1
|
Li J, Xiao C, Li C, He J. Tissue-resident immune cells: from defining characteristics to roles in diseases. Signal Transduct Target Ther 2025; 10:12. [PMID: 39820040 PMCID: PMC11755756 DOI: 10.1038/s41392-024-02050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/28/2024] [Accepted: 11/04/2024] [Indexed: 01/19/2025] Open
Abstract
Tissue-resident immune cells (TRICs) are a highly heterogeneous and plastic subpopulation of immune cells that reside in lymphoid or peripheral tissues without recirculation. These cells are endowed with notably distinct capabilities, setting them apart from their circulating leukocyte counterparts. Many studies demonstrate their complex roles in both health and disease, involving the regulation of homeostasis, protection, and destruction. The advancement of tissue-resolution technologies, such as single-cell sequencing and spatiotemporal omics, provides deeper insights into the cell morphology, characteristic markers, and dynamic transcriptional profiles of TRICs. Currently, the reported TRIC population includes tissue-resident T cells, tissue-resident memory B (BRM) cells, tissue-resident innate lymphocytes, tissue-resident macrophages, tissue-resident neutrophils (TRNs), and tissue-resident mast cells, but unignorably the existence of TRNs is controversial. Previous studies focus on one of them in specific tissues or diseases, however, the origins, developmental trajectories, and intercellular cross-talks of every TRIC type are not fully summarized. In addition, a systemic overview of TRICs in disease progression and the development of parallel therapeutic strategies is lacking. Here, we describe the development and function characteristics of all TRIC types and their major roles in health and diseases. We shed light on how to harness TRICs to offer new therapeutic targets and present burning questions in this field.
Collapse
Affiliation(s)
- Jia Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
Zhang W, Dai W, Xie Y, Chen X, Zhang P, Cui W. Retinoic Acid Regulates Allergic Inflammation via Limiting Mast Cell Activation. Food Sci Nutr 2025; 13:e4727. [PMID: 39803223 PMCID: PMC11717043 DOI: 10.1002/fsn3.4727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/19/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
BackgroundAllergic diseases have become one of the major public health problems to be addressed in the world today. As a tissue resident cell, mast cells are crucial in the pathogenesis of allergic diseases. Vitamin A is an important fat-soluble vitamin with immunomodulatory functions. Vitamin A deficiency has been shown to be associated with allergic disease states, including asthma; however, no studies have been reported on whether vitamin A deficiency has an effect on the activation of mast cells in allergic reactions. ObjectiveTo explore whether blocking retinoic acid receptors has an effect on mast cell degranulation. Methods Flow cytometry was used to analyze the expression of FCεRIα and CD117 on the cell surface, toluidine blue staining was used to visualize cellular features and morphological changes. ELISA was used to detect histamine release. High-throughput transcriptome sequencing and qRT-PCR were used to detect the expression of relevant signaling pathways and cytokine genes. Western blot was used to detect the expression of relevant signaling pathway proteins. ResultsIn the present study, we found that antagonism of the retinoic acid receptor (RAR) resulted in overactive mast cells and increased their degranulation. Furthermore, inflammatory signaling pathways such as MyD88-IKK-NF-κB and PI3K-Akt-m-TOR were involved in the effect of retinoic acid (RA) on the activation state of mast cells. ConclusionsIn this paper, we demonstrated that blocking RAR can exacerbate its activation state in IgE-mediated mast cells. This study provided new insights into the possibility that vitamin A deficiency exacerbated mast cell activation and thus affectd allergic diseases and their mechanisms.
Collapse
Affiliation(s)
- Wenxin Zhang
- Department of PathologyThe First Hospital of Jilin UniversityChangchunChina
| | - Wenwen Dai
- Department of Nutrition and Food Hygiene, School of Public HealthJilin UniversityChangchunChina
| | - Yingdong Xie
- Department of Nutrition and Food Hygiene, School of Public HealthJilin UniversityChangchunChina
| | - Xingyang Chen
- Department of Nutrition and Food Hygiene, School of Public HealthJilin UniversityChangchunChina
| | - Peng Zhang
- Department of Thoracic SurgeryThe First Hospital of Jilin UniversityChangchunChina
| | - Weiwei Cui
- Department of Nutrition and Food Hygiene, School of Public HealthJilin UniversityChangchunChina
| |
Collapse
|
3
|
Ribatti D. Mast cells are at the interface between the external environment and the inner organism. Front Med (Lausanne) 2024; 10:1332047. [PMID: 38239615 PMCID: PMC10794488 DOI: 10.3389/fmed.2023.1332047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/30/2023] [Indexed: 01/22/2024] Open
Abstract
Mast cells localized at the level of the mucosal barrier in the skin, lung, and gastrointestinal tract, intervene in the modulation of the function of the epithelial cells and are involved in innate and adaptive defensive responses. In this context, mast cells intervene in the recognition and clearance of microbial pathogens. This mini-review article discusses the role of mast cells in these barrier systems.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, Bari, Italy
| |
Collapse
|
4
|
Miralda I, Samanas NB, Seo AJ, Foronda JS, Sachen J, Hui Y, Morrison SD, Oskeritzian CA, Piliponsky AM. Siglec-9 is an inhibitory receptor on human mast cells in vitro. J Allergy Clin Immunol 2023; 152:711-724.e14. [PMID: 37100120 PMCID: PMC10524464 DOI: 10.1016/j.jaci.2023.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND Mast cell activation is critical for the development of allergic diseases. Ligation of sialic acid-binding immunoglobin-like lectins (Siglecs), such as Siglec-6, -7, and -8 as well as CD33, have been shown to inhibit mast cell activation. Recent studies showed that human mast cells express Siglec-9, an inhibitory receptor also expressed by neutrophils, monocytes, macrophages, and dendritic cells. OBJECTIVE We aimed to characterize Siglec-9 expression and function in human mast cells in vitro. METHODS We assessed the expression of Siglec-9 and Siglec-9 ligands on human mast cell lines and human primary mast cells by real-time quantitative PCR, flow cytometry, and confocal microscopy. We used a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing approach to disrupt the SIGLEC9 gene. We evaluated Siglec-9 inhibitory activity on mast cell function by using native Siglec-9 ligands, glycophorin A (GlycA), and high-molecular-weight hyaluronic acid, a monoclonal antibody against Siglec-9, and coengagement of Siglec-9 with the high-affinity receptor for IgE (FcεRI). RESULTS Human mast cells express Siglec-9 and Siglec-9 ligands. SIGLEC9 gene disruption resulted in increased expression of activation markers at baseline and increased responsiveness to IgE-dependent and IgE-independent stimulation. Pretreatment with GlycA or high-molecular-weight hyaluronic acid followed by IgE-dependent or -independent stimulation had an inhibitory effect on mast cell degranulation. Coengagement of Siglec-9 with FcεRI in human mast cells resulted in reduced degranulation, arachidonic acid production, and chemokine release. CONCLUSIONS Siglec-9 and its ligands play an important role in limiting human mast cell activation in vitro.
Collapse
Affiliation(s)
- Irina Miralda
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | - Nyssa B Samanas
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | - Albert J Seo
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | - Jake S Foronda
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | - Josie Sachen
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | - Yvonne Hui
- University of South Carolina School of Medicine, Columbia, SC
| | - Shane D Morrison
- Department of Surgery, Division of Plastic Surgery, Seattle Children's Hospital, Seattle, Wash
| | | | - Adrian M Piliponsky
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash; Department of Pediatrics, University of Washington School of Medicine, Seattle, Wash; Department of Pathology, University of Washington School of Medicine, Seattle, Wash; Department of Global Health, University of Washington School of Medicine, Seattle, Wash.
| |
Collapse
|
5
|
Dileepan KN, Raveendran VV, Sharma R, Abraham H, Barua R, Singh V, Sharma R, Sharma M. Mast cell-mediated immune regulation in health and disease. Front Med (Lausanne) 2023; 10:1213320. [PMID: 37663654 PMCID: PMC10470157 DOI: 10.3389/fmed.2023.1213320] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/17/2023] [Indexed: 09/05/2023] Open
Abstract
Mast cells are important components of the immune system, and they perform pro-inflammatory as well as anti-inflammatory roles in the complex process of immune regulation in health and disease. Because of their strategic perivascular localization, sensitivity and adaptability to the microenvironment, and ability to release a variety of preformed and newly synthesized effector molecules, mast cells perform unique functions in almost all organs. Additionally, Mast cells express a wide range of surface and cytoplasmic receptors which enable them to respond to a variety of cytokines, chemicals, and pathogens. The mast cell's role as a cellular interface between external and internal environments as well as between vasculature and tissues is critical for protection and repair. Mast cell interactions with different immune and nonimmune cells through secreted inflammatory mediators may also turn in favor of disease promoting agents. First and forefront, mast cells are well recognized for their multifaceted functions in allergic diseases. Reciprocal communication between mast cells and endothelial cells in the presence of bacterial toxins in chronic/sub-clinical infections induce persistent vascular inflammation. We have shown that mast cell proteases and histamine induce endothelial inflammatory responses that are synergistically amplified by bacterial toxins. Mast cells have been shown to exacerbate vascular changes in normal states as well as in chronic or subclinical infections, particularly among cigarette smokers. Furthermore, a potential role of mast cells in SARS-CoV-2-induced dysfunction of the capillary-alveolar interface adds to the growing understanding of mast cells in viral infections. The interaction between mast cells and microglial cells in the brain further highlights their significance in neuroinflammation. This review highlights the significant role of mast cells as the interface that acts as sensor and early responder through interactions with cells in systemic organs and the nervous system.
Collapse
Affiliation(s)
- Kottarappat N. Dileepan
- Division of Allergy, Clinical Immunology and Rheumatology, Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Vineesh V. Raveendran
- Division of Allergy, Clinical Immunology and Rheumatology, Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Rishi Sharma
- Department of Medicine, School of Medicine, University of Missouri, Kansas City, MO, United States
| | - Harita Abraham
- Division of Allergy, Clinical Immunology and Rheumatology, Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Rajat Barua
- Cardiology Section, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
| | - Vikas Singh
- Neurology Section, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
| | - Ram Sharma
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
| | - Mukut Sharma
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
- Midwest Veterans’ Biomedical Research Foundation (MVBRF), Kansas City VA Medical Center, Kansas, MO, United States
| |
Collapse
|
6
|
Peng J, Federman HG, Hernandez C, Siracusa MC. Communication is key: Innate immune cells regulate host protection to helminths. Front Immunol 2022; 13:995432. [PMID: 36225918 PMCID: PMC9548658 DOI: 10.3389/fimmu.2022.995432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022] Open
Abstract
Parasitic helminth infections remain a significant global health issue and are responsible for devastating morbidity and economic hardships. During infection, helminths migrate through different host organs, which results in substantial tissue damage and the release of diverse effector molecules by both hematopoietic and non-hematopoietic cells. Thus, host protective responses to helminths must initiate mechanisms that help to promote worm clearance while simultaneously mitigating tissue injury. The specialized immunity that promotes these responses is termed type 2 inflammation and is initiated by the recruitment and activation of hematopoietic stem/progenitor cells, mast cells, basophils, eosinophils, dendritic cells, neutrophils, macrophages, myeloid-derived suppressor cells, and group 2 innate lymphoid cells. Recent work has also revealed the importance of neuron-derived signals in regulating type 2 inflammation and antihelminth immunity. These studies suggest that multiple body systems coordinate to promote optimal outcomes post-infection. In this review, we will describe the innate immune events that direct the scope and intensity of antihelminth immunity. Further, we will highlight the recent progress made in our understanding of the neuro-immune interactions that regulate these pathways and discuss the conceptual advances they promote.
