1
|
Recent studies on the biological production of D-mannose. Appl Microbiol Biotechnol 2019; 103:8753-8761. [DOI: 10.1007/s00253-019-10151-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/18/2019] [Accepted: 09/22/2019] [Indexed: 02/06/2023]
|
2
|
Tabatabaei I, Dal Bosco C, Bednarska M, Ruf S, Meurer J, Bock R. A highly efficient sulfadiazine selection system for the generation of transgenic plants and algae. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:638-649. [PMID: 30144344 PMCID: PMC6381783 DOI: 10.1111/pbi.13004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/17/2018] [Indexed: 05/02/2023]
Abstract
The genetic transformation of plant cells is critically dependent on the availability of efficient selectable marker gene. Sulfonamides are herbicides that, by inhibiting the folic acid biosynthetic pathway, suppress the growth of untransformed cells. Sulfonamide resistance genes that were previously developed as selectable markers for plant transformation were based on the assumption that, in plants, the folic acid biosynthetic pathway resides in the chloroplast compartment. Consequently, the Sul resistance protein, a herbicide-insensitive dihydropteroate synthase, was targeted to the chloroplast. Although these vectors produce transgenic plants, the transformation efficiencies are low compared to other markers. Here, we show that this inefficiency is due to the erroneous assumption that the folic acid pathway is located in chloroplasts. When the RbcS transit peptide was replaced by a transit peptide for protein import into mitochondria, the compartment where folic acid biosynthesis takes place in yeast, much higher resistance to sulfonamide and much higher transformation efficiencies are obtained, suggesting that current sul vectors are likely to function due to low-level mistargeting of the resistance protein to mitochondria. We constructed a series of optimized transformation vectors and demonstrate that they produce transgenic events at very high frequency in both the seed plant tobacco and the green alga Chlamydomonas reinhardtii. Co-transformation experiments in tobacco revealed that sul is even superior to nptII, the currently most efficient selectable marker gene, and thus provides an attractive marker for the high-throughput genetic transformation of plants and algae.
Collapse
Affiliation(s)
- Iman Tabatabaei
- Max‐Planck‐Institut für Molekulare PflanzenphysiologiePotsdam‐GolmGermany
| | - Cristina Dal Bosco
- Department für Biologie ILudwig‐Maximilians‐Universität MünchenMünchenGermany
- Present address:
Pioneer Hi‐Bred Northern Europe Service Division GmbHEschbachGermany
| | - Marta Bednarska
- Max‐Planck‐Institut für Molekulare PflanzenphysiologiePotsdam‐GolmGermany
| | - Stephanie Ruf
- Max‐Planck‐Institut für Molekulare PflanzenphysiologiePotsdam‐GolmGermany
| | - Jörg Meurer
- Department für Biologie ILudwig‐Maximilians‐Universität MünchenMünchenGermany
| | - Ralph Bock
- Max‐Planck‐Institut für Molekulare PflanzenphysiologiePotsdam‐GolmGermany
| |
Collapse
|
3
|
Abstract
Hemp (Cannabis sativa L.) suspension culture cells were transformed with Agrobacterium tumefaciens strain EHA101 carrying the binary plasmid pNOV3635. The plasmid contains a phosphomannose isomerase (PMI) selectable marker gene. Cells transformed with PMI are capable of metabolizing the selective agent mannose, whereas cells not expressing the gene are incapable of using the carbon source and will stop growing. Callus masses proliferating on selection medium were screened for PMI expression using a chlorophenol red assay. Genomic DNA was extracted from putatively transformed callus lines, and the presence of the PMI gene was confirmed using PCR and Southern hybridization. Using this method, an average transformation frequency of 31.23% ± 0.14 was obtained for all transformation experiments, with a range of 15.1-55.3%.
