1
|
Sidharthan S, D G, Kheur S, Mohapatra S. Assessment of the role of Th17 cell and related biomarkers in periodontitis: A systematic review. Arch Oral Biol 2025; 175:106272. [PMID: 40359716 DOI: 10.1016/j.archoralbio.2025.106272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/12/2025] [Accepted: 04/12/2025] [Indexed: 05/15/2025]
Abstract
OBJECTIVE This study aimed to investigate the evidence for presence of Th17 cells and their biomarkers, and to assess their impact on the immune-inflammatory response in periodontitis. MATERIALS AND METHODS An electronic search was performed in MEDLINE (PubMed), SCOPUS, EBSCOhost, and Google Scholar databases from their earliest records to April 2023. Additionally, the reference lists of included articles and grey literature were hand-searched. Study selection and quality assessment of the included articles was performed using the Newcastle-Ottawa scale. RESULTS This systematic review included case-control, cross-sectional, and cohort studies published in English, specifically those evaluating the presence and influence of Th17 or its related biomarkers in the progression of periodontal disease. Of the 26,797 articles screened, 47 studies met the eligibility criteria and were included. The studies varied in design, molecular methods, and sample types. CONCLUSION This systematic review confirms the presence of Th17 cells and related biomarkers in periodontal tissues, highlighting their role in the immune-inflammatory response and pathogenesis of periodontitis. The review underscores the need for more comprehensive research to overcome current limitations and effectively translate these findings into clinical practice.
Collapse
Affiliation(s)
- Sangamithra Sidharthan
- Department of Periodontology and Oral Implantology, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Sant Tukaram Nagar, Pimpri, Pune, Maharashtra 411018, India.
| | - Gopalakrishnan D
- Department of Periodontology and Oral Implantology, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Sant Tukaram Nagar, Pimpri, Pune, Maharashtra 411018, India
| | - Supriya Kheur
- Department of Oral Pathology and Microbiology, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Sant Tukaram Nagar, Pimpri, Pune, Maharashtra 411018, India
| | - Subhashree Mohapatra
- Department of Public Health Dentistry, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Sant Tukaram Nagar, Pimpri, Pune, Maharashtra 411018, India
| |
Collapse
|
2
|
Danielsen AK, Massarenti L, Minculescu L, Jensen PØ, Hansen PR, Holmstrup P, Damgaard C, Nielsen CH. Cytokine responses of CD4+ T cells and NKT cells to periodontitis-associated bacteria in individuals with or without periodontitis. J Periodontal Res 2025; 60:177-188. [PMID: 38962877 PMCID: PMC11873674 DOI: 10.1111/jre.13317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/05/2024]
Abstract
AIM Periodontitis is an inflammatory disease driven by opportunistic bacteria including Porphyromonas gingivalis and Fusobacterium nucleatum, where T-cell and NKT-cell responses to these bacteria in patients with periodontitis grade B or C are not fully elucidated. The objective is to determine if exaggerated proinflammatory Th-cell responses to periodontitis-associated bacteria, but not commensal bacteria, is a characteristic of increased periodontitis grade. METHODS Mononuclear cells from patients with periodontitis grade C (n = 26) or grade B (n = 33) and healthy controls (HCs; n = 26) were stimulated with P. gingivalis, F. nucleatum or the commensal bacteria, Staphylococcus epidermidis and Cutibacterium acnes. Cytokine production by different T-cell populations and FOXP3-expression by regulatory T cells were assessed by flow cytometry. RESULTS Compared to HCs, grade C patients had decreased frequencies of interleukin (IL)-10-producing CD4+ T cells before stimulation (p = .02) and increased frequencies of IFN-y-producing CD4+ T cells after stimulation with P. gingivalis (p = .0019). Grade B patients had decreased frequencies of FOXP3+ CD4+ T cells before (p = .030) before and after stimulation with anti-CD2/anti-CD3/anti-CD28-loaded beads (p = .047), P. gingivalis (p = .013) and S. epidermidis (p = .018). Clinical attachment loss correlated with the frequencies of IFN-y-producing Th1 cells in P. gingivalis- and F. nucleatum-stimulated cultures in grade B patients (p = .023 and p = .048, respectively) and with the frequencies of Th17 cells in P. gingivalis-stimulated cultures (p = .0062) in grade C patients. Patients with periodontitis grade C or grade B showed lower frequencies of IL-10-producing NKT cells than HCs in unstimulated cultures (p = .0043 and p = .027 respectively). CONCLUSIONS Both periodontitis groups showed decreased frequencies of immunoregulatory T-cell and NKT cell subsets at baseline. Clinical attachment loss correlated with P. gingivalis-induced Th17-responses in grade C patients and with Th1-responses in grade B patients when cells were stimulated with P. gingivalis, supporting that dysregulated pro-inflammatory T-cell responses to periodontitis-associated bacteria contribute to the pathogenesis of periodontitis.
Collapse
Affiliation(s)
- Anne Katrine Danielsen
- Research Area Periodontology, Section for Oral Biology and Immunopathology, Department of Odontology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Institute for Inflammation Research, Center for Rheumatology and Spine DiseasesRigshospitalet, Copenhagen University HospitalCopenhagenDenmark
| | - Laura Massarenti
- Research Area Periodontology, Section for Oral Biology and Immunopathology, Department of Odontology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Institute for Inflammation Research, Center for Rheumatology and Spine DiseasesRigshospitalet, Copenhagen University HospitalCopenhagenDenmark
| | - Lia Minculescu
- Department of Clinical ImmunologyRigshospitalet, Copenhagen University HospitalCopenhagenDenmark
| | - Peter Østrup Jensen
- Institute for Inflammation Research, Center for Rheumatology and Spine DiseasesRigshospitalet, Copenhagen University HospitalCopenhagenDenmark
- Department of Immunology and MicrobiologyCosterton Biofilm Center, University of Copenhagen Faculty of Health and Medical SciencesCopenhagenDenmark
- Department of Clinical MicrobiologyRigshospitaletCopenhagenDenmark
| | - Peter Riis Hansen
- Department of CardiologyHerlev and Gentofte Hospital, University of CopenhagenHellerupDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Palle Holmstrup
- Research Area Periodontology, Section for Oral Biology and Immunopathology, Department of Odontology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Christian Damgaard
- Research Area Periodontology, Section for Oral Biology and Immunopathology, Department of Odontology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Institute for Inflammation Research, Center for Rheumatology and Spine DiseasesRigshospitalet, Copenhagen University HospitalCopenhagenDenmark
| | - Claus Henrik Nielsen
- Research Area Periodontology, Section for Oral Biology and Immunopathology, Department of Odontology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Institute for Inflammation Research, Center for Rheumatology and Spine DiseasesRigshospitalet, Copenhagen University HospitalCopenhagenDenmark
| |
Collapse
|
3
|
Hsiao PY, Huang RY, Huang LW, Chu CL, Dyke TV, Mau LP, Cheng CD, Sung CE, Weng PW, Wu YC, Shieh YS, Cheng WC. MyD88 exacerbates inflammation-induced bone loss by modulating dynamic equilibrium between Th17/Treg cells and subgingival microbiota dysbiosis. J Periodontol 2024; 95:764-777. [PMID: 38523602 DOI: 10.1002/jper.23-0561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND This study aimed to investigate the contribution of myeloid differentiation primary-response gene 88 (MyD88) on the differentiation of T helper type 17 (Th17) and regulatory T (Treg) cells and the emerging subgingival microbiota dysbiosis in Porphyromonas gingivalis-induced experimental periodontitis. METHODS Alveolar bone loss, infiltrated inflammatory cells, immunostained cells for tartrate-resistant acid phosphatase (TRAP), the receptor activator of nuclear factor-kB ligand (RANKL), and osteoprotegerin (OPG) were quantified by microcomputerized tomography and histological staining between age- and sex-matched homozygous littermates (wild-type [WT, Myd88+/+] and Myd88-/- on C57BL/6 background). The frequencies of Th17 and Treg cells in cervical lymph nodes (CLNs) and spleen were determined by flow cytometry. Cytokine expression in gingival tissues, CLNs, and spleens were studied by quantitative polymerase chain reaction (qPCR). Analysis of the composition of the subgingival microbiome and functional annotation of prokaryotic taxa (FAPROTAX) analysis were performed. RESULTS P. gingivalis-infected Myd88-/- mice showed alleviated bone loss, TRAP+ osteoclasts, and RANKL/OPG ratio compared to WT mice. A significantly higher percentage of Foxp3+CD4+ T cells in infected Myd88-/- CLNs and a higher frequency of RORγt+CD4+ T cells in infected WT mice was noted. Increased IL-10 and IL-17a expressions in gingival tissue at D14-D28 then declined in WT mice, whereas an opposite pattern was observed in Myd88-/- mice. The Myd88-/- mice exhibited characteristic increases in gram-positive species and species having probiotic properties, while gram-negative, anaerobic species were noted in WT mice. FAPROTAX analysis revealed increased aerobic chemoheterotrophy in Myd88-/- mice, whereas anaerobic chemoheterotrophy was noted in WT mice after P. gingivalis infection. CONCLUSIONS MyD88 plays an important role in inflammation-induced bone loss by modulating the dynamic equilibrium between Th17/Treg cells and dysbiosis in P. gingivalis-induced experimental periodontitis.
