1
|
Zhao J, Zhang S, Jiang Y, Liu Y, Wang J, Zhu Q. Mutation analysis of the WFS1 gene in a Chinese family with autosomal-dominant non-syndrome deafness. Sci Rep 2022; 12:22180. [PMID: 36564540 PMCID: PMC9789122 DOI: 10.1038/s41598-022-26850-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
To analyse the pathogenic genes and mutations of a family with hereditary deafness. We recruited a three-generation family with NSHL. A detailed medical history inquiry and related examinations were performed. Next-generation sequencing (NGS) was used to confirm the gene mutation in the proband, and Sanger sequencing was used for verification. The effect of the WFS1 mutation on the function and structure of the wolframin protein was predicted by multiple computational software. From the Gene Expression Omnibus (GEO) database, we obtained GSE40585 dataset and performed enrichment analyses. The family clinically manifested as autosomal dominant NSHL. A novel WFS1 c.2421C>G (p.Ser807Arg) mutation was identified in four affected individuals in the pedigree . The p.Ser807Arg mutation is a highly conserved residue and causes an increase in protein stability. It had an important influence on not only amino acid size, charge and hydrophobicity but also protein intermolecular hydrogen bonding and spatial structure. There were differentially expressed genes (DEGs) in GSE40585 dataset. Enrichment analysis revealed that DEGs mainly functioned in amino acid metabolism, signal transduction and dephosphorylation. We reported a novel mutation c.2421C>G (p.Ser807Arg in WFS1. This study expands the mutation spectrum of WFS1.
Collapse
Affiliation(s)
- Jing Zhao
- grid.452209.80000 0004 1799 0194Department of Otolaryngology, The Third Hospital of Hebei Medical University, Hebei, China
| | - Siqi Zhang
- grid.452702.60000 0004 1804 3009Department of Otolaryngology, The Second Hospital of Hebei Medical University, Hebei, China
| | - Yuan Jiang
- grid.452702.60000 0004 1804 3009Department of Otolaryngology, The Second Hospital of Hebei Medical University, Hebei, China
| | - Yan Liu
- grid.452702.60000 0004 1804 3009Department of Otolaryngology, The Second Hospital of Hebei Medical University, Hebei, China
| | - Jiantao Wang
- grid.452702.60000 0004 1804 3009Department of Otolaryngology, The Second Hospital of Hebei Medical University, Hebei, China
| | - QingWen Zhu
- grid.452702.60000 0004 1804 3009Department of Otolaryngology, The Second Hospital of Hebei Medical University, Hebei, China
| |
Collapse
|
2
|
Umugire A, Lee S, Lee CJ, Choi Y, Kim T, Cho HH. Hyaluronan synthase 1: A novel candidate gene associated with late-onset non-syndromic hereditary hearing loss. Clin Exp Otorhinolaryngol 2022; 15:220-229. [PMID: 35413171 PMCID: PMC9441500 DOI: 10.21053/ceo.2022.00038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022] Open
Abstract
Objectives Hyaluronan synthase 1 (HAS1) is a membrane-bound protein that is abundant in the epidermis and dermis, and it is important for skin function. However, its association with hearing loss has not yet been studied. Herein, we sought to evaluate the potential contribution of HAS1: c.1082G>A to genetic hearing loss. Methods We used whole-exome sequencing to analyze blood DNA samples of six patients of a family with autosomal dominant familial late-onset progressive hearing loss, which was revealed to be related to a variant of the HAS1 gene. Confirmatory Sanger sequencing was performed with samples from 10 members. A missense variant was detected in HAS1 (c.1082 G>A, p.Cys361Tyr). In silico analyses predicted this variant to result in the functional loss of HAS1. Immunostaining was conducted using wild-type mouse samples to verify HAS1 expression. Results Has1 was detected in an otocyst at E10.5. In the pup, Has1 expression was localized in the stria vascularis (SV), hair cells, supporting cells of the organ of Corti, and some spiral ganglion neurons. SV marginal cells markedly expressed Has1 in the adult stage. The hearing threshold in the Has1-depleted condition was investigated by accessing the International Mouse Phenotyping Consortium’s Auditory Brainstem Response (ABR) data. ABR of Has1 knock-out mice showed threshold elevations at 6, 12, and 18 kHz in young male adults. Conclusion HAS1 may have a close relationship with auditory function and genetic hearing loss. Further investigation is needed to reveal the precise role of HAS1 in the auditory system. HAS1 is a candidate gene for future hereditary hearing loss genetic testing.
Collapse
|
3
|
Li Y, Su J, Zhang J, Pei J, Li D, Zhang Y, Li J, Chen M, Zhu B. Targeted next-generation sequencing of deaf patients from Southwestern China. Mol Genet Genomic Med 2021; 9:e1660. [PMID: 33724713 PMCID: PMC8123756 DOI: 10.1002/mgg3.1660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Targeted next-generation sequencing is an efficient tool to identify pathogenic mutations of hereditary deafness. The molecular pathology of deaf patients in southwestern China is not fully understood. METHODS In this study, targeted next-generation sequencing of 127 deafness genes was performed on 84 deaf patients. They were not caused by common mutations of GJB2 gene, including c.35delG, c.109 G>A, c.167delT, c.176_191del16, c.235delC and c.299_300delAT. RESULTS In the cohorts of 84 deaf patients, we did not find any candidate pathogenic variants in 14 deaf patients (16.7%, 14/84). In other 70 deaf patients (83.3%, 70/84), candidate pathogenic variants were identified in 34 genes. Of these 70 deaf patients, the percentage of "Solved" and "Unsolved" patients was 51.43% (36/70) and 48.57% (34/70), respectively. The most common causative genes were SLC26A4 (12.9%, 9/70), MT-RNR1 (11.4%, 8/70), and MYO7A (2.9%, 2/70) in deaf patients. In "Unsolved" patients, possible pathogenic variants were most found in SLC26A4 (8.9%, 3/34), MYO7A (5.9%, 2/34), OTOF (5.9%, 2/34), and PDZD7 (5.9%, 2/34) genes. Interesting, several novel recessive pathogenic variants were identified, like SLC26A4 c.290T>G, SLC26A4 c.599A>G, PDZD7c.490 C>T, etc. CONCLUSION: In addition to common deafness genes, like GJB2, SLC26A4, and MT-RNR1 genes, other deafness genes (MYO7A, OTOF, PDZD7, etc.) were identified in deaf patients from southwestern China. Therefore, the spectrum of deafness genes in this area should be further studied.
Collapse
Affiliation(s)
- Yunlong Li
- Department of Medical Genetics, First People's Hospital of Yunnan Province, Kunming, Yunnan, China.,Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jie Su
- Department of Medical Genetics, First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Jingman Zhang
- Department of Medical Genetics, First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Jiahong Pei
- Department of Medical Genetics, First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Dongmei Li
- Department of Medical Genetics, First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Yinhong Zhang
- Department of Medical Genetics, First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Jingyu Li
- Department of Medical Genetics, First People's Hospital of Yunnan Province, Kunming, Yunnan, China.,Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Menglang Chen
- Department of Medical Genetics, First People's Hospital of Yunnan Province, Kunming, Yunnan, China.,Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Baosheng Zhu
- Department of Medical Genetics, First People's Hospital of Yunnan Province, Kunming, Yunnan, China.,Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
4
|
Cui L, Zheng J, Zhao Q, Chen JR, Liu H, Peng G, Wu Y, Chen C, He Q, Shi H, Yin S, Friedman RA, Chen Y, Guan MX. Mutations of MAP1B encoding a microtubule-associated phosphoprotein cause sensorineural hearing loss. JCI Insight 2020; 5:136046. [PMID: 33268592 PMCID: PMC7714412 DOI: 10.1172/jci.insight.136046] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 10/28/2020] [Indexed: 12/20/2022] Open
Abstract
The pathophysiology underlying spiral ganglion cell defect–induced deafness remains elusive. Using the whole exome sequencing approach, in combination with functional assays and a mouse disease model, we identified the potentially novel deafness-causative MAP1B gene encoding a highly conserved microtubule-associated protein. Three novel heterozygous MAP1B mutations (c.4198A>G, p.1400S>G; c.2768T>C, p.923I>T; c.5512T>C, p.1838F>L) were cosegregated with autosomal dominant inheritance of nonsyndromic sensorineural hearing loss in 3 unrelated Chinese families. Here, we show that MAP1B is highly expressed in the spiral ganglion neurons in the mouse cochlea. Using otic sensory neuron–like cells, generated by pluripotent stem cells from patients carrying the MAP1B mutation and control subject, we demonstrated that the p.1400S>G mutation caused the reduced levels and deficient phosphorylation of MAP1B, which are involved in the microtubule stability and dynamics. Strikingly, otic sensory neuron–like cells exhibited disturbed dynamics of microtubules, axonal elongation, and defects in electrophysiological properties. Dysfunctions of these derived otic sensory neuron–like cells were rescued by genetically correcting MAP1B mutation using CRISPR/Cas9 technology. Involvement of MAP1B in hearing was confirmed by audiometric evaluation of Map1b heterozygous KO mice. These mutant mice displayed late-onset progressive sensorineural hearing loss that was more pronounced in the high frequencies. The spiral ganglion neurons isolated from Map1b mutant mice exhibited the deficient phosphorylation and disturbed dynamics of microtubules. Map1b deficiency yielded defects in the morphology and electrophysiology of spiral ganglion neurons, but it did not affect the morphologies of cochlea in mice. Therefore, our data demonstrate that dysfunctions of spiral ganglion neurons induced by MAP1B deficiency caused hearing loss. Dysfunctions of spiral ganglion neurons caused by Map1b deficiency leads to sensorineural hearing loss.
Collapse
Affiliation(s)
- Limei Cui
- Division of Medical Genetics and Genomics, The Children's Hospital.,Institute of Genetics and.,Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing Zheng
- Division of Medical Genetics and Genomics, The Children's Hospital
| | - Qiong Zhao
- Division of Medical Genetics and Genomics, The Children's Hospital.,Institute of Genetics and.,Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jia-Rong Chen
- Division of Medical Genetics and Genomics, The Children's Hospital.,Institute of Genetics and
| | | | - Guanghua Peng
- Deaprtment of Otorhinolaryngology, the Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yue Wu
- Division of Medical Genetics and Genomics, The Children's Hospital
| | - Chao Chen
- Division of Medical Genetics and Genomics, The Children's Hospital.,Institute of Genetics and
| | | | - Haosong Shi
- Department of Otorhinolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Shankai Yin
- Department of Otorhinolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Rick A Friedman
- Division of Otolaryngology, University of California at San Diego School of Medicine, La Jolla California, USA
| | - Ye Chen
- Division of Medical Genetics and Genomics, The Children's Hospital.,Institute of Genetics and.,Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, The Children's Hospital.,Institute of Genetics and.,Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Division of Otolaryngology, University of California at San Diego School of Medicine, La Jolla California, USA.,Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorders, Hangzhou, Zhejiang, China.,Joint Institute of Genetics and Genomic Medicine between Zhejiang University and University of Toronto, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Roman TS, Crowley SB, Roche MI, Foreman AKM, O'Daniel JM, Seifert BA, Lee K, Brandt A, Gustafson C, DeCristo DM, Strande NT, Ramkissoon L, Milko LV, Owen P, Roy S, Xiong M, Paquin RS, Butterfield RM, Lewis MA, Souris KJ, Bailey DB, Rini C, Booker JK, Powell BC, Weck KE, Powell CM, Berg JS. Genomic Sequencing for Newborn Screening: Results of the NC NEXUS Project. Am J Hum Genet 2020; 107:596-611. [PMID: 32853555 PMCID: PMC7536575 DOI: 10.1016/j.ajhg.2020.08.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/24/2020] [Indexed: 02/08/2023] Open
Abstract
Newborn screening (NBS) was established as a public health program in the 1960s and is crucial for facilitating detection of certain medical conditions in which early intervention can prevent serious, life-threatening health problems. Genomic sequencing can potentially expand the screening for rare hereditary disorders, but many questions surround its possible use for this purpose. We examined the use of exome sequencing (ES) for NBS in the North Carolina Newborn Exome Sequencing for Universal Screening (NC NEXUS) project, comparing the yield from ES used in a screening versus a diagnostic context. We enrolled healthy newborns and children with metabolic diseases or hearing loss (106 participants total). ES confirmed the participant's underlying diagnosis in 15 out of 17 (88%) children with metabolic disorders and in 5 out of 28 (∼18%) children with hearing loss. We discovered actionable findings in four participants that would not have been detected by standard NBS. A subset of parents was eligible to receive additional information for their child about childhood-onset conditions with low or no clinical actionability, clinically actionable adult-onset conditions, and carrier status for autosomal-recessive conditions. We found pathogenic variants associated with hereditary breast and/or ovarian cancer in two children, a likely pathogenic variant in the gene associated with Lowe syndrome in one child, and an average of 1.8 reportable variants per child for carrier results. These results highlight the benefits and limitations of using genomic sequencing for NBS and the challenges of using such technology in future precision medicine approaches.