Collapse
Affiliation(s)
- Mistianne Feeney
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | | |
Collapse
|
4
|
Tang E, Hill CB, Hartman GL. Carbon utilization profiles of Fusarium virguliforme isolates. Can J Microbiol 2010; 56:979-86. [PMID: 21164567 DOI: 10.1139/w10-085] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fusarium virguliforme is the cause of sudden death syndrome in soybean. Physiological variability among isolates of the fungus is unknown. One way to measure physiologic variability is to analyze growth on different carbon sources. The carbon source utilization profiles of 18 F. virguliforme isolates were examined using the Biolog FF 96-well microplate, which contains 95 different carbon sources. The utilization of dextrin,D-mannitol, maltotriose,D-lactic acid methyl ester, N-acetyl-D-galactosamine, salicin, D-trehalose, and L-alanine differed significantly among isolates (P = 0.05). Carbon sources were grouped into 3 clusters based on their ability to promote growth of F. virguliforme, after calculating Euclidean distances among them. About 12% of the carbon sources promoted a high amount of mycelial growth, 39% promoted a medium amount of growth, and 49% promoted a low amount of mycelial growth; the latter was not significantly different from the water blank control. A hierarchical tree diagram was produced for the 18 isolates based on their carbon source utilization profiles using Ward's hierarchical analysis method. Two main clusters of isolates were formed. One cluster represented greater average mycelial growth on all of the carbon sources than the other cluster. In this study, variability in carbon source utilization among F. virguliforme isolates was evident, but the results were not associated with geographic origin of the isolates, year collected, or published data on aggressiveness. Additional research is needed to determine if these carbon utilization profiles are associated with other biological characteristics, like spore germination, propagule formation, and saprophytic competitiveness.
Collapse
Affiliation(s)
- E Tang
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA
| | | | | |
Collapse
|
5
|
RamanaRao MV, Veluthambi K. Selectable marker elimination in the T0 generation by Agrobacterium-mediated co-transformation involving Mungbean yellow mosaic virus TrAP as a non-conditional negative selectable marker and bar for transient positive selection. PLANT CELL REPORTS 2010; 29:473-83. [PMID: 20204372 DOI: 10.1007/s00299-010-0836-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 01/15/2010] [Accepted: 02/15/2010] [Indexed: 05/28/2023]
Abstract
Transient selection involving the bar gene and non-conditional negative selection against stable T-DNA integration through the use of the Mungbean yellow mosaic virus (MYMV) transcriptional activator protein gene (TrAP) were used in a novel co-transformation strategy to generate selectable marker gene (SMG)-eliminated transgenic tobacco plants in the T(0) generation itself. Two compatible binary plasmids, pCam-bar-TrAP-gus harbouring bar as an SMG and the MYMV TrAP gene as a non-conditional negative selectable marker, and pGA472 with the nptII gene as an unselected experimental gene of interest (GOI) were placed in the Agrobacterium tumefaciens strain EHA105 and used for co-transformation. Transient selection with 5 mg l(-1) phosphinothricin (PPT) for 2-4 weeks and subsequent establishment in a PPT-minus medium yielded 114 plants from 200 leaf discs. The unselected nptII gene was detected by Southern blot analysis in 13 plants, revealing a co-transformation efficiency of 11.5%. Five of these plants harboured only the nptII gene (GOI) and not the bar gene (SMG). Thus, SMG elimination was achieved in the T(0) generation itself in 4.4% (5/114) of plants, which were transiently selected for 2-4 weeks on PPT. MYMV TrAP, a non-conditional negative selectable marker, effectively reduced the recovery of plants with stable integration of the SMG (bar).
