pyrolysis of samples obtained at Gale crater. The values show remarkable variation indicating different origins for the carbon evolved from different samples. Samples from multiple locations within Gale crater evolved methane with highly fractionated carbon isotopes. We suggest three routes by which highly fractionated carbon could be deposited on Mars, with each suggesting that Martian carbon cycling is quite distinct from that of the present Earth. Obtaining carbon isotopic information for organic carbon from Martian sediments has long been a goal of planetary science, as it has the potential to elucidate the origin of such carbon and aspects of Martian carbon cycling. Carbon isotopic values (δ13CVPDB) of the methane released during pyrolysis of 24 powder samples at Gale crater, Mars, show a high degree of variation (−137 ± 8‰ to +22 ± 10‰) when measured by the tunable laser spectrometer portion of the Sample Analysis at Mars instrument suite during evolved gas analysis. Included in these data are 10 measured δ13C values less than −70‰ found for six different sampling locations, all potentially associated with a possible paleosurface. There are multiple plausible explanations for the anomalously depleted 13C observed in evolved methane, but no single explanation can be accepted without further research. Three possible explanations are the photolysis of biological methane released from the subsurface, photoreduction of atmospheric CO2, and deposition of cosmic dust during passage through a galactic molecular cloud. All three of these scenarios are unconventional, unlike processes common on Earth.
Collapse
|
10
|
Chide B, Beyssac O, Gauthier M, Benzerara K, Estève I, Boulliard JC, Maurice S, Wiens RC. Acoustic monitoring of laser-induced phase transitions in minerals: implication for Mars exploration with SuperCam. Sci Rep 2021; 11:24019. [PMID: 34911980 PMCID: PMC8674266 DOI: 10.1038/s41598-021-03315-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/29/2021] [Indexed: 11/10/2022] Open
Abstract
The SuperCam instrument suite onboard the Mars 2020 Perseverance rover uses the laser-induced breakdown spectroscopy (LIBS) technique to determine the elemental composition of rocks and soils of the Mars surface. It is associated with a microphone to retrieve the physical properties of the ablated targets when listening to the laser-induced acoustic signal. In this study, we report the monitoring of laser-induced mineral phase transitions in acoustic data. Sound data recorded during the laser ablation of hematite, goethite and diamond showed a sharp increase of the acoustic signal amplitude over the first laser shots. Analyses of the laser-induced craters with Raman spectroscopy and scanning electron microscopy indicate that both hematite and goethite have been transformed into magnetite and that diamond has been transformed into amorphous-like carbon over the first laser shots. It is shown that these transitions are the root cause of the increase in acoustic signal, likely due to a change in target's physical properties as the material is transformed. These results give insights into the influence of the target's optical and thermal properties over the acoustic signal. But most importantly, in the context of the Mars surface exploration with SuperCam, as this behavior occurs only for specific phases, it demonstrates that the microphone data may help discriminating mineral phases whereas LIBS data only have limited capabilities.
Collapse
Affiliation(s)
- Baptiste Chide
- IRAP-CNRS, Université Toulouse III, 31400, Toulouse, France.
| | - Olivier Beyssac
- Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS UMR 7590, IMPMC, 75005, Paris, France
| | - Michel Gauthier
- Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS UMR 7590, IMPMC, 75005, Paris, France
| | - Karim Benzerara
- Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS UMR 7590, IMPMC, 75005, Paris, France
| | - Imène Estève
- Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS UMR 7590, IMPMC, 75005, Paris, France
| | - Jean-Claude Boulliard
- Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS UMR 7590, IMPMC, 75005, Paris, France
| | | | - Roger C Wiens
- Los Alamos National Laboratory, Los Alamos, NM, United States
| |
Collapse
|
11
|
Royle SH, Watson JS, Sephton MA. Transformation of Cyanobacterial Biomolecules by Iron Oxides During Flash Pyrolysis: Implications for Mars Life-Detection Missions. ASTROBIOLOGY 2021; 21:1363-1386. [PMID: 34402652 DOI: 10.1089/ast.2020.2428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Answering the question of whether life ever existed on Mars is a key goal of both NASA's and ESA's imminent Mars rover missions. The obfuscatory effects of oxidizing salts, such as perchlorates and sulfates, on organic matter during thermal decomposition analysis techniques are well established. Less well studied are the transformative effects of iron oxides and (oxy)hydroxides, which are present in great abundances in the martian regolith. We examined the products of flash pyrolysis-gas chromatography-mass spectrometry (a technique analogous to the thermal techniques employed by past, current, and future landed Mars missions) which form when the cyanobacteria Arthrospira platensis are heated in the presence of a variety of Mars-relevant iron-bearing minerals. We found that iron oxides/(oxy)hydroxides have transformative effects on the pyrolytic products of cyanobacterial biomolecules. Both the abundance and variety of molecular species detected were decreased as iron substrates transformed biomolecules, by both oxidative and reductive processes, into lower fidelity alkanes, aromatic and aryl-bonded hydrocarbons. Despite the loss of fidelity, a suite that contains mid-length alkanes and polyaromatic hydrocarbons and/or aryl-bonded molecules in iron-rich samples subjected to pyrolysis may allude to the transformation of cyanobacterially derived mid-long chain length fatty acids (particularly unsaturated fatty acids) originally present in the sample. Hematite was found to be the iron oxide with the lowest transformation potential, and because this iron oxide has a high affinity for codeposition of organic matter and preservation over geological timescales, sampling at Mars should target sediments/strata that have undergone a diagenetic history encouraging the dehydration, dihydroxylation, and oxidation of more reactive iron-bearing phases to hematite by looking for (mineralogical) evidence of the activity of oxidizing, acidic/neutral, and either hot or long-lived fluids.