Collapse
Affiliation(s)
- Po-Yan Hsiao
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Ren-Yeong Huang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Dental Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Lin-Wei Huang
- Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Ching-Liang Chu
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Thomas Van Dyke
- Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, Massachusetts, USA
| | - Lian-Ping Mau
- Department of Periodontics, Chi Mei Medical Center, Tainan, Taiwan
| | - Chia-Dan Cheng
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Dental Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-En Sung
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Dental Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Pei-Wei Weng
- Department of Orthopaedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chiao Wu
- Graduate Institute of Dental Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Operative Dentistry and Endodontics, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Yi-Shing Shieh
- Graduate Institute of Dental Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Operative Dentistry and Endodontics, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Wan-Chien Cheng
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Dental Sciences, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
4
|
Sakaguchi W, Saruta J, Yamamoto Y, Shimizu T, Fuchida S, Tsukinoki K. Identification of citrullinated α1-antitrypsin (A1AT) in saliva in a mouse model of rheumatoid arthritis. J Oral Biosci 2024; 66:473-482. [PMID: 38554831 DOI: 10.1016/j.job.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 04/02/2024]
Abstract
OBJECTIVES Rheumatoid arthritis (RA) is an autoimmune disease characterized by progressive joint destruction. Early diagnosis and treatment, before joint deformation or destruction occurs, are crucial. Identifying novel biomarkers for RA in saliva could potentially enable early detection of the disease, prior to its onset. METHODS We conducted a comprehensive proteomic analysis of salivary proteins in a mouse model of RA. Proteins were identified using western blotting and enzyme-linked immunosorbent assay in the serum, saliva, and ankle joints of DBA/1JJmsSlc mice, a model of RA. Ankle joints and submandibular glands were stained with hematoxylin and eosin and immunostained, and the results were compared with those of control mice. RESULTS Citrullinated alpha-1 antitrypsin (A1AT, 46 kDa) was commonly detected in the saliva, serum, and ankle joints of mice with severe RA and was confirmed through proteomic analysis. Western blotting showed a band corresponding to 46 kDa in the serum, saliva, and ankle joints. Immunostaining of the ankle joints with the A1AT antibody showed a strong positive signal in the synovium. CONCLUSIONS In DBA/1JJmsSlc mice, cyclic citrullinated peptide antibodies and A1AT may be involved in citrullination and contribute to the development and severity of RA, making them valuable treatment targets requiring further study.
Collapse
Affiliation(s)
- Wakako Sakaguchi
- Department of Pathology and Histomorphology, Kanagawa Dental University, 82 Inaoka, Yokosuka, Kanagawa 238-8580, Japan.
| | - Juri Saruta
- Department of Education Planning, Kanagawa Dental University, 82 Inaoka, Yokosuka, Kanagawa 238-8580, Japan.
| | - Yuko Yamamoto
- Department of Dental Hygiene, Kanagawa Dental University, Junior College, 82 Inaoka, Yokosuka, Kanagawa 2388580, Japan.
| | - Tomoko Shimizu
- Department of Implantology and Periodontology, Kanagawa Dental University, 3-31-6 Tsuruya, Kanagawa-ku, Yokohama 2210835, Kanagawa, Japan.
| | - Shinya Fuchida
- Department of Education Planning, Kanagawa Dental University, 82 Inaoka, Yokosuka, Kanagawa 238-8580, Japan.
| | - Keiichi Tsukinoki
- Department of Pathology and Histomorphology, Kanagawa Dental University, 82 Inaoka, Yokosuka, Kanagawa 238-8580, Japan.
| |
Collapse
|
5
|
Krutyhołowa A, Strzelec K, Dziedzic A, Bereta GP, Łazarz-Bartyzel K, Potempa J, Gawron K. Host and bacterial factors linking periodontitis and rheumatoid arthritis. Front Immunol 2022; 13:980805. [PMID: 36091038 PMCID: PMC9453162 DOI: 10.3389/fimmu.2022.980805] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/27/2022] [Indexed: 02/05/2023] Open
Abstract
Observations from numerous clinical, epidemiological and serological studies link periodontitis with severity and progression of rheumatoid arthritis. The strong association is observed despite totally different aetiology of these two diseases, periodontitis being driven by dysbiotic microbial flora on the tooth surface below the gum line, while rheumatoid arthritis being the autoimmune disease powered by anti-citrullinated protein antibodies (ACPAs). Here we discuss genetic and environmental risk factors underlying development of both diseases with special emphasis on bacteria implicated in pathogenicity of periodontitis. Individual periodontal pathogens and their virulence factors are argued as potentially contributing to putative causative link between periodontal infection and initiation of a chain of events leading to breakdown of immunotolerance and development of ACPAs. In this respect peptidylarginine deiminase, an enzyme unique among prokaryotes for Porphyromonas gingivalis, is elaborated as a potential mechanistic link between this major periodontal pathogen and initiation of rheumatoid arthritis development.
Collapse
Affiliation(s)
- Anna Krutyhołowa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Karolina Strzelec
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Agata Dziedzic
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Grzegorz P. Bereta
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Katarzyna Łazarz-Bartyzel
- Department of Periodontology and Oral Medicine, Faculty of Medicine, Medical College, Jagiellonian University, Krakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland,Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States,*Correspondence: Katarzyna Gawron, ; Jan Potempa,
| | - Katarzyna Gawron
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland,*Correspondence: Katarzyna Gawron, ; Jan Potempa,
| |
Collapse
|
6
|
Comparative Evaluation of Gingival Crevicular Fluid Interleukin-17, 18 and 21 in Different Stages of Periodontal Health and Disease. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58081042. [PMID: 36013509 PMCID: PMC9415654 DOI: 10.3390/medicina58081042] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022]
Abstract
Background and Objectives: The elicitation of a host’s immune−inflammatory responses to overcome oral bacterial biofilm challenges is mediated by numerous cytokines. We explored the role of three such cytokines, viz. interleukin (IL)-17, 18 and 21, by measuring their levels in the gingival crevicular fluid (GCF) of Indian individuals with healthy gingiva, chronic gingivitis, or chronic periodontitis. Materials and Method: Ninety systemically healthy individuals were enrolled in the study on the basis of predefined criteria and were categorized into three groups of 30 participants each. Groups A, B and C were composed of a control group with healthy gingiva, subjects with chronic gingivitis and subjects with chronic periodontitis, respectively. The periodontal disease status was assessed on the basis of a subject’s gingival index, probing pocket depth, clinical attachment loss and radiographic evidence of bone loss. After the complete history-taking and identification of gingival sulcus/pocket depth areas for GCF collection, a sample was collected from each subject in all groups for an estimation of the cytokine levels using ELISA. Statistical analysis was performed using SPSS v 21.0. Intergroup comparisons were conducted using a post hoc Tukey’s test. A value of p < 0.05 was considered to be statistically significant. Results: The mean IL-17, 18 and 21 concentrations in pg/mL was the greatest for Group C (99.67 ± 18.85, 144.61 ± 20.83 and 69.67 ± 12.46, respectively), followed by Group B (19.27 ± 2.78, 22.27 ± 2.43 and 22.74 ± 1.43, respectively) and finally by Group A (healthy control; 11.56 ± 0.99, 17.94 ± 1.24 and 12.83 ± 1.21 respectively). A statistically significant difference in the mean concentrations of two interleukins (IL-17 and IL-18) was observed between Groups A and C and also between Groups B and C. A statistically significant difference in the mean concentrations of IL-21 was observed between Groups B and C. Conclusions: Within the limitations of the present study, the findings revealed that the GCF levels of IL-17, IL-18 and IL-21 rose and correlated well with the severity of the disease. Thus, these cytokines present in GCF have the potential to be considered as biomarkers for periodontal tissue destruction. IL-21 in particular appears to be a promising biomarker for differentiating between gingivitis and periodontitis.
Collapse
|
7
|
Quach SS, Zhu A, Lee RSB, Seymour GJ. Immunomodulation—What to Modulate and Why? Potential Immune Targets. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.883342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Despite over 50 years of research into the immunology of periodontal disease, the precise mechanisms and the role of many cell types remains an enigma. Progress has been limited by the inability to determine disease activity clinically. Understanding the immunopathogenesis of periodontal disease however is fundamental if immunomodulation is to be used as a therapeutic strategy. It is important for the clinician to understand what could be modulated and why. In this context, potential targets include different immune cell populations and their subsets, as well as various cytokines. The aim of this review is to examine the role of the principal immune cell populations and their cytokines in the pathogenesis of periodontal disease and their potential as possible therapeutic targets.
Collapse
|
8
|
Deng J, Lu C, Zhao Q, Chen K, Ma S, Li Z. The Th17/Treg cell balance: crosstalk among the immune system, bone and microbes in periodontitis. J Periodontal Res 2021; 57:246-255. [PMID: 34878170 DOI: 10.1111/jre.12958] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/04/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022]
Abstract
Periodontopathic bacteria constantly stimulate the host, which causes an immune response, leading to host-induced periodontal tissue damage. The complex interaction and imbalance between Th17 and Treg cells may be critical in the pathogenesis of periodontitis. Furthermore, the RANKL/RANK/OPG system plays a significant role in periodontitis bone metabolism, and its relationship with the Th17/Treg cell imbalance may be a bridge between periodontal bone metabolism and the immune system. This article reviews the literature related to the Th17/Treg cell imbalance mediated by pathogenic periodontal microbes, and its mechanism involving RANKL/RANK/OPG in periodontitis bone metabolism, in an effort to provide new ideas for the study of the immunopathological mechanism of periodontitis.