Collapse
Affiliation(s)
- Mangu Venkata RamanaRao
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | | |
Collapse
|
6
|
López-Noguera S, Petri C, Burgos L. Combining a regeneration-promoting ipt gene and site-specific recombination allows a more efficient apricot transformation and the elimination of marker genes. PLANT CELL REPORTS 2009; 28:1781-1790. [PMID: 19820947 DOI: 10.1007/s00299-009-0778-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 09/14/2009] [Accepted: 09/23/2009] [Indexed: 05/28/2023]
Abstract
The presence of marker genes conferring antibiotic resistance in transgenic plants represents a serious obstacle for their public acceptance and future commercialization. In addition, their elimination may allow gene stacking by the same selection strategy. In apricot, selection using the selectable marker gene nptII, that confers resistance to aminoglycoside antibiotics, is relatively effective. An attractive alternative is offered by the MAT system (multi-auto-transformation), which combines the ipt gene for positive selection with the recombinase system R/RS for removal of marker genes from transgenic cells after transformation. Transformation with an MAT vector has been attempted in the apricot cultivar 'Helena'. Regeneration from infected leaves with Agrobacterium harboring a plasmid containing the ipt gene was significantly higher than that from non-transformed controls in a non-selective medium. In addition, transformation efficiencies were much higher than those previously reported using antibiotic selection, probably due to the integration of the regeneration-promoting ipt gene. However, the lack of an ipt expression-induced differential phenotype in apricot made difficult in detecting the marker genes excision and plants had to be evaluated at different times. PCR analysis showed that cassette excision start occurring after 6 months approximately and 1 year in culture was necessary for complete elimination of the cassette in all the transgenic lines. Excision was confirmed by Southern blot analysis. We report here for the first time in a temperate fruit tree that the MAT vector system improves regeneration and transformation efficiency and would allow complete elimination of marker genes from transgenic apricot plants by site-specific recombination.
Collapse
Affiliation(s)
- Sonia López-Noguera
- Departamento de Mejora, CEBAS-CSIC, Grupo de Biotecnología de Frutales, 30100 Murcia, Spain
| | | | | |
Collapse
|
7
|
European Food Safety Authority (EFSA). Application (Reference EFSA-GMO-UK-2005-11) for the placing on the market of insect-resistant genetically modified maize MIR604 event, for food and feed uses, import and processing under Regulation (EC) No 1829/2003 from Syngenta Seeds S.A.S on behalf of. EFSA J 2009. [DOI: 10.2903/j.efsa.2009.1193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
8
|
Abstract
This chapter provides an overview of the main steps in the process to produce stably transformed plants. Most transformation methods use tissue culture to recover adult plants from regenerable explants and can be divided into three stages: (1) choice and preparation of explant tissue, (2) deoxyribonucleic acid (DNA) delivery, (3) callus induction/regeneration and selection. Each of these stages is introduced from a general perspective and a detailed protocol for our exemplar species, wheat, is given. We focus here on DNA delivery by particle bombardment as Agrobacterium-mediated transformation methods for wheat are reported elsewhere.
Collapse
Affiliation(s)
- Huw D Jones
- CPI Division, Rothamsted Research, Harpenden, Hertfordshire, UK
| | | |
Collapse
|
9
|
Kato A, Inouhe M. Mannose accommodation of Vigna angularis cells on solid agar medium involves its possible conversion to sucrose mediated by enhanced phosphomannose isomerase activity. JOURNAL OF PLANT RESEARCH 2008; 121:339-349. [PMID: 18301863 DOI: 10.1007/s10265-008-0150-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Accepted: 01/18/2008] [Indexed: 05/26/2023]
Abstract
Mannose is an unusable carbon source for many plants. In our study we compared the effects of mannose and sucrose on growth and sucrose levels in azuki bean (Vigna angularis) cells grown in liquid media and in solid media. The suspension cells grew actively in a liquid medium containing 90 mM sucrose but not in that containing 90 mM mannose, where the intracellular sucrose levels were reduced to 20% or less of those in sucrose-grown cells. These results suggested that the limited conversion of mannose to sucrose resulted in cell growth inhibition. When sucrose-grown suspension cells (1 x 10(5)) were transferred onto agar medium containing mannose, they grew little initially, but, after a month lag period, they started to form many callus colonies at a high apparent variation rate (1.3 x 10(-3)). Time-course studies for sugar and enzyme analysis revealed that the mannose-accommodated cells were capable of converting mannose to sucrose, with enhanced phosphomannose isomerase activity. The mannose-accommodated cells actively grew in liquid medium with sucrose but lost their ability to grow with mannose again, suggesting a specific trait of callus culture for mannose utilization. The possible differences in the metabolic activities and other physiological characteristics are discussed between callus and suspension cells.