Collapse
Affiliation(s)
- Samuel H Royle
- Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| | - Jonathan S Watson
- Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| | - Mark A Sephton
- Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
12
|
Recognition of Sedimentary Rock Occurrences in Satellite and Aerial Images of Other Worlds—Insights from Mars. REMOTE SENSING 2021. [DOI: 10.3390/rs13214296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sedimentary rocks provide records of past surface and subsurface processes and environments. The first step in the study of the sedimentary rock record of another world is to learn to recognize their occurrences in images from instruments aboard orbiting, flyby, or aerial platforms. For two decades, Mars has been known to have sedimentary rocks; however, planet-wide identification is incomplete. Global coverage at 0.25–6 m/pixel, and observations from the Curiosity rover in Gale crater, expand the ability to recognize Martian sedimentary rocks. No longer limited to cases that are light-toned, lightly cratered, and stratified—or mimic original depositional setting (e.g., lithified deltas)—Martian sedimentary rocks include dark-toned examples, as well as rocks that are erosion-resistant enough to retain small craters as well as do lava flows. Breakdown of conglomerates, breccias, and even some mudstones, can produce a pebbly regolith that imparts a “smooth” appearance in satellite and aerial images. Context is important; sedimentary rocks remain challenging to distinguish from primary igneous rocks in some cases. Detection of ultramafic, mafic, or andesitic compositions do not dictate that a rock is igneous, and clast genesis should be considered separately from the depositional record. Mars likely has much more sedimentary rock than previously recognized.
Collapse
|
13
|
Merging Perspectives on Secondary Minerals on Mars: A Review of Ancient Water-Rock Interactions in Gale Crater Inferred from Orbital and In-Situ Observations. MINERALS 2021. [DOI: 10.3390/min11090986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Phyllosilicates, sulfates, and Fe oxides are the most prevalent secondary minerals detected on Mars from orbit and the surface, including in the Mars Science Laboratory Curiosity rover’s field site at Gale crater. These records of aqueous activity have been investigated in detail in Gale crater, where Curiosity’s X-ray diffractometer allows for direct observation and detailed characterization of mineral structure and abundance. This capability provides critical ground truthing to better understand how to interpret Martian mineralogy inferred from orbital datasets. Curiosity is about to leave behind phyllosilicate-rich strata for more sulfate-rich terrains, while the Mars 2020 Perseverance rover is in its early exploration of ancient sedimentary strata in Jezero crater. It is thus an appropriate time to review Gale crater’s mineral distribution from multiple perspectives, utilizing the range of chemical, mineralogical, and spectral measurements provided by orbital and in situ observations. This review compares orbital predictions of composition in Gale crater with higher fidelity (but more spatially restricted) in situ measurements by Curiosity, and we synthesize how this information contributes to our understanding of water-rock interaction in Gale crater. In the context of combining these disparate spatial scales, we also discuss implications for the larger understanding of martian surface evolution and the need for a wide range of data types and scales to properly reconstruct ancient geologic processes using remote methods.
