1
|
Schmuth M, Eckmann S, Moosbrugger-Martinz V, Ortner-Tobider D, Blunder S, Trafoier T, Gruber R, Elias PM. Skin Barrier in Atopic Dermatitis. J Invest Dermatol 2024; 144:989-1000.e1. [PMID: 38643989 DOI: 10.1016/j.jid.2024.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/27/2024] [Accepted: 03/07/2024] [Indexed: 04/23/2024]
Abstract
A compromised permeability barrier is a hallmark of atopic dermatitis (AD). Localized to the outermost skin layer, the stratum corneum (SC) is critically dependent on terminal differentiation of epidermal keratinocytes, which transform into protein-rich corneocytes surrounded by extracellular lamellae of unique epidermal lipids, conferring permeability barrier function. These structures are disrupted in AD. A leaky barrier is prone to environmental insult, which in AD elicits type 2-dominant inflammation, in turn resulting in a vicious cycle further impairing the SC structure. Therapies directed at enforcing SC structure and anti-inflammatory strategies administered by topical and systemic route as well as UV therapy have differential effects on the permeability barrier. The expanding armamentarium of therapeutic modalities for AD treatment warrants optimization of their effects on permeability barrier function.
Collapse
Affiliation(s)
- Matthias Schmuth
- Dermatology, Venerology and Allergy, Medical University Innsbruck, Innsbruck, Austria; Institute for Pediatric Dermatology and Rare Diseases, Karl Landsteiner Society, Innsbruck, Austria.
| | - Sonja Eckmann
- Dermatology, Venerology and Allergy, Medical University Innsbruck, Innsbruck, Austria
| | | | | | - Stefan Blunder
- Dermatology, Venerology and Allergy, Medical University Innsbruck, Innsbruck, Austria
| | - Thomas Trafoier
- Dermatology, Venerology and Allergy, Medical University Innsbruck, Innsbruck, Austria
| | - Robert Gruber
- Dermatology, Venerology and Allergy, Medical University Innsbruck, Innsbruck, Austria; Institute for Pediatric Dermatology and Rare Diseases, Karl Landsteiner Society, Innsbruck, Austria
| | - Peter M Elias
- Dermatology, Veteran Affairs Health Care System, San Francisco, California, USA; University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
2
|
Min GY, Kim TI, Kim JH, Cho WK, Yang JH, Ma JY. Anti-Atopic Effect of Isatidis Folium Water Extract in TNF-α/IFN-γ-Induced HaCaT Cells and DNCB-Induced Atopic Dermatitis Mouse Model. Molecules 2023; 28:molecules28093960. [PMID: 37175371 PMCID: PMC10180365 DOI: 10.3390/molecules28093960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
Isatidis folium or Isatis tinctoria L. is a flowering plant of the Brassicaceae family, commonly known as woad, with an ancient and well-documented history as an indigo dye and medicinal plant. This study aimed to evaluate the anti-atopic dermatitis (AD) effects of Isatidis folium water extract (WIF) using a 2,4-dinitrochlorobenzene (DNCB)-induced AD-like mouse model and to investigate the underlying mechanism using tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ)-activated HaCaT cells. Oral administration of WIF reduced spleen weight, decreased serum IgE and TNF-α levels, reduced epidermal and dermal thickness, and inhibited eosinophil and mast cell recruitment to the dermis compared to DNCB-induced control groups. Furthermore, oral WIF administration suppressed extracellular signal-regulated kinase and p38 mitogen-activated protein kinase protein expression levels, p65 translocation from the cytoplasm to the nucleus, and mRNA expression of TNF-α, IFN-γ, interleukin (IL)-6, and IL-13 in skin lesion tissues. In HaCaT cells, WIF suppressed the production of