Collapse
Affiliation(s)
- Aki Kato
- Biology and Environmental Sciences, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime, 790-8577, Japan
| | | |
Collapse
|
10
|
Shewry PR, Jones HD, Halford NG. Plant biotechnology: transgenic crops. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2008; 111:149-86. [PMID: 18299808 DOI: 10.1007/10_2008_095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Transgenesis is an important adjunct to classical plant breeding, in that it allows the targeted manipulation of specific characters using genes from a range of sources. The current status of crop transformation is reviewed, including methods of gene transfer, the selection of transformed plants and control of transgene expression. The application of genetic modification technology to specific traits is then discussed, including input traits relating to crop production (herbicide tolerance and resistance to insects, pathogens and abiotic stresses) and output traits relating to the composition and quality of the harvested organs. The latter include improving the nutritional quality for consumers as well as the improvement of functional properties for food processing.
Collapse
|
11
|
Prakash NS, Prasad V, Chidambram TP, Cherian S, Jayaprakash TL, Dasgupta S, Wang Q, Mann MT, Spencer TM, Boddupalli RS. Effect of promoter driving selectable marker on corn transformation. Transgenic Res 2007; 17:695-704. [PMID: 17952623 DOI: 10.1007/s11248-007-9149-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Accepted: 10/04/2007] [Indexed: 11/25/2022]
Abstract
Identification of an appropriate selection agent and its corresponding selectable marker gene is one of the first steps in establishing a transformation protocol for a given plant species. As the promoter controls expression level of the genes, the promoter driving the selectable marker gene can affect transformation. However, investigations into the direct effect of promoters driving selectable marker on transformation are lacking in the literature though many reports of relative strengths of promoters driving reporter genes like GUS or CAT or GFP are available. In the present study, we have compared rice Actin1 and CaMV.35S (commonly used promoters in monocotyledonous plant transformation) promoters driving nptII for their effectiveness in paromomycin selection of transgenic corn events. To enable statistically meaningful analysis of the results, a large sample size of nearly 5,000 immature embryos (explants) was employed producing approximately 1,250 independent events from each of the two constructs in four independent experiments. The rate of appearance of resistant calli and percentage of resistant calli recovered was higher with P-Os.Actin1/nptII/nos3' as compared to P-CaMV.35S/nptII/nos3' in all four experiments. There was no appreciable difference either in the frequency of plant regeneration or in the morphological characteristics of plants recovered from the two constructs. Although the escape rate trended lower with P-Os.Actin1 as compared to P-CaMV.35S, the recovery of low copy events was significantly higher with P-CaMV.35S. The higher transformation frequency with P-Os.Actin1 could be related to the strength of this promoter as compared to P-CaMV.35S in the explants and/or calli. Based on these results, we infer that the promoter driving the selectable marker is an important factor to be considered while establishing a high throughput transformation protocol as it could not only influence the transformation frequency but also the copy number of the transgene in the recovered transgenics.