Collapse
Affiliation(s)
- Tamara S Roman
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephanie B Crowley
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Myra I Roche
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pediatrics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Ann Katherine M Foreman
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Julianne M O'Daniel
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bryce A Seifert
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kristy Lee
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alicia Brandt
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chelsea Gustafson
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Daniela M DeCristo
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Natasha T Strande
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lori Ramkissoon
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura V Milko
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Phillips Owen
- Renaissance Computing Institute, Chapel Hill, NC 27517, USA
| | - Sayanty Roy
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mai Xiong
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ryan S Paquin
- Center for Communication Science, RTI International, Research Triangle Park, NC 27709, USA
| | - Rita M Butterfield
- Department of Family Medicine and Community Health, Duke University School of Medicine, Durham, NC 27705, USA
| | - Megan A Lewis
- Center for Communication Science, RTI International, Research Triangle Park, NC 27709, USA
| | - Katherine J Souris
- Department of Health Behavior, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Donald B Bailey
- Genomics, Bioinformatics and Translational Research Center, RTI International, Research Triangle Park, NC 27709, USA
| | - Christine Rini
- Feinberg School of Medicine, Department of Medical Social Sciences, and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Jessica K Booker
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bradford C Powell
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Karen E Weck
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Cynthia M Powell
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pediatrics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Jonathan S Berg
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
6
|
Jimenez JE, Nourbakhsh A, Colbert B, Mittal R, Yan D, Green CL, Nisenbaum E, Liu G, Bencie N, Rudman J, Blanton SH, Zhong Liu X. Diagnostic and therapeutic applications of genomic medicine in progressive, late-onset, nonsyndromic sensorineural hearing loss. Gene 2020; 747:144677. [PMID: 32304785 PMCID: PMC7244213 DOI: 10.1016/j.gene.2020.144677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
The progressive, late-onset, nonsyndromic, sensorineural hearing loss (PNSHL) is the most common cause of sensory impairment globally, with presbycusis affecting greater than a third of individuals over the age of 65. The etiology underlying PNSHL include presbycusis, noise-induced hearing loss, drug ototoxicity, and delayed-onset autosomal dominant hearing loss (AD PNSHL). The objective of this article is to discuss the potential diagnostic and therapeutic applications of genomic medicine in PNSHL. Genomic factors contribute greatly to PNSHL. The heritability of presbycusis ranges from 25 to 75%. Current therapies for PNSHL range from sound amplification to cochlear implantation (CI). PNSHL is an excellent candidate for genomic medicine approaches as it is common, has well-described pathophysiology, has a wide time window for treatment, and is amenable to local gene therapy by currently utilized procedural approaches. AD PNSHL is especially suited to genomic medicine approaches that can disrupt the expression of an aberrant protein product. Gene therapy is emerging as a potential therapeutic strategy for the treatment of PNSHL. Viral gene delivery approaches have demonstrated promising results in human clinical trials for two inherited causes of blindness and are being used for PNSHL in animal models and a human trial. Non-viral gene therapy approaches are useful in situations where a transient biologic effect is needed or for delivery of genome editing reagents (such as CRISPR/Cas9) into the inner ear. Many gene therapy modalities that have proven efficacious in animal trials have potential to delay or prevent PNSHL in humans. The development of new treatment modalities for PNSHL will lead to improved quality of life of many affected individuals and their families.
Collapse
Affiliation(s)
- Joaquin E Jimenez
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Aida Nourbakhsh
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Brett Colbert
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Human Genetics and John P. Hussman Institute of Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA; Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Carlos L Green
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Eric Nisenbaum
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - George Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nicole Bencie
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jason Rudman
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Susan H Blanton
- Department of Human Genetics and John P. Hussman Institute of Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Xue Zhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Human Genetics and John P. Hussman Institute of Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
7
|
Liu XZ, Yan D, Mittal R, Ballard ME, Feng Y. Progressive Dominant Hearing Loss (Autosomal Dominant Deafness-41) and P2RX2 Gene Mutations: A Phenotype-Genotype Study. Laryngoscope 2019; 130:1657-1663. [PMID: 31593348 DOI: 10.1002/lary.28318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/29/2019] [Accepted: 08/28/2019] [Indexed: 01/14/2023]
Abstract
OBJECTIVES/HYPOTHESIS P2RX2 encoding P2X purinoreceptor 2 has been identified as the gene responsible for autosomal dominant deafness-41 (DFNA41) as well as mediating vulnerability to noise-induced hearing loss (NIHL). The objective of this study was to investigate the audiological and molecular characteristics of P2RX2-related deafness, with emphasis on its role in NIHL by determining the audiological characteristics of a previously reported six-generation DFNA41 family with a 10-year follow-up. We have also summarized phenotype-genotype correlations of P2RX2-related deafness in human and mouse models. STUDY DESIGN We describe clinical longitudinal follow-up in the DFNA41 family with P2RX2 (p.Val60Leu) mutation and perform a systematic literature search in PubMed and poster presentations on meeting/conference websites to identify current insights into P2RX2-mediated NIHL. METHODS Clinical and physical examinations of the family members were performed, and audiograms were obtained to assess the hearing thresholds. Clinical follow-up features in this DFNA41 family are presented along with correlation analyses of phenotype-genotype in all reported families with P2RX2-related deafness. RESULTS Progressive hearing impairment was confirmed by history and by audiological follow-up testing in all the patients. The onset of hearing loss was between age 25 and 35 years. All affected subjects had bilateral sensorineural hearing loss involving all frequencies with some significant gender differences. CONCLUSIONS Our study and the review of the literature suggest that P2RX2 plays a crucial role in predisposition to noise-induced and age-related hearing loss. A better knowledge about the P2RX2-associated genetic variants can help in developing novel therapeutic strategies. LEVEL OF EVIDENCE 2b Laryngoscope, 130:1657-1663, 2020.
Collapse
Affiliation(s)
- Xue Zhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, U.S.A.,Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, U.S.A
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, U.S.A
| | - Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, U.S.A
| | - Megan E Ballard
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, U.S.A
| | - Yong Feng
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
8
|
OSBPL2-disrupted pigs recapitulate dual features of human hearing loss and hypercholesterolaemia. J Genet Genomics 2019; 46:379-387. [PMID: 31451425 DOI: 10.1016/j.jgg.2019.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 02/06/2023]
Abstract
Oxysterol binding protein like 2 (OSBPL2), an important regulator in cellular lipid metabolism and transport, was identified as a novel deafness-causal gene in our previous work. To resemble the phenotypic features of OSBPL2 mutation in animal models and elucidate the potential genotype-phenotype associations, the OSBPL2-disrupted Bama miniature (BM) pig model was constructed using CRISPR/Cas9-mediated gene editing, somatic cell nuclear transfer (SCNT) and embryo transplantation approaches, and then subjected to phenotypic characterization of auditory function and serum lipid profiles. The OSBPL2-disrupted pigs displayed progressive hearing loss (HL) with degeneration/apoptosis of cochlea hair cells (HCs) and morphological abnormalities in HC stereocilia, as well as hypercholesterolaemia. High-fat diet (HFD) feeding aggravated the development of HL and led to more severe hypercholesterolaemia. The dual phenotypes of progressive HL and hypercholesterolaemia resembled in OSBPL2-disrupted pigs confirmed the implication of OSBPL2 mutation in nonsydromic hearing loss (NSHL) and contributed to the potential linkage between auditory dysfunction and dyslipidaemia/hypercholesterolaemia.
Collapse
|
9
|
Extrusion pump ABCC1 was first linked with nonsyndromic hearing loss in humans by stepwise genetic analysis. Genet Med 2019; 21:2744-2754. [PMID: 31273342 DOI: 10.1038/s41436-019-0594-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/17/2019] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To determine the genetic etiology of deafness in a family (HN-SD01) with autosomal dominant nonsyndromic hearing loss (NSHL). METHODS Stepwise genetic analysis was performed on family HN-SD01, including hotspot variant screening, exome sequencing, virtual hearing loss gene panel, and genome-wide linkage analysis. Targeted region sequencing was used to screen ABCC1 in additional cases. Cochlear expression of Abcc1 was evaluated by messenger RNA (mRNA) and protein levels. Computational prediction, immunofluorescence, real-time quantitative polymerase chain reaction, and flow cytometry were conducted to uncover functional consequences of candidate variants. RESULTS Stepwise genetic analysis identified a heterozygous missense variant, ABCC1:c.1769A>G (p.Asn590Ser), cosegregating with phenotype in HN-SD01. Screening of ABCC1 in an additional 217 cases identified candidate pathogenic variants c.692G>A (p.Gly231Asp) in a sporadic case and c.887A>T (p.Glu296Val) in a familial proband. Abcc1 expressed in stria vascularis and auditory nerve of mouse cochlea. Immunofluorescence showed p.Asn590Ser distributed in cytomembrane and cytoplasm, while wild type was shown only in cytomembrane. Besides, it generated unstable mRNA and decreased efflux capacity of ABCC1. CONCLUSION Stepwise genetic analysis is efficient to analyze the genetic etiology of NSHL. Variants in ABCC1 are linked with NSHL and suggest an important role of extruding pumps in maintaining cochlea function.
Collapse
|
10
|
Harkcom WT, Papanikolaou M, Kanda V, Crump SM, Abbott GW. KCNQ1 rescues TMC1 plasma membrane expression but not mechanosensitive channel activity. J Cell Physiol 2019; 234:13361-13369. [PMID: 30613966 DOI: 10.1002/jcp.28013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/28/2018] [Indexed: 01/21/2023]
Abstract
Transmembrane channel-like protein isoform 1 (TMC1) is essential for the generation of mechano-electrical transducer currents in hair cells of the inner ear. TMC1 disruption causes hair cell degeneration and deafness in mice and humans. Although thought to be expressed at the cell surface in vivo, TMC1 remains in the endoplasmic reticulum when heterologously expressed in standard cell lines, precluding determination of its roles in mechanosensing and pore formation. Here, we report that the KCNQ1 Kv channel forms complexes with TMC1 and rescues its surface expression when coexpressed in Chinese Hamster Ovary cells. TMC1 rescue is specific for KCNQ1 within the KCNQ family, is prevented by a KCNQ1 trafficking-deficient mutation, and is influenced by KCNE β subunits and inhibition of KCNQ1 endocytosis. TMC1 lowers KCNQ1 and KCNQ1-KCNE1 K+ currents, and despite the surface expression, it does not detectably respond to mechanical stimulation or high salt. We conclude that TMC1 is not intrinsically mechano- or osmosensitive but has the capacity for cell surface expression, and requires partner protein(s) for surface expression and mechanosensitivity. We suggest that KCNQ1, expression of which is not thought to overlap with TMC1 in hair cells, is a proxy partner bearing structural elements or a sequence motif reminiscent of a true in vivo TMC1 hair cell partner. Discovery of the first reported strategy to rescue TMC1 surface expression should aid future studies of the TMC1 function and native partners.