Collapse
Affiliation(s)
- Jianya Peng
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
- Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
| | - Hannah G. Federman
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
- Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
| | - Christina M. Hernandez
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
- Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
| | - Mark C. Siracusa
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
- Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
- *Correspondence: Mark C. Siracusa,
| |
Collapse
|
7
|
Tontini C, Bulfone-Paus S. Novel Approaches in the Inhibition of IgE-Induced Mast Cell Reactivity in Food Allergy. Front Immunol 2021; 12:613461. [PMID: 34456900 PMCID: PMC8387944 DOI: 10.3389/fimmu.2021.613461] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 06/23/2021] [Indexed: 01/21/2023] Open
Abstract
Allergy is an IgE-dependent type-I hypersensitivity reaction that can lead to life-threatening systemic symptoms such as anaphylaxis. In the pathogenesis of the allergic response, the common upstream event is the binding of allergens to specific IgE, inducing cross-linking of the high-affinity FcεRI on mast cells, triggering cellular degranulation and the release of histamine, proteases, lipids mediators, cytokines and chemokines with inflammatory activity. A number of novel therapeutic options to curb mast cell activation are in the pipeline for the treatment of severe allergies. In addition to anti-IgE therapy and allergen-specific immunotherapy, monoclonal antibodies targeted against several key Th2/alarmin cytokines (i.e. IL-4Rα, IL-33, TSLP), active modification of allergen-specific IgE (i.e. inhibitory compounds, monoclonal antibodies, de-sialylation), engagement of inhibitory receptors on mast cells and allergen-specific adjuvant vaccines, are new promising options to inhibit the uncontrolled release of mast cell mediators upon allergen exposure. In this review, we critically discuss the novel approaches targeting mast cells limiting allergic responses and the immunological mechanisms involved, with special interest on food allergy treatment.
Collapse
Affiliation(s)
- Chiara Tontini
- Lydia Becker Institute for Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Silvia Bulfone-Paus
- Lydia Becker Institute for Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
8
|
Korkmaz E, Balmert SC, Sumpter TL, Carey CD, Erdos G, Falo LD. Microarray patches enable the development of skin-targeted vaccines against COVID-19. Adv Drug Deliv Rev 2021; 171:164-186. [PMID: 33539853 PMCID: PMC8060128 DOI: 10.1016/j.addr.2021.01.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/10/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022]
Abstract
The COVID-19 pandemic is a serious threat to global health and the global economy. The ongoing race to develop a safe and efficacious vaccine to prevent infection by SARS-CoV-2, the causative agent for COVID-19, highlights the importance of vaccination to combat infectious pathogens. The highly accessible cutaneous microenvironment is an ideal target for vaccination since the skin harbors a high density of antigen-presenting cells and immune accessory cells with broad innate immune functions. Microarray patches (MAPs) are an attractive intracutaneous biocargo delivery system that enables safe, reproducible, and controlled administration of vaccine components (antigens, with or without adjuvants) to defined skin microenvironments. This review describes the structure of the SARS-CoV-2 virus and relevant antigenic targets for vaccination, summarizes key concepts of skin immunobiology in the context of prophylactic immunization, and presents an overview of MAP-mediated cutaneous vaccine delivery. Concluding remarks on MAP-based skin immunization are provided to contribute to the rational development of safe and effective MAP-delivered vaccines against emerging infectious diseases, including COVID-19.
Collapse
Affiliation(s)
- Emrullah Korkmaz
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Stephen C Balmert
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Tina L Sumpter
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Cara Donahue Carey
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Geza Erdos
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Louis D Falo
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
9
|
Gion Y, Okano M, Koyama T, Oura T, Nishikori A, Orita Y, Tachibana T, Marunaka H, Makino T, Nishizaki K, Sato Y. Clinical Significance of Cytoplasmic IgE-Positive Mast Cells in Eosinophilic Chronic Rhinosinusitis. Int J Mol Sci 2020; 21:ijms21051843. [PMID: 32155995 PMCID: PMC7084524 DOI: 10.3390/ijms21051843] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/23/2020] [Accepted: 03/05/2020] [Indexed: 01/11/2023] Open
Abstract
Cross-linking of antigen-specific IgE bound to the high-affinity IgE receptor (FcεRI) on the surface of mast cells with multivalent antigens results in the release of mediators and development of type 2 inflammation. FcεRI expression and IgE synthesis are, therefore, critical for type 2 inflammatory disease development. In an attempt to clarify the relationship between eosinophilic chronic rhinosinusitis (ECRS) and mast cell infiltration, we analyzed mast cell infiltration at lesion sites and determined its clinical significance. Mast cells are positive for c-kit, and IgE in uncinated tissues (UT) and nasal polyps (NP) were examined by immunohistochemistry. The number of positive cells and clinicopathological factors were analyzed. Patients with ECRS exhibited high levels of total IgE serum levels and elevated peripheral blood eosinophil ratios. As a result, the number of mast cells with membranes positive for c-kit and IgE increased significantly in lesions forming NP. Therefore, we classified IgE-positive mast cells into two groups: membrane IgE-positive cells and cytoplasmic IgE-positive cells. The amount of membrane IgE-positive mast cells was significantly increased in moderate ECRS. A positive correlation was found between the membrane IgE-positive cells and the radiological severity score, the ratio of eosinophils, and the total serum IgE level. The number of cytoplasmic IgE-positive mast cells was significantly increased in moderate and severe ECRS. A positive correlation was observed between the cytoplasmic IgE-positive cells and the radiological severity score, the ratio of eosinophils in the blood, and the total IgE level. These results suggest that the process of mast cell internalization of antigens via the IgE receptor is involved in ECRS pathogenesis.
Collapse
Affiliation(s)
- Yuka Gion
- Division of Pathophysiology, Okayama University Graduate School of Health Sciences, Okayama 700-8558, Japan; (Y.G.); (T.O.); (A.N.)
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Mitsuhiro Okano
- Department of Otolaryngology of Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.; (T.K.); (H.M.); (T.M.); (K.N.)
- Department of Otorhinolaryngology, International University of Health and Welfare Graduate School of Medicine, Narita 286-8686, Japan
- Correspondence: (M.O.); (Y.S.); Tel.: +81-86-235-7150 (Y.S.); Fax: +81-86-235-7156 (Y.S.)
| | - Takahisa Koyama
- Department of Otolaryngology of Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.; (T.K.); (H.M.); (T.M.); (K.N.)
| | - Tokie Oura
- Division of Pathophysiology, Okayama University Graduate School of Health Sciences, Okayama 700-8558, Japan; (Y.G.); (T.O.); (A.N.)
| | - Asami Nishikori
- Division of Pathophysiology, Okayama University Graduate School of Health Sciences, Okayama 700-8558, Japan; (Y.G.); (T.O.); (A.N.)
| | - Yorihisa Orita
- Department of Otolaryngology, Head and Neck Surgery, Kumamoto University Graduate School, Kumamoto 860-8556, Japan;
| | - Tomoyasu Tachibana
- Department of Otolaryngology, Japanese Red Cross Society Himeji Hospital, Himeji 670-8540, Japan;
| | - Hidenori Marunaka
- Department of Otolaryngology of Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.; (T.K.); (H.M.); (T.M.); (K.N.)
| | - Takuma Makino
- Department of Otolaryngology of Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.; (T.K.); (H.M.); (T.M.); (K.N.)
| | - Kazunori Nishizaki
- Department of Otolaryngology of Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.; (T.K.); (H.M.); (T.M.); (K.N.)
| | - Yasuharu Sato
- Division of Pathophysiology, Okayama University Graduate School of Health Sciences, Okayama 700-8558, Japan; (Y.G.); (T.O.); (A.N.)
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
- Correspondence: (M.O.); (Y.S.); Tel.: +81-86-235-7150 (Y.S.); Fax: +81-86-235-7156 (Y.S.)
| |
Collapse
|
10
|
Zareie M, Hekking LH, Driesprong BA, Ter Wee PM, Beelen RH, van den Born J. Accumulation of Omental Mast Cells during Peritoneal Dialysis. Perit Dial Int 2020. [DOI: 10.1177/089686080102103s71] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective New vessel formation has been reported in various tissues during peritoneal dialysis (PD). In that line, mast cells can produce factors such as tryptase, chymase, or basic fibroblast growth factor that might contribute to the formation of new vessels. In the present study, the association of mast cells with neovascularization during PD was investigated. Methods Rats received daily 10 mL infusions of conventional 3.86% glucose-containing PD fluid over a 10-week period. The infusions were delivered through a subcutaneously implanted mini access port that was connected by catheter to the peritoneal cavity. Untreated rats served as a control group. The number of blood vessels and of mast cells in the omentum were counted. Also, the number of peritoneal mast cells was determined. Results Chronic exposure to PD fluid resulted in an increased number of mast cells in the omentum. However, no clear correlation was found between the elevated number of omental blood vessels and the number of mast cells in the omentum or in the peritoneal cavity. Conclusions Omental mast cells accumulated dramatically upon exposure to PD fluid. The actual role of accumulated omental mast cells in the induction of angiogenesis during PD should, however, be further investigated.
Collapse
Affiliation(s)
- Mohammad Zareie
- Department of Molecular Cell Biology, Vrije Universiteit Medical Center, Amsterdam, Netherlands
| | - Liesbeth H.P. Hekking
- Department of Molecular Cell Biology, Vrije Universiteit Medical Center, Amsterdam, Netherlands
| | - Bas A.J. Driesprong
- Department of Molecular Cell Biology, Vrije Universiteit Medical Center, Amsterdam, Netherlands
| | - Piet M. Ter Wee
- Department of Nephrology, Vrije Universiteit Medical Center, Amsterdam, Netherlands
| | - Robert H.J. Beelen
- Department of Molecular Cell Biology, Vrije Universiteit Medical Center, Amsterdam, Netherlands
| | - Jacob van den Born
- Department of Molecular Cell Biology, Vrije Universiteit Medical Center, Amsterdam, Netherlands
| |
Collapse
|
11
|
Kim J, Guhl S, Babina M, Zuberbier T, Artuc M. Integration of the Human Dermal Mast Cell into the Organotypic Co-culture Skin Model. Methods Mol Biol 2020; 2163:91-107. [PMID: 32766969 DOI: 10.1007/978-1-0716-0696-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The organotypic co-culture skin model has been providing an advanced approach to in vitro investigations of the skin. Mast cells, containing various mediators such as tryptase and chymase, are thought to contribute to many physiological and pathological events of the skin interactively with other cells. Here, we introduce an organotypic co-culture skin model which successfully integrates human dermal mast cells for further study of mast cell interactions with fibroblasts and keratinocytes.