Collapse
Affiliation(s)
- Jianwen Deng
- Clinical Research Platform for Interdiscipline of Stomatology, The First Affiliated Hospital of Jinan University, Department of Stomatology, College of stomatology, Jinan University, Guangzhou, China
| | - Chunting Lu
- Science and Education Office, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Qingtong Zhao
- Clinical Research Platform for Interdiscipline of Stomatology, The First Affiliated Hospital of Jinan University, Department of Stomatology, College of stomatology, Jinan University, Guangzhou, China
| | - Kexiao Chen
- Clinical Research Platform for Interdiscipline of Stomatology, The First Affiliated Hospital of Jinan University, Department of Stomatology, College of stomatology, Jinan University, Guangzhou, China
| | - Shuyuan Ma
- Clinical Research Platform for Interdiscipline of Stomatology, The First Affiliated Hospital of Jinan University, Department of Stomatology, College of stomatology, Jinan University, Guangzhou, China
| | - Zejian Li
- Clinical Research Platform for Interdiscipline of Stomatology, The First Affiliated Hospital of Jinan University, Department of Stomatology, College of stomatology, Jinan University, Guangzhou, China.,Chaoshan Hospital, The First Affiliated Hospital of Jinan University, Jinan University, Chaozhou, China
| |
Collapse
|
9
|
Involvement of interleukins-17 and -34 in exacerbated orthodontic root resorption by jiggling force during rat experimental tooth movement. J World Fed Orthod 2020; 9:47-55. [PMID: 32672655 DOI: 10.1016/j.ejwf.2020.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Orthodontically induced root resorption (OIRR) is considered as an undesirable and unpredictable sequel of orthodontic treatment. Recent reports demonstrated that interleukin (IL)-17/IL-34, and T cells secrete inflammatory/osteoclastogenic cytokines, which might stimulate osteoclastogenesis/bone resorption. However, little is known about the role played by IL-17/IL-34 in OIRR. The present study was aimed at investigating the odontoclastic expression pattern of IL-17 and IL-34 in resorbed cementum during different experimental tooth movements in vivo. METHODS Twenty-four 8-week-old male Wistar rats were divided into four groups: control group, optimal force group (10 g), heavy force group (50 g), and jiggling force group (compression and tension, repetition; 10 g). After 7, 14, and 21 days, the expression levels of IL-17 and IL-34 protein in the resorbed cementum were analyzed using immunohistochemical methods. RESULTS On day 21, the immunoreactivity for IL-17 and IL-34 in resorbed roots in the jiggling force group was stronger than that in the heavy force and optimal force groups. Moreover, the number of IL-17-positive and IL-34-positive odontoclasts was significantly increased in the jiggling force group compared with those in the other groups on day 21. CONCLUSIONS These results suggest that jiggling forces might exacerbate OIRR compared with heavy forces, as evidenced by the increased expression of IL-17 and IL-34 in odontoclasts obtained from resorbed roots.
Collapse
|
10
|
Xu W, Zhou W, Wang H, Liang S. Roles of Porphyromonas gingivalis and its virulence factors in periodontitis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 120:45-84. [PMID: 32085888 DOI: 10.1016/bs.apcsb.2019.12.001] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Periodontitis is an infection-driven inflammatory disease, which is characterized by gingival inflammation and bone loss. Periodontitis is associated with various systemic diseases, including cardiovascular, respiratory, musculoskeletal, and reproductive system related abnormalities. Recent theory attributes the pathogenesis of periodontitis to oral microbial dysbiosis, in which Porphyromonas gingivalis acts as a critical agent by disrupting host immune homeostasis. Lipopolysaccharide, proteases, fimbriae, and some other virulence factors are among the strategies exploited by P. gingivalis to promote the bacterial colonization and facilitate the outgrowth of the surrounding microbial community. Virulence factors promote the coaggregation of P. gingivalis with other bacteria and the formation of dental biofilm. These virulence factors also modulate a variety of host immune components and subvert the immune response to evade bacterial clearance or induce an inflammatory environment. In this chapter, our focus is to discuss the virulence factors of periodontal pathogens, especially P. gingivalis, and their roles in regulating immune responses during periodontitis progression.
Collapse
Affiliation(s)
- Weizhe Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China; Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
| | - Wei Zhou
- Department of Endodontics, Ninth People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, Pudong, China
| | - Huizhi Wang
- VCU Philips Institute for Oral Health Research, Department of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University School of Dentistry, Richmond, VA, United States
| | - Shuang Liang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
| |
Collapse
|
11
|
Sasikumar PK, Varghese SS, Kumaran T, Devi SS. Meta-Analysis of Risk Association between Interleukin-17A Gene Polymorphism and Chronic Periodontitis. Contemp Clin Dent 2020; 11:3-9. [PMID: 33110301 PMCID: PMC7580746 DOI: 10.4103/ccd.ccd_448_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/28/2020] [Accepted: 04/17/2020] [Indexed: 11/25/2022] Open
Abstract
The association of genetic polymorphisms with periodontitis has been studied extensively. The interleukin-7 (IL-17) is a group of cytokines, which comprises six different molecules (IL-17A, B, C, D, E, and F). Among this, IL-17A is the most commonly understood cytokine, and its polymorphism plays a critical role in inflammatory diseases and periodontal inflammation. The present study was aimed at pooling the data available for meta-analysis and to evaluate whether IL-17A (rs2275913) polymorphism is associated with the susceptibility of chronic periodontitis.
Collapse
Affiliation(s)
- P. K. Sasikumar
- Department of Periodontics, JKKN Dental College, Namakkal, Tamil Nadu, India
| | - Sheeja S Varghese
- Department of Periodontics, Saveetha Dental College, Chennai, Tamil Nadu, India
| | - Thanga Kumaran
- Department of Periodontics, JKKNDCH, Thiruchengodu, Tamil Nadu, India
| | - Sakthi Saranya Devi
- Department of Oral Medicine Andradiology, KSR Institute of Dental Science and Research, Thiruchengodu, Tamil Nadu, India
| |
Collapse
|
12
|
Farhad SZ, Rezazadeh F, Mohammadi M. Interleukin - 17 and Interleukin-10 as Inflammatory and Prevention Biomarkers in Periimplant Diseases. Int J Prev Med 2019; 10:137. [PMID: 31516678 PMCID: PMC6710915 DOI: 10.4103/ijpvm.ijpvm_27_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/06/2019] [Indexed: 12/24/2022] Open
Abstract
Background Periimplant diseases are inflammatory diseases. Thus, the level of preinflammatory cytokines which has important role in the inflammation processes can consider as biomchemical markers for early diagnosis and prevention of periimplant diseases. The aim of this study was to determine and compare the level of interleukin (IL)-17 and IL-10 in patients with periimplant mucositis and periimplantitis. Methods This case--control study was conducted on 51 patients with implants which were loaded at least 1 year previously, 17 patients with periimplant mucositis, 17 patients with periimplantitis, and 17 individuals with healthy implants. After clinical examination, gingival crevicular fluid sampling was carried out by paper point number 25 for 4 min and the mean value of IL-17, IL-10 in samples was measured using enzyme linked immunosorbent assay (ELISA), least square differences (LSD) reader in laboratory. The data was analyzed using statistical software SPSS 22. Quantitative analysis was done using One-way analysis of variance (ANOVA) test and LSD past test. Results The results of analysis showed that there was a significant difference in the mean value of IL-17 and IL-10 between the three study groups (P < 0.001). Individuals with healthy implants showed a significant lower level of IL-17 than patients with periimplantitis (P = 0.001) and for patients with periimplantitis, the level of IL-17 was significantly lower than that of patients with periimplant mucositis (P < 0.001) and IL-10 level was significantly lower in mucositis than periimplantitis (P < 0.001). Conclusions The level of IL-17 and IL-10 increased in patients with periimplant compared to individuals with healthy periimplant tissues and the results showed that the highest concentrations of IL-17 and IL-10 were observed in patients with periimplant mucositis and periimplantitis, respectively.
Collapse
Affiliation(s)
- Shirin Zahra Farhad
- Department of Periodontics, School of Dentistry, Isfahan (Khorasgan) Branch, Isalmic Azad University, Isfahan, Iran
| | | | | |
Collapse
|
13
|
Immunological Pathways Triggered by Porphyromonas gingivalis and Fusobacterium nucleatum: Therapeutic Possibilities? Mediators Inflamm 2019; 2019:7241312. [PMID: 31341421 PMCID: PMC6612971 DOI: 10.1155/2019/7241312] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/28/2019] [Accepted: 05/19/2019] [Indexed: 02/06/2023] Open
Abstract
Porphyromonas gingivalis (P. gingivalis) and Fusobacterium nucleatum (F. nucleatum) are Gram-negative anaerobic bacteria possessing several virulence factors that make them potential pathogens associated with periodontal disease. Periodontal diseases are chronic inflammatory diseases of the oral cavity, including gingivitis and periodontitis. Periodontitis can lead to tooth loss and is considered one of the most prevalent diseases worldwide. P. gingivalis and F. nucleatum possess virulence factors that allow them to survive in hostile environments by selectively modulating the host's immune-inflammatory response, thereby creating major challenges to host cell survival. Studies have demonstrated that bacterial infection and the host immune responses are involved in the induction of periodontitis. The NLRP3 inflammasome and its effector molecules (IL-1β and caspase-1) play roles in the development of periodontitis. We and others have reported that the purinergic P2X7 receptor plays a role in the modulation of periodontal disease and intracellular pathogen control. Caspase-4/5 (in humans) and caspase-11 (in mice) are important effectors for combating bacterial pathogens via mediation of cell death and IL-1β release. The exact molecular events of the host's response to these bacteria are not fully understood. Here, we review innate and adaptive immune responses induced by P. gingivalis and F. nucleatum infections and discuss the possibility of manipulations of the immune response as therapeutic strategies. Given the global burden of periodontitis, it is important to develop therapeutic targets for the prophylaxis of periodontopathogen infections.