Collapse
Affiliation(s)
- William T Harkcom
- Pharmacology Department, Weill Medical College of Cornell University, New York, New York
| | - Maria Papanikolaou
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California
| | - Vikram Kanda
- Pharmacology Department, Weill Medical College of Cornell University, New York, New York
| | - Shawn M Crump
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California
| |
Collapse
|
11
|
Wang L, Feng Y, Yan D, Qin L, Grati M, Mittal R, Li T, Sundhari AK, Liu Y, Chapagain P, Blanton SH, Liao S, Liu X. A dominant variant in the PDE1C gene is associated with nonsyndromic hearing loss. Hum Genet 2018; 137:437-446. [PMID: 29860631 PMCID: PMC6560636 DOI: 10.1007/s00439-018-1895-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/26/2018] [Indexed: 01/02/2023]
Abstract
Identification of genes with variants causing non-syndromic hearing loss (NSHL) is challenging due to genetic heterogeneity. The difficulty is compounded by technical limitations that in the past prevented comprehensive gene identification. Recent advances in technology, using targeted capture and next-generation sequencing (NGS), is changing the face of gene identification and making it possible to rapidly and cost-effectively sequence the whole human exome. Here, we characterize a five-generation Chinese family with progressive, postlingual autosomal dominant nonsyndromic hearing loss (ADNSHL). By combining population-specific mutation arrays, targeted deafness genes panel, whole exome sequencing (WES), we identified PDE1C (Phosphodiesterase 1C) c.958G>T (p.A320S) as the disease-associated variant. Structural modeling insights into p.A320S strongly suggest that the sequence alteration will likely affect the substrate-binding pocket of PDE1C. By whole-mount immunofluorescence on postnatal day 3 mouse cochlea, we show its expression in outer (OHC) and inner (IHC) hair cells cytosol co-localizing with Lamp-1 in lysosomes. Furthermore, we provide evidence that the variant alters the PDE1C hydrolytic activity for both cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Collectively, our findings indicate that the c.958G>T variant in PDE1C may disrupt the cross talk between cGMP-signaling and cAMP pathways in Ca2+ homeostasis.
Collapse
Affiliation(s)
- Li Wang
- Institute of Medical Genetics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
- Department of Otolaryngology (D-48), Miller School of Medicine, University of Miami, 1666 NW 12th Avenue, Miami, FL, 33136, USA
| | - Yong Feng
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, China
| | - Denise Yan
- Department of Otolaryngology (D-48), Miller School of Medicine, University of Miami, 1666 NW 12th Avenue, Miami, FL, 33136, USA
| | - Litao Qin
- Institute of Medical Genetics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - M'hamed Grati
- Department of Otolaryngology (D-48), Miller School of Medicine, University of Miami, 1666 NW 12th Avenue, Miami, FL, 33136, USA
- Laboratory of Cell Structure and Dynamics, NIDCD, NIH, Bethesda, MD, 20892, USA
| | - Rahul Mittal
- Department of Otolaryngology (D-48), Miller School of Medicine, University of Miami, 1666 NW 12th Avenue, Miami, FL, 33136, USA
| | - Tao Li
- Institute of Medical Genetics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Abhiraami Kannan Sundhari
- Department of Otolaryngology (D-48), Miller School of Medicine, University of Miami, 1666 NW 12th Avenue, Miami, FL, 33136, USA
| | - Yalan Liu
- Department of Otolaryngology (D-48), Miller School of Medicine, University of Miami, 1666 NW 12th Avenue, Miami, FL, 33136, USA
| | - Prem Chapagain
- Department of Physics, Florida International University, Miami, FL, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | - Susan H Blanton
- Department of Otolaryngology (D-48), Miller School of Medicine, University of Miami, 1666 NW 12th Avenue, Miami, FL, 33136, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Shixiu Liao
- Institute of Medical Genetics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Xuezhong Liu
- Department of Otolaryngology (D-48), Miller School of Medicine, University of Miami, 1666 NW 12th Avenue, Miami, FL, 33136, USA.
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, China.
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
12
|
Wang L, Wang X, Cai X, Qiang R. Study of mitochondrial DNA A1555G and C1494T mutations in a large cohort of women individuals. Mitochondrial DNA A DNA Mapp Seq Anal 2018; 30:222-225. [PMID: 29790807 DOI: 10.1080/24701394.2018.1475477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Mammalian mitochondrial A1555G and C1494T mutations are the most common causes of aminoglycoside-induced and non-syndromic hearing loss. However, these two mutations always are studied in the subject of pedigrees analysis. In the present study, we aimed to investigate the genetic characteristic of the A1555G and C1494T mutations on the population-level sampling, and to study the A1555G pattern of maternal transmission in three heteroplasmic families. Four thousand two hundred and ten unrelated women with normal hearing were enrolled as subjects. We used a mutation detection kit to screen the prevalence of these two mutations and used denaturing high performance liquid chromatography (DHPLC) and DNA sequencing to detect three A1555G heteroplasmic pedigrees. The carrier rate of A1555G was 0.33%, and the carrier rate of C1494T was 0.02% in our cohort, but the rate of heteroplasmy in A1555G mutant carriers reached 21.4%. Mitochondrial A1555G mutation rate was significantly decreased during maternal transmission of the mutant. Strong purifying selection may determine the fate of mtDNA A1555G in the transmission of human population.
Collapse
Affiliation(s)
- Lin Wang
- a Northwest Women's and Children's Hospital , Xi'an , PR China
| | - Xiaobin Wang
- a Northwest Women's and Children's Hospital , Xi'an , PR China
| | - Xiaolong Cai
- b Shaanxi Provincial People's Hospital , Xi'an , PR China
| | - Rong Qiang
- a Northwest Women's and Children's Hospital , Xi'an , PR China
| |
Collapse
|
13
|
Li W, Sun J, Ling J, Li J, He C, Liu Y, Chen H, Men M, Niu Z, Deng Y, Li M, Li T, Wen J, Sang S, Li H, Wan Z, Richard EM, Chapagain P, Yan D, Liu XZ, Mei L, Feng Y. ELMOD3, a novel causative gene, associated with human autosomal dominant nonsyndromic and progressive hearing loss. Hum Genet 2018; 137:329-342. [PMID: 29713870 DOI: 10.1007/s00439-018-1885-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/16/2018] [Indexed: 11/26/2022]
Abstract
Autosomal dominant nonsyndromic hearing loss (ADNSHL) is a highly genetically heterogeneous disorder. Up to date only approximately 37 ADNSHL-causing genes have been identified. The goal of this study was to determine the causative gene in a five-generation Chinese family with ADNSHL. A Chinese family was ascertained. Simultaneously, two affected individuals and one normal hearing control from the family were analyzed by whole exome capture sequencing. To assess the functional effect of the identified variant, in-vitro studies were performed. novel missense variant, c.512A>G (p.His171Arg) in exon 8 of the ELMO domain-containing 3 (ELMOD3) gene, was identified as a causative variant in this family affected by late-onset and progressive ADNSHL. The variant was validated by Sanger sequencing and found to co-segregate with the phenotype within the pedigree and was absent in 500 ethnically matched unrelated normal hearing control subjects. To our knowledge, this is the first report of a family with ADNSHL caused by ELMOD3 mutation. Western blots and immunofluorescence staining demonstrated that p.His171Arg resulted in abnormal expression levels of ELMOD3 and abnormal subcellular localization. Furthermore, the analysis of the stability of the wild-type (WT) and mutant ELMOD3 protein shows that the decay of p.His171Arg is faster than that of the WT, suggesting a shorter halflife of the c.512A > G variant. A novel variant in the ELMOD3 gene, encoding a member of the engulfment and cell motility (ELMO) family of GTPase-activating proteins, was identified for the first time as responsible for ADNSHL.
Collapse
Affiliation(s)
- Wu Li
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
- Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Jie Sun
- Department of Otolaryngology, The Eight Affiliated Hospital, Sun Yat-sen University, 3025 Shennan Middle Road, Shenzhen, Guangdong, China
| | - Jie Ling
- Institute of Precision Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
| | - Jiada Li
- Center for Medical Genetics, Central South University, 110 Xiangya Road, Changsha, Hunan, China
- School of Life Sciences, Central South University of China, 110 Xiangya Road, Changsha, Hunan, China
| | - Chufeng He
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
- Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Yalan Liu
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
- Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Hongsheng Chen
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
- Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Meichao Men
- Health Management Center, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
| | - Zhijie Niu
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
- Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Yuyuan Deng
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
- Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Meng Li
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
- Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Taoxi Li
- Center for Medical Genetics, Central South University, 110 Xiangya Road, Changsha, Hunan, China
- School of Life Sciences, Central South University of China, 110 Xiangya Road, Changsha, Hunan, China
| | - Jie Wen
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
- Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Shushan Sang
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
- Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Haibo Li
- Department of Ophthalmology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
| | - Zhengqing Wan
- Center for Medical Genetics, Central South University, 110 Xiangya Road, Changsha, Hunan, China
- School of Life Sciences, Central South University of China, 110 Xiangya Road, Changsha, Hunan, China
| | - Elodie M Richard
- Department of Otorhinolaryngology Head and Neck Surgery, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Prem Chapagain
- Department of Physics, Florida International University, Miami, Florida, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, USA
| | - Xue Zhong Liu
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, USA
- Dr. John T. Macdonald Foundation, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Lingyun Mei
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China.
- Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China.
| | - Yong Feng
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China.
- Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China.
| |
Collapse
|
14
|
Booth KT, Azaiez H, Kahrizi K, Wang D, Zhang Y, Frees K, Nishimura C, Najmabadi H, Smith RJ. Exonic mutations and exon skipping: Lessons learned from DFNA5. Hum Mutat 2018; 39:433-440. [PMID: 29266521 PMCID: PMC5805621 DOI: 10.1002/humu.23384] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/27/2017] [Accepted: 12/12/2017] [Indexed: 02/06/2023]
Abstract
Dysregulation of splicing is a common factor underlying many inherited diseases including deafness. For one deafness-associated gene, DFNA5, perturbation of exon 8 splicing results in a constitutively active truncated protein. To date, only intronic mutations have been reported to cause exon 8 skipping in patients with DFNA5-related deafness. In five families with postlingual progressive autosomal dominant non-syndromic hearing loss, we employed two next-generation sequencing platforms-OtoSCOPE and whole exome sequencing-followed by variant filtering and prioritization based on both minor allele frequency and functional consequence using a customized bioinformatics pipeline to identify three novel and two recurrent mutations in DFNA5 that segregated with hearing loss in these families. The three novel mutations are all missense variants within exon 8 that are predicted computationally to decrease splicing efficiency or abolish it completely. We confirmed their functional impact in vitro using mini-genes carrying each mutant DFNA5 exon 8. In so doing, we present the first exonic mutations in DFNA5 to cause deafness, expand the mutational spectrum of DFNA5-related hearing loss, and highlight the importance of assessing the effect of coding variants on splicing.
Collapse
Affiliation(s)
- Kevin T Booth
- Department of Otolaryngology-Head Neck Surgery, Molecular Otolaryngology Renal Research Laboratories, University of Iowa, Iowa City, Iowa
- The Interdisciplinary Graduate Program in Molecular Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Hela Azaiez
- Department of Otolaryngology-Head Neck Surgery, Molecular Otolaryngology Renal Research Laboratories, University of Iowa, Iowa City, Iowa
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Donghong Wang
- Department of Otolaryngology-Head Neck Surgery, Molecular Otolaryngology Renal Research Laboratories, University of Iowa, Iowa City, Iowa
| | - Yuzhou Zhang
- Department of Otolaryngology-Head Neck Surgery, Molecular Otolaryngology Renal Research Laboratories, University of Iowa, Iowa City, Iowa
| | - Kathy Frees
- Department of Otolaryngology-Head Neck Surgery, Molecular Otolaryngology Renal Research Laboratories, University of Iowa, Iowa City, Iowa
| | - Carla Nishimura
- Department of Otolaryngology-Head Neck Surgery, Molecular Otolaryngology Renal Research Laboratories, University of Iowa, Iowa City, Iowa
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Richard J Smith
- Department of Otolaryngology-Head Neck Surgery, Molecular Otolaryngology Renal Research Laboratories, University of Iowa, Iowa City, Iowa
| |
Collapse
|
15
|
A quantitative cSMART assay for noninvasive prenatal screening of autosomal recessive nonsyndromic hearing loss caused by GJB2 and SLC26A4 mutations. Genet Med 2017; 19:1309-1316. [PMID: 28541280 DOI: 10.1038/gim.2017.54] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 03/27/2017] [Indexed: 12/22/2022] Open
Abstract
PurposeThe aim of this study was to assess the performance of a noninvasive prenatal screening (NIPS) assay for accurate fetal genotyping of pregnancies at genetic risk for autosomal recessive nonsyndromic hearing loss (ARNSHL).MethodsA total of 80 pregnant couples carrying known mutations in either the GJB2 or SLC26A4 genes associated with a risk for ARNSHL were recruited to the study. Fetal amniocyte samples were genotyped by invasive prenatal screening (IPS), whereas the cell-free fetal DNA present in maternal plasma samples was genotyped using a novel NIPS method based on circulating single-molecule amplification and resequencing technology (cSMART).ResultsIPS of the 80 at-risk pregnancies identified 20 normal homozygote, 42 heterozygote, 5 affected homozygote, and 13 affected compound heterozygote fetuses. Benchmarking against IPS, 73 of 80 fetuses (91.3%) were correctly genotyped by the cSMART NIPS assay. A low fetal DNA fraction (<6%) was identified as the main contributing factor in five of seven discordant NIPS results. At fetal DNA fractions >6%, the sensitivity and specificity of the cSMART assay for correctly diagnosing ARNSHL were 100 and 96.5%, respectively.ConclusionBased on key performance indicators, the cSMART NIPS assay has clinical potential as an alternative to traditional IPS of ARNSHL.