Collapse
Affiliation(s)
- Jonghui Kim
- Department of Dermatology and Allergy, Universitätsmedizin Berlin, Berlin, Germany
| | - Sven Guhl
- Department of Dermatology and Allergy, Universitätsmedizin Berlin, Berlin, Germany
| | - Magda Babina
- Department of Dermatology and Allergy, Universitätsmedizin Berlin, Berlin, Germany
| | - Torsten Zuberbier
- Department of Dermatology and Allergy, Universitätsmedizin Berlin, Berlin, Germany
| | - Metin Artuc
- Department of Dermatology and Allergy, Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
12
|
Identification and Immunophenotypic Characterization of Normal and Pathological Mast Cells. Methods Mol Biol 2020; 2163:331-353. [PMID: 32766988 DOI: 10.1007/978-1-0716-0696-4_27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mast cells (MCs) are secretory cells that are central players in human allergic disease and immune responses. With the exception of a few pathological situations, MCs are usually present at relatively low frequencies in most tissues. Since their first description, MCs in tissues were identified mostly using their morphological characteristics and their typical coloration when stained with aniline dyes. However, increasing availability of highly specific antibodies now permits the use of fluorescence-based flow cytometry as the method of choice for the quantification, characterization, and purification of cells in suspension. This technique allows for a rapid analysis of thousands of events and for the identification of cells present at frequencies as low as one event in 106 unwanted cells. This method also permits for simultaneous characterization of multiple antigens at a single cell level, which is ideal in order to study rare populations of cells like MCs. Here we describe the basis of flow cytometry-based immunophenotyping applied to the study of MC. The protocol focuses on the study of human MCs present in body fluids (mainly bone marrow) but can easily be adapted to studying MCs from other tissues and species.
Collapse
|
13
|
Zhou X, Wei T, Cox CW, Walls AF, Jiang Y, Roche WR. Mast cell chymase impairs bronchial epithelium integrity by degrading cell junction molecules of epithelial cells. Allergy 2019; 74:1266-1276. [PMID: 30428129 DOI: 10.1111/all.13666] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/05/2018] [Accepted: 09/25/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND An increased degree of mast cell (MC) degranulation and damage to the epithelial lining are prominent features of bronchial asthma. In asthmatic airways, it seems likely that epithelial cells will be exposed to increased concentrations of proteases from MC, though their actions on the epithelium are still not very clear. METHODS Bronchial rings from human lung tissue or 16HBE cell monolayer were incubated with MC chymase in different doses or various inhibitors. The sections of paraffin-embedded tissue were haematoxylin-eosin stained and computerized by image analysis for epithelial damage-scale-evaluation; the cell viability, proliferation, adhesion and lactate dehydrogenase activity release were assayed; the expressions of gelatinases, cell junction molecules and structure proteins of 16HBE were examined. RESULTS Mast cell chymase was found to provoke profound changes in the morphology of bronchi epithelial layer. Following incubation with chymase, there was 40% reduction in the length of epithelium that was intact, with detachment of columnar epithelial cells and basal cells. Chymase reduced epithelial cell proliferation and induced cell detachment, which were associated with the changes in secretion and activation of matrix metalloproteinase-2/9. In intact epithelial cell layers, immunocytochemistry study revealed that chymase reduced the expressions of occludin, claudin-4, ZO-1, E-cadherin, focal adhesion kinase and cytokeratin. Overall data of this study indicated that MC chymase can influence tissue remodelling, disrupt epithelial cell junctions, inhibit wound healing and impair the barrier function of epithelium, resulting in dysfunction of airway wall and ECM remodelling in pathogenesis of asthma. CONCLUSION Mast cell chymase plays a key role in inducing the damage to bronchial epithelium in asthma.
Collapse
Affiliation(s)
- Xiaoying Zhou
- The School of Pharmaceutical Engineering and Life Science Changzhou University Jiangsu China
- The Faculty of Medicine The University of Southampton Southampton UK
| | - Tao Wei
- The School of Pharmaceutical Engineering and Life Science Changzhou University Jiangsu China
| | | | - Andrew F. Walls
- The Faculty of Medicine The University of Southampton Southampton UK
| | - Yuan Jiang
- The School of Pharmaceutical Engineering and Life Science Changzhou University Jiangsu China
| | - William R. Roche
- The Faculty of Medicine The University of Southampton Southampton UK
| |
Collapse
|
14
|
Silva DTD, Alves ML, Spada JCP, Silveira RDCVD, Oliveira TMFDS, Starke-Buzetti WA. Neutrophils, eosinophils, and mast cells in the intestinal wall of dogs naturally infected with Leishmania infantum. ACTA ACUST UNITED AC 2019; 27:430-438. [PMID: 30517421 DOI: 10.1590/s1984-296120180085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 10/17/2018] [Indexed: 11/22/2022]
Abstract
Visceral leishmaniasis (VL) is a disease caused by the protozoa Leishmania infantum and can cause an inflammatory reaction in the gastrointestinal tract, however the role of granulocytic cells (neutrophils, eosinophils, and mast cells) in the intestine of dogs infected is not fully understood. We performed a quantitative analysis these cells in the intestinal wall of dogs with canine visceral leishmaniasis (CVL). Twenty dogs were assigned to one of three groups: group 1 (G1, n=8), dogs with CVL and L. infantum amastigotes in the intestine; group 2 (G2, n=9), dogs with CVL but without intestinal amastigotes; and group 3 (G3, n=3), uninfected dogs (control group). Granulocytic cells were counted in the crypt-villus unit (mucosa), submucosa, and muscle layer of the intestinal mucosa. Cell counts were higher in the intestinal wall of dogs from G2 followed by G1 and G3 (p≤0.05). In G1, there was a low inverse correlation between parasite burden of the small intestine and granulocyte counts (r= -0.1, p≤0.01). However, in G2 dogs, mast cell and eosinophil numbers showed positive correlation (r=0.85, p≤0.01). The granulocytic cell hyperplasia observed in the intestine of L. infantum-infected dogs suggests that these cells may be involved in the cell-mediated immune response for parasite elimination.
Collapse
Affiliation(s)
- Diogo Tiago da Silva
- Departamento de Biologia e Ciência Animal, Faculdade de Engenharia de Ilha Solteira - FEIS, Universidade Estadual Paulista - UNESP, Ilha Solteira, SP, Brasil.,Programa de Graduação em Epidemiologia Experimental Aplicada às Zoonoses, Universidade de São Paulo - USP, São Paulo, SP, Brasil
| | - Maria Luana Alves
- Departamento de Biologia e Ciência Animal, Faculdade de Engenharia de Ilha Solteira - FEIS, Universidade Estadual Paulista - UNESP, Ilha Solteira, SP, Brasil.,Programa de Graduação em Epidemiologia Experimental Aplicada às Zoonoses, Universidade de São Paulo - USP, São Paulo, SP, Brasil
| | - Júlio Cesar Pereira Spada
- Departamento de Biologia e Ciência Animal, Faculdade de Engenharia de Ilha Solteira - FEIS, Universidade Estadual Paulista - UNESP, Ilha Solteira, SP, Brasil.,Programa de Graduação em Epidemiologia Experimental Aplicada às Zoonoses, Universidade de São Paulo - USP, São Paulo, SP, Brasil
| | | | - Trícia Maria Ferreira de Sousa Oliveira
- Programa de Graduação em Epidemiologia Experimental Aplicada às Zoonoses, Universidade de São Paulo - USP, São Paulo, SP, Brasil.,Departmento de Medicina Veterinária, Universidade de São Paulo - USP, Faculdade de Engenharia de Alimentos e Ciência Animal - FZEA, Pirassununga, SP, Brasil
| | - Wilma Aparecida Starke-Buzetti
- Departamento de Biologia e Ciência Animal, Faculdade de Engenharia de Ilha Solteira - FEIS, Universidade Estadual Paulista - UNESP, Ilha Solteira, SP, Brasil
| |
Collapse
|
15
|
Huo C, Wu H, Xiao J, Meng D, Zou S, Wang M, Qi P, Tian H, Hu Y. Genomic and Bioinformatic Characterization of Mouse Mast Cells (P815) Upon Different Influenza A Virus (H1N1, H5N1, and H7N2) Infections. Front Genet 2019; 10:595. [PMID: 31281330 PMCID: PMC6598080 DOI: 10.3389/fgene.2019.00595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/05/2019] [Indexed: 12/14/2022] Open
Abstract
Influenza A virus (IAV) is a segmented negative-stranded RNA virus that brings a potentially serious threat to public health and animal husbandry. Mast cells play an important role in both the inherent and adaptive immune response. Previous studies have indicated that mast cells support the productive replication of H1N1, H5N1, and H7N2. To date, the distinct molecular mechanism behind the pathogenesis in mast cells among the three different viruses has been poorly understood. In this study, we investigated the genomic profiles in detail and the dynamic change of genomes regulated by different subtypes of IAV in mouse mast cells using microassays. Compared with any two of the three IAV-infected groups, many more differentially expressed genes (DEGs), cellular functions, and signaling pathways were confirmed in H1N1 or H7N2 group, with the H7N2 group showing the highest levels. However, few DEGs were detected and various cellular functions and signaling pathways were dramatically suppressed in the H5N1 group. With an in-depth study on the H1N1 and H7N2 groups, we demonstrated the essential role of the 5-HT signaling pathway and the cyclic guanosine monophosphate (cGMP)/protein kinase G (PKG) signaling pathway, which were preferentially activated in P815 cells infected by H1N1, and the crucial role of the HIF-1 signaling pathway that was preferentially activated in P815 cells infected by the H7N2 virus. Furthermore, real-time quantitative polymerase chain reaction (RT-qPCR) results showed significantly increased mRNA levels of 5-HT and PKG in H1N1-infected P815 cells and increased HIF-1 in H7N2-infected P815 cells. In addition, exosomes were preferentially secreted from H1N1-infected or H7N2-infected P815 cells and are potentially pivotal in innate immunity to fight IAV infection. This study provides novel information and insight into the distinct molecular mechanism of H1N1, H5N1, and H7N2 viruses in mast cells from the perspective of genomic profiles.