Collapse
|
14
|
Sato K, Yokoji M, Yamada M, Nakajima T, Yamazaki K. An orally administered oral pathobiont and commensal have comparable and innocuous systemic effects in germ-free mice. J Periodontal Res 2018; 53:950-960. [PMID: 30047130 DOI: 10.1111/jre.12593] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/29/2018] [Accepted: 07/04/2018] [Indexed: 12/01/2022]
Abstract
BACKGROUND AND OBJECTIVES We recently proposed a novel mechanism linking periodontitis and systemic diseases, in which orally administered Porphyromonas gingivalis affects gut microbiota composition and subsequently leads to systemic inflammation. However, the mechanism by which P. gingivalis generates systemic effects from the gut is unknown. MATERIAL AND METHODS Six-week-old germ-free mice were orally administered with either an oral pathobiont P. gingivalis or an oral commensal Lactobacillus salivarius twice a week for 5 weeks. Control mice were administered with vehicle only. Alveolar bone resorption was evaluated histologically. The expression profile of various genes was analyzed in gingival tissue, liver, small intestine and large intestine using real-time polymerase chain reaction. Sera were analyzed for antibody, endotoxin and interleukin (IL)-6 levels. Antibody levels were also analyzed for culture supernatant of cells from mesenteric lymph nodes and spleens. A proportion of T-helper 17 and Treg in the cells from mesenteric lymph nodes and spleens was analyzed by flow cytometry. The level of IL-6 and IL-17 in the cell culture supernatants was analyzed by enzyme-linked immunosorbent assay. RESULTS P. gingivalis administration did not induce alveolar bone resorption. Although P. gingivalis elicited systemic antibody response in germ-free mice, unlike in specific pathogen-free mice, P. gingivalis did not induce an inflammatory response in gingiva, liver and intestinal tissue, or alter the proportion of T-helper 17 and Treg. However, IL-6 and IL-17 productions were significantly elevated and tended to be elevated, respectively, in the cells from mesenteric lymph nodes of P. gingivalis-administered mice. Interestingly, the expression of IL-10 and tight junction protein in the gingiva and intestine, respectively, was significantly upregulated in P. gingivalis-treated mice. Administration of L. salivarius elicited almost similar effects as P. gingivalis. CONCLUSION The oral pathobiont P. gingivalis did not induce any detectable pathogenic changes or any major host responses when administered to germ-free mice. There may be indirect mechanisms for gut-mediated systemic effects by P. gingivalis.
Collapse
Affiliation(s)
- Keisuke Sato
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Mai Yokoji
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Miki Yamada
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takako Nakajima
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Department of Periodontology, Tokyo Dental College, Tokyo, Japan
| | - Kazuhisa Yamazaki
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
15
|
Batool H, Nadeem A, Kashif M, Shahzad F, Tahir R, Afzal N. Salivary Levels of IL-6 and IL-17 Could Be an Indicator of Disease Severity in Patients with Calculus Associated Chronic Periodontitis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8531961. [PMID: 29670909 PMCID: PMC5835283 DOI: 10.1155/2018/8531961] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/24/2017] [Accepted: 01/23/2018] [Indexed: 12/22/2022]
Abstract
Background/Purpose. Chronic periodontitis is an inflammatory disease of gums that causes loss of supporting structures of teeth, that is, gingiva, periodontal ligament, cementum, and alveolar bone. Levels of various cytokines in the serum, gingival tissues, and gingival crevicular fluid in patients with chronic periodontitis have been studied, but limited data are available on the level of cytokines in saliva. Therefore, a study was designed to determine levels of salivary IL-6 and IL-17 in patients with calculus associated chronic periodontitis. Materials and Methods. It was a comparative, cross-sectional study that is comprised of 41 healthy controls and 41 calculus associated chronic periodontitis patients (CP patients). According to the degree of attachment loss, CP patients were subcategorized as mild (CAL 1-2 mm), moderate (CAL 3-4 mm), and severe (CAL > 5 mm) forms of periodontitis. Salivary levels of IL-6 and IL-17 were determined using enzyme-linked immunosorbent assay (ELISA) technique. Data was analyzed using SPSS 20.0. Results. Between healthy controls and CP patients (moderate and severe disease), a statistically significant difference was observed in the concentrations of IL-6 and IL-17. In CP patients, the highest mean ± SD of salivary IL-6 and IL-17 was observed in severe CP, followed by moderate and mild CP. Regarding level of IL-6, a statistically significant difference was observed between mild and severe disease and between moderate and severe subcategories of CP patients. Similarly, statistically significant difference was observed in the level of IL-17 between mild and moderate, mild and severe disease, and moderate and severe disease. Conclusion. The levels of salivary IL-6 and IL-17 were increased significantly in calculus associated CP patients as compared to healthy controls and these levels increased with the progression of CP. Clinical Significance. Salivary levels of IL-6 and IL-17 may help in the subcategorization of CP.
Collapse
Affiliation(s)
| | - Ahmed Nadeem
- Department of Immunology, University of Health Sciences, Lahore, Pakistan
| | | | - Faheem Shahzad
- Department of Immunology, University of Health Sciences, Lahore, Pakistan
| | - Romeeza Tahir
- Department of Immunology, University of Health Sciences, Lahore, Pakistan
| | - Nadeem Afzal
- Department of Immunology, University of Health Sciences, Lahore, Pakistan
| |
Collapse
|
16
|
Degasperi GR, Etchegaray A, Marcelino L, Sicard A, Villalpando K, Pinheiro SL. Periodontal Disease: General Aspects from Biofilm to the Immune Response Driven by Periodontal Pathogens. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/aim.2018.81001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Wei L, Liu M, Xiong H, Peng B. Up-regulation of IL-23 expression in human dental pulp fibroblasts by IL-17 via activation of the NF-κB and MAPK pathways. Int Endod J 2017; 51:622-631. [DOI: 10.1111/iej.12871] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/30/2017] [Indexed: 12/20/2022]
Affiliation(s)
- L. Wei
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School & Hospital of Stomatology; Wuhan University; Wuhan China
| | - M. Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School & Hospital of Stomatology; Wuhan University; Wuhan China
| | - H. Xiong
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School & Hospital of Stomatology; Wuhan University; Wuhan China
| | - B. Peng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School & Hospital of Stomatology; Wuhan University; Wuhan China
| |
Collapse
|
18
|
Zenobia C, Hajishengallis G. Basic biology and role of interleukin-17 in immunity and inflammation. Periodontol 2000 2017; 69:142-59. [PMID: 26252407 DOI: 10.1111/prd.12083] [Citation(s) in RCA: 315] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2014] [Indexed: 02/06/2023]
Abstract
Interleukin-17 (also known as interleukin-17A) is a key cytokine that links T-cell activation to neutrophil mobilization and activation. As such, interleukin-17 can mediate protective innate immunity to pathogens or contribute to the pathogenesis of inflammatory diseases, such as psoriasis and rheumatoid arthritis. This review summarizes the basic biology of interleukin-17 and discusses its emerging role in periodontal disease. The current burden of evidence from human and animal model studies suggests that the net effect of interleukin-17 signaling promotes disease development. In addition to promoting neutrophilic inflammation, interleukin-17 has potent pro-osteoclastogenic effects that are likely to contribute to the pathogenesis of periodontitis, rheumatoid arthritis and other diseases involving bone immunopathology. Systemic treatments with anti-interleukin-17 biologics have shown promising results in clinical trials for psoriasis and rheumatoid arthritis; however, their impact on the highly prevalent periodontal disease has not been investigated or reported. Future clinical trials, preferably using locally administered interleukin-17 blockers, are required to implicate conclusivelyinterleukin-17 in periodontitis and, more importantly, to establish an effective adjunctive treatment for this oral inflammatory disease.
Collapse
|
19
|
Teng YTA. Protective and Destructive Immunity in the Periodontium: Part 2—T-cell-mediated Immunity in the Periodontium. J Dent Res 2016; 85:209-19. [PMID: 16498066 DOI: 10.1177/154405910608500302] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Based on the results of recent research in the field and Part 1 of this article (in this issue), the present paper will discuss the protective and destructive aspects of the T-cell-mediated adaptive immunity associated with the bacterial virulent factors or antigenic determinants during periodontal pathogenesis. Attention will be focused on: (i) osteoimmunology and periodontal disease; (ii) some molecular techniques developed and applied to identify critical microbial virulence factors or antigens associated with host immunity (with Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis as the model species); and (iii) summarizing the identified virulence factors/antigens associated with periodontal immunity. Thus, further understanding of the molecular mechanisms of the host’s T-cell-mediated immune responses and the critical microbial antigens related to disease pathogenesis will facilitate the development of novel therapeutics or protocols for future periodontal treatments. Abbreviations used in the paper are as follows: A. actinomycetemcomitans ( Aa), Actinobacillus actinomycetemcomitans; Ab, antibody; DC, dendritic cells; mAb, monoclonal antibody; pAb, polyclonal antibody; OC, osteoclast; PAMP, pathogen-associated molecular patterns; P. gingivalis ( Pg), Porphyromonas gingivalis; RANK, receptor activator of NF-κB; RANKL, receptor activator of NF-κB ligand; OPG, osteoprotegerin; TCR, T-cell-receptors; TLR, Toll-like receptors.
Collapse
Affiliation(s)
- Y-T A Teng
- Laboratory of Molecular Microbial Immunity, Eastman Department of Dentistry, Eastman Dental Center, Box-683, 625 Elmwood Ave., Rochester, NY 14620, USA.
| |
Collapse
|
20
|
Mistry A, Pereira R, Kini V, Padhye A. Effect of Combined Therapy Using Diode Laser and Photodynamic Therapy on Levels of IL-17 in Gingival Crevicular Fluid in Patients With Chronic Periodontitis. J Lasers Med Sci 2016; 7:250-255. [PMID: 28491261 DOI: 10.15171/jlms.2016.44] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Introduction: The aim of this study was to evaluate the efficacy of combination therapy of diode laser and photodynamic therapy (PDT) as an adjunct to scaling and root planing (SRP) on interleukin-17 (IL-17) levels in gingival crevicular fluid (GCF) in patients with chronic periodontitis. Methods: Thirty subjects with chronic periodontitis were included. All teeth received periodontal treatment comprising of SRP. Using a split mouth study design, the test group was additionally treated with a combination therapy of diode laser and PDT. GCF was collected to evaluate IL-17 levels at baseline and 3 months. Results: There was no difference in baseline values for levels of IL-17 in GCF in the test group and the control group. A significant decrease in GCF levels of IL-17 was observed in both treatment groups 3 months after treatment (P < 0.001). However, the treatment groups showed no significant difference (P > 0.05). Conclusion: Based on the results of the present study it was concluded that, GCF levels of IL-17 changed significantly after treatment regardless of treatment modality.