Collapse
|
14
|
A Review of the Phyllosilicates in Gale Crater as Detected by the CheMin Instrument on the Mars Science Laboratory, Curiosity Rover. MINERALS 2021. [DOI: 10.3390/min11080847] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Curiosity, the Mars Science Laboratory (MSL) rover, landed on Mars in August 2012 to investigate the ~3.5-billion-year-old (Ga) fluvio-lacustrine sedimentary deposits of Aeolis Mons (informally known as Mount Sharp) and the surrounding plains (Aeolis Palus) in Gale crater. After nearly nine years, Curiosity has traversed over 25 km, and the Chemistry and Mineralogy (CheMin) X-ray diffraction instrument on-board Curiosity has analyzed 30 drilled rock and three scooped soil samples to date. The principal strategic goal of the mission is to assess the habitability of Mars in its ancient past. Phyllosilicates are common in ancient Martian terrains dating to ~3.5–4 Ga and were detected from orbit in some of the lower strata of Mount Sharp. Phyllosilicates on Earth are important for harboring and preserving organics. On Mars, phyllosilicates are significant for exploration as they are hypothesized to be a marker for potential habitable environments. CheMin data demonstrate that ancient fluvio-lacustrine rocks in Gale crater contain up to ~35 wt. % phyllosilicates. Phyllosilicates are key indicators of past fluid–rock interactions, and variation in the structure and composition of phyllosilicates in Gale crater suggest changes in past aqueous environments that may have been habitable to microbial life with a variety of possible energy sources.
Collapse
|
15
|
Bristow TF, Grotzinger JP, Rampe EB, Cuadros J, Chipera SJ, Downs GW, Fedo CM, Frydenvang J, McAdam AC, Morris RV, Achilles CN, Blake DF, Castle N, Craig P, Des Marais DJ, Downs RT, Hazen RM, Ming DW, Morrison SM, Thorpe MT, Treiman AH, Tu V, Vaniman DT, Yen AS, Gellert R, Mahaffy PR, Wiens RC, Bryk AB, Bennett KA, Fox VK, Millken RE, Fraeman AA, Vasavada AR. Brine-driven destruction of clay minerals in Gale crater, Mars. Science 2021; 373:198-204. [PMID: 34244410 DOI: 10.1126/science.abg5449] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 05/28/2021] [Indexed: 11/02/2022]
Abstract
Mars' sedimentary rock record preserves information on geological (and potential astrobiological) processes that occurred on the planet billions of years ago. The Curiosity rover is exploring the lower reaches of Mount Sharp, in Gale crater on Mars. A traverse from Vera Rubin ridge to Glen Torridon has allowed Curiosity to examine a lateral transect of rock strata laid down in a martian lake ~3.5 billion years ago. We report spatial differences in the mineralogy of time-equivalent sedimentary rocks <400 meters apart. These differences indicate localized infiltration of silica-poor brines, generated during deposition of overlying magnesium sulfate-bearing strata. We propose that destabilization of silicate minerals driven by silica-poor brines (rarely observed on Earth) was widespread on ancient Mars, because sulfate deposits are globally distributed.
Collapse
Affiliation(s)
- T F Bristow
- Eobiology Branch, NASA Ames Research Center, Moffett Field, CA 94035, USA.