Collapse
|
16
|
Novel Mutations and Mutation Combinations of TMPRSS3 Cause Various Phenotypes in One Chinese Family with Autosomal Recessive Hearing Impairment. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4707315. [PMID: 28246597 PMCID: PMC5303592 DOI: 10.1155/2017/4707315] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/03/2016] [Accepted: 12/20/2016] [Indexed: 11/20/2022]
Abstract
Autosomal recessive hearing impairment with postlingual onset is rare. Exceptions are caused by mutations in the TMPRSS3 gene, which can lead to prelingual (DFNB10) as well as postlingual deafness (DFNB8). TMPRSS3 mutations can be classified as mild or severe, and the phenotype is dependent on the combination of TMPRSS3 mutations. The combination of two severe mutations leads to profound hearing impairment with a prelingual onset, whereas severe mutations in combination with milder TMPRSS3 mutations lead to a milder phenotype with postlingual onset. We characterized a Chinese family (number FH1523) with not only prelingual but also postlingual hearing impairment. Three mutations in TMPRSS3, one novel mutation c.36delC [p.(Phe13Serfs⁎12)], and two previously reported pathogenic mutations, c.916G>A (p.Ala306Thr) and c.316C>T (p.Arg106Cys), were identified. Compound heterozygous mutations of p.(Phe13Serfs⁎12) and p.Ala306Thr manifest as prelingual, profound hearing impairment in the patient (IV: 1), whereas the combination of p.Arg106Cys and p.Ala306Thr manifests as postlingual, milder hearing impairment in the patient (II: 2, II: 3, II: 5), suggesting that p.Arg106Cys mutation has a milder effect than p.(Phe13Serfs⁎12). We concluded that different combinations of TMPRSS3 mutations led to different hearing impairment phenotypes (DFNB8/DFNB10) in this family.
Collapse
|
17
|
Chen Y, Liu Y, Wang B, Mao J, Wang T, Ye K, Ye Y, Cram DS, Li H. Development and validation of a fetal genotyping assay with potential for noninvasive prenatal diagnosis of hereditary hearing loss. Prenat Diagn 2016; 36:1233-1241. [PMID: 27862068 DOI: 10.1002/pd.4962] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 10/24/2016] [Accepted: 11/02/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Ying Chen
- Central Lab; Suzhou Hospital Affiliated to Nanjing Medical University; Suzhou Jiangsu China
- Nanjing Medical University Affiliated Wuxi Maternity and Child Health Care Hospital; Wuxi Jiangsu China
| | - Yiqian Liu
- Berry Genomics Corporation; Beijing China
| | - Benjing Wang
- Gynecology Department; Suzhou Hospital Affiliated to Nanjing Medical University; Suzhou Jiangsu China
| | - Jun Mao
- Central Lab; Suzhou Hospital Affiliated to Nanjing Medical University; Suzhou Jiangsu China
- Obstetrics Department; Suzhou Hospital Affiliated to Nanjing Medical University; Suzhou Jiangsu China
| | - Ting Wang
- Center for Reproduction and Genetics; Suzhou Hospital Affiliated to Nanjing Medical University; Suzhou Jiangsu China
| | - Kan Ye
- Child Health Care Department; Suzhou Hospital Affiliated to Nanjing Medical University; Suzhou Jiangsu China
| | - Yanlin Ye
- Child Health Care Department; Suzhou Hospital Affiliated to Nanjing Medical University; Suzhou Jiangsu China
| | | | - Hong Li
- Center for Reproduction and Genetics; Suzhou Hospital Affiliated to Nanjing Medical University; Suzhou Jiangsu China
| |
Collapse
|
18
|
Abstract
Although deafness can be acquired throughout an animal's life from a variety of causes, hereditary deafness, especially congenital hereditary deafness, is a significant problem in several species. Extensive reviews exist of the genetics of deafness in humans and mice, but not for deafness in domestic animals. Hereditary deafness in many species and breeds is associated with loci for white pigmentation, where the cochlear pathology is cochleo-saccular. In other cases, there is no pigmentation association and the cochlear pathology is neuroepithelial. Late onset hereditary deafness has recently been identified in dogs and may be present but not yet recognized in other species. Few genes responsible for deafness have been identified in animals, but progress has been made for identifying genes responsible for the associated pigmentation phenotypes. Across species, the genes identified with deafness or white pigmentation patterns include MITF, PMEL, KIT, EDNRB, CDH23, TYR, and TRPM1 in dog, cat, horse, cow, pig, sheep, ferret, mink, camelid, and rabbit. Multiple causative genes are present in some species. Significant work remains in many cases to identify specific chromosomal deafness genes so that DNA testing can be used to identify carriers of the mutated genes and thereby reduce deafness prevalence.
Collapse
Affiliation(s)
- George M. Strain
- Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
19
|
Hofrichter MAH, Nanda I, Gräf J, Schröder J, Shehata-Dieler W, Vona B, Haaf T. A Novel de novo Mutation in CEACAM16 Associated with Postlingual Hearing Impairment. Mol Syndromol 2015; 6:156-63. [PMID: 26648831 DOI: 10.1159/000439576] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2015] [Indexed: 12/20/2022] Open
Abstract
Mutations in CEACAM16 cause autosomal dominant nonsyndromic hearing loss (DFNA4B). So far, 2 families have been reported with segregating missense mutations, both in the immunoglobulin constant domain A of the CEACAM16 protein. In this study, we used the TruSight One panel to investigate a parent-child trio without familial history of hearing loss and one affected child. When filtering for recessive inheritance and de novo events, we discovered a de novo CEACAM16 mutation (c.1094T>G, p.Leu365Arg) as the sole likely pathogenic variant. The de novo mutation was confirmed by Sanger sequencing and STR analysis. The proband's hearing loss closely matches the described onset and severity for DFNA4B. We present the third CEACAM16 variant and the first de novo mutation in CEACAM16. This de novo mutation is robustly described as a pathogenic mutation according to in silico mutation prediction tools and affects a highly conserved amino acid in the most strongly conserved CEACAM16 N2 domain. Our strategy of screening family trios enhances de novo mutation discovery and the exclusion of other variants of potential interest through pedigree filtering.
Collapse
Affiliation(s)
| | - Indrajit Nanda
- Department of Human Genetics, Julius Maximilian University, Würzburg, Germany
| | - Jens Gräf
- Department of Human Genetics, Julius Maximilian University, Würzburg, Germany
| | - Jörg Schröder
- Department of Human Genetics, Julius Maximilian University, Würzburg, Germany
| | - Wafaa Shehata-Dieler
- Department of Otorhinolaryngology, Comprehensive Hearing Center, University Hospitals, Würzburg, Germany
| | - Barbara Vona
- Department of Human Genetics, Julius Maximilian University, Würzburg, Germany
| | - Thomas Haaf
- Department of Human Genetics, Julius Maximilian University, Würzburg, Germany
| |
Collapse
|
20
|
Gao X, Huang SS, Yuan YY, Wang GJ, Xu JC, Ji YB, Han MY, Yu F, Kang DY, Lin X, Dai P. Targeted gene capture and massively parallel sequencing identify TMC1 as the causative gene in a six-generation Chinese family with autosomal dominant hearing loss. Am J Med Genet A 2015; 167A:2357-65. [PMID: 26079994 DOI: 10.1002/ajmg.a.37206] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 05/25/2015] [Indexed: 12/26/2022]
Abstract
Hereditary nonsyndromic hearing loss is extremely heterogeneous. Mutations in the transmembrane channel-like gene1 (TMC1) are known to cause autosomal dominant and recessive forms of nonsyndromic hearing loss linked to the loci of DFNA36 and DFNB7/11, respectively. We characterized a six-generation Chinese family (5315) with progressive, postlingual autosomal dominant nonsyndromic hearing loss (ADNSHL). By combining targeted capture of 82 known deafness genes, next-generation sequencing and bioinformatic analysis, we identified TMC1 c.1714G>A (p. D572N) as the disease-causing mutation. This mutation co-segregated with hearing loss in other family members and was not detected in 308 normal controls. In order to determine the prevalence of TMC1 c.1714G>A in Chinese ADNSHL families, we used DNA samples from 67 ADNSHL families with sloping audiogram and identified two families carry this mutation. To determine whether it arose from a common ancestor, we analyzed nine STR markers. Our results indicated that TMC1 c.1714G>A (p.D572N) account for about 4.4% (3/68) of ADNSHL in the Chinese population.
Collapse
Affiliation(s)
- Xue Gao
- Department of Otorhinolaryngology, Head and Neck Surgery, PLA General Hospital, Beijing, P. R. China.,Department of Otolaryngology, Hainan Branch of PLA General Hospital, Sanya, P. R. China.,Department of Otorhinolaryngology, Second Artillery General Hospital, Beijing, P. R. China
| | - Sha-Sha Huang
- Department of Otorhinolaryngology, Head and Neck Surgery, PLA General Hospital, Beijing, P. R. China
| | - Yong-Yi Yuan
- Department of Otorhinolaryngology, Head and Neck Surgery, PLA General Hospital, Beijing, P. R. China
| | - Guo-Jian Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, PLA General Hospital, Beijing, P. R. China.,Department of Otolaryngology, Hainan Branch of PLA General Hospital, Sanya, P. R. China
| | - Jin-Cao Xu
- Department of Otorhinolaryngology, Second Artillery General Hospital, Beijing, P. R. China
| | - Yu-Bin Ji
- Department of Otorhinolaryngology, Second Artillery General Hospital, Beijing, P. R. China
| | - Ming-Yu Han
- Department of Otorhinolaryngology, Head and Neck Surgery, PLA General Hospital, Beijing, P. R. China.,Department of Otolaryngology, Hainan Branch of PLA General Hospital, Sanya, P. R. China
| | - Fei Yu
- Department of Otorhinolaryngology, Head and Neck Surgery, PLA General Hospital, Beijing, P. R. China
| | - Dong-Yang Kang
- Department of Otorhinolaryngology, Head and Neck Surgery, PLA General Hospital, Beijing, P. R. China
| | - Xi Lin
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA
| | - Pu Dai
- Department of Otorhinolaryngology, Head and Neck Surgery, PLA General Hospital, Beijing, P. R. China.,Department of Otolaryngology, Hainan Branch of PLA General Hospital, Sanya, P. R. China
| |
Collapse
|
21
|
Vona B, Nanda I, Hofrichter MAH, Shehata-Dieler W, Haaf T. Non-syndromic hearing loss gene identification: A brief history and glimpse into the future. Mol Cell Probes 2015; 29:260-70. [PMID: 25845345 DOI: 10.1016/j.mcp.2015.03.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/19/2015] [Accepted: 03/23/2015] [Indexed: 11/27/2022]
Abstract
From the first identified non-syndromic hearing loss gene in 1995, to those discovered in present day, the field of human genetics has witnessed an unparalleled revolution that includes the completion of the Human Genome Project in 2003 to the $1000 genome in 2014. This review highlights the classical and cutting-edge strategies for non-syndromic hearing loss gene identification that have been used throughout the twenty year history with a special emphasis on how the innovative breakthroughs in next generation sequencing technology have forever changed candidate gene approaches. The simplified approach afforded by next generation sequencing technology provides a second chance for the many linked loci in large and well characterized families that have been identified by linkage analysis but have presently failed to identify a causative gene. It also discusses some complexities that may restrict eventual candidate gene discovery and calls for novel approaches to answer some of the questions that make this simple Mendelian disorder so intriguing.