Collapse
Affiliation(s)
- Abhishek Mistry
- Department of Periodontics, Mahatma Gandhi Mission's Dental College and Hospital, Junction of NH4 and Sion-Panvel Expressway, Kamothe, Navi Mumbai- 410209, India
| | - Richard Pereira
- Department of Periodontics, Mahatma Gandhi Mission's Dental College and Hospital, Junction of NH4 and Sion-Panvel Expressway, Kamothe, Navi Mumbai- 410209, India
| | - Vineet Kini
- Department of Periodontics, Mahatma Gandhi Mission's Dental College and Hospital, Junction of NH4 and Sion-Panvel Expressway, Kamothe, Navi Mumbai- 410209, India
| | - Ashvini Padhye
- Department of Periodontics, Mahatma Gandhi Mission's Dental College and Hospital, Junction of NH4 and Sion-Panvel Expressway, Kamothe, Navi Mumbai- 410209, India
| |
Collapse
|
21
|
Cheng WC, van Asten SD, Burns LA, Evans HG, Walter GJ, Hashim A, Hughes FJ, Taams LS. Periodontitis-associated pathogens P. gingivalis and A. actinomycetemcomitans activate human CD14(+) monocytes leading to enhanced Th17/IL-17 responses. Eur J Immunol 2016; 46:2211-21. [PMID: 27334899 PMCID: PMC5031191 DOI: 10.1002/eji.201545871] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 05/20/2016] [Accepted: 06/17/2016] [Indexed: 12/21/2022]
Abstract
The Th17/IL‐17 pathway is implicated in the pathogenesis of periodontitis (PD), however the mechanisms are not fully understood. We investigated the mechanism by which the periodontal pathogens Porphyromonas gingivalis (Pg) and Aggregatibacter actinomycetemcomitans (Aa) promote a Th17/IL‐17 response in vitro, and studied IL‐17+ CD4+ T‐cell frequencies in gingival tissue and peripheral blood from patients with PD versus periodontally healthy controls. Addition of Pg or Aa to monocyte/CD4+ T‐cell co‐cultures promoted a Th17/IL‐17 response in vitro in a dose‐ and time‐dependent manner. Pg or Aa stimulation of monocytes resulted in increased CD40, CD54 and HLA‐DR expression, and enhanced TNF‐α, IL‐1β, IL‐6 and IL‐23 production. Mechanistically, IL‐17 production in Pg‐stimulated co‐cultures was partially dependent on IL‐1β, IL‐23 and TLR2/TLR4 signalling. Increased frequencies of IL‐17+ cells were observed in gingival tissue from patients with PD compared to healthy subjects. No differences were observed in IL‐17+ CD4+ T‐cell frequencies in peripheral blood. In vitro, Pg induced significantly higher IL‐17 production in anti‐CD3 mAb‐stimulated monocyte/CD4+ T‐cell co‐cultures from patients with PD compared to healthy controls. Our data suggest that periodontal pathogens can activate monocytes, resulting in increased IL‐17 production by human CD4+ T cells, a process that appears enhanced in patients with PD.
Collapse
Affiliation(s)
- Wan-Chien Cheng
- Division of Immunology, Infection & Inflammatory Disease, Centre for Molecular and Cellular Biology of Inflammation, King's College London, London, UK.,Department of Periodontology, Dental Institute, King's College London, London, UK.,Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Saskia D van Asten
- Division of Immunology, Infection & Inflammatory Disease, Centre for Molecular and Cellular Biology of Inflammation, King's College London, London, UK
| | - Lachrissa A Burns
- Division of Immunology, Infection & Inflammatory Disease, Centre for Molecular and Cellular Biology of Inflammation, King's College London, London, UK
| | - Hayley G Evans
- Division of Immunology, Infection & Inflammatory Disease, Centre for Molecular and Cellular Biology of Inflammation, King's College London, London, UK
| | - Gina J Walter
- Division of Immunology, Infection & Inflammatory Disease, Centre for Molecular and Cellular Biology of Inflammation, King's College London, London, UK
| | - Ahmed Hashim
- Centre for Immunology and Infectious Disease, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Francis J Hughes
- Department of Periodontology, Dental Institute, King's College London, London, UK
| | - Leonie S Taams
- Division of Immunology, Infection & Inflammatory Disease, Centre for Molecular and Cellular Biology of Inflammation, King's College London, London, UK.
| |
Collapse
|
22
|
Yang X, Li C, Pan Y. The Influences of Periodontal Status and Periodontal Pathogen Quantity on Salivary 8-Hydroxydeoxyguanosine and Interleukin-17 Levels. J Periodontol 2016; 87:591-600. [DOI: 10.1902/jop.2015.150390] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Mardegan GP, Shibli JA, Roth LA, Faveri M, Giro G, Bastos MF. Transforming growth factor-β, interleukin-17, and IL-23 gene expression profiles associated with human peri-implantitis. Clin Oral Implants Res 2016; 28:e10-e15. [PMID: 27062688 DOI: 10.1111/clr.12846] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2016] [Indexed: 12/24/2022]
Abstract
OBJECTIVES The mRNA expression profiles of IL-23/Th17 and the Treg-associated cytokine TGF-β in peri-implantitis are currently under research. This study characterized the IL-17, IL-23, and TGF-β gene expression levels in healthy and diseased peri-implant tissues and correlated these data with radiographic bone loss. MATERIAL AND METHODS Peri-implant soft tissues from 40 subjects (20 healthy controls with mean age of 59.4 ± 6.3, and 20 with peri-implantitis with mean age of 56.6 ± 5.5) were enrolled in this study, and real-time PCR (RT-PCR) was used to define the profile of IL-17, IL-23, and TGF-β gene expression. RESULTS Higher levels of TGF-β mRNA were observed in biopsies taken from healthy controls, and the IL-23 mRNA levels were significantly increased in the peri-implantitis group (P < 0.0001). No differences in IL-17 mRNA levels were observed between the two groups (P > 0.05). CONCLUSIONS Data presented in this report demonstrated a predominant Th17 response in peri-implantitis subjects based on the higher levels of IL-23 and lower levels of TGF-β detected.
Collapse
Affiliation(s)
- Gustavo Pereira Mardegan
- Department of Periodontology and Oral Implantology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | - Jamil Awad Shibli
- Department of Periodontology and Oral Implantology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | - Leandro Amadeu Roth
- Department of Periodontology and Oral Implantology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | - Marcelo Faveri
- Department of Periodontology and Oral Implantology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | - Gabriela Giro
- Department of Periodontology and Oral Implantology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | - Marta Ferreira Bastos
- Department of Periodontology and Oral Implantology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| |
Collapse
|
24
|
Abstract
The mineralized structure of bone undergoes constant remodeling by the balanced actions of bone-producing osteoblasts and bone-resorbing osteoclasts (OCLs). Physiologic bone remodeling occurs in response to the body's need to respond to changes in electrolyte levels, or mechanical forces on bone. There are many pathological conditions, however, that cause an imbalance between bone production and resorption due to excessive OCL action that results in net bone loss. Situations involving chronic or acute inflammation are often associated with net bone loss, and research into understanding the mechanisms regulating this bone loss has led to the development of the field of osteoimmunology. It is now evident that the skeletal and immune systems are functionally linked and share common cells and signaling molecules. This review discusses the signaling system of immune cells and cytokines regulating aberrant OCL differentiation and activity. The role of these cells and cytokines in the bone loss occurring in periodontal disease (PD) (chronic inflammation) and orthodontic tooth movement (OTM) (acute inflammation) is then described. The review finishes with an exploration of the emerging role of Notch signaling in the development of the immune cells and OCLs that are involved in osteoimmunological bone loss and the research into Notch signaling in OTM and PD.
Collapse
Affiliation(s)
- Kevin A Tompkins
- a Research Unit of Mineralized Tissue, Faculty of Dentistry , Chulalongkorn University , Bangkok , Thailand
| |
Collapse
|
25
|
Schulz S, Immel UD, Just L, Schaller HG, Gläser C, Reichert S. Epigenetic characteristics in inflammatory candidate genes in aggressive periodontitis. Hum Immunol 2016; 77:71-75. [DOI: 10.1016/j.humimm.2015.10.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 06/29/2015] [Accepted: 10/12/2015] [Indexed: 12/25/2022]
|
26
|
FRANCO MM, MORAES MMM, DUARTE PM, NAPIMOGA MH, BENATTI BB. Glycemic control and the production of cytokines in diabetic patients with chronic periodontal disease. ACTA ACUST UNITED AC 2015. [DOI: 10.1590/1981-863720150003000093063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Objective: To evaluate the association of glycemic control and cytokine production in type 2 diabetic subjects with chronic periodontitis. Methods: Gingival biopsies were performed in 40 patients, divided into four groups: systemically healthy subjects without periodontal disease (S); systemically healthy patients with chronic periodontitis (P); patients with well-controlled type 2 diabetes mellitus (DM) with chronic periodontitis (C); poorly controlled type 2 diabetes mellitus with chronic periodontitis (D). The production of interleukin (IL) -4, -6, -10, -17 and interferon (IFN) -g was quantified by ELISA. Results: The production of IL-4, IL-10, IL-17 and INF-g was higher on group D when compared to other groups (p <0.05), which in turn were similar (p ³0.05). In addition, there was no difference in the production of IL-6 in any of the evaluated groups (p³0.05). Conclusion: Were observed significantly elevated levels of pro-inflammatory and anti-inflammatory cytokines in patients with poorly controlled type 2 diabetes and chronic periodontitis, demonstrating that glycemic control may be associated to the immune inflammatory response of sites with chronic periodontitis.