| | - J P Grotzinger
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - E B Rampe
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX 77058, USA
| | - J Cuadros
- Department of Earth Sciences, Natural History Museum, London SW7 5BD, UK
| | - S J Chipera
- Planetary Science Institute, Tucson, AZ 85719, USA
| | - G W Downs
- Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA
| | - C M Fedo
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | - J Frydenvang
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - A C McAdam
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
| | - R V Morris
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX 77058, USA
| | - C N Achilles
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
| | - D F Blake
- Eobiology Branch, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - N Castle
- Planetary Science Institute, Tucson, AZ 85719, USA
| | - P Craig
- Planetary Science Institute, Tucson, AZ 85719, USA
| | - D J Des Marais
- Eobiology Branch, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - R T Downs
- Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA
| | - R M Hazen
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA
| | - D W Ming
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX 77058, USA
| | - S M Morrison
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA
| | - M T Thorpe
- Jacobs Technology-Jacobs JETS Contract, Astromaterials Research and Exploration Science Division, at NASA Johnson Space Center, Houston, TX 77058, USA
| | - A H Treiman
- Lunar and Planetary Institute, Universities Space Research Association, Houston, TX 77058, USA
| | - V Tu
- Jacobs Technology-Jacobs JETS Contract, Astromaterials Research and Exploration Science Division, at NASA Johnson Space Center, Houston, TX 77058, USA
| | - D T Vaniman
- Planetary Science Institute, Tucson, AZ 85719, USA
| | - A S Yen
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - R Gellert
- Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - P R Mahaffy
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
| | - R C Wiens
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - A B Bryk
- Department of Earth and Planetary Science, University of California Berkeley, Berkeley, CA 94720, USA
| | - K A Bennett
- U.S. Geological Survey, Astrogeology Science Center, Flagstaff, AZ 86001, USA
| | - V K Fox
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - R E Millken
- Department of Earth, Environmental Sciences and Planetary Sciences, Brown University, Providence, RI 02912, USA
| | - A A Fraeman
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - A R Vasavada
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| |
Collapse
|
16
|
Clark BC, Kolb VM, Steele A, House CH, Lanza NL, Gasda PJ, VanBommel SJ, Newsom HE, Martínez-Frías J. Origin of Life on Mars: Suitability and Opportunities. Life (Basel) 2021; 11:539. [PMID: 34207658 PMCID: PMC8227854 DOI: 10.3390/life11060539] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
Although the habitability of early Mars is now well established, its suitability for conditions favorable to an independent origin of life (OoL) has been less certain. With continued exploration, evidence has mounted for a widespread diversity of physical and chemical conditions on Mars that mimic those variously hypothesized as settings in which life first arose on Earth. Mars has also provided water, energy sources, CHNOPS elements, critical catalytic transition metal elements, as well as B, Mg, Ca, Na and K, all of which are elements associated with life as we know it. With its highly favorable sulfur abundance and land/ocean ratio, early wet Mars remains a prime candidate for its own OoL, in many respects superior to Earth. The relatively well-preserved ancient surface of planet Mars helps inform the range of possible analogous conditions during the now-obliterated history of early Earth. Continued exploration of Mars also contributes to the understanding of the opportunities for settings enabling an OoL on exoplanets. Favoring geochemical sediment samples for eventual return to Earth will enhance assessments of the likelihood of a Martian OoL.
Collapse
Affiliation(s)
| | - Vera M. Kolb
- Department of Chemistry, University of Wisconsin—Parkside, Kenosha, WI 53141, USA;
| | - Andrew Steele
- Earth and Planetary Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA;
| | - Christopher H. House
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, PA 16807, USA;
| | - Nina L. Lanza
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA; (N.L.L.); (P.J.G.)
| | - Patrick J. Gasda
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA; (N.L.L.); (P.J.G.)
| | - Scott J. VanBommel
- Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA;
| | - Horton E. Newsom
- Institute of Meteoritics, Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 88033, USA;
| | | |
Collapse
|
17
|
A Review of Sample Analysis at Mars-Evolved Gas Analysis Laboratory Analog Work Supporting the Presence of Perchlorates and Chlorates in Gale Crater, Mars. MINERALS 2021. [DOI: 10.3390/min11050475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Sample Analysis at Mars (SAM) instrument on the Curiosity rover has detected evidence of oxychlorine compounds (i.e., perchlorates and chlorates) in Gale crater, which has implications for past habitability, diagenesis, aqueous processes, interpretation of in situ organic analyses, understanding the martian chlorine cycle, and hazards and resources for future human exploration. Pure oxychlorines and mixtures of oxychlorines with Mars-analog phases have been analyzed for their oxygen (O2) and hydrogen chloride (HCl) releases on SAM laboratory analog instruments in order to constrain which phases are present in Gale crater. These studies demonstrated that oxychlorines evolve O2 releases with peaks between ~200 and 600 °C, although the thermal decomposition temperatures and the amount of evolved O2 decrease when iron phases are present in the sample. Mg and Fe oxychlorines decompose into oxides and release HCl between ~200 and 542 °C. Ca, Na, and K oxychlorines thermally decompose into chlorides and do not evolve HCl by themselves. However, the chlorides (original or from oxychlorine decomposition) can react with water-evolving phases (e.g., phyllosilicates) in the sample and evolve HCl within the temperature range of SAM (<~870 °C). These laboratory analog studies support that the SAM detection of oxychlorine phases is consistent with the presence of Mg, Ca, Na, and K perchlorate and/or chlorate along with possible contributions from adsorbed oxychlorines in Gale crater samples.