Collapse
Affiliation(s)
- Barbara Vona
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany.
| | - Indrajit Nanda
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | | | - Wafaa Shehata-Dieler
- Comprehensive Hearing Center, Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Surgery, University Hospital, Würzburg, Germany
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| |
Collapse
|
22
|
Moteki H, Azaiez H, Booth KT, Hattori M, Sato A, Sato Y, Motobayashi M, Sloan CM, Kolbe DL, Shearer AE, Smith RJH, Usami SI. Hearing loss caused by a P2RX2 mutation identified in a MELAS family with a coexisting mitochondrial 3243AG mutation. Ann Otol Rhinol Laryngol 2015; 124 Suppl 1:177S-83S. [PMID: 25788561 DOI: 10.1177/0003489415575045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVES We present a family with a mitochondrial DNA 3243A>G mutation resulting in mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS), of which some members have hearing loss in which a novel mutation in the P2RX2 gene was identified. METHODS One hundred ninety-four (194) Japanese subjects from unrelated families were enrolled in the study. Targeted genomic enrichment and massively parallel sequencing of all known nonsyndromic hearing loss genes were performed to identify the genetic causes of hearing loss. RESULTS A novel mutation in the P2RX2 gene that corresponded to c.601G>A (p.Asp201Tyr) was identified. Two patients carried the mutation and had severe sensorineural hearing loss, while other members with MELAS (who did not carry the P2RX2 mutation) had normal hearing. CONCLUSION This is the first case report of a diagnosis of hearing loss caused by P2RX2 mutation in patients with MELAS. A potential explanation is that a decrease in adenosine triphosphate (ATP) production due to MELAS with a mitochondrial 3243A>G mutation might suppress activation of P2X2 receptors. We also suggest that hearing loss caused by the P2RX2 mutation might be influenced by the decrease in ATP production due to MELAS.
Collapse
Affiliation(s)
- Hideaki Moteki
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan Department of Otolaryngology-Head and Neck Surgery, Molecular Otolaryngology & Renal Research Labs, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hela Azaiez
- Department of Otolaryngology-Head and Neck Surgery, Molecular Otolaryngology & Renal Research Labs, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Kevin T Booth
- Department of Otolaryngology-Head and Neck Surgery, Molecular Otolaryngology & Renal Research Labs, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Mitsuru Hattori
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Ai Sato
- Division of Diabetes, Endocrinology and Metabolism: Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yoshihiko Sato
- Division of Diabetes, Endocrinology and Metabolism: Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Mitsuo Motobayashi
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Christina M Sloan
- Department of Otolaryngology-Head and Neck Surgery, Molecular Otolaryngology & Renal Research Labs, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Diana L Kolbe
- Department of Otolaryngology-Head and Neck Surgery, Molecular Otolaryngology & Renal Research Labs, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - A Eliot Shearer
- Department of Otolaryngology-Head and Neck Surgery, Molecular Otolaryngology & Renal Research Labs, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Richard J H Smith
- Department of Otolaryngology-Head and Neck Surgery, Molecular Otolaryngology & Renal Research Labs, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Shin-Ichi Usami
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
23
|
Wang H, Wang X, He C, Li H, Qing J, Grati M, Hu Z, Li J, Hu Y, Xia K, Mei L, Wang X, Yu J, Chen H, Jiang L, Liu Y, Men M, Zhang H, Guan L, Xiao J, Zhang J, Liu X, Feng Y. Exome sequencing identifies a novel CEACAM16 mutation associated with autosomal dominant nonsyndromic hearing loss DFNA4B in a Chinese family. J Hum Genet 2015; 60:119-126. [PMID: 25589040 PMCID: PMC4375019 DOI: 10.1038/jhg.2014.114] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 11/21/2014] [Accepted: 11/25/2014] [Indexed: 12/28/2022]
Abstract
Autosomal dominant nonsyndromic hearing loss (ADNSHL/DFNA) is a highly genetically heterogeneous disorder. Hitherto only about 30 ADNSHL-causing genes have been identified and many unknown genes remain to be discovered. In this research, genome-wide linkage analysis mapped the disease locus to a 4.3 Mb region on chromosome 19q13 in SY-026, a five-generation nonconsanguineous Chinese family affected by late-onset and progressive ADNSHL. This linkage region showed partial overlap with the previously reported DFNA4. Simultaneously, probands were analyzed using exome capture followed by next generation sequencing. Encouragingly, a heterozygous missense mutation, c.505G>A (p.G169R) in exon 3 of the CEACAM16 gene (carcinoembryonic antigen-related cell adhesion molecule 16), was identified via this combined strategy. Sanger sequencing verified that the mutation co-segregated with hearing loss in the family and that it was not present in 200 unrelated control subjects with matched ancestry. This is the second report in the literature of a family with ADNSHL caused by CEACAM16 mutation. Immunofluorescence staining and Western blots also prove CEACAM16 to be a secreted protein. Furthermore, our studies in transfected HEK293T cells show that the secretion efficacy of the mutant CEACAM16 is much lower than that of the wild-type, suggesting a deleterious effect of the sequence variant.
Collapse
Affiliation(s)
- Honghan Wang
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China.,Department of Head and Neck Surgery, Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Xinwei Wang
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Chufeng He
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Haibo Li
- State Key Laboratory of Medical Genetics of China, Changsha, Hunan, China
| | - Jie Qing
- Department of Otorhinolaryngology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Mhamed Grati
- Department of Otorhinolaryngology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Zhengmao Hu
- State Key Laboratory of Medical Genetics of China, Changsha, Hunan, China
| | - Jiada Li
- State Key Laboratory of Medical Genetics of China, Changsha, Hunan, China
| | - Yiqiao Hu
- State Key Laboratory of Medical Genetics of China, Changsha, Hunan, China
| | - Kun Xia
- State Key Laboratory of Medical Genetics of China, Changsha, Hunan, China
| | - Lingyun Mei
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Xingwei Wang
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Jianjun Yu
- Department of Head and Neck Surgery, Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China
| | - Hongsheng Chen
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Lu Jiang
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Yalan Liu
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Meichao Men
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China.,Health Management Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hailin Zhang
- Department of Head and Neck Surgery, Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China
| | | | | | | | - Xuezhong Liu
- Department of Otorhinolaryngology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Yong Feng
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China.,State Key Laboratory of Medical Genetics of China, Changsha, Hunan, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| |
Collapse
|
24
|
Jones SM, Jones TA. Genetics of peripheral vestibular dysfunction: lessons from mutant mouse strains. J Am Acad Audiol 2014; 25:289-301. [PMID: 25032973 PMCID: PMC4310552 DOI: 10.3766/jaaa.25.3.8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND A considerable amount of research has been published about genetic hearing impairment. Fifty to sixty percent of hearing loss is thought to have a genetic cause. Genes may also play a significant role in acquired hearing loss due to aging, noise exposure, or ototoxic medications. Between 1995 and 2012, over 100 causative genes have been identified for syndromic and nonsyndromic forms of hereditary hearing loss. Mouse models have been extremely valuable in facilitating the discovery of hearing loss genes and in understanding inner ear pathology due to genetic mutations or elucidating fundamental mechanisms of inner ear development. PURPOSE Whereas much is being learned about hereditary hearing loss and the genetics of cochlear disorders, relatively little is known about the role genes may play in peripheral vestibular impairment. Here we review the literature with regard to genetics of vestibular dysfunction and discuss what we have learned from studies using mutant mouse models and direct measures of peripheral vestibular neural function. RESULTS Several genes are considered that when mutated lead to varying degrees of inner ear vestibular dysfunction due to deficits in otoconia, stereocilia, hair cells, or neurons. Behavior often does not reveal the inner ear deficit. Many of the examples presented are also known to cause human disorders. CONCLUSIONS Knowledge regarding the roles of particular genes in the operation of the vestibular sensory apparatus is growing, and it is clear that gene products co-expressed in the cochlea and vestibule may play different roles in the respective end organs. The discovery of new genes mediating critical inner ear vestibular function carries the promise of new strategies in diagnosing, treating, and managing patients as well as predicting the course and level of morbidity in human vestibular disease.
Collapse
Affiliation(s)
- Sherri M Jones
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln
| | - Timothy A Jones
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln
| |
Collapse
|
25
|
Zhao Y, Zhao F, Zong L, Zhang P, Guan L, Zhang J, Wang D, Wang J, Chai W, Lan L, Li Q, Han B, Yang L, Jin X, Yang W, Hu X, Wang X, Li N, Li Y, Petit C, Wang J, Wang HYJ, Wang Q. Exome sequencing and linkage analysis identified tenascin-C (TNC) as a novel causative gene in nonsyndromic hearing loss. PLoS One 2013; 8:e69549. [PMID: 23936043 PMCID: PMC3728356 DOI: 10.1371/journal.pone.0069549] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 06/11/2013] [Indexed: 11/18/2022] Open
Abstract
In this study, a five-generation Chinese family (family F013) with progressive autosomal dominant hearing loss was mapped to a critical region spanning 28.54 Mb on chromosome 9q31.3-q34.3 by linkage analysis, which was a novel DFNA locus, assigned as DFNA56. In this interval, there were 398 annotated genes. Then, whole exome sequencing was applied in three patients and one normal individual from this family. Six single nucleotide variants and two indels were found co-segregated with the phenotypes. Then using mass spectrum (Sequenom, Inc.) to rank the eight sites, we found only the TNC gene be co-segregated with hearing loss in 53 subjects of F013. And this missense mutation (c.5317G>A, p.V1773M ) of TNC located exactly in the critical linked interval. Further screening to the coding region of this gene in 587 subjects with nonsyndromic hearing loss (NSHL) found a second missense mutation, c.5368A>T (p. T1796S), co-segregating with phenotype in the other family. These two mutations located in the conserved region of TNC and were absent in the 387 normal hearing individuals of matched geographical ancestry. Functional effects of the two mutations were predicted using SIFT and both mutations were deleterious. All these results supported that TNC may be the causal gene for the hearing loss inherited in these families. TNC encodes tenascin-C, a member of the extracellular matrix (ECM), is present in the basilar membrane (BM), and the osseous spiral lamina of the cochlea. It plays an important role in cochlear development. The up-regulated expression of TNC gene in tissue repair and neural regeneration was seen in human and zebrafish, and in sensory receptor recovery in the vestibular organ after ototoxic injury in birds. Then the absence of normal tenascin-C was supposed to cause irreversible injuries in cochlea and caused hearing loss.
Collapse
Affiliation(s)
- Yali Zhao
- Department of Otorhinolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
| | - Feifan Zhao
- Department of Otorhinolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
| | - Liang Zong
- Department of Otorhinolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
| | | | | | - Jianguo Zhang
- BGI-Shenzhen, Shenzhen, China
- T-Life Research Center, Fudan University, Shanghai, China
| | - Dayong Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
| | - Jing Wang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Wei Chai
- Department of Orthopaedic Surgery, Chinese PLA General Hospital, Beijing, China
| | - Lan Lan
- Department of Otorhinolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
| | - Qian Li
- Department of Otorhinolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
| | - Bing Han
- Department of Otorhinolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
| | | | - Xin Jin
- BGI-Shenzhen, Shenzhen, China
- School of Bioscience and Biotechnology, South China University of Technology, Guangzhou, China
| | - Weiyan Yang
- Department of Otorhinolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
| | - Xiaoxiang Hu
- State Key Laboratory for AgroBiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaoning Wang
- Institute of Life Sciences, Chinese PLA General Hospital, Beijing, China
| | - Ning Li
- State Key Laboratory for AgroBiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | | | - Christine Petit
- Genetics and physiology of hearing, Neuroscience, College de France and Institute Pasteur, Paris, France
| | - Jun Wang
- BGI-Shenzhen, Shenzhen, China
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Qiuju Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
26
|
Mahboubi H, Dwabe S, Fradkin M, Kimonis V, Djalilian HR. Genetics of hearing loss: where are we standing now? Eur Arch Otorhinolaryngol 2012; 269:1733-45. [PMID: 22218850 DOI: 10.1007/s00405-011-1910-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 12/27/2011] [Indexed: 01/23/2023]
Abstract
Hearing loss (HL) is the most common sensory impairment and is caused by a broad range of inherited to environmental causes. Inherited HL consists 50-60% of all HL cases. The inherited form of HL is further classified to different categories. More than 300 syndromes and 40 genes have been identified to result in different levels of HL. Although several diagnostic or screening tests have been developed, yet there are controversies around their use.