Collapse
|
27
|
Interleukin-17 is involved in orthodontically induced inflammatory root resorption in dental pulp cells. Am J Orthod Dentofacial Orthop 2015; 148:302-9. [DOI: 10.1016/j.ajodo.2015.03.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 03/01/2015] [Accepted: 03/01/2015] [Indexed: 12/30/2022]
|
28
|
Mori G, D'Amelio P, Faccio R, Brunetti G. Bone-immune cell crosstalk: bone diseases. J Immunol Res 2015; 2015:108451. [PMID: 26000310 PMCID: PMC4427089 DOI: 10.1155/2015/108451] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 01/22/2015] [Accepted: 01/25/2015] [Indexed: 01/14/2023] Open
Abstract
Bone diseases are associated with great morbidity; thus, the understanding of the mechanisms leading to their development represents a great challenge to improve bone health. Recent reports suggest that a large number of molecules produced by immune cells affect bone cell activity. However, the mechanisms are incompletely understood. This review aims to shed new lights into the mechanisms of bone diseases involving immune cells. In particular, we focused our attention on the major pathogenic mechanism underlying periodontal disease, psoriatic arthritis, postmenopausal osteoporosis, glucocorticoid-induced osteoporosis, metastatic solid tumors, and multiple myeloma.
Collapse
Affiliation(s)
- Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy
| | - Patrizia D'Amelio
- Department of Medical Science, Section of Gerontology and Bone Metabolism Diseases, University of Torino, 10126 Torino, Italy
| | - Roberta Faccio
- Department of Orthopedics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Giacomina Brunetti
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, 70124 Bari, Italy
| |
Collapse
|
29
|
Chitrapriya MN, Rao SR, Lavu V. Interleukin-17 and interleukin-18 levels in different stages of inflammatory periodontal disease. J Indian Soc Periodontol 2015; 19:14-7. [PMID: 25810587 PMCID: PMC4365148 DOI: 10.4103/0972-124x.145798] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 05/27/2014] [Indexed: 11/11/2022] Open
Abstract
Context: Chronic periodontitis is an inflammatory condition of the tooth supporting structures. There is increasing evidence that the cytokines interleukin-17 (IL-17) and interleukin-18 (IL-18) play a role in progression of chronic periodontitis. Aim: The objective of this study was to compare the levels of the cytokines IL-17 and IL-18 in gingival tissue extracts from individuals with healthy gingiva, chronic gingivitis, and mild chronic periodontitis. Settings and Design: The study was performed in a hospital-based population with an experimental design. Materials and Methods: A total of 69 individuals (n = 23 per group) were recruited for the study. Group 1 included 23 individuals with healthy gingiva and Group 2 included 23 chronic gingivitis patients and Group 3 included 23 patients with mild chronic periodontitis. Gingival tissues were collected during surgical procedures and levels of IL-17 and IL-18 were determined using enzyme-linked immunosorbent assay. Statistical Analysis: Intergroup comparison was done by posthoc Tukey's test. Results: The gingival tissue concentration of IL-17 was found to be highest in Group 2 (415.19 ± 76.84 pg/mg) followed by Group 3 (193.77 ± 37.32 pg/mg) and Group 1 (20.49 ± 6.05 pg/mg). Concentrations of IL-18 were significantly higher (P < 0.01) in Group 2 (1479.42 ± 330.33 pg/mg) when compared with Group 1 (385.18 ± 71.26 pg/mg) and Group 3 (330.24 ± 48.56 pg/mg). Conclusion: There appears to be considerable variation of IL-17 and IL-18 levels in gingival tissue during periodontal health and disease.
Collapse
Affiliation(s)
| | - Suresh Ranga Rao
- Department of Periodontology, Faculty of Dental Sciences, Sri Ramachandra University, Chennai, Tamil Nadu, India
| | - Vamsi Lavu
- Department of Periodontology, Faculty of Dental Sciences, Sri Ramachandra University, Chennai, Tamil Nadu, India
| |
Collapse
|
30
|
Jin Y, Wang L, Liu D, Lin X. Tamibarotene modulates the local immune response in experimental periodontitis. Int Immunopharmacol 2014; 23:537-45. [DOI: 10.1016/j.intimp.2014.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/03/2014] [Accepted: 10/03/2014] [Indexed: 02/06/2023]
|
31
|
Bhuvaneswarri J, Gita B, Chandrasekaran SC. Detection of rankl positive cells in gingival tissue in healthy & chronic periodontal disease patients-a comparative study. J Clin Diagn Res 2014; 8:ZC31-4. [PMID: 25584312 DOI: 10.7860/jcdr/2014/9876.5125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/25/2014] [Indexed: 11/24/2022]
Abstract
UNLABELLED Aim & Objective: The receptor activator of NF-kappa B ligand (RANKL) and its decoy receptor, osteoprotegerin (OPG), are the important proteins implicated in osteoclastogenesis. This study aimed to identify & quantify RANKL positive cells in gingival tissues in healthy & diseased patients & the study looks for immunohistochemical evidence of the expression of the protein in gingival tissue samples. MATERIALS AND METHODS Patients were randomly selected. Thirty subject each for (test & control). Age range of 25-55y, either sex was selected. Tissue samples were collected from Control - Healthy Gingiva & Test-Chronic Periodontitis Patients. Tissue sections were prepared. An Immunohistochemical analysis was done & cell counting was done for RANKL positive cells. RESULTS Immunohistochemical staining showed that RANKL-positive cells were significantly distributed in the inflammatory epithelium & connective tissue zone of diseased & non-diseased gingiva. RANKL, positive cells was increased significantly in patients with chronic periodontitis (p < 0.05). CONCLUSION These findings imply that in this comparative study of gingival tissue for, RANKL positive cells, these cells were present in both healthy & chronic periodontitis samples, but number of positive cells present is significantly increased in chronic periodontitis.
Collapse
Affiliation(s)
- J Bhuvaneswarri
- Reader, Department of Periodontics, Sree Balaji Dental College & Hospital , Chennai, India
| | - Bagavad Gita
- Professor, Department of Periodontics, Sree Balaji Dental College & Hospital , Chennai, India
| | - S C Chandrasekaran
- Professor & HOD, Department of Periodontics, Sree Balaji Dental College & Hospital , Chennai, India
| |
Collapse
|
32
|
Abstract
The balance between osteoblast-dependent bone formation and osteoclast-dependent bone resorption maintains bone homeostasis. In inflammatory conditions, this balance shifts toward bone resorption, causing osteolytic bone lesions observed in rheumatoid arthritis and periodontitis. A recently discovered family of cytokine IL-17 is widely reported to mediate diverse inflammatory processes. During the last decade, novel roles for IL-17 in skeletal homeostasis have been discovered indicating the potential importance of this cytokine in bone metabolism. This review will summarize and discuss the involvement of IL-17 during bone homeostasis in both physiologic and pathologic conditions. A better understanding of the role of IL-17 in skeletal systems warrants an advance in bone biology, as well as development of therapeutic strategies against bone-lytic diseases, such as rheumatoid arthritis and periodontitis. [BMB Reports 2013; 46(10): 479-483]
Collapse
Affiliation(s)
- Youngkyun Lee
- Department of Biochemistry and Institute for Hard Tissue & Bio-tooth Regeneration (IHBR), School of Dentistry, Kyungpook National University, Daegu 700-412, Korea
| |
Collapse
|
33
|
Cheng WC, Hughes FJ, Taams LS. The presence, function and regulation of IL-17 and Th17 cells in periodontitis. J Clin Periodontol 2014; 41:541-9. [DOI: 10.1111/jcpe.12238] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2014] [Indexed: 01/06/2023]
Affiliation(s)
- Wan-Chien Cheng
- Department of Periodontology; School of Dentistry; King's College London; London UK
- Division of Immunology, Infection & Inflammatory Disease; Centre for Molecular and Cellular Biology of Inflammation; King's College London; London UK
| | - Francis J. Hughes
- Department of Periodontology; School of Dentistry; King's College London; London UK
| | - Leonie S. Taams
- Division of Immunology, Infection & Inflammatory Disease; Centre for Molecular and Cellular Biology of Inflammation; King's College London; London UK
| |
Collapse
|
34
|
Parachuru VPB, Coates DE, Milne TJ, Hussaini HM, Rich AM, Seymour GJ. Forkhead box P3-positive regulatory T-cells and interleukin 17-positive T-helper 17 cells in chronic inflammatory periodontal disease. J Periodontal Res 2014; 49:817-26. [DOI: 10.1111/jre.12169] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2013] [Indexed: 11/30/2022]
Affiliation(s)
- V. P. B. Parachuru
- School of Dentistry; Sir John Walsh Research Institute; University of Otago; Dunedin New Zealand
| | - D. E. Coates
- School of Dentistry; Sir John Walsh Research Institute; University of Otago; Dunedin New Zealand
| | - T. J. Milne
- School of Dentistry; Sir John Walsh Research Institute; University of Otago; Dunedin New Zealand
| | - H. M. Hussaini
- Department of Oral Pathology and Oral Medicine; Faculty of Dentistry; Universiti Kebangsaan Malaysia (UKM); Kuala Lumpur Malaysia
| | - A. M. Rich
- School of Dentistry; Sir John Walsh Research Institute; University of Otago; Dunedin New Zealand
| | - G. J. Seymour
- School of Dentistry; Sir John Walsh Research Institute; University of Otago; Dunedin New Zealand
| |
Collapse
|
35
|
Hashimoto M, Mimori T. [Role of Th17 cells and innate immunnity for the induction of autoimmune arthritis]. ACTA ACUST UNITED AC 2013; 35:463-9. [PMID: 23291481 DOI: 10.2177/jsci.35.463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
IL-17 secreting helper CD4 T cells (Th17 cells) contribute to a variety of autoimmune diseases such as rheumatoid arthritis. IL-17 acts on neutrophils, macrophages, fibroblasts, or osteocalsts to mediate chronic inflammation and destroy the cartilage. Recently, studies of the spontaneous models of arthritis revealed that activation of innate immunity, such as Toll like receptors, C-type lectin receptors, complement, or ATP induce IL-6 or IL-23 production from macrophages or dendritic cells, which triggers the differentiation of Th17 cells and induces autoimmune arthritis. Although the role of Th17 cells in human rheumatoid arthritis is still controversial, activation of innate immunity and induction of Th17 cells should be associated with the induction of arthritis at least in a part of RA patients. These studies will help elucidate the mechanism of arthritis induction and discover the therapeutic method to prevent it.