Collapse
|
18
|
Thorpe MT, Hurowitz JA, Siebach KL. Source-to-Sink Terrestrial Analogs for the Paleoenvironment of Gale Crater, Mars. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2021; 126:e2020JE006530. [PMID: 33777606 PMCID: PMC7988529 DOI: 10.1029/2020je006530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 12/14/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
In the Late Noachian to Early Hesperian period, rivers transported detritus from igneous source terrains to a downstream lake within Gale crater, creating a stratified stack of fluviolacustrine rocks that is currently exposed along the slopes of Mount Sharp. Controversy exists regarding the paleoclimate that supported overland flow of liquid water at Gale crater, in large part because little is known about how chemical and mineralogical paleoclimate indicators from mafic-rock dominated source-to-sink systems are translated into the rock record. Here, we compile data from basaltic terrains with varying climates on Earth in order to provide a reference frame for the conditions that may have prevailed during the formation of the sedimentary strata in Gale crater, particularly focusing on the Sheepbed and Pahrump Hills members. We calculate the chemical index of alteration for weathering profiles and fluvial sediments to better constrain the relationship between climate and chemical weathering in mafic terrains, a method that best estimates the cooler limit of climate conditions averaged over time. We also compare X-ray diffraction patterns and mineral abundances from fluvial sediments in varying terrestrial climates and martian mudstones to better understand the influence of climate on secondary mineral assemblages in basaltic terrains. We show that the geochemistry and mineralogy of most of the fine-grained sedimentary rocks in Gale crater display first-order similarities with sediments generated in climates that resemble those of present-day Iceland, while other parts of the stratigraphy indicate even colder baseline climate conditions. None of the lithologies examined at Gale crater resemble fluvial sediments or weathering profiles from warm (temperate to tropical) terrestrial climates.
Collapse
Affiliation(s)
- Michael T. Thorpe
- Department of Earth, Environmental and Planetary SciencesRice UniversityHoustonTXUSA
- NASA Johnson Space CenterNASA Postdoctoral ProgramHoustonTXUSA
| | - Joel A. Hurowitz
- Department of GeosciencesState University of New York at Stony BrookStony BrookNYUSA
| | | |
Collapse
|
19
|
Jacob SR, Wellington DF, Bell JF, Achilles C, Fraeman AA, Horgan B, Johnson JR, Maurice S, Peters GH, Rampe EB, Thompson LM, Wiens RC. Spectral, Compositional, and Physical Properties of the Upper Murray Formation and Vera Rubin Ridge, Gale Crater, Mars. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2020; 125:e2019JE006290. [PMID: 33282613 PMCID: PMC7685153 DOI: 10.1029/2019je006290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 05/20/2023]
Abstract
During 2018 and 2019, the Mars Science Laboratory Curiosity rover investigated the chemistry, morphology, and stratigraphy of Vera Rubin ridge (VRR). Using orbital data from the Compact Reconnaissance Imaging Spectrometer for Mars, scientists attributed the strong 860 nm signal associated with VRR to the presence of red crystalline hematite. However, Mastcam multispectral data and CheMin X-ray diffraction (XRD) measurements show that the depth of the 860 nm absorption is negatively correlated with the abundance of red crystalline hematite, suggesting that other mineralogical or physical parameters are also controlling the 860 nm absorption. Here, we examine Mastcam and ChemCam passive reflectance spectra from VRR and other locations to link the depth, position, and presence or absence of iron-related mineralogic absorption features to the XRD-derived rock mineralogy. Correlating CheMin mineralogy to spectral parameters showed that the ~860 nm absorption has a strong positive correlation with the abundance of ferric phyllosilicates. New laboratory reflectance measurements of powdered mineral mixtures can reproduce trends found in Gale crater. We hypothesize that variations in the 860 nm absorption feature in Mastcam and ChemCam observations of VRR materials are a result of three factors: (1) variations in ferric phyllosilicate abundance due to its ~800-1,000 nm absorption; (2) variations in clinopyroxene abundance because of its band maximum at ~860 nm; and (3) the presence of red crystalline hematite because of its absorption centered at 860 nm. We also show that relatively small changes in Ca-sulfate abundance is one potential cause of the erosional resistance and geomorphic expression of VRR.