Collapse
Affiliation(s)
- Hossein Mahboubi
- Department of Otolaryngology Head and Neck Surgery, University of California, Irvine, 101 The City Drive South, Bldg 56, Suite 500, Rt 81, Orange, CA 92868, USA
| | | | | | | | | |
Collapse
|
27
|
Cheng J, Zhu Y, He S, Lu Y, Chen J, Han B, Petrillo M, Wrzeszczynski KO, Yang S, Dai P, Zhai S, Han D, Zhang MQ, Li W, Liu X, Li H, Chen ZY, Yuan H. Functional mutation of SMAC/DIABLO, encoding a mitochondrial proapoptotic protein, causes human progressive hearing loss DFNA64. Am J Hum Genet 2011; 89:56-66. [PMID: 21722859 DOI: 10.1016/j.ajhg.2011.05.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 05/03/2011] [Accepted: 05/25/2011] [Indexed: 11/29/2022] Open
Abstract
SMAC/DIABLO is a mitochondrial proapoptotic protein that is released from mitochondria during apoptosis and counters the inhibitory activities of inhibitor of apoptosis proteins, IAPs. By linkage analysis and candidate screening, we identified a heterozygous SMAC/DIABLO mutation, c.377C>T (p.Ser126Leu, refers to p.Ser71Leu in the mature protein) in a six-generation Chinese kindred characterized by dominant progressive nonsyndromic hearing loss, designated as DFNA64. SMAC/DIABLO is highly expressed in human embryonic ears and is enriched in the developing mouse inner-ear hair cells, suggesting it has a role in the development and homeostasis of hair cells. We used a functional study to demonstrate that the SMAC/DIABLO(S71L) mutant, while retaining the proapoptotic function, triggers significant degradation of both wild-type and mutant SMAC/DIABLO and renders host mitochondria susceptible to calcium-induced loss of the membrane potential. Our work identifies DFNA64 as the human genetic disorder associated with SMAC/DIABLO malfunction and suggests that mutant SMAC/DIABLO(S71L) might cause mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jing Cheng
- Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Silva LSD, Netto RCM, Sanches SGG, Carvallo RMM. Auditory measurements in parents of individuals with autosomal recessive hearing loss. PRO-FONO : REVISTA DE ATUALIZACAO CIENTIFICA 2011; 22:403-8. [PMID: 21271090 DOI: 10.1590/s0104-56872010000400007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 11/30/2010] [Indexed: 11/21/2022]
Abstract
BACKGROUND Audiological evaluation of parents of individuals with autosomal recessive hearing loss. AIM To study the audiological profile of parents of individuals with autosomal recessive hearing loss, inferred by family history or by molecular tests that detected heterozygous mutations in the GJB2 gene. This gene codes Connexin 26. METHOD Participants were 36 subjects, ranging between 30 and 60 years, who were divided into two groups: a control group composed by individuals without auditory complaints and without family history of hearing loss, and a research group composed by heterozygous parents of individuals with autosomal recessive hearing loss or heterozygous for connexin 26 mutations. All subjects underwent pure tone audiometry (0.25 to 8 kHz), high frequencies audiometry (9 to 20 kHz) and distortion product otoacoustic emissions (DPOAE). RESULTS There were significant differences between the groups when considering the amplitude of DPOAE in the frequencies of 1001 and 1501 Hz. Amplitude was higher in the control group. There was no significant difference between the groups for pure tone thresholds from 0.25 to 20 KHz. CONCLUSION The DPOAE were more effective, in comparison to the pure tone audiometry, to detect auditory differences between the groups. More studies of this type are necessary to confirm the observed results.
Collapse
|
29
|
Abstract
Gap junctions play important roles in auditory function and skin biology; mutations in the Cx26 (connexin26) gene are the predominant cause of inherited non-syndromic deafness and cause disfiguring skin disorders. Mass spectrometry (MS) was used to identify PTMs (post-translational modifications) of Cx26 and to determine whether they occur at sites of disease-causing mutations. Cx26 was isolated from transfected HeLa cells by sequential immunoaffinity and metal chelate chromatography using a tandem C-terminal haemagglutinin epitope and a (His-Asn)6 sequence. In-gel and in-solution enzymatic digestions were carried out in parallel with trypsin, chymotrypsin and endoproteinase GluC. Peptides were fractionated using a reversed-phase matrix by stepwise elution with increasing concentrations of organic solvent. To improve detection of low-abundance peptides and to maximize sequence coverage, MALDI-TOF-MS (matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry; MS) and MALDI-TOF/TOF-MS/MS (matrix-assisted laser desorption/ionization-time-of-flight/time-of-flight tandem mass spectrometry; MS/MS) spectra were acquired from each elution step using an Applied Biosystems 4800 tandem mass spectrometer. Acquisition, processing and interpretation parameters were optimized to improve ionization and fragmentation of hydrophobic peptides. MS and MS/MS coverage of Cx26 was significantly above that reported for other membrane proteins: 71.3% by MS, with 29.9% by MS/MS. MS coverage was 92.6% if peptides resulting from in-source collisions and/or partial enzymatic cleavages were considered. A variety of putative PTMs of Cx26 were identified, including acetylation, hydroxylation, gamma-carboxyglutamation, methylation and phosphorylation, some of which are at sites of deafness-causing mutations. Knowledge of the PTMs of Cx26 will be instrumental in understanding how alterations in the cellular mechanisms of Cx26 channel biogenesis and function lead to losses in auditory function and disfiguring skin disorders.
Collapse
|
30
|
Fortnum H. Epidemiology of permanent childhood hearing impairment: Implications for neonatal hearing screening. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/16513860310001997] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
KCNQ4 mutations associated with nonsyndromic progressive sensorineural hearing loss. Curr Opin Otolaryngol Head Neck Surg 2009; 16:441-4. [PMID: 18797286 DOI: 10.1097/moo.0b013e32830f4aa3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW This article provides an update on the current progress in identification of KCNQ4 mutations responsible for DFNA2, a subtype of autosomal dominant nonsyndromic progressive hearing loss. RECENT FINDINGS Hearing loss in pateints with DFNA2 usually start at high frequencies in their 20s and 30s, and then progress to more than 60 dB in less than 10 years, with middle and low frequencies often affected as well. To date, eight missense mutations and two deletions of the KCNQ4 gene have been identified in patients with DFNA2 with various clinical phenotypes. In general, missense mutations are associated with younger-onset and all-frequency hearing loss, whereas deletion mutations are underlying later-onset and pure high-frequency hearing loss. The etiology of DFNA2 remains largely unknown at this point, even though the degeneration of cochlear outer hair cells, caused by dysfunction of KCNQ4 channels, might be one of the underlying mechanisms. SUMMARY During the last decade, significant progress has been made in identifying KCNQ4 mutations in patients with DFNA2. Elucidation of the pathogenic effect of these mutations will help to gain insights into the molecular mechanisms of hearing and hearing loss, which, in turn, will facilitate informative genetic counseling, early diagnosis, and even treatment of hearing loss.
Collapse
|
32
|
Abstract
Hearing impairment (HI) is the most frequent sensory disorder, with a genetic etiology in >50% of all cases, due to mutations in >44 identified genes. Autosomal recessive inheritance explains the majority, with GJB2 (connexin 26) mutations accounting for 15-50% of paediatric HI. Delayed presentation of HI to 11-60 months in cases of biallelic GJB2 mutations is a concern, necessitating a good audiological follow-up in addition to neonatal hearing screening. Providing a genetic diagnosis in congenital HI has implications for the prognosis, the possible risk of associated medical manifestations, and precise genetic counseling of the family, and should be integrated into the medical examinations done in order to diagnose syndromic features. Large-scale mutation detection methods, such as micro arrays, are promising for wider genetic testing, but few studies on their clinical utility have been published, so far. Limitations of interpretation of genetic test results, combined with significant ethical issues, currently do not justify to institute genetic screening for GJB2 mutations in neonates before a diagnosis of HI is established.
Collapse
|
33
|
Sanggaard KM, Kjaer KW, Eiberg H, Nürnberg G, Nürnberg P, Hoffman K, Jensen H, Sørum C, Rendtorff ND, Tranebjaerg L. A novel nonsense mutation in MYO6 is associated with progressive nonsyndromic hearing loss in a Danish DFNA22 family. Am J Med Genet A 2008; 146A:1017-25. [PMID: 18348273 DOI: 10.1002/ajmg.a.32174] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Autosomal dominant inheritance is described in about 20% of all nonsyndromic hearing loss with currently 54 distinct loci (DFNA1-54), and >20 different genes identified. Seven different unconventional myosin genes are involved in ten different types of syndromic and nonsyndromic hearing loss with different patterns of inheritance: MYO7A in DFNA11/DFNB2/USH1B, MYH9 in DFNA17, MYH14 in DFNA4, MYO6 in DFNA22/DFNB37, MYO3A in DFNB30, MYO1A in DFNA48, and MYO15A in DFNB3. Two missense mutations in MYO6 (p.C442Y and p.H246R) have been characterized in families of Italian and American Caucasian extraction with autosomal dominant hearing loss, respectively, and the latter was associated with cardiomyopathy in some patients. Three Pakistani families had homozygosity for three MYO6 mutations (c.36insT, p.R1166X, and p.E216V, respectively), and was in one instance associated with retinal degeneration. In the present study, we linked autosomal dominant hearing loss in a large Danish family to a 38.9 Mb interval overlapping with the DFNA22/DFNB37 locus on chromosome 6q13. A novel nonsense mutation in MYO6 exon 25 (c.2545C > T; p.R849X) was identified in the family. The mutation co-segregated with the disease and the mutant allele is predicted to encode a truncated protein lacking the coiled-coil and globular tail domains. These domains are hypothesized to be essential for targeting myosin VI to its cellular compartments. No other system was involved indicating nonsyndromic loss. In conclusion, a novel nonsense MYO6 mutation causes post-lingual, slowly progressive autosomal dominant nonsyndromic moderate to severe hearing loss in a Danish family.
Collapse
Affiliation(s)
- Kirsten M Sanggaard
- Wilhelm Johannsen Centre for Functional Genome Research, Institute of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Mencía A, González-Nieto D, Modamio-Høybjør S, Etxeberría A, Aránguez G, Salvador N, Del Castillo I, Villarroel A, Moreno F, Barrio L, Moreno-Pelayo MA. A novel KCNQ4 pore-region mutation (p.G296S) causes deafness by impairing cell-surface channel expression. Hum Genet 2007; 123:41-53. [PMID: 18030493 DOI: 10.1007/s00439-007-0447-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2007] [Accepted: 11/09/2007] [Indexed: 01/08/2023]
Abstract
Mutations in the potassium channel gene KCNQ4 underlie DFNA2, a subtype of autosomal dominant progressive, high-frequency hearing loss. Based on a phenotype-guided mutational screening we have identified a novel mutation c.886G>A, leading to the p.G296S substitution in the pore region of KCNQ4 channel. The possible impact of this mutation on total KCNQ4 protein expression, relative surface expression and channel function was investigated. When the G296S mutant was expressed in Xenopus oocytes, electrophysiological recordings did not show voltage-activated K(+) currents. The p.G296S mutation impaired KCNQ4 channel activity in two manners. It greatly reduced surface expression and, secondarily, abolished channel function. The deficient expression at the cell surface membrane was further confirmed in non-permeabilized NIH-3T3 cells transfected with the mutant KCNQ4 tagged with the hemagglutinin epitope in the extracellular S1-S2 linker. Co-expression of mutant and wild type KCNQ4 in oocytes was performed to mimic the heterozygous condition of the p.G296S mutation in the patients. The results showed that the G296S mutant exerts a strong dominant-negative effect on potassium currents by reducing the wild type KCNQ4 channel expression at the cell surface. This is the first study to identify a trafficking-dependent dominant mechanism for the loss of KCNQ4 channel function in DFNA2.
Collapse
Affiliation(s)
- Angeles Mencía
- Unidad de Genética Molecular, Hospital Ramón y Cajal, Carretera de Colmenar Km 9, 28034, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Many human syndromes associated with hearing loss are caused by disease genes located on the X chromosome, but few X-linked loci for non-syndromic hearing loss have been reported. Surprisingly, a Y-linked locus has been identified, representing one of the only disease loci on the Y chromosome. This study reviews the different sex-linked genes and loci on the X- and Y chromosome leading to syndromic and especially non-syndromic hearing loss.