Collapse
Affiliation(s)
- Caiyun Huo
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hongping Wu
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jin Xiao
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Zhongmu Institutes of China Animal Husbandry Industry Co., Ltd, Beijing, China
| | - Di Meng
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shumei Zou
- Key Laboratory for Medical Virology, National Health and Family Planning Commission, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Ming Wang
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Zhongmu Institutes of China Animal Husbandry Industry Co., Ltd, Beijing, China
| | - Peng Qi
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Zhongmu Institutes of China Animal Husbandry Industry Co., Ltd, Beijing, China
| | - Haiyan Tian
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yanxin Hu
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
16
|
Mast cells: A key component in the pathogenesis of Neuromyelitis Optica Spectrum Disorder? Immunobiology 2019; 224:706-709. [PMID: 31221437 DOI: 10.1016/j.imbio.2019.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/13/2019] [Accepted: 05/30/2019] [Indexed: 12/13/2022]
Abstract
Neuromyelitis Optica Spectrum Disorder (NMOSD) is characterized as an autoimmune, inflammatory and demyelinating disease of the Central Nervous System (CNS). Its pathogenesis is due to the presence of anti-aquaporin 4 immunoglobulin G1 antibodies (anti-AQP4IgG), with presence of lymphocytes T Helper 1 and 17 (TH1 and TH17), in addition to previous neuroinflammation. The Mast cell (MC) is a granular cell present in all vascularized tissues, close to vessels, nerves, and meninges. In CNS, MCs are in the area postrema, choroid plexus, thalamus and hypothalamus. MC has ability to transmigrate between the nervous tissue and the lymphoid organs, interacting with the cells of both systems. These cells reach the CNS during development through vessel migration. Most MCs reside on the abluminal side of the vessels, where it can communicate with neurons, glial cells, endothelial cells and the extracellular matrix. Considering the role of MCs in neurodegenerative diseases has been extensively discussed, we hypothesized MCs participate in the pathogenesis of NMOSD. This cell represents an innate and adaptive immune response regulator, capable of faster responses than microglial cells. The study of MCs in NMOSD can help to elucidate the pathogenesis of this disease and guide new research for the treatment of patients in the future. We believe this cell is an important component in the cascade of NMOSD neuroinflammation.
Collapse
|
17
|
Acute-phase response and its biomarkers in acute and chronic urticaria. Postepy Dermatol Alergol 2018; 35:400-407. [PMID: 30206455 PMCID: PMC6130146 DOI: 10.5114/ada.2018.77672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/12/2017] [Indexed: 11/17/2022] Open
Abstract
Introduction Since urticaria is a persisting inflammatory disease it is important to establish the prognostic factors for the duration and severity of the disease. Aim To evaluate serum concentrations of selected acute-phase proteins (APP) in patients with various forms of urticaria as compared to healthy volunteers and also to analyze these concentrations in different types of urticaria. Additionally, to evaluate the correlation between serum levels of selected APP and disease activity. Material and methods Serum concentrations of C-reactive protein (CRP), α1-acid glycoprotein (AGP), α1-antichymotrypsin (ACT), α1-antitrypsin (AT), ceruloplasmin (Cp), transferrin (Tf), α2-macroglobulin (α2M) and haptoglobin (Hp) were measured. Quantitative measurement was conducted using the rocket immunoelectrophoresis. Disease activity was assessed with the use of total symptom score. Results Analysis of serum APP concentrations revealed statistically higher serum concentrations of CRP, AGP and ACT in the entire group of patients with urticaria in comparison with the control group. In the entire group of patients with urticaria, CRP, AGP, ACT, Cp and Hp correlated positively with disease activity, intensity of pruritus and the number and size of urticarial wheals. Statistically lower serum concentrations of CRP, ACT, Cp and Hp were detected in the group of patients with acute urticaria (AU) and angioedema together, compared to the patients suffering from AU only. Conclusions Patients with symptoms of various forms of urticaria present a distinct profile of serum APP concentrations. A significant correlation observed between CRP, AGP, ACT, Cp, Hp and clinical activity score points to the potential role of APP as markers of the urticarial activity.
Collapse
|
18
|
Xue L, Geng Y, Li M, Jin YF, Ren HX, Li X, Wu F, Wang B, Cheng WY, Chen T, Chen YJ. Inhibitory effects of methamphetamine on mast cell activation and cytokine/chemokine production stimulated by lipopolysaccharide in C57BL/6J mice. Exp Ther Med 2018; 15:3544-3550. [PMID: 29545881 PMCID: PMC5841010 DOI: 10.3892/etm.2018.5837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/13/2017] [Indexed: 01/09/2023] Open
Abstract
Previous studies have demonstrated that methamphetamine (MA) influences host immunity; however, the effect of MA on lipopolysaccharide (LPS)-induced immune responses remains unknown. Mast cells (MCs) are considered to serve an important role in the innate and acquired immune response, but it remains unknown whether MA modulates MC activation and LPS-stimulated cytokine production. The present study aimed to investigate the effect of MA on LPS-induced MC activation and the production of MC-derived cytokines in mice. Markers for MC activation, including cluster of differentiation 117 and the type I high affinity immunoglobulin E receptor, were assessed in mouse intestines. Levels of MC-derived cytokines in the lungs and thymus were also examined. The results demonstrated that cytokines were produced in the bone marrow-derived mast cells (BMMCs) of mice. The present study demonstrated that MA suppressed the LPS-mediated MC activation in mouse intestines. MA also altered the release of MC cytokines in the lung and thymus following LPS stimulation. In addition, LPS-stimulated cytokines were decreased in the BMMCs of mice following treatment with MA. The present study demonstrated that MA may regulate LPS-stimulated MC activation and cytokine production.
Collapse
Affiliation(s)
- Li Xue
- Department of Immunology and Pathogenic Biology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, Shaanxi 710061, P.R. China
- Department of Laboratory, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yan Geng
- Department of Laboratory, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ming Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yao-Feng Jin
- Department of Pathology, The Second Affiliated Hospital Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hui-Xun Ren
- Department of Immunology and Pathogenic Biology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, Shaanxi 710061, P.R. China
| | - Xia Li
- VIP Internal Medicine Department, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Feng Wu
- Graduate Teaching and Experiment Centre, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, Shaanxi 710061, P.R. China
| | - Biao Wang
- Department of Immunology and Pathogenic Biology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, Shaanxi 710061, P.R. China
| | - Wei-Ying Cheng
- Department of Immunology and Pathogenic Biology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, Shaanxi 710061, P.R. China
| | - Teng Chen
- Forensic Medicine College of Xi'an Jiaotong University, Key Laboratory of The Health Ministry for Forensic Medicine, Key Laboratory of The Ministry of Education for Environment and Genes Related to Diseases, Xi'an, Shaanxi 710061, P.R. China
| | - Yan-Jiong Chen
- Department of Immunology and Pathogenic Biology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
19
|
Robbertse L, Richards SA, Maritz-Olivier C. Bovine Immune Factors Underlying Tick Resistance: Integration and Future Directions. Front Cell Infect Microbiol 2017; 7:522. [PMID: 29312898 PMCID: PMC5742187 DOI: 10.3389/fcimb.2017.00522] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/07/2017] [Indexed: 12/20/2022] Open
Abstract
The mechanisms underlying tick resistance within and between cattle breeds have been studied for decades. Several previous papers on bovine immune parameters contributing to tick resistance discussed findings across DNA, RNA, protein, cellular, and tissue levels. However, the differences between bovine host species, tick species and the experimental layouts were not always taken into account. This review aims to (a) give a comprehensive summary of studies investigating immune marker differences between cattle breeds with varying degrees of tick resistance, and (b) to integrate key findings and suggest hypotheses on likely immune-regulated pathways driving resistance. Experimental issues, which may have skewed conclusions, are highlighted. In future, improved experimental strategies will enable more focused studies to identify and integrate immune markers and/or pathways. Most conclusive thus far is the involvement of histamine, granulocytes and their associated pathways in the tick-resistance mechanism. Interestingly, different immune markers might be involved in the mechanisms within a single host breed in contrast to between breeds. Also, differences are evident at each tick life stage, limiting the level to which datasets can be compared. Future studies to further elucidate immune molecule dynamics across the entire tick life cycle and in-depth investigation of promising markers and pathways on both molecular and cellular level are in dire need to obtain a scientifically sound hypothesis on the drivers of tick resistance.
Collapse
Affiliation(s)
| | | | - Christine Maritz-Olivier
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
20
|
[Mastocytosis : Clinical aspects, diagnostics, therapy]. Hautarzt 2016; 68:67-75. [PMID: 27995272 DOI: 10.1007/s00105-016-3911-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Mastocytosis is a rare, almost exclusively sporadically occurring disease involving an increase in clonal tissue mast cells. The disease spectrum is heterogenous, ranging from isolated skin lesions with a normal life expectancy to rare, aggressive forms with very poor prognosis. Children are often affected. But whereas these almost invariantly display solely a cutaneous mastocytosis with polymorphous skin lesions, in adults the lesions are small and maculopapular and in over 80% of cases accompanied by involvement of bone marrow and the D816V activating mutation of the gene for the c‑Kit receptor. There are many symptoms for the disease. Patients suffer frequently from pruritus, diarrhea, abdominal cramp, palpitations and flush. Osteoporosis is often present, with osteolysis with pathological fractures frequently involved in more aggressive forms. Patients are especially at risk to severe anaphylaxis caused by hymenoptera stings. Therapy is symptomatic, with cytoreductive therapy reserved for resistant and aggressive forms.
Collapse
|
21
|
Wichit S, Ferraris P, Choumet V, Missé D. The effects of mosquito saliva on dengue virus infectivity in humans. Curr Opin Virol 2016; 21:139-145. [PMID: 27770704 DOI: 10.1016/j.coviro.2016.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/04/2016] [Accepted: 10/06/2016] [Indexed: 12/14/2022]
Abstract
Arboviruses such as Dengue, Chikungunya, and Zika viruses represent a major public health problem due to globalization and propagation of susceptible vectors worldwide. Arthropod vector-derived salivary factors have the capacity to modulate human cells function by enhancing or suppressing viral replication and, therefore, modify the establishment of local and systemic viral infection. Here, we discuss how mosquito saliva may interfere with Dengue virus (DENV) infection in humans. Identification of saliva factors that enhance infectivity will allow the production of vector-based vaccines and therapeutics that would interfere with viral transmission by targeting arthropod saliva components. Understanding the role of salivary proteins in DENV transmission will provide tools to control not only Dengue but also other arboviral diseases transmitted by the same vectors.
Collapse
Affiliation(s)
| | - Pauline Ferraris
- Laboratory of MIVEGEC, UMR 224 IRD/CNRS/UM1, Montpellier, France
| | - Valérie Choumet
- Environment and Infectious Risks Unit, Pasteur Institute, Paris, France
| | - Dorothée Missé
- Laboratory of MIVEGEC, UMR 224 IRD/CNRS/UM1, Montpellier, France.
| |
Collapse
|
22
|
Xue L, Geng Y, Li M, Jin YF, Ren HX, Li X, Wu F, Wang B, Cheng WY, Chen T, Chen YJ. The effects of D3R on TLR4 signaling involved in the regulation of METH-mediated mast cells activation. Int Immunopharmacol 2016; 36:187-198. [PMID: 27156126 DOI: 10.1016/j.intimp.2016.04.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 04/09/2016] [Accepted: 04/19/2016] [Indexed: 01/06/2023]
Abstract
Accumulating studies have revealed that the dopamine D3 receptor (D3R) plays an important role in methamphetamine (METH) addiction. However, the action of D3R on METH-mediated immune response and the underlying mechanism remain unclear. Mast cells (MCs) are currently identified as effector cells in many processes of immune responses, and MC activation is induced by various stimuli such as lipopolysaccharide (LPS). Moreover, CD117 and FcεRI are known as MC markers due to their specific expression in MCs. To investigate the effects of D3R on METH-mediated alteration of LPS-induced MCs activation and the underlying mechanism, in this study, we examined the expression of CD117 and FcεRI in the intestines of wild-type (D3R(+/+)) and D3R-deficient (D3R(-/-)) mice. We also measured the production of MC-derived cytokines, including TNF-α, IL-6, IL-4, IL-13 and CCL-5, in the bone marrow-derived mast cells (BMMCs) of WT and D3R(-/-) mice. Furthermore, we explored the effects of D3R on METH-mediated TLR4 and downstream MAPK and NF-κB signaling induced by LPS in mouse BMMCs. We found that METH suppressed MC activation induced by LPS in the intestines of D3R(+/)mice. In contrast, LPS-induced MC activation was less affected by METH in D3R(-/-) mice. Furthermore, METH altered LPS-induced cytokine production in BMMCs of D3R(+/+) mice but not D3R(-/-) mice. D3R was also involved in METH-mediated modulation of LPS-induced expression of TLR4 and downstream MAPK and NF-κB signaling molecules in mouse BMMCs. Taken together, our findings demonstrate that the effect of D3R on TLR4 signaling may be implicated in the regulation of METH-mediated MCs activation induced by LPS.