Collapse
Affiliation(s)
- N Shiva Prakash
- Monsanto Research Centre, #44/2A, Vasanths' Business Park, Bellary Road, NH:7, Hebbal, Bangalore, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hsiao P, Su RC, Teixeira da Silva JA, Chan MT. Plant native tryptophan synthase beta 1 gene is a non-antibiotic selection marker for plant transformation. PLANTA 2007; 225:897-906. [PMID: 17039373 DOI: 10.1007/s00425-006-0405-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Accepted: 09/10/2006] [Indexed: 05/12/2023]
Abstract
Gene transformation is an integral tool for plant genetic engineering. All antibiotic resistant genes currently employed are of bacterial origin and their presence in the field is undesirable. Therefore, we developed a novel and efficient plant native non-antibiotic selection system for the selection of transgenic plants in the model system Arabidopsis. This new system is based on the enhanced expression of Arabidopsis tryptophan synthase beta 1 (AtTSB1) and the use of 5-methyl-tryptophan (5MT, a tryptophan [Trp] analog) and/or CdCl2 as selection agent(s). We successfully integrated an expression cassette containing an AtT-SB1 cDNA driven by a cauliflower mosaic virus 35S promoter into Arabidopsis by floral dip transformation. Transgenic plants were efficiently selected on MS medium supplemented with 75 microM 5MT or 300 microM CdCl2 devoid of antibiotics. TSB1 selection was as efficient as the conventional hygromycin selection system. Northern blot analysis of transgenic plants selected by 5MT and CdCl2 revealed increased TSB1 mRNA transcript whereas uneven transcript levels of hygromycin phosphotransferase II (hpt) (control) was observed. Gas chromatography-mass spectrometry revealed 10-15 fold greater free Trp content in AtT-SB1 transgenic plants than in wild-type plants grown with or without 5MT or CdCl2. Taken together, the TSB1 system provides a novel selection system distinct from conventional antibiotic selection systems.
Collapse
Affiliation(s)
- Paoyuan Hsiao
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | | | | | | |
Collapse
|
13
|
Baisakh N, Rehana S, Rai M, Oliva N, Tan J, Mackill DJ, Khush GS, Datta K, Datta SK. Marker-free transgenic (MFT) near-isogenic introgression lines (NIILs) of 'golden' indica rice (cv. IR64) with accumulation of provitamin A in the endosperm tissue. PLANT BIOTECHNOLOGY JOURNAL 2006; 4:467-75. [PMID: 17177811 DOI: 10.1111/j.1467-7652.2006.00196.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We have developed near-isogenic introgression lines (NIILs) of an elite indica rice cultivar (IR64) with the genes for beta-carotene biosynthesis from dihaploid (DH) derivatives of golden japonica rice (cv. T309). A careful analysis of the DH lines indicated the integration of the genes of interest [phytoene synthase (psy) and phytoene desaturase (crtI)] and the selectable marker gene (hygromycin phosphotransferase, hph) in two unlinked loci. During subsequent crossing, progenies could be obtained carrying only the locus with psy and crtI, which was segregated independently from the locus containing the hph gene during meiotic segregation. The NIILs (BC(2)F(2)) showed maximum similarity with the recurrent parent cultivar IR64. Further, progenies of two NIILs were devoid of any fragments beyond the left or right border, including the chloramphenicol acetyltransferase (cat) antibiotic resistance gene of the transformation vector. Spectrophotometric readings showed the accumulation of up to 1.06 microg total carotenoids, including beta-carotene, in 1 g of the endosperm. The accumulation of beta-carotene was also evident from the clearly visible yellow colour of the polished seeds.
Collapse
Affiliation(s)
- Niranjan Baisakh
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Aswath CR, Mo SY, Kim DH, Park SW. Agrobacterium and biolistic transformation of onion using non-antibiotic selection marker phosphomannose isomerase. PLANT CELL REPORTS 2006; 25:92-9. [PMID: 16211408 DOI: 10.1007/s00299-005-0022-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2003] [Revised: 01/25/2005] [Accepted: 01/26/2005] [Indexed: 05/04/2023]
Abstract
A new selection system for onion transformation that does not require the use of antibiotics or herbicides was developed. The selection system used the Escherichia coli gene that encodes phosphomannose isomerase (pmi). Transgenic plants carrying the manA gene that codes for pmi can detoxify mannose-6-phosphate by conversion to fructose-6-phosphate, an intermediate of glycolysis, via the pmi activity. Six-week-old embryogenic callus initiated from seedling radicle was used for transformation. Transgenic plants were produced efficiently with transformation rates of 27 and 23% using Agrobacterium and biolistic system, respectively. Untransformed shoots were eliminated by a stepwise increase from 10 g l(-1) sucrose with 10 g l(-1) mannose in the first selection to only 10 g l(-1) mannose in the second selection. Integrative transformation was confirmed by PCR, RT-PCR and Southern hybridization.