Collapse
Affiliation(s)
- Motomu Hashimoto
- Department of the Control for Rheumatic Diseases Graduate School of Medicine, Kyoto University
| | | |
Collapse
|
36
|
Kayal RA. The role of osteoimmunology in periodontal disease. BIOMED RESEARCH INTERNATIONAL 2013; 2013:639368. [PMID: 24151615 PMCID: PMC3789307 DOI: 10.1155/2013/639368] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 08/15/2013] [Accepted: 08/17/2013] [Indexed: 12/26/2022]
Abstract
Periodontal disease is a pathological condition that involves inflammation of the tooth supporting structures. It occurs in response to the presence of bacterial plaque on the tooth structure. The host defense system, including innate and adaptive immunity, is responsible for combating the pathologic bacteria invading the periodontal tissue. Failure to eradicate the invading pathogens will result in a continuous state of inflammation where inflammatory cells such as lymphocytes, PMNs, and macrophages will continue to produce inflammatory mediators in an effort to destroy the invaders. Unfortunately, these inflammatory mediators have a deleterious effect on the host tissue as well as foreign microbes. One of the effects of these mediators on the host is the induction of matrix degradation and bone resorption through activation of proteases and other inflammatory mediators that activate osteoclasts.
Collapse
Affiliation(s)
- Rayyan A. Kayal
- Department of Oral Basic and Clinical Science, King Abdulaziz University Faculty of Dentistry, P.O. Box 3738, Jeddah 21481, Saudi Arabia
| |
Collapse
|
37
|
Jain N, Joseph R, Balan S, Arun R, Banerjee M. Association of interleukin-4 and interleukin-17F polymorphisms in periodontitis in Dravidian ethnicity. INDIAN JOURNAL OF HUMAN GENETICS 2013; 19:58-64. [PMID: 23901194 PMCID: PMC3722631 DOI: 10.4103/0971-6866.112891] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND: Complex network of pro and anti-inflammatory cytokines are known to act in inflamed periodontal tissue. This study explores the distribution of interleukin (IL)-4 (+33 C/T) and IL-17F (7383A/G, 7488A/G) gene polymorphism in chronic and aggressive periodontitis subjects of Dravidian ethnicity. MATERIALS AND METHODS: This case control study consisted of 124 periodontitis individuals comprising of 63 chronic and 61 aggressive periodontitis subjects as cases, and control group consisted of 101 healthy subjects. All subjects were genotyped for IL-4 + 33C/T, IL-17F 7383A/G, 7488A/G by polymerase chain reaction amplification followed by TaqMan assay for IL-4 + 33C/T, restriction enzyme digestion and gel electrophoresis for IL-17F 7383A/G and sequencing for IL-17F 7488A/G. RESULTS: IL-4 + 33C/T was significantly associated with periodontitis (P < 0.05) at both allelic and genotypic level. In subgroup analysis also significant difference (P < 0.05) in allelic distribution between aggressive periodontitis and control group for loci IL-4 + 33C/T was noted. However, there was a lack of association between IL-17F 7383A/G and IL-17F 7488A/G with periodontitis and its sub-groups at both allelic and genotypic levels. CONCLUSIONS: In Malayalam speaking Dravidian population IL-4 + 33C/T loci appears to be an important risk factor for periodontal disease with a leaning towards aggressive periodontitis. The association between IL-17F at 7383A/G and 7488A/G loci with either chronic or an aggressive periodontitis could not be ascertained.
Collapse
Affiliation(s)
- Nidhi Jain
- Department of Periodontics, Government Dental College, Calicut, India
| | | | | | | | | |
Collapse
|
38
|
Khalaf H, Demirel I, Bengtsson T. Suppression of inflammatory gene expression in T cells by Porphyromonas gingivalis is mediated by targeting MAPK signaling. Cell Mol Immunol 2013; 10:413-22. [PMID: 23892429 DOI: 10.1038/cmi.2013.23] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/30/2013] [Accepted: 05/16/2013] [Indexed: 12/29/2022] Open
Abstract
There is increasing awareness of the effects of Porphyromonas gingivalis on host immune responses. Degradation of cytokines and chemokines by cysteine proteinases has previously been reported. However, the precise mechanisms by which P. gingivalis is able to alter intracellular signaling, and thus proliferation and inflammation, have not been described. We have previously reported suppression of activator protein-1 (AP-1) and degradation of IL-2 by proteinases from P. gingivalis. In the present study, we have analyzed the effects of P. gingivalis on Jurkat T-cell signal transduction and subsequent IL-2 and CXCL8 expression. We found that CXCL8, but not IL-2, gene expression levels were significantly suppressed by viable P. gingivalis. Analysis of intracellular signaling revealed an inhibitory effect of P. gingivalis on c-Jun and c-Fos, but not NFκB (p50 and p65), NFAT or STAT5 expression. This inhibitory effect was not due to suppression of mitogen-activated protein kinase (MAPK) (p38, erk and JNK) gene expression, but was rather due to prevention of protein kinase C (PKC) and p38 phosphorylation, as demonstrated by western blot analysis. Furthermore, SOCS1 and SOCS3 expression levels decreased following treatment of Jurkat T cells with viable P. gingivalis. The results indicate that P. gingivalis is able to suppress inflammatory gene expression by targeting the activity of MAPK pathways in T cells, which was confirmed by using specific inhibitors of NF-κB, PKC, ERK, p38 and JNK.
Collapse
Affiliation(s)
- Hazem Khalaf
- Division of Clinical Medicine, School of Health and Medical Sciences, Örebro University, Örebro, Sweden
| | | | | |
Collapse
|
39
|
Saraiva AM, Alves e Silva MRM, Correia Silva JDF, da Costa JE, Gollob KJ, Dutra WO, Moreira PR. Evaluation of IL17A expression and of IL17A, IL17F and IL23R gene polymorphisms in Brazilian individuals with periodontitis. Hum Immunol 2013; 74:207-14. [DOI: 10.1016/j.humimm.2012.10.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 10/17/2012] [Accepted: 10/26/2012] [Indexed: 02/07/2023]
|
40
|
Immunohistochemical Localization of T-helper 17 Cells, IL-17, and RANKL during Root Resorption Induced by Excessive Orthodontic Force in the Mouse Model of T Cell-mediated Autoimmune Disease. ACTA ACUST UNITED AC 2013. [DOI: 10.5466/ijoms.11.249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
41
|
IL-17 and IL-11 GCF levels in aggressive and chronic periodontitis patients: relation to PCR bacterial detection. Mediators Inflamm 2012; 2012:174764. [PMID: 23226926 PMCID: PMC3513783 DOI: 10.1155/2012/174764] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/28/2012] [Accepted: 10/15/2012] [Indexed: 12/11/2022] Open
Abstract
Objectives. This study evaluated IL-17 and IL-11 in gingival crevicular fluid (GCF) of generalized chronic periodontitis (GCP) and generalized aggressive periodontitis (GAgP) patients in relation to periodontopathic bacteria. Subjects and Methods. GCF samples were collected from 65 subjects including 25 CP, 25 GAgP, and 15 controls (C) and analyzed for IL-17 and IL-11 by an enzyme-linked immunosorbent assay. Molecular detection of bacteria in the dental plaque was determined by polymerase chain reaction. Results. The total amount of IL-17 was significantly higher in GAgP group than in GCP and C groups (P < 0.001). The IL-11 concentration was significantly higher in C and GCP groups than GAgP group (P < 0.001). The IL-11/IL-17 ratio was significantly higher in the C group than in GCP and GAgP groups (P < 0.05). Moreover, GAgP group showed lower ratios of IL-11/IL-17 when compared to GCP group. The high positivity of P. gingivalis in the dental plaque was associated with significantly increased GCF levels of IL-17 in GCP and GAgP patients. Conclusions. The increased IL-17 level in GCF of GAgP suggests a potential role in the aetiopathogenesis. Meanwhile, the decreased ratio of IL-11/IL-17 might reflect an imbalance between the proinflammatory and anti-inflammatory cytokines in different periodontal diseases.
Collapse
|
42
|
Khalaf H, Bengtsson T. Altered T-cell responses by the periodontal pathogen Porphyromonas gingivalis. PLoS One 2012; 7:e45192. [PMID: 22984628 PMCID: PMC3440346 DOI: 10.1371/journal.pone.0045192] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 08/15/2012] [Indexed: 11/19/2022] Open
Abstract
Several studies support an association between the chronic inflammatory diseases periodontitis and atherosclerosis with a crucial role for the periodontal pathogen Porphyromonas gingivalis. However, the interplay between this pathogen and the adaptive immune system, including T-cells, is sparsely investigated. Here we used Jurkat T-cells to determine the effects of P. gingivalis on T-cell-mediated adaptive immune responses. We show that viable P. gingivalis targets IL-2 expression at the protein level. Initial cellular events, including ROS production and [Ca(2+)](i), were elevated in response to P. gingivalis, but AP-1 and NF-κB activity dropped below basal levels and T-cells were unable to sustain stable IL-2 accumulation. IL-2 was partially restored by Leupeptin, but not by Cathepsin B Inhibitor, indicating an involvement of Rgp proteinases in the suppression of IL-2 accumulation. This was further confirmed by purified Rgp that caused a dose-dependent decrease in IL-2 levels. These results provide new insights of how this periodontal pathogen evades the host adaptive immune system by inhibiting IL-2 accumulation and thus attenuating T-cell proliferation and cellular communication.