Collapse
Affiliation(s)
- Li Xue
- Department of Immunology and Pathogenic Biology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China; Department of Laboratory, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an 71004, China
| | - Yan Geng
- Department of Laboratory, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an 71004, China
| | - Ming Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yao-Feng Jin
- Pathology Department, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an 710004, China
| | - Hui-Xun Ren
- Department of Immunology and Pathogenic Biology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China
| | - Xia Li
- VIP Internal Medicine Department, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Feng Wu
- Graduate Teaching and Experiment Centre, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China
| | - Biao Wang
- Department of Immunology and Pathogenic Biology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China
| | - Wei-Ying Cheng
- Department of Immunology and Pathogenic Biology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China
| | - Teng Chen
- Forensic Medicine College of Xi'an Jiaotong University, Key Laboratory of the Health Ministry for Forensic Medicine, Key Laboratory of the Ministry of Education for Environment and Genes Related to Diseases, Xi'an 710061, China
| | - Yan-Jiong Chen
- Department of Immunology and Pathogenic Biology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China.
| |
Collapse
|
23
|
Identification of a prostaglandin D2 metabolite as a neuritogenesis enhancer targeting the TRPV1 ion channel. Sci Rep 2016; 6:21261. [PMID: 26879669 PMCID: PMC4754695 DOI: 10.1038/srep21261] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 01/20/2016] [Indexed: 12/11/2022] Open
Abstract
Mast cells play important roles in allergic inflammation by secreting various mediators. In the present study, based on the finding that the medium conditioned by activated RBL-2H3 mast cells enhanced the nerve growth factor (NGF)-induced neuritogenesis of PC12 cells, we attempted to isolate an active compound from the mast cell conditioned culture medium. Our experiment identified 15-deoxy-Δ(12,14)-PGJ2 (15d-PGJ2), one of the PGD2 metabolites, as a potential enhancer of neuritogenesis. 15d-PGJ2 strongly enhanced the neuritogenesis elicited by a low-concentration of NGF that alone was insufficient to induce the neuronal differentiation. This 15d-PGJ2 effect was exerted in a Ca(2+)-dependent manner, but independently of the NGF receptor TrkA. Importantly, 15d-PGJ2 activated the transient receptor potential vanilloid-type 1 (TRPV1), a non-selective cation channel, leading to the Ca(2+) influx. In addition, we observed that (i) NGF promoted the insertion of TRPV1 into the cell surface membrane and (ii) 15d-PGJ2 covalently bound to TRPV1. These findings suggest that the NGF/15d-PGJ2-induced neuritogenesis may be regulated by two sets of mechanisms, one for the translocation of TRPV1 into the cell surface by NGF and one for the activation of TRPV1 by 15d-PGJ2. Thus, there is most likely a link between allergic inflammation and activation of the neuronal differentiation.
Collapse
|
24
|
MacKinnon KM, Bowdridge SA, Kanevsky-Mullarky I, Zajac AM, Notter DR. Gene expression profiles of hair and wool sheep reveal importance of Th2 immune mechanisms for increased resistance to. J Anim Sci 2016; 93:2074-82. [PMID: 26020303 DOI: 10.2527/jas.2014-8652] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Management of gastrointestinal parasites is a critical issue for sheep producers worldwide. Increases in the prevalence of drug-resistant worms have complicated parasite control and increased economic losses. Therefore, other methods of parasite control need to be assessed, including the use of genetically resistant animals in breeding programs. Hair sheep breeds such as the St. Croix have greater parasite resistance than conventional wool breeds. However, the immune mechanisms that control parasite resistance in hair or wool breeds have not yet been fully determined, and information on cytokine expression profiles for both wool sheep selected for increased resistance and hair sheep is limited. Our objective was to investigate gene expression differences in 24 parasite-resistant hair and 24 susceptible wool sheep to identify immune effectors associated with resistance to . One-half of the lambs were infected and sacrificed at 3 or 27 d after infection. Remaining lambs were not infected. Breed differences in expression of genes associated with Th1 and Th2 immune responses in lymph nodes and abomasal tissue were determined. Th2-associated genes included IL-4, IL-13, IL-5, IgE, the α chain of the IL-4 receptor, and the α chain of the high-affinity IgE receptor (FcεRI). Th1-associated genes included interferon gamma (IFN-γ), the p35 subunit of IL-12 (IL-12 p35), and the β1 and β2 chains of the IL-12 receptor (IL-12 Rβ1 and IL-12 Rβ2, respectively). In both hair and wool sheep, infection with resulted in greater expression of IgE, IL-13, IL-5, and IL-12 p35 and somewhat reduced expression of IFNγ in lymph nodes. In abomasal tissue, parasite infection resulted in greater IgE, IL-13, FcεRI, and IL-12 p35 expression in infected lambs compared with control lambs. Between breeds, hair sheep had a stronger Th2 response after infection than wool sheep, with increased expression of IgE and IL-13 and decreased expression of IFNγ in lymph nodes and increased expression of IL-13 and decreased expression of IL-12 p35 in abomasal tissue. Expression of IL-4 in lymph nodes did not differ between hair and wool lambs, and IL-4, IL-5, IL-12 Rβ1, and IL-12 Rβ2 expression was too low to measure at the times sampled in abomasal tissue.
Collapse
|
25
|
Li JR, Ross SS, Liu Y, Liu YX, Wang KH, Chen HY, Liu FT, Laurence TA, Liu GY. Engineered Nanostructures of Haptens Lead to Unexpected Formation of Membrane Nanotubes Connecting Rat Basophilic Leukemia Cells. ACS NANO 2015; 9:6738-6746. [PMID: 26057701 PMCID: PMC4758354 DOI: 10.1021/acsnano.5b02270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A recent finding reports that co-stimulation of the high-affinity immunoglobulin E (IgE) receptor (FcεRI) and the chemokine receptor 1 (CCR1) triggered formation of membrane nanotubes among bone-marrow-derived mast cells. The co-stimulation was attained using corresponding ligands: IgE binding antigen and macrophage inflammatory protein 1α (MIP1 α), respectively. However, this approach failed to trigger formation of nanotubes among rat basophilic leukemia (RBL) cells due to the lack of CCR1 on the cell surface (Int. Immunol. 2010, 22 (2), 113-128). RBL cells are frequently used as a model for mast cells and are best known for antibody-mediated activation via FcεRI. This work reports the successful formation of membrane nanotubes among RBLs using only one stimulus, a hapten of 2,4-dinitrophenyl (DNP) molecules, which are presented as nanostructures with our designed spatial arrangements. This observation underlines the significance of the local presentation of ligands in the context of impacting the cellular signaling cascades. In the case of RBL, certain DNP nanostructures suppress antigen-induced degranulation and facilitate the rearrangement of the cytoskeleton to form nanotubes. These results demonstrate an important scientific concept; engineered nanostructures enable cellular signaling cascades, where current technologies encounter great difficulties. More importantly, nanotechnology offers a new platform to selectively activate and/or inhibit desired cellular signaling cascades.
Collapse
Affiliation(s)
- Jie-Ren Li
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Shailise S. Ross
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Yang Liu
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Ying X. Liu
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Kang-hsin Wang
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Huan-Yuan Chen
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California 95817, United States
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, ROC
| | - Fu-Tong Liu
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California 95817, United States
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, ROC
| | - Ted A. Laurence
- Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Gang-yu Liu
- Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
26
|
Lee B, Kim EY, Kim JH, Min JH, Jeong DW, Jun JY, Cho CY, Sohn Y, Jung HS. Antiallergic effects of peiminine through the regulation of inflammatory mediators in HMC-1 cells. Immunopharmacol Immunotoxicol 2015; 37:351-8. [DOI: 10.3109/08923973.2015.1059441] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Corvan SM, Agnew L, Andronicos NM. Trichostrongylus colubriformis induces IgE-independent CD13, CD164 and CD203c mediated activation of basophils in an in vitro intestinal epithelial cell co-culture model. Vet Parasitol 2015; 207:285-96. [DOI: 10.1016/j.vetpar.2014.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 09/30/2014] [Accepted: 10/07/2014] [Indexed: 11/24/2022]
|
28
|
Teodosio C, Mayado A, Sánchez-Muñoz L, Morgado JM, Jara-Acevedo M, Álvarez-Twose I, García-Montero AC, Matito A, Caldas C, Escribano L, Orfao A. The immunophenotype of mast cells and its utility in the diagnostic work-up of systemic mastocytosis. J Leukoc Biol 2014; 97:49-59. [PMID: 25381388 DOI: 10.1189/jlb.5ru0614-296r] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
SM comprises a heterogeneous group of disorders, characterized by an abnormal accumulation of clonal MCs in 1 or more tissues, frequently involving the skin and BM. Despite the fact that most adult patients (>90%) carry the same genetic lesion (D816V KIT mutation), the disease presents with multiple variants with very distinct clinical and biologic features, a diverse prognosis, and different therapeutic requirements. Recent advances in the standardization of the study of BM MC by MFC allowed reproducible identification and characterization of normal/reactive MCs and their precursors, as well as the establishment of the normal MC maturational profiles. Analysis of large groups of patients versus normal/reactive samples has highlighted the existence of aberrant MC phenotypes in SM, which are essential for the diagnosis of the disease. In turn, 3 clearly distinct and altered maturation-associated immunophenotypic profiles have been reported recently in SM, which provide criteria for the distinction between ISM patients with MC-restricted and multilineage KIT mutation; thus, immunphenotyping also contributes to prognostic stratification of ISM, particularly when analysis of the KIT mutation on highly purified BM cells is not routinely available in the diagnostic work-up of the disease.