Collapse
|
15
|
Petri C, Burgos L. Transformation of fruit trees. Useful breeding tool or continued future prospect? Transgenic Res 2005; 14:15-26. [PMID: 15865045 DOI: 10.1007/s11248-004-2770-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Regeneration and transformation systems using mature plant material of woody fruit species have to be achieved as a necessary requirement for the introduction of useful genes into specific cultivars and the rapid evaluation of resulting horticultural traits. Although the commercial production of transgenic annual crops is a reality, commercial genetically-engineered fruit trees are still far from common. In most woody fruit species, transformation and regeneration of commercial cultivars are not routine, generally being limited to a few genotypes or to seedlings. The future of genetic transformation as a tool for the breeding of fruit trees requires the development of genotype-independent procedures, based on the transformation of meristematic cells with high regeneration potential and/or the use of regeneration-promoting genes. The public concern with the introduction of antibiotic resistance into food and the restrictions due to new European laws that do not allow deliberate release of plants transformed with antibiotic-resistance genes highlight the development of methods that avoid the use of antibiotic-dependent selection or allow elimination of marker genesfrom the transformed plant as a research priority in coming years.
Collapse
Affiliation(s)
- César Petri
- Departamento de Mejora y Patología Vegetal, CEBAS-CSIC. Aptd. 164, 30100 Murcia, Spain
| | | |
Collapse
|
16
|
Bajaj S, Mohanty A. Recent advances in rice biotechnology--towards genetically superior transgenic rice. PLANT BIOTECHNOLOGY JOURNAL 2005; 3:275-307. [PMID: 17129312 DOI: 10.1111/j.1467-7652.2005.00130.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Rice biotechnology has made rapid advances since the first transgenic rice plants were produced 15 years ago. Over the past decade, this progress has resulted in the development of high frequency, routine and reproducible genetic transformation protocols for rice. This technology has been applied to produce rice plants that withstand several abiotic stresses, as well as to gain tolerance against various pests and diseases. In addition, quality improving and increased nutritional value traits have also been introduced into rice. Most of these gains were not possible through conventional breeding technologies. Transgenic rice system has been used to understand the process of transformation itself, the integration pattern of transgene as well as to modulate gene expression. Field trials of transgenic rice, especially insect-resistant rice, have recently been performed and several other studies that are prerequisite for safe release of transgenic crops have been initiated. New molecular improvisations such as inducible expression of transgene and selectable marker-free technology will help in producing superior transgenic product. It is also a step towards alleviating public concerns relating to issues of transgenic technology and to gain regulatory approval. Knowledge gained from rice can also be applied to improve other cereals. The completion of the rice genome sequencing together with a rich collection of full-length cDNA resources has opened up a plethora of opportunities, paving the way to integrate data from the large-scale projects to solve specific biological problems.
Collapse
Affiliation(s)
- Shavindra Bajaj
- Gene Technology, The Horticulture and Food Research Institute of New Zealand Limited (HortResearch) 120 Mt. Albert Road, Private Bag 92169, Auckland, New Zealand.
| | | |
Collapse
|
17
|
Jones HD. Wheat transformation: current technology and applications to grain development and composition. J Cereal Sci 2005. [DOI: 10.1016/j.jcs.2004.08.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Wei S, Bravdo BA, Shoseyov O. Fluorescent screening of transgenic Arabidopsis seeds without germination. PLANT PHYSIOLOGY 2004; 135:709-714. [PMID: 15208418 PMCID: PMC514108 DOI: 10.1104/pp.104.040709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this paper, we describe a reliable method for the screening and selection of Arabidopsis transgenic seeds within minutes without germination. Expression of the Aspergillus niger beta-glucosidase gene BGL1 in the plant's endoplasmic reticulum was used as a visual marker, together with 4-methylumbelliferyl-beta-D-glucopyranoside (MUGluc) as a substrate. Subsequent to incubation in a solution of MUGluc at room temperature for 2 to 15 min, transgenic seeds expressing BGL1 demonstrated a distinct fluorescent signal under UV light. Optimal screening conditions at room temperature were achieved between 75 and 450 microm MUGluc, at a pH of 2.5 to 5.0 and 2 to 5 min of incubation. No significant loss of viability was detected in transgenic seeds that were redried and stored for 45 d after incubation in MUGluc solution for 2 to 150 min. Transgenic plants expressing BGL1 displayed normal phenotypes relative to the wild type. Selection frequency was 3.1% +/- 0.34% for the fluorescence selection method, while kanamycin resistant selection resulted in only 0.56% +/- 0.13% using the same seed batch. This novel selection method is nondestructive, practical, and efficient, and eliminates the use of antibiotic genes. In addition, the procedure shortens the selection time from weeks to minutes.
Collapse
Affiliation(s)
- Shu Wei
- The Otto Warburg Minerva Center for Agricultural Biotechnology, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | | | |
Collapse
|
19
|
Li X, Volrath SL, Nicholl DBG, Chilcott CE, Johnson MA, Ward ER, Law MD. Development of protoporphyrinogen oxidase as an efficient selection marker for Agrobacterium tumefaciens-mediated transformation of maize. PLANT PHYSIOLOGY 2003; 133:736-47. [PMID: 12972658 PMCID: PMC219048 DOI: 10.1104/pp.103.026245] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2003] [Revised: 07/01/2003] [Accepted: 07/19/2003] [Indexed: 05/18/2023]
Abstract
In this article, we report the isolation of plant protoporphyrinogen oxidase (PPO) genes and the isolation of herbicide-tolerant mutants. Subsequently, an Arabidopsis double mutant (Y426M + S305L) was used to develop a selectable marker system for Agrobacterium tumefaciens-mediated transformation of maize (Zea mays) and to obtain multiple events tolerant to the PPO family of herbicides. Maize transformants were produced via butafenacil selection using a flexible light regime to increase selection pressure. Butafenacil selection per se did not change transgene copy number distribution relative to other selectable marker systems, but the most tolerant events identified in the greenhouse were more likely to contain multiple copies of the introduced mutant PPO gene. To date, more than 2,500 independent transgenic maize events have been produced using butafenacil selection. The high frequency of A. tumefaciens-mediated transformation via PPO selection enabled us to obtain single-copy transgenic maize lines tolerant to field levels of butafenacil.
Collapse
Affiliation(s)
- Xianggan Li
- Syngenta Biotechnology, Inc., P.O. Box 12257, 3054 Cornwallis Road, Research Triangle Park, NC 27709-2257, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Knowledge on plant genomes has progressed during the past few years. Two plant genomes, those of Arabidopsis thaliana and rice, have been sequenced. Our present knowledge of synteny also indicates that, despite plasticity contributing to the diversity of the plant genomes, the organization of genes is conserved within large sections of chromosomes. In parallel, novel plant transformation systems have been proposed, notably with regard to plastid transformation and the removal of selectable marker genes in transgenic plants. Furthermore, a number of recent works considerably widen the potential of plant biotechnology.
Collapse
Affiliation(s)
- Dominique Job
- Laboratoire mixte CNRS/INRA/Bayer CropScience (UMR 1932), Bayer CropScience, 14-20, rue Pierre-Baizet, 69269, Lyon cedex 9, France.
| |
Collapse
|