Collapse
Affiliation(s)
- Hazem Khalaf
- Division of Clinical Medicine, School of Health and Medical Sciences, Örebro University, Örebro, Sweden.
| | | |
Collapse
|
43
|
Arun KV, Talwar A, Kumar TSS. T-helper cells in the etiopathogenesis of periodontal disease: A mini review. J Indian Soc Periodontol 2011; 15:4-10. [PMID: 21772714 PMCID: PMC3134046 DOI: 10.4103/0972-124x.82255] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 10/04/2010] [Indexed: 01/06/2023] Open
Abstract
Our traditional understanding of the T-helper (Th)1/Th2 paradigm in periodontal disease has undergone considerable changes in recent years. This review focuses on the Th subsets, including the recently identified cells of the CD4 lineage, their activation pathways and effector function in periodontal disease. The roles of Th17 and regulatory T (Treg) cells in disease pathogenesis have been explored. Newer Th subsets such as Th9 and Th22 cells and their potential role in periodontal disease have also been outlined.
Collapse
Affiliation(s)
- K V Arun
- Department of Periodontics, Ragas Dental College and Hospital, Uthandi, Chennai, Tamil Nadu, India
| | | | | |
Collapse
|
44
|
Santos VR, Ribeiro FV, Lima JA, Miranda TS, Feres M, Bastos MF, Duarte PM. Partial- and full-mouth scaling and root planing in type 2 diabetic subjects: a 12-mo follow-up of clinical parameters and levels of cytokines and osteoclastogenesis-related factors. J Periodontal Res 2011; 47:45-54. [DOI: 10.1111/j.1600-0765.2011.01403.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Gaddis DE, Michalek SM, Katz J. TLR4 signaling via MyD88 and TRIF differentially shape the CD4+ T cell response to Porphyromonas gingivalis hemagglutinin B. THE JOURNAL OF IMMUNOLOGY 2011; 186:5772-83. [PMID: 21498664 DOI: 10.4049/jimmunol.1003192] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recombinant hemagglutinin B (rHagB), a virulence factor of the periodontal pathogen Porphyromonas gingivalis, has been shown to induce protective immunity against bacterial infection. Furthermore, we have demonstrated that rHagB is a TLR4 agonist for dendritic cells. However, it is not known how rHagB dendritic cell stimulation affects the activation and differentiation of T cells. Therefore, we undertook the present study to examine the role of TLR4 signaling in shaping the CD4(+) T cell response following immunization of mice with rHagB. Immunization with this Ag resulted in the induction of specific CD4(+) T cells and Ab responses. In TLR4(-/-) and MyD88(-/-) but not Toll/IL-1R domain-containing adapter inducing IFN-β-deficient (TRIF(Lps2)) mice, there was an increase in the Th2 CD4(+) T cell subset, a decrease in the Th1 subset, and higher serum IgG(1)/IgG(2) levels of HagB-specific Abs compared with those in wild-type mice. These finding were accompanied by increased GATA-3 and Foxp3 expression and a decrease in the activation of CD4(+) T cells isolated from TLR4(-/-) and MyD88(-/-) mice. Interestingly, TLR4(-/-) CD4(+) T cells showed an increase in IL-2/STAT5 signaling. Whereas TRIF deficiency had minimal effects on the CD4(+) T cell response, it resulted in increased IFN-γ and IL-17 production by memory CD4(+) T cells. To our knowledge, these results demonstrate for the first time that TLR4 signaling, via the downstream MyD88 and TRIF molecules, exerts a differential regulation on the CD4(+) T cell response to HagB Ag. The gained insight from the present work will aid in designing better therapeutic strategies against P. gingivalis infection.
Collapse
Affiliation(s)
- Dalia E Gaddis
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
46
|
Zhao L, Zhou Y, Xu Y, Sun Y, Li L, Chen W. Effect of non-surgical periodontal therapy on the levels of Th17/Th1/Th2 cytokines and their transcription factors in Chinese chronic periodontitis patients. J Clin Periodontol 2011; 38:509-16. [PMID: 21392046 DOI: 10.1111/j.1600-051x.2011.01712.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
AIM A new subset of CD4(+) T cells, Th17, has been recently discovered independent from Th1/Th2 paradigm. The aim of this study was to investigate the effects of non-surgical periodontal therapy on the expression of Th17/Th1/Th2 cytokines and transcription factors, and Th17 cell vibration in Chinese chronic periodontitis patients. MATERIALS AND METHODS The levels of Th17/Th1/Th2 cytokines (IL-17, IL-21/IFN-γ/IL-4) in gingival crevicular fluid from 30 chronic periodontitis patients before and after treatment were determined by ELISA. The expression of transcription factors (RORC, T-bet and GATA-3) in peripheral blood was measured by real-time PCR, and the levels of Th17 cells in CD4(+) T cells were determined by flow cytometry. RESULTS After treatment, the levels of IL-17 and IL-21 were down-regulated (P<0.05), and IL-4 was increased (P<0.05), but there were no differences in the level of IFN-γ (P>0.05). Correspondingly, the expression of RORC was decreased 1.99-fold (P<0.05), and GATA-3 was increased 1.76-fold (P<0.05). However, there were no differences in the level of T-bet (P>0.05). Moreover, the quantity of Th17 cells in peripheral blood was decreased (P<0.05), especially IL-17(+) IFN-γ(+) subgroup. CONCLUSIONS These results suggest that Th17 cells play a destructive role in the immune balance of periodontitis, and the effect of Th1 cells is not significant, while Th2 cells have a protective effect.
Collapse
Affiliation(s)
- Lu Zhao
- Institute of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | | | | | | | | | | |
Collapse
|
47
|
Preshaw PM, Taylor JJ. How has research into cytokine interactions and their role in driving immune responses impacted our understanding of periodontitis? J Clin Periodontol 2011; 38 Suppl 11:60-84. [DOI: 10.1111/j.1600-051x.2010.01671.x] [Citation(s) in RCA: 256] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
48
|
IL-17R activation of human periodontal ligament fibroblasts induces IL-23 p19 production: Differential involvement of NF-κB versus JNK/AP-1 pathways. Mol Immunol 2011; 48:647-56. [DOI: 10.1016/j.molimm.2010.11.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 11/02/2010] [Accepted: 11/09/2010] [Indexed: 01/25/2023]
|
49
|
Santos VR, Ribeiro FV, Lima JA, Napimoga MH, Bastos MF, Duarte PM. Cytokine levels in sites of chronic periodontitis of poorly controlled and well-controlled type 2 diabetic subjects. J Clin Periodontol 2010; 37:1049-58. [PMID: 20874828 DOI: 10.1111/j.1600-051x.2010.01624.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AIM This study compared the levels of tumour necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-4, IL-17 and IL-23 in the gingival crevicular fluid (GCF) from well-controlled and poorly controlled type 2 diabetic subjects with chronic periodontitis, before and after periodontal therapy. MATERIAL AND METHODS Eighteen well-controlled (glycated haemoglobin levels ≤8%) and 20 poorly controlled (glycated haemoglobin levels >8%) diabetic subjects were enrolled in this study. All subjects were submitted to non-surgical periodontal therapy. GCF sampling and clinical periodontal parameters were assessed before, 3 and 6 months post-therapy. Total amounts and concentrations of TNF-α, IFN-γ, IL-4, IL-17 and IL-23 in the GCF were analysed by enzyme-linked immunosorbent assay (ELISA). RESULTS The levels of IL-17 were higher in poorly than in well-controlled subjects (p<0.05), whereas the levels of IFN-γ were increased in well- compared with poorly controlled subjects at all experimental groups (p<0.05). In addition, IL-4 levels were lower in well- than poorly controlled diabetic subjects at baseline (p<0.05). There were no differences between groups for TNF-α and IL-23 at any time points (p>0.05). CONCLUSION These results indicate a predominance of pro-inflammatory T-helper type 1 (Th1)- or Th17-cytokines in sites of chronic periodontitis from type 2 diabetic subjects, according to their glycaemic control.
Collapse
Affiliation(s)
- Vanessa Renata Santos
- Department of Periodontology, Dental Research Division, Guarulhos University, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
50
|
Detert J, Pischon N, Burmester GR, Buttgereit F. [Pathogenesis of parodontitis in rheumatic diseases]. Z Rheumatol 2010; 69:109-12, 114-6. [PMID: 20107818 DOI: 10.1007/s00393-009-0560-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Inflammatory periodontal disease (PD) is a common disease worldwide that has a primarily bacterial aetiology and is characterized by dysregulation of the host inflammatory response. The degree of inflammation varies among individuals with PD independently of the degree of bacterial infection, suggesting that alteration of the immune function may substantially contribute to its extent. Factors such as smoking, education, and body mass index (BMI) are discussed as potential risk factors for PD. Most PD patients respond to bacterial invaders by mobilizing their defensive cells and releasing cytokines such as interleukin (IL)-1beta, tumour necrosis factor (TNF)-alpha, and IL-6, which ultimately causes tissue destruction by stimulating the production of collagenolytic enzymes, such matrix metalloproteinases. Recently, there has been growing evidence suggesting an association between PD and the increased risk of systemic diseases, such ateriosclerosis, diabetes mellitus, stroke, and rheumatoid arthritis (RA). PD and rheumatologic diseases such as RA share many pathological aspects and immunological findings.
Collapse
Affiliation(s)
- J Detert
- Klinik mit Schwerpunkt Rheumatologie und klinische Immunologie, Charité-Universitätsmedizin Berlin, Berlin, Deutschland.
| | | | | | | |
Collapse
|