Collapse
Affiliation(s)
- Cristina Teodosio
- *Servicio General de Citometría, Centro de Investigación del Cáncer (Instituto de Biologia Molecular y Celular del Cancer-Consejo Superior de Investigaciones Cientificas/University of Salamanca and Instituto de Investigación Biomédica de Salamanca) and Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain; and Centro de Estudios de Mastocitosis de Castilla La Mancha, Hospital Virgen del Valle, Toledo, Spain
| | - Andrea Mayado
- *Servicio General de Citometría, Centro de Investigación del Cáncer (Instituto de Biologia Molecular y Celular del Cancer-Consejo Superior de Investigaciones Cientificas/University of Salamanca and Instituto de Investigación Biomédica de Salamanca) and Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain; and Centro de Estudios de Mastocitosis de Castilla La Mancha, Hospital Virgen del Valle, Toledo, Spain
| | - Laura Sánchez-Muñoz
- *Servicio General de Citometría, Centro de Investigación del Cáncer (Instituto de Biologia Molecular y Celular del Cancer-Consejo Superior de Investigaciones Cientificas/University of Salamanca and Instituto de Investigación Biomédica de Salamanca) and Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain; and Centro de Estudios de Mastocitosis de Castilla La Mancha, Hospital Virgen del Valle, Toledo, Spain
| | - José M Morgado
- *Servicio General de Citometría, Centro de Investigación del Cáncer (Instituto de Biologia Molecular y Celular del Cancer-Consejo Superior de Investigaciones Cientificas/University of Salamanca and Instituto de Investigación Biomédica de Salamanca) and Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain; and Centro de Estudios de Mastocitosis de Castilla La Mancha, Hospital Virgen del Valle, Toledo, Spain
| | - María Jara-Acevedo
- *Servicio General de Citometría, Centro de Investigación del Cáncer (Instituto de Biologia Molecular y Celular del Cancer-Consejo Superior de Investigaciones Cientificas/University of Salamanca and Instituto de Investigación Biomédica de Salamanca) and Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain; and Centro de Estudios de Mastocitosis de Castilla La Mancha, Hospital Virgen del Valle, Toledo, Spain
| | - Ivan Álvarez-Twose
- *Servicio General de Citometría, Centro de Investigación del Cáncer (Instituto de Biologia Molecular y Celular del Cancer-Consejo Superior de Investigaciones Cientificas/University of Salamanca and Instituto de Investigación Biomédica de Salamanca) and Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain; and Centro de Estudios de Mastocitosis de Castilla La Mancha, Hospital Virgen del Valle, Toledo, Spain
| | - Andrés C García-Montero
- *Servicio General de Citometría, Centro de Investigación del Cáncer (Instituto de Biologia Molecular y Celular del Cancer-Consejo Superior de Investigaciones Cientificas/University of Salamanca and Instituto de Investigación Biomédica de Salamanca) and Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain; and Centro de Estudios de Mastocitosis de Castilla La Mancha, Hospital Virgen del Valle, Toledo, Spain
| | - Almudena Matito
- *Servicio General de Citometría, Centro de Investigación del Cáncer (Instituto de Biologia Molecular y Celular del Cancer-Consejo Superior de Investigaciones Cientificas/University of Salamanca and Instituto de Investigación Biomédica de Salamanca) and Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain; and Centro de Estudios de Mastocitosis de Castilla La Mancha, Hospital Virgen del Valle, Toledo, Spain
| | - Caldas Caldas
- *Servicio General de Citometría, Centro de Investigación del Cáncer (Instituto de Biologia Molecular y Celular del Cancer-Consejo Superior de Investigaciones Cientificas/University of Salamanca and Instituto de Investigación Biomédica de Salamanca) and Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain; and Centro de Estudios de Mastocitosis de Castilla La Mancha, Hospital Virgen del Valle, Toledo, Spain
| | - Luis Escribano
- *Servicio General de Citometría, Centro de Investigación del Cáncer (Instituto de Biologia Molecular y Celular del Cancer-Consejo Superior de Investigaciones Cientificas/University of Salamanca and Instituto de Investigación Biomédica de Salamanca) and Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain; and Centro de Estudios de Mastocitosis de Castilla La Mancha, Hospital Virgen del Valle, Toledo, Spain
| | - Alberto Orfao
- *Servicio General de Citometría, Centro de Investigación del Cáncer (Instituto de Biologia Molecular y Celular del Cancer-Consejo Superior de Investigaciones Cientificas/University of Salamanca and Instituto de Investigación Biomédica de Salamanca) and Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain; and Centro de Estudios de Mastocitosis de Castilla La Mancha, Hospital Virgen del Valle, Toledo, Spain
| |
Collapse
|
29
|
Fritillaria ussuriensisExtract Inhibits the Production of Inflammatory Cytokine and MAPKs in Mast Cells. Biosci Biotechnol Biochem 2014; 75:1440-5. [DOI: 10.1271/bbb.110076] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Sánchez-Muñoz L, Teodosio C, Morgado JMT, Perbellini O, Mayado A, Alvarez-Twose I, Matito A, Jara-Acevedo M, García-Montero AC, Orfao A, Escribano L. Flow Cytometry in Mastocytosis. Immunol Allergy Clin North Am 2014; 34:297-313. [DOI: 10.1016/j.iac.2014.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Mast cells, basophils and B cell connection network. Mol Immunol 2014; 63:94-103. [PMID: 24671125 DOI: 10.1016/j.molimm.2014.02.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 02/25/2014] [Accepted: 02/25/2014] [Indexed: 12/27/2022]
Abstract
It has been proven that both resting and activated mast cells (MCs) and basophils are able to induce a significant increase in proliferation and survival of naïve and activated B cells, and their differentiation into antibody-producing cells. The immunological context in which this regulation occurs is of particular interest and the idea that these innate cells induce antibody class switching and production is increasingly gaining ground. This direct role of MCs and basophils in acquired immunity requires cell to cell contact as well as soluble factors and exosomes. Here, we review our current understanding of the interaction between B cells and MCs or basophils as well as the evidence supporting B lymphocyte-MC/basophil crosstalk in pathological settings. Furthermore, we underline the obscure aspects of this interaction that could serve as important starting points for future research in the field of MC and basophil biology in the peculiar context of the connection between innate and adaptive immunity.
Collapse
|
32
|
KANG OKHWA, AN HYEONJIN, KIM SUNGBAE, MUN SUHYUN, SEO YUNSOO, JOUNG DAEKI, CHOI JANGGI, SHIN DONGWON, KWON DONGYEUL. Tetrandrine suppresses pro-inflammatory mediators in PMA plus A23187-induced HMC-1 cells. Int J Mol Med 2014; 33:1335-40. [DOI: 10.3892/ijmm.2014.1683] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 02/27/2014] [Indexed: 11/05/2022] Open
|
33
|
Han NR, Kim HM, Jeong HJ. The β-sitosterol attenuates atopic dermatitis-like skin lesions through down-regulation of TSLP. Exp Biol Med (Maywood) 2014; 239:454-64. [PMID: 24510054 DOI: 10.1177/1535370213520111] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The compound β-sitosterol (BS) is one of the most common forms of phytosterols and has anti-cancer, anti-oxidant, anti-bacterial, and anti-inflammatory effects. However, the effect of BS on atopic dermatitis (AD) has not been elucidated. Therefore, we investigated whether BS would be an effective treatment against AD. We treated BS on 2,4-dinitrofluorobenzene (DNFB)-induced AD-like skin lesions in NC/Nga mice, anti-CD3/anti-CD28-stimulated splenocytes, and phorbol myristate acetate/calcium ionophore A23187-stimulated human mast cell line (HMC-1) cells. Histological analysis, ELISA, PCR, caspase-1 assay, and Western blot analysis were performed. BS reduced the total clinical severity in DNFB-treated NC/Nga mice. Infiltration of inflammatory cells and number of scratching were clearly reduced in the BS-treated group compared with the DNFB-treated group. BS significantly reduced the levels of inflammation-related mRNA and protein in the AD skin lesions. BS significantly reduced the levels of histamine, IgE, and interleukin-4 in the serum of DNFB-treated NC/Nga mice. The activation of mast cell-derived caspase-1 was decreased by treatment with BS in the AD skin lesions. BS also significantly decreased the production of tumor necrosis factor-α from the stimulated splenocytes. In the stimulated human mast cell line, HMC-1 cells, increased intracellular calcium levels were decreased by treatment with BS. Further, BS inhibited the production and mRNA expression of TSLP through blocking of caspase-1 and nuclear factor-κB signal pathways in the stimulated HMC-1 cells. These results provide additional evidence that BS may be considered an effective therapeutic drug for the treatment of AD.
Collapse
Affiliation(s)
- Na-Ra Han
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | | | | |
Collapse
|
34
|
Morgado JM, Sánchez-Muñoz L, Teodósio C, Escribano L. Identification and immunophenotypic characterization of normal and pathological mast cells. Methods Mol Biol 2014; 1192:205-226. [PMID: 25149495 DOI: 10.1007/978-1-4939-1173-8_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Mast cells (MCs) are secretory cells that are central players in human allergic disease and immune responses. With the exception of a few pathological situations, MCs are usually present at relatively low frequencies in most tissues. Since their first description, MCs in tissues were identified mostly using their morphological characteristics and their typical coloration when stained with aniline dyes. However, increasing availability of highly specific antibodies now permits the use of fluorescence-based flow cytometry as the method of choice for the quantification, characterization, and purification of cells in suspension. This technique allows for a rapid analysis of thousands of events and for the identification of cells present at frequencies as low as one event in 10(6) unwanted cells. This method also permits for simultaneous characterization of multiple antigens at a single-cell level, which is ideal in order to study rare populations of cells like MCs. Here we describe the basis of flow cytometry-based immunophenotyping applied to the study of MC. The protocol focuses on the study of human MCs present in body fluids (mainly bone marrow) but can easily be adapted to study MCs from other tissues and species.
Collapse
Affiliation(s)
- José Mário Morgado
- Instituto de Estudios de Mastocitosis de Castilla La Mancha, Toledo, Spain
| | | | | | | |
Collapse
|
35
|
Kim J, Guhl S, Babina M, Zuberbier T, Artuc M. Integration of the human dermal mast cell into the organotypic co-culture skin model. Methods Mol Biol 2014; 1192:69-85. [PMID: 25149485 DOI: 10.1007/978-1-4939-1173-8_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The organotypic co-culture skin model has been providing an advanced approach to the in vitro investigation of the skin. Mast cells, containing various mediators such as tryptase and chymase, are thought to contribute to many physiological and pathological events of the skin interactively with other cells. Here, we introduce an organotypic co-culture skin model which successfully integrates human dermal mast cells for further study of mast cell interactions with fibroblasts and keratinocytes.