Collapse
Affiliation(s)
- S. R. Jacob
- School of Earth and Space ExplorationArizona State UniversityTempeAZUSA
| | - D. F. Wellington
- School of Earth and Space ExplorationArizona State UniversityTempeAZUSA
| | - J. F. Bell
- School of Earth and Space ExplorationArizona State UniversityTempeAZUSA
| | - C. Achilles
- NASA Goddard Space Flight CenterGreenbeltMDUSA
| | - A. A. Fraeman
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - B. Horgan
- Department of Earth, Atmospheric, and Planetary SciencesPurdue UniversityWest LafayetteINUSA
| | - J. R. Johnson
- Johns Hopkins University Applied Physics LaboratoryLaurelMDUSA
| | - S. Maurice
- Institut de Recherche en Astrophysique et PlanetologieToulouseFrance
| | - G. H. Peters
- NASA Neil A. Armstrong Flight Research CenterEdwardsCAUSA
| | | | - L. M. Thompson
- Planetary and Space Science CentreUniversity of New BrunswickCanada
| | - R. C. Wiens
- Los Alamos National LaboratoryLos AlamosNMUSA
| |
Collapse
|
20
|
Horgan BHN, Johnson JR, Fraeman AA, Rice MS, Seeger C, Bell JF, Bennett KA, Cloutis EA, Edgar LA, Frydenvang J, Grotzinger JP, L'Haridon J, Jacob SR, Mangold N, Rampe EB, Rivera‐Hernandez F, Sun VZ, Thompson LM, Wellington D. Diagenesis of Vera Rubin Ridge, Gale Crater, Mars, From Mastcam Multispectral Images. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2020; 125:e2019JE006322. [PMID: 33282614 PMCID: PMC7685111 DOI: 10.1029/2019je006322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 09/03/2020] [Accepted: 09/19/2020] [Indexed: 05/13/2023]
Abstract
Images from the Mars Science Laboratory (MSL) mission of lacustrine sedimentary rocks of Vera Rubin ridge on "Mt. Sharp" in Gale crater, Mars, have shown stark color variations from red to purple to gray. These color differences crosscut stratigraphy and are likely due to diagenetic alteration of the sediments after deposition. However, the chemistry and timing of these fluid interactions is unclear. Determining how diagenetic processes may have modified chemical and mineralogical signatures of ancient Martian environments is critical for understanding the past habitability of Mars and achieving the goals of the MSL mission. Here we use visible/near-infrared spectra from Mastcam and ChemCam to determine the mineralogical origins of color variations in the ridge. Color variations are consistent with changes in spectral properties related to the crystallinity, grain size, and texture of hematite. Coarse-grained gray hematite spectrally dominates in the gray patches and is present in the purple areas, while nanophase and fine-grained red crystalline hematite are present and spectrally dominate in the red and purple areas. We hypothesize that these differences were caused by grain-size coarsening of hematite by diagenetic fluids, as observed in terrestrial analogs. In this model, early primary reddening by oxidizing fluids near the surface was followed during or after burial by bleaching to form the gray patches, possibly with limited secondary reddening after exhumation. Diagenetic alteration may have diminished the preservation of biosignatures and changed the composition of the sediments, making it more difficult to interpret how conditions evolved in the paleolake over time.
Collapse
Affiliation(s)
- Briony H. N. Horgan
- Department of Earth, Atmospheric, and Planetary SciencesPurdue UniversityWest LafayetteINUSA
| | | | - Abigail A. Fraeman
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - Melissa S. Rice
- Geology Department, Physics and Astronomy DepartmentWestern Washington UniversityBellinghamWAUSA
| | - Christina Seeger
- Geology Department, Physics and Astronomy DepartmentWestern Washington UniversityBellinghamWAUSA
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - James F. Bell
- School of Earth and Space ExplorationArizona State UniversityTempeAZUSA
| | | | | | - Lauren A. Edgar
- U.S. Geological SurveyAstrogeology Science CenterFlagstaffAZ
| | | | - John P. Grotzinger
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - Jonas L'Haridon
- Laboratoire de Planétologie et GéodynamiqueCNRS, Univ Nantes, Univ AngersNantesFrance
| | - Samantha R. Jacob
- School of Earth and Space ExplorationArizona State UniversityTempeAZUSA
| | - Nicolas Mangold
- Laboratoire de Planétologie et GéodynamiqueCNRS, Univ Nantes, Univ AngersNantesFrance
| | | | | | - Vivian Z. Sun
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - Lucy M. Thompson
- Planetary and Space Science CentreUniversity of New BrunswickFrederictonNew BrunswickCanada
| | - Danika Wellington
- School of Earth and Space ExplorationArizona State UniversityTempeAZUSA
| |
Collapse
|