Collapse
Affiliation(s)
- M B Petersen
- Department of Genetics, Institute of Child Health, Athens, Greece
| | | | | |
Collapse
|
36
|
Modamio-Hoybjor S, Mencia A, Goodyear R, del Castillo I, Richardson G, Moreno F, Moreno-Pelayo MA. A mutation in CCDC50, a gene encoding an effector of epidermal growth factor-mediated cell signaling, causes progressive hearing loss. Am J Hum Genet 2007; 80:1076-89. [PMID: 17503326 PMCID: PMC1867096 DOI: 10.1086/518311] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Accepted: 03/16/2007] [Indexed: 01/29/2023] Open
Abstract
We previously mapped a novel autosomal dominant deafness locus, DFNA44, by studying a family with postlingual, progressive, nonsyndromic hearing loss. We report here on the identification of a mutation in CCDC50 as the cause of hearing loss in the family. CCDC50 encodes Ymer, an effector of epidermal growth factor (EGF)-mediated cell signaling that is ubiquitously expressed in different organs and has been suggested to inhibit down-regulation of the EGF receptor. We have examined its expression pattern in mouse inner ear. Western blotting and cell transfection results indicate that Ymer is a soluble, cytoplasmic protein, and immunostaining shows that Ymer is expressed in a complex spatiotemporal pattern during inner ear development. In adult inner ear, the expression of Ymer is restricted to the pillar cells of the cochlea, the stria vascularis, and the vestibular sensory epithelia, where it shows spatial overlap with the microtubule-based cytoskeleton. In dividing cells, Ymer colocalizes with microtubules of the mitotic apparatus. We suggest that DFNA44 hearing loss may result from a time-dependent disorganization of the microtubule-based cytoskeleton in the pillar cells and stria vascularis of the adult auditory system.
Collapse
|
37
|
Balakrishnan A, Bleeker FE, Lamba S, Rodolfo M, Daniotti M, Scarpa A, van Tilborg AA, Leenstra S, Zanon C, Bardelli A. Novel somatic and germline mutations in cancer candidate genes in glioblastoma, melanoma, and pancreatic carcinoma. Cancer Res 2007; 67:3545-50. [PMID: 17440062 DOI: 10.1158/0008-5472.can-07-0065] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A recent systematic sequence analysis of well-annotated human protein coding genes or consensus coding sequences led to the identification of 189 genes displaying somatic mutations in breast and colorectal cancers. Based on their mutation prevalence, a subset of these genes was identified as cancer candidate (CAN) genes as they could be potentially involved in cancer. We evaluated the mutational profiles of 19 CAN genes in the highly aggressive tumors: glioblastoma, melanoma, and pancreatic carcinoma. Among other changes, we found novel somatic mutations in EPHA3, MLL3, TECTA, FBXW7, and OBSCN, affecting amino acids not previously found to be mutated in human cancers. Interestingly, we also found a germline nucleotide variant of OBSCN that was previously reported as a somatic mutation. Our results identify specific genetic lesions in glioblastoma, melanoma, and pancreatic cancers and indicate that CAN genes and their mutational profiles are tumor specific. Some of the mutated genes, such as the tyrosine kinase EPHA3, are clearly amenable to pharmacologic intervention and could represent novel therapeutic targets for these incurable cancers. We also speculate that similar to other oncogenes and tumor suppressor genes, mutations affecting OBSCN could be involved in cancer predisposition.
Collapse
Affiliation(s)
- Asha Balakrishnan
- Laboratory of Molecular Genetics, The Oncogenomics Center, Institute for Cancer Research and Treatment, University of Torino Medical School, Candiolo (TO) 10060, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Non-syndromic deafness can be caused by mutations in both nuclear and mitochondrial genes. More than 50 nuclear genes have been shown to be involved in non-syndromic hearing loss, but mutations in mitochondrial DNA (mtDNA) might also cause hearing impairment. As mitochondria are responsible for oxidative phosphorylation, the primary energy-producing system in all eukaryotic cells, mitochondrial dysfunction has pleiotropic effects. Many mutations in mtDNA can lead to multisystem disorders, such as Kearns-Sayre syndrome, NARP, MELAS, or MERRF syndromes, the presentation of which may include hearing loss. A more specific association of mitochondrially inherited deafness and diabetes known as MIDD syndrome can be caused by a limited number of specific mitochondrial mutations. In addition, several rare mutations in the mitochondrial MTTS1 and MTRNR1 genes have been found to be responsible for non-syndromic hearing loss. The most frequent form of non-syndromic deafness is presbyacusis, affecting more than 50% of the elderly. This age-related hearing loss is a paradigm for multifactorial inheritance, involving a multitude of inherited and acquired mutations in the nuclear and mitochondrial genomes, each with a low penetrance, in complex interplay with environmental factors, such as ototoxic medication, that accumulate with age. This study reviews the different mitochondrial mutations, leading to syndromic and especially non-syndromic deafness.
Collapse
Affiliation(s)
- H Kokotas
- Department of Genetics, Institute of Child Health, Athens, Greece
| | | | | |
Collapse
|
39
|
Abstract
Although many adults retain good hearing as they age, hearing loss associated with ageing is common among elderly persons. There are a number of pathophysiolological processes underlying age-related changes to functional components in the inner ear. Genetic factors determine the ageing process but are under the influence of intrinsic and environmental factors. It is difficult to distinguish changes of normal ageing from those of other contributing factors. The effects of age-related deafness can have significant physical, functional and mental health consequences. Although a deficit in hearing can be corrected to some degree by a hearing aid or other appropriate amplification devices, hearing-related rehabilitative needs are much more than simply amplifying external sound. Only by better understanding the process of ageing and its effect on the auditory function can we better accommodate elderly people in our day-to-day interactions. We review here the structure and function of the inner ear, pathophysiology associated with age-related hearing loss (ARHL), heritability, allelism and modifier genes of ARHL, and evaluate the genetic analyses for identification of genetic factors that are involved.
Collapse
Affiliation(s)
- X Z Liu
- Department of Otolaryngology, University of Miami, Miami, FL 33101, USA.
| | | |
Collapse
|
40
|
Martines F, Porrello M, Ferrara M, Martines M, Martines E. Newborn hearing screening project using transient evoked otoacoustic emissions: Western Sicily experience. Int J Pediatr Otorhinolaryngol 2007; 71:107-12. [PMID: 17095100 DOI: 10.1016/j.ijporl.2006.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 09/27/2006] [Accepted: 09/30/2006] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To study the incidence of congenital sensorineural hearing loss in all newborns introducing a screen test with a protocol no expensive, with a good "screen sensitivity" that could let an earlier identification of hearing impairment beginning early intervention by 2 months of age and increasing the probability of having language development within the normal range of development. METHODS The study was conducted in Sciacca hospital from the beginning of 2003 to our days and was carried out with transient evoked otoacoustic emission using the criteria for PASS or RETEST and considering eventual prenatal and perinatal risk factors. All the newborns were divided into four groups each one with its personal secondary step program. RESULTS In the years 2003-2004 the number of the newborns in Sciacca hospital was: 538 for 2003, 653 for 2004 with a total of 1191; all these infants were divided in three groups: resident in Sciacca, resident in the Sciacca borderlands and resident out of the district of Sciacca. The coverage (percentage of the target population who undergo the screen) was of 90% in the 2003 (483 newborns) and of 90% in the 2004 (585 newborns) with two cases of congenital sensorineural hearing loss identified. The incidence of sensorineural hearing loss, in the District of Sciacca, was estimated to be 2.07/1000 in 2003 and 1.70/1000 in 2004. CONCLUSIONS The higher incidence of sensorineural hearing loss in our study is due to a high prevalence of consanguineous marriage in Sicily that was shown to be linked with hearing impairment. The "sensitivity value" was 95% at the first step but became 99% after the second step with a few number of false positive (0.74%). All the infants with a diagnosis of sensorineural hearing loss began a rehabilitation program before the age of 5 months and they have a good speech development and speech intelligibility.
Collapse
Affiliation(s)
- F Martines
- Università degli Studi di Palermo, Dipartimento di Biotecnologie Mediche e Medicina Legale, Sezione di Audiologia, Italy.
| | | | | | | | | |
Collapse
|
41
|
Bavelier D, Dye MWG, Hauser PC. Do deaf individuals see better? Trends Cogn Sci 2006; 10:512-8. [PMID: 17015029 PMCID: PMC2885708 DOI: 10.1016/j.tics.2006.09.006] [Citation(s) in RCA: 302] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 08/15/2006] [Accepted: 09/18/2006] [Indexed: 12/27/2022]
Abstract
The possibility that, following early auditory deprivation, the remaining senses such as vision are enhanced has been met with much excitement. However, deaf individuals exhibit both better and worse visual skills than hearing controls. We show that, when deafness is considered to the exclusion of other confounds, enhancements in visual cognition are noted. The changes are not, however, widespread but are selective, limited, as we propose, to those aspects of vision that are attentionally demanding and would normally benefit from auditory-visual convergence. The behavioral changes are accompanied by a reorganization of multisensory areas, ranging from higher-order cortex to early cortical areas, highlighting cross-modal interactions as a fundamental feature of brain organization and cognitive processing.
Collapse
Affiliation(s)
- Daphne Bavelier
- Brain and Cognitive Science Department, Meliora Hall, University of Rochester, Rochester, NY 14627-0268, USA.
| | | | | |
Collapse
|
42
|
Alsaber R, Tabone CJ, Kandpal RP. Predicting candidate genes for human deafness disorders: a bioinformatics approach. BMC Genomics 2006; 7:180. [PMID: 16854223 PMCID: PMC1564145 DOI: 10.1186/1471-2164-7-180] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Accepted: 07/19/2006] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND There are more than 50 genes for autosomal dominant and autosomal recessive nonsyndromic hereditary deafness that are yet to be cloned. The human genome sequence and expression profiles of transcripts in the inner ear have aided positional cloning approaches. The knowledge of protein interactions offers additional advantages in selecting candidate genes within a mapped region. RESULTS We have employed a bioinformatic approach to assemble the genes encoded by genomic regions that harbor various deafness loci. The genes were then in silico analyzed for their candidacy by expression pattern and ability to interact with other proteins. Such analyses have narrowed a list of 2400 genes from suspected regions of the genome to a manageable number of about 140 for further analysis. CONCLUSION We have established a list of strong candidate genes encoded by the regions linked to various nonsyndromic hereditary hearing loss phenotypes by using a novel bioinformatic approach. The candidates presented here provide a starting point for mutational analysis in well-characterized families along with genetic linkage to refine the loci. The advantages and shortcomings of this bioinformatic approach are discussed.
Collapse
Affiliation(s)
- Rami Alsaber
- Department of Biological Sciences, Fordham University Bronx, NY 10458, USA
| | | | - Raj P Kandpal
- Department of Biological Sciences, Fordham University Bronx, NY 10458, USA
| |
Collapse
|
43
|
Abstract
Non-syndromic deafness is a paradigm of genetic heterogeneity with 85 loci and 39 nuclear disease genes reported so far. Autosomal-recessive genes are responsible for about 80% of the cases of hereditary non-syndromic deafness of pre-lingual onset with 23 different genes identified to date. In the present article, we review these 23 genes, their function, and their contribution to genetic deafness in different populations. The wide range of functions of these DFNB genes reflects the heterogeneity of the genes involved in hearing and hearing loss. Several of these genes are involved in both recessive and dominant deafness, or in both non-syndromic and syndromic deafness. Mutations in the GJB2 gene encoding connexin 26 are responsible for as much as 50% of pre-lingual, recessive deafness. By contrast, mutations in most of the other DFNB genes have so far been detected in only a small number of families, and their contribution to deafness on a population scale might therefore be limited. Identification of all genes involved in hereditary hearing loss will help in our understanding of the basic mechanisms underlying normal hearing, in early diagnosis and therapy.
Collapse
Affiliation(s)
- M B Petersen
- Department of Genetics, Institute of Child Health, Aghia Sophia Children's Hospital, Athens, Greece.
| | | |
Collapse
|
44
|
Jones SM, Jones TA, Johnson KR, Yu H, Erway LC, Zheng QY. A comparison of vestibular and auditory phenotypes in inbred mouse strains. Brain Res 2006; 1091:40-6. [PMID: 16499890 PMCID: PMC2859199 DOI: 10.1016/j.brainres.2006.01.066] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 01/12/2006] [Accepted: 01/13/2006] [Indexed: 10/25/2022]
Abstract
The purposes of this research were to quantify gravity receptor function in inbred mouse strains and compare vestibular and auditory function for strain- and age-matched animals. Vestibular evoked potentials (VsEPs) were collected for 19 inbred strains at ages from 35 to 389 days old. On average, C57BL/6J (35 to 190 days), BALB/cByJ, C3H/HeSnJ, CBA/J, and young LP/J mice had VsEP thresholds comparable to normal. Elevated VsEP thresholds were found for elderly C57BL/6J, NOD.NONH2(kb), BUB/BnJ, A/J, DBA/2J, NOD/LtJ, A/WySnJ, MRL/MpJ, A/HeJ, CAST/Ei, SJL/J, elderly LP/J, and CE/J. These results suggest that otolithic function varies among inbred strains and several strains displayed gravity receptor deficits by 90 days old. Auditory brainstem response (ABR) thresholds were compared to VsEP thresholds for 14 age-matched strains. C57BL/6J mice (up to 190 days) showed normal VsEPs with normal to mildly elevated ABR thresholds. Four strains (BUB/BnJ, NOD/LtJ, A/J, elderly LP/J) had significant hearing loss and elevated VsEP thresholds. Four strains (DBA/2J, A/WySnJ, NOD.NONH2(kb), A/HeJ) had elevated VsEP thresholds (including absent VsEPs) with mild to moderate elevations in ABR thresholds. Three strains (MRL/MpJ, Ce/J, SJL/J) had significant vestibular loss with no concomitant hearing loss. These results suggest that functional change in one sensory system does not obligate change in the other. We hypothesize that genes responsible for early onset hearing loss may affect otolithic function, yet the time course of functional change may vary. In addition, some genetic mutations may produce primarily gravity receptor deficits. Potential genes responsible for selective gravity receptor impairment demonstrated herein remain to be identified.
Collapse
Affiliation(s)
- Sherri M Jones
- Department of Communication Sciences and Disorders, East Carolina University, Belk Annex, Greenville and Charles Boulevards, Greenville, NC 27858, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Boekhoff-Falk G. Hearing in Drosophila: development of Johnston's organ and emerging parallels to vertebrate ear development. Dev Dyn 2005; 232:550-8. [PMID: 15704117 DOI: 10.1002/dvdy.20207] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In this review, I describe recent progress toward understanding the developmental genetics governing formation of the Drosophila auditory apparatus. The Drosophila auditory organ, Johnston's organ, is housed in the antenna. Intriguingly, key genes needed for specification or function of auditory cell types in the Drosophila antenna also are required for normal development or function of the vertebrate ear. These genes include distal-less, spalt and spalt-related, atonal, crinkled, nanchung and inactive, and prestin, and their vertebrate counterparts Dlx, spalt-like (sall), atonal homolog (ath), myosin VIIA, TRPV, and prestin, respectively. In addition, Drosophila auditory neurons recently were shown to serve actuating as well as transducing roles, much like their hair cell counterparts of the vertebrate cochlea. The emerging genetic and physiologic parallels have come as something of a surprise, because conventional wisdom holds that vertebrate and invertebrate hearing organs have separate evolutionary origins. The new findings raise the possibility that auditory organs are more ancient than previously thought and indicate that Drosophila is likely to be a powerful model system in which to gain insights regarding the etiologies of human deafness disorders.
Collapse
Affiliation(s)
- Grace Boekhoff-Falk
- Department of Anatomy, University of Wisconsin-Madison, Medical School, Madison, Wisconsin 53706, USA.
| |
Collapse
|
46
|
Finsterer J, Fellinger J. Nuclear and mitochondrial genes mutated in nonsyndromic impaired hearing. Int J Pediatr Otorhinolaryngol 2005; 69:621-47. [PMID: 15850684 DOI: 10.1016/j.ijporl.2004.12.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Revised: 12/06/2004] [Accepted: 12/06/2004] [Indexed: 10/25/2022]
Abstract
Half of the cases with congenital impaired hearing are hereditary (HIH). HIH may occur as part of a multisystem disease (syndromic HIH) or as disorder restricted to the ear and vestibular system (nonsyndromic HIH). Since nonsyndromic HIH is almost exclusively caused by cochlear defects, affected patients suffer from sensorineural hearing loss. One percent of the total human genes, i.e. 300-500, are estimated to cause syndromic and nonsyndromic HIH. Of these, approximately 120 genes have been cloned thus far, approximately 80 for syndromic HIH and 42 for nonsyndromic HIH. In the majority of the cases, HIH manifests before (prelingual), and rarely after (postlingual) development of speech. Prelingual, nonsyndromic HIH follows an autosomal recessive trait (75-80%), an autosomal dominant trait (10-20%), an X-chromosomal, recessive trait (1-5%), or is maternally inherited (0-20%). Postlingual nonsyndromic HIH usually follows an autosomal dominant trait. Of the 41 mutated genes that cause nonsyndromic HIH, 15 cause autosomal dominant HIH, 15 autosomal recessive HIH, 6 both autosomal dominant and recessive HIH, 2 X-linked HIH, and 3 maternally inherited HIH. Mutations in a single gene may not only cause autosomal dominant, nonsyndromic HIH, but also autosomal recessive, nonsyndromic HIH (GJB2, GJB6, MYO6, MYO7A, TECTA, TMC1), and even syndromic HIH (CDH23, COL11A2, DPP1, DSPP, GJB2, GJB3, GJB6, MYO7A, MYH9, PCDH15, POU3F4, SLC26A4, USH1C, WFS1). Different mutations in the same gene may cause variable phenotypes within a family and between families. Most cases of recessive HIH result from mutations in a single locus, but an increasing number of disorders is recognized, in which mutations in two different genes (GJB2/GJB6, TECTA/KCNQ4), or two different mutations in a single allele (GJB2) are involved. This overview focuses on recent advances in the genetic background of nonsyndromic HIH.
Collapse
Affiliation(s)
- Josef Finsterer
- Department of Neurology, Krankenanstalt Rudolfstiftung, Vienna, Austria.
| | | |
Collapse
|
47
|
Rak SG, Distl O. Congenital sensorineural deafness in dogs: a molecular genetic approach toward unravelling the responsible genes. Vet J 2005; 169:188-96. [PMID: 15727910 DOI: 10.1016/j.tvjl.2004.01.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2004] [Indexed: 11/29/2022]
Abstract
Deafness is often diagnosed in different dog breeds and has been identified as a significant problem for breeders, owners and clinicians. The aetiology can be inherited or acquired, and a distinction must be made between sensorineural and conductive forms of deafness. This paper provides a brief overview of the varieties of findings in different dog breeds and in one breed in particular including prevalence, phenotypic and gender associations, histology, modes of inheritance and the number of contributing genes in congenital sensorineural deafness. We have also described molecular genetic approaches to canine hearing loss and discuss how comparative genomics could help reduce the prevalence of deafness in affected breeds leading to new insights into the molecular mechanisms of auditory function in both dogs and humans.
Collapse
Affiliation(s)
- Simone G Rak
- Institute of Animal Breeding and Genetics, School of Veterinary Medicine Hannover, Bunteweg 17p, 30559 Hannover, Germany
| | | |
Collapse
|
48
|
Hartikka H, Kuurila K, Körkkö J, Kaitila I, Grénman R, Pynnönen S, Hyland JC, Ala-Kokko L. Lack of correlation between the type ofCOL1A1orCOL1A2mutation and hearing loss in osteogenesis imperfecta patients. Hum Mutat 2004; 24:147-54. [PMID: 15241796 DOI: 10.1002/humu.20071] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Osteogenesis imperfecta (OI) is caused by mutations in COL1A1 and COL1A2 that code for the alpha1 and alpha2 chains of type I collagen. Phenotypes correlate with the mutation types in that COL1A1 null mutations lead to OI type I, and structural mutations in alpha1(I) or alpha2(I) lead to more severe OI types (II-IV). However, correlative analysis between mutation types and OI associated hearing loss has not been previously performed. A total of 54 Finnish OI patients with previously diagnosed hearing loss or age 35 or more years were analyzed here for mutations in COL1A1 or COL1A2. Altogether 49 mutations were identified, of which 41 were novel. The 49 mutations represented the molecular genetic background of 41.1% of the Finnish OI population. A total of 38 mutations were in COL1A1 and 11 were in COL1A2. Of these, 16 were glycine substitutions and 16 were splicing mutations in alpha1(I) or alpha2(I). In addition, 17 null allele mutations were detected in COL1A1. A total of 32 patients (65.3%) with a mutation had hearing loss. That is slightly more than in our previous population study on Finnish adults with OI (57.9%). The association between the mutation types and OI type was statistically evident. Patients with COL1A1 mutations more frequently had blue scleras than those with COL1A2 mutations. In addition, patients with COL1A2 mutations tended to be shorter than those with COL1A1 mutations. However, no correlation was found between the mutated gene or mutation type and hearing pattern. These results suggest that the basis of hearing loss in OI is complex, and it is a result of multifactorial, still unknown genetic effects.
Collapse
Affiliation(s)
- Heini Hartikka
- Collagen Research Unit, Biocenter and Department of Medical Biochemistry and Molecular Biology, Oulu University Hospital, Finland
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Fransen E, Van Laer L, Lemkens N, Caethoven G, Flothmann K, Govaerts P, Van de Heyning P, Van Camp G. A Novel Z-Score–Based Method to Analyze Candidate Genes for Age-Related Hearing Impairment. Ear Hear 2004; 25:133-41. [PMID: 15064658 DOI: 10.1097/01.aud.0000120362.69077.0b] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Approximately half of the variance of Age-Related Hearing Impairment (ARHI) is attributable to environmental risk factors, and the other half to genetic factors. None of these genes has ever been identified, but the genes involved in monogenic nonsyndromic hearing impairment are good candidates. Here we define and validate a quantitative trait value for ARHI, correcting for age and gender, to allow the genetic study of ARHI as a quantitative trait. DESIGN Based on the ISO 7029 standard, we convert audiometric data into a Z-score, an age- and gender-independent value expressing to what extent a person is affected by ARHI. The validity of this approach is checked using a test population of randomly collected subjects. The power to evaluate the contribution of a candidate gene to ARHI is assessed using simulated populations. As an example, one ARHI candidate gene is analyzed. RESULTS In our test population, Z-scores were normally distributed although the mean did not equal zero. Z-scores were independent of age, and there was no difference between men and women. Power studies using simulated populations indicated that to detect moderate genetic effects, sample sizes of at least 500 random subjects are necessary. CONCLUSION The Z-score conversion appears to be a valid method to describe to what extent a subject is affected by ARHI, allowing to compare persons from different age and gender. This method can be the basis of future, powerful studies to identify ARHI genes.
Collapse
Affiliation(s)
- Erik Fransen
- Department of Medical Genetics, University of Antwerp, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Grabski R, Szul T, Sasaki T, Timpl R, Mayne R, Hicks B, Sztul E. Mutations in COCH that result in non-syndromic autosomal dominant deafness (DFNA9) affect matrix deposition of cochlin. Hum Genet 2003; 113:406-16. [PMID: 12928864 DOI: 10.1007/s00439-003-0992-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2003] [Accepted: 06/10/2003] [Indexed: 10/26/2022]
Abstract
The COCH gene mutated in autosomal dominant sensorineural deafness (DFNA9) encodes cochlin, a major constituent of the inner ear extracellular matrix. Sequence analysis of cochlin from DFNA9 patients identified five distinct single-amino-acid mutations within a conserved region (the LCCL domain) of cochlin. To define the molecular basis of DFNA9, we have generated myc-tagged wild-type and mutant cochlins and explored their behavior in transient transfection systems. Western blotting of cell lysates and culture media indicates that wild-type and mutant cochlins are synthesized and secreted in similar amounts. Immunofluorescent staining confirms that all are detected within the endoplasmic reticulum and the Golgi complex of transfected cells. Our findings suggest that COCH mutations are unlikely to cause abnormalities in secretion and suggest that extracellular events might cause DFNA9 pathology. In agreement, we show that wild-type cochlin accumulates in extracellular deposits that closely parallel the matrix component fibronectin, whereas mutant cochlins vary in the amount and pattern of extracellular material. Whereas some mutants exhibit an almost normal deposition pattern, some show complete lack of deposition. Our results suggest that DFNA9 results from gene products that fail to integrate correctly into the extracellular matrix. The partial or complete penetrance of integration defects suggests that DFNA9 pathology may be caused by multiple molecular mechanisms, including compromised ability of cochlin to self-assemble or to form appropriate complexes with other matrix components.
Collapse
Affiliation(s)
- Robert Grabski
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | |
Collapse
|