Collapse
Affiliation(s)
- Jonghui Kim
- Klinik für Dermatologie, Venerologie, und Allergologie, Allergie-Centrum-Charité, Charité, Charité-Campus Mitte, Luisenstraße 2, 10117, Berlin, Germany
| | | | | | | | | |
Collapse
|
36
|
Nelissen S, Vangansewinkel T, Geurts N, Geboes L, Lemmens E, Vidal PM, Lemmens S, Willems L, Boato F, Dooley D, Pehl D, Pejler G, Maurer M, Metz M, Hendrix S. Mast cells protect from post-traumatic spinal cord damage in mice by degrading inflammation-associated cytokines via mouse mast cell protease 4. Neurobiol Dis 2013; 62:260-72. [PMID: 24075853 DOI: 10.1016/j.nbd.2013.09.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 08/23/2013] [Accepted: 09/17/2013] [Indexed: 12/16/2022] Open
Abstract
Mast cells (MCs) are found abundantly in the central nervous system and play a complex role in neuroinflammatory diseases such as multiple sclerosis and stroke. In the present study, we show that MC-deficient Kit(W-sh/W-sh) mice display significantly increased astrogliosis and T cell infiltration as well as significantly reduced functional recovery after spinal cord injury compared to wildtype mice. In addition, MC-deficient mice show significantly increased levels of MCP-1, TNF-α, IL-10 and IL-13 protein levels in the spinal cord. Mice deficient in mouse mast cell protease 4 (mMCP4), an MC-specific chymase, also showed increased MCP-1, IL-6 and IL-13 protein levels in spinal cord samples and a decreased functional outcome after spinal cord injury. A degradation assay using supernatant from MCs derived from either mMCP4(-/-) mice or controls revealed that mMCP4 cleaves MCP-1, IL-6, and IL-13 suggesting a protective role for MC proteases in neuroinflammation. These data show for the first time that MCs may be protective after spinal cord injury and that they may reduce CNS damage by degrading inflammation-associated cytokines via the MC-specific chymase mMCP4.
Collapse
Affiliation(s)
- Sofie Nelissen
- Dept. of Morphology & Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Tim Vangansewinkel
- Dept. of Morphology & Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Nathalie Geurts
- Dept. of Morphology & Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Lies Geboes
- Dept. of Morphology & Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Evi Lemmens
- Dept. of Morphology & Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Pia M Vidal
- Dept. of Morphology & Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Stefanie Lemmens
- Dept. of Morphology & Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Leen Willems
- Dept. of Morphology & Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Francesco Boato
- Dept. of Morphology & Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Dearbhaile Dooley
- Dept. of Morphology & Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Debora Pehl
- Dept. of Dermatology and Allergy, Allergie-Centrum-Charité, Charité-Universitätsmedizin Berlin, Germany
| | - Gunnar Pejler
- Dept. of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Marcus Maurer
- Dept. of Dermatology and Allergy, Allergie-Centrum-Charité, Charité-Universitätsmedizin Berlin, Germany
| | - Martin Metz
- Dept. of Dermatology and Allergy, Allergie-Centrum-Charité, Charité-Universitätsmedizin Berlin, Germany
| | - Sven Hendrix
- Dept. of Morphology & Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium.
| |
Collapse
|
37
|
Andonova M, Urumova V. Immune surveillance mechanisms of the skin against the stealth infection strategy of Pseudomonas aeruginosa—Review. Comp Immunol Microbiol Infect Dis 2013; 36:433-48. [DOI: 10.1016/j.cimid.2013.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 01/21/2013] [Accepted: 03/30/2013] [Indexed: 01/01/2023]
|
38
|
Stefanov I, Vodenicharov A. S-100 protein-positive mast cells in canine paranal sinus (Sinus paranalis). Anat Histol Embryol 2013; 43:408-12. [PMID: 24033531 DOI: 10.1111/ahe.12086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 08/01/2013] [Indexed: 11/27/2022]
Abstract
The aim of this study was to establish the immunocytochemical expression of S-100 protein in mast cells, localized in the wall of dog's paranal sinus. Control serial sections were used for immunocytochemical detection of tryptase-positive mast cells. It was observed that S-100-positive cells have the same morphology and localization as the tryptase-positive mast cells, which indicated that S-100-positive cells are most probably mast cells with abilities as dendritic cells. In conclusion, for the first time, the current study gave evidence that mast cells in this organ possess one more function, such as dendritic cells.
Collapse
Affiliation(s)
- I Stefanov
- Department of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Trakia University, 6000, Stara Zagora, Bulgaria
| | | |
Collapse
|
39
|
Nelissen S, Lemmens E, Geurts N, Kramer P, Maurer M, Hendriks J, Hendrix S. The role of mast cells in neuroinflammation. Acta Neuropathol 2013; 125:637-50. [PMID: 23404369 DOI: 10.1007/s00401-013-1092-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 01/21/2013] [Accepted: 01/27/2013] [Indexed: 10/27/2022]
Abstract
Mast cells (MCs) are densely granulated perivascular resident cells of hematopoietic origin and well known for their pathogenetic role in allergic and anaphylactic reactions. In addition, they are also involved in processes of innate and adaptive immunity. MCs can be activated in response to a wide range of stimuli, resulting in the release of not only pro-inflammatory, but also anti-inflammatory mediators. The patterns of secreted mediators depend upon the given stimuli and microenvironmental conditions, accordingly MCs have the ability to promote or attenuate inflammatory processes. Their presence in the central nervous system (CNS) has been recognized for more than a century. Since then a participation of MCs in various pathological processes in the CNS has been well documented. They can aggravate CNS damage in models of brain ischemia and hemorrhage, namely through increased blood-brain barrier damage, brain edema and hemorrhage formation and promotion of inflammatory responses to such events. In contrast, recent evidence suggests that MCs may have a protective role following traumatic brain injury by degrading pro-inflammatory cytokines via specific proteases. In neuroinflammatory diseases such as multiple sclerosis, the role of MCs seems to be ambiguous. MCs have been shown to be damaging, neuroprotective, or even dispensable, depending on the experimental protocols used. The role of MCs in the formation and progression of CNS tumors such as gliomas is complex and both positive and negative relationships between MC activity and tumor progression have been reported. In summary, MCs and their secreted mediators modulate inflammatory processes in multiple CNS pathologies and can thereby either contribute to neurological damage or confer neuroprotection. This review intends to give a concise overview of the regulatory roles of MCs in brain disease.
Collapse
|
40
|
Vukman KV, Adams PN, Metz M, Maurer M, O’Neill SM. Fasciola hepaticaTegumental Coat Impairs Mast Cells’ Ability To Drive Th1 Immune Responses. THE JOURNAL OF IMMUNOLOGY 2013; 190:2873-9. [DOI: 10.4049/jimmunol.1203011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
41
|
Innate B cell helpers reveal novel types of antibody responses. Nat Immunol 2013; 14:119-26. [PMID: 23334833 DOI: 10.1038/ni.2511] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 12/04/2012] [Indexed: 12/12/2022]
Abstract
Antibody responses are classified according to whether B cells receive help from T cells--that is, whether they are thymus-dependent (TD) responses or thymus-independent (TI) responses. The latter can be elicited by microbial ligands (TI type 1) or by extensive crosslinking of the B cell antigen receptor (BCR; TI type 2). The hallmark of a TD response is the induction of germinal centers in which follicular helper T cells (T(FH) cells) select B cells with somatically mutated high-affinity BCRs to become memory cells. Studies have shown that B cells can also receive innate TD help from natural killer T cells (NKT cells) and innate TI help from cells such as neutrophils but that the outcome of such help differs from conventional TD and TI responses. Here we update the classification of antibody responses to take into account these emerging types of B cell helpers.
Collapse
|
42
|
Potaczek DP, Kabesch M. Current concepts of IgE regulation and impact of genetic determinants. Clin Exp Allergy 2013; 42:852-71. [PMID: 22909159 DOI: 10.1111/j.1365-2222.2011.03953.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immunoglobulin E (IgE) mediated immune responses seem to be directed against parasites and neoplasms, but are best known for their involvement in allergies. The IgE network is tightly controlled at different levels as outlined in this review. Genetic determinants were suspected to influence IgE regulation and IgE levels considerably for many years. Linkage and candidate gene studies suggested a number of loci and genes to correlate with total serum IgE levels, and recently genome-wide association studies (GWAS) provided the power to identify genetic determinants for total serum IgE levels: 1q23 (FCER1A), 5q31 (RAD50, IL13, IL4), 12q13 (STAT6), 6p21.3 (HLA-DRB1) and 16p12 (IL4R, IL21R). In this review, we analyse the potential role of these GWAS hits in the IgE network and suggest mechanisms of how genes and genetic variants in these loci may influence IgE regulation.
Collapse
Affiliation(s)
- D P Potaczek
- Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
43
|
Hendrix S, Kramer P, Pehl D, Warnke K, Boato F, Nelissen S, Lemmens E, Pejler G, Metz M, Siebenhaar F, Maurer M. Mast cells protect from post-traumatic brain inflammation by the mast cell-specific chymase mouse mast cell protease-4. FASEB J 2012. [PMID: 23193170 DOI: 10.1096/fj.12-204800] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mast cells (MCs) are found abundantly in the brain and the meninges and play a complex role in neuroinflammatory diseases, such as stroke and multiple sclerosis. Here, we show that MC-deficient Kit/Kit mice display increased neurodegeneration in the lesion area after brain trauma. Furthermore, MC-deficient mice display significantly more brain inflammation, namely an increased presence of macrophages/microglia, as well as dramatically increased T-cell infiltration at days 4 and 14 after injury, combined with increased astrogliosis at day 14 following injury. The number of proliferating Ki67 macrophages/microglia and astrocytes around the lesion area is more than doubled in these MC-deficient mice. In parallel, MC-deficient Kit mice display increased presence of macrophages/microglia at day 4, and persistent astrogliosis at day 4 and 14 after brain trauma. Further analysis of mice deficient in one of the most relevant MC proteases, i.e., mouse mast cell protease 4 (mMCP-4), revealed that astrogliosis and T-cell infiltration are significantly increased in mMCP-4-knockout mice. Finally, treatment with an inhibitor of mMCP-4 significantly increased macrophage/microglia numbers and astrogliosis. These data suggest that MCs exert protective functions after trauma, at least in part via mMCP-4, by suppressing exacerbated inflammation via their proteases.
Collapse
Affiliation(s)
- Sven Hendrix
- Department of Morphology and Biomedical Research Institute, Agoralaan Gebouw D, BE 3590 Diepenbeek, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Suttle MM, Nilsson G, Snellman E, Harvima IT. Experimentally induced psoriatic lesion associates with interleukin (IL)-6 in mast cells and appearance of dermal cells expressing IL-33 and IL-6 receptor. Clin Exp Immunol 2012; 169:311-9. [PMID: 22861371 DOI: 10.1111/j.1365-2249.2012.04618.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Mast cells are involved in the development of psoriatic lesion, but it is not known how mast cells are activated or whether mast cell cytokines are expressed during the lesion development. In this study, the Köbner reaction was induced in uninvolved psoriatic skin of 18 patients using the tape-stripping technique, and a sequence of biopsies was collected at 0 days, 2 h and 3 days or at 0 days, 1 day and 7 days for histochemical analysis. Eight patients developed the Köbner reaction verified at the follow-up visit 2-2·5 weeks later. No significant differences were observed in total tryptase(+) mast cells, psoriasis area and severity index and age/sex. Instead, the percentage of tryptase(+) mast cells showing interleukin (IL)-6 immunoreactivity was significantly higher in biopsies from Köbner-positive patients than in those from Köbner-negative patients. IL-33 is a known inducer of IL-6 in mast cells, and the number of IL-33(+) cells increased significantly in Köbner-positive dermal skin at days 3-7. The number of dermal cells with IL-6 receptor (IL-6R, CD126) also increased in Köbner-positive skin at days 3-7. Unexpectedly, the number of IL-6R(+) cells was even higher in Köbner-negative skin at days 3-7. In the chronic plaque of 10 other psoriatic patients, the numbers of IL-6(+) mast cells and dermal cells showing IL-6R were higher than those in the non-lesional skin. In conclusion, the positive Köbner reaction is associated with IL-6 in mast cells and appearance of IL-6R(+) and IL-33(+) dermal cells. This suggests that a previously unrecognized vicious circle may develop in the early psoriatic lesion.
Collapse
Affiliation(s)
- M-M Suttle
- Department of Dermatology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | | | | | | |
Collapse
|
45
|
Gennari A, Ban M, Braun A, Casati S, Corsini E, Dastych J, Descotes J, Hartung T, Hooghe-Peters R, House R, Pallardy M, Pieters R, Reid L, Tryphonas H, Tschirhart E, Tuschl H, Vandebriel R, Gribaldo L. The Use of In Vitro Systems for Evaluating Immunotoxicity: The Report and Recommendations of an ECVAM Workshop. J Immunotoxicol 2012; 2:61-83. [PMID: 18958661 DOI: 10.1080/15476910590965832] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
This is the report of a workshop organised by the European Centre for the Validation of Alternative Methods (ECVAM). ECVAM's main goal, as defined in 1993 by its Scientific Advisory Committee, is to promote the scientific and regulatory acceptance of alternative methods that are of importance to the biosciences and which replace, reduce or refine the use of laboratory animals. One of the first priorities set by ECVAM was the implementation of procedures that would enable it to become well informed about the state-of-the-art of non-animal test development and validation, and the potential for the possible incorporation of alternative tests into regulatory procedures. It was decided that this would be best achieved by the organization of ECVAM workshops on specific topics, at which small groups of invited experts would review the current status of various types of in vitro tests and their potential uses, and make recommendations about the best ways forward (Anonymous, 1994). The workshop on "The use of in vitro systems for evaluating Immunotoxicity" was held at ECVAM (Ispra), Italy, on 24th-26th November 2003. The participants represented academia, national organizations, international regulatory bodies and industry. The aim of the workshop was to review the state-of-the-art in the field of in vitro immunotoxicology, and to develop strategies towards the replacement of in vivo testing. At the end of this report are listed the recommendations that should be considered for prevalidation and validation of relevant and reliable procedures, that could replace the use of animals in chemical and cosmetics toxicity testing.
Collapse
|
46
|
Gri G, Frossi B, D'Inca F, Danelli L, Betto E, Mion F, Sibilano R, Pucillo C. Mast cell: an emerging partner in immune interaction. Front Immunol 2012; 3:120. [PMID: 22654879 PMCID: PMC3360165 DOI: 10.3389/fimmu.2012.00120] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 04/27/2012] [Indexed: 01/09/2023] Open
Abstract
Mast cells (MCs) are currently recognized as effector cells in many settings of the immune response, including host defense, immune regulation, allergy, chronic inflammation, and autoimmune diseases. MC pleiotropic functions reflect their ability to secrete a wide spectrum of preformed or newly synthesized biologically active products with pro-inflammatory, anti-inflammatory and/or immunosuppressive properties, in response to multiple signals. Moreover, the modulation of MC effector phenotypes relies on the interaction of a wide variety of membrane molecules involved in cell–cell or cell-extracellular-matrix interaction. The delivery of co-stimulatory signals allows MC to specifically communicate with immune cells belonging to both innate and acquired immunity, as well as with non-immune tissue-specific cell types. This article reviews and discusses the evidence that MC membrane-expressed molecules play a central role in regulating MC priming and activation and in the modulation of innate and adaptive immune response not only against host injury, but also in peripheral tolerance and tumor-surveillance or -escape. The complex expression of MC surface molecules may be regarded as a measure of connectivity, with altered patterns of cell–cell interaction representing functionally distinct MC states. We will focalize our attention on roles and functions of recently discovered molecules involved in the cross-talk of MCs with other immune partners.
Collapse
Affiliation(s)
- Giorgia Gri
- Immunology Laboratory, Department of Medical and Biological Science, University of Udine Udine, Italy
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Chi DS, Lin TC, Hall K, Ha T, Li C, Wu ZD, Soike T, Krishnaswamy G. Enhanced effects of cigarette smoke extract on inflammatory cytokine expression in IL-1β-activated human mast cells were inhibited by Baicalein via regulation of the NF-κB pathway. Clin Mol Allergy 2012; 10:3. [PMID: 22309647 PMCID: PMC3296587 DOI: 10.1186/1476-7961-10-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 02/06/2012] [Indexed: 12/20/2022] Open
Abstract
Background Human mast cells are capable of a wide variety of inflammatory responses and play a vital role in the pathogenesis of inflammatory diseases such as allergy, asthma, and atherosclerosis. We have reported that cigarette smoke extract (CSE) significantly increased IL-6 and IL-8 production in IL-1β-activated human mast cell line (HMC-1). Baicalein (BAI) has anti-inflammatory properties and inhibits IL-1β- and TNF-α-induced inflammatory cytokine production from HMC-1. The goal of the present study was to examine the effect of BAI on IL-6 and IL-8 production from CSE-treated and IL-1β-activated HMC-1. Methods Main-stream (Ms) and Side-stream (Ss) cigarette smoke were collected onto fiber filters and extracted in RPMI-1640 medium. Two ml of HMC-1 at 1 × 106 cells/mL were cultured with CSE in the presence or absence of IL-1β (10 ng/mL) for 24 hrs. A group of HMC-1 cells stimulated with both IL-1β (10 ng/ml) and CSE was also treated with BAI. The expression of IL-6 and IL-8 was assessed by ELISA and RT-PCR. NF-κB activation was measured by electrophoretic mobility shift assay (EMSA) and IκBα degradation by Western blot. Results Both Ms and Ss CSE significantly increased IL-6 and IL-8 production (p < 0.001) in IL-1β-activated HMC-1. CSE increased NF-κB activation and decreased cytoplasmic IκBα proteins in IL-1β-activated HMC-1. BAI (1.8 to 30 μM) significantly inhibited production of IL-6 and IL-8 in a dose-dependent manner in IL-1β-activated HMC-1 with the optimal inhibition concentration at 30 μM, which also significantly inhibited the enhancing effect of CSE on IL-6 and IL-8 production in IL-1β-activated HMC-1. BAI inhibited NF-κB activation and increased cytoplasmic IκBα proteins in CSE-treated and IL-1β-activated HMC-1. Conclusions Our results showed that CSE significantly increased inflammatory cytokines IL-6 and IL-8 production in IL-1β-activated HMC-1. It may partially explain why cigarette smoke contributes to lung and cardiovascular diseases. BAI inhibited the production of inflammatory cytokines through inhibition of NF-κB activation and IκBα phosphorylation and degradation. This inhibitory effect of BAI on the expression of inflammatory cytokines induced by CSE suggests its usefulness in the development of novel anti-inflammatory therapies.
Collapse
Affiliation(s)
- David S Chi
- Department of Internal Medicine, James H, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Inhibitory effects of C4a on chemoattractant and secretagogue functions of the other anaphylatoxins via Gi protein-adenylyl cyclase inhibition pathway in mast cells. Int Immunopharmacol 2011; 12:158-68. [PMID: 22155625 DOI: 10.1016/j.intimp.2011.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 11/10/2011] [Accepted: 11/15/2011] [Indexed: 02/07/2023]
Abstract
A recombinant complement anaphylatoxin, C4a, inhibited chemotaxis, respiratory burst and histamine release in mast cell-like HMC-1 cells that were treated with recombinant C5a anaphylatoxin. C4a also inhibited histamine release from HMC-1 cells that were induced by recombinant C3a. The inhibition of C5a- and C3a-induced leukocyte reactions by C4a was recapitulated in peripheral blood CD133(+) cell-derived differentiated mast cells. In HMC-1 cells, C4a inhibited cytoplasmic Ca(2+) influx, an event that precedes anaphylatoxin-induced chemotactic and secretary responses. A conditioned medium of HMC-1 cells after shortly treated with C4a also inhibited the anaphylatoxin-induced Ca(2+) influx even after removal of C4a, indicating that the effect of C4a is to liberate an autocrine inhibitor from the mast cells. The inhibitor secretion by C4a was prevented with pertussis toxin or with a phosphodiesterase inhibitor. Conversely, an adenylyl cyclase inhibitor reproduced the effect of C4a. C4a decreased the intracellular cyclic AMP concentration of HMC-1 cells, indicating that C4a elicited the Gi protein-adenylyl cyclase inhibition pathway. Neither C4a nor the conditioned medium, however, inhibited Ca(2+) influx and respiratory burst in C5a- or C3a-stimulated peripheral neutrophils, suggesting that these cells lack this inhibitory system. Additionally, in HMC-1 cells, C4a did not inhibit Ca(2+)-independent, Leu72Gln-C5a-stimulated chemotactic response. In agreement with this finding, C4a treatment inhibited ERK1/2 phosphorylation in HMC-1 cells stimulated with other anaphylatoxins but did not inhibit p38MAPK phosphorylation in cells stimulated with Leu72Gln-C5a. Taken together, these findings suggest that the autocrine inhibitory effect elicited by C4a is attributed to interruption of Ca(2+)-dependent intracellular signaling pathway.
Collapse
|
49
|
Zizzi A, Aspriello SD, Rubini C, Goteri G. Peri-implant diseases and host inflammatory response involving mast cells: a review. Int J Immunopathol Pharmacol 2011; 24:557-66. [PMID: 21978688 DOI: 10.1177/039463201102400302] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Mast cells (MCs) are motile granule-containing cells that originate from bone marrow pluripotential haematopoietic cells, circulate in blood and extravasate in tissues where they play an important role in inflammation, host defense and tissue repair. We herein review the English literature over the past twenty years concerning the biology and function of MCs with particular focus on their role in the inflammatory process in dental implant failure due to osseointegration absence or to peri-implantitis. Due to immunological or non-immunological stimulation, in a few minutes MCs release prestored granule-associated mediators into the extracellular environment promoting pro-/anti-inflammatory events/response. MCs can either protect the host by activating defense mechanisms and initiating tissue repair and osseointegration if their function is transient, or lead to considerable tissue damage if it is inappropriate and continuous leading to osseointegration absence or peri-implantitis. We hypothesize that administration of histamine receptor antagonists, serine protease inhibitors and MC preformed mediator release inhibitors before and after implantation could represent novel therapeutic strategies to improve the osseointegration, the functionality and longevity of implants or prevent and treat peri-implant inflammatory conditions.
Collapse
|
50
|
Cao J, Ren G, Gong Y, Dong S, Yin Y, Zhang L. Bronchial epithelial cells release IL-6, CXCL1 and CXCL8 upon mast cell interaction. Cytokine 2011; 56:823-31. [DOI: 10.1016/j.cyto.2011.09.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 08/04/2011] [Accepted: 09/19/2011] [Indexed: 10/15/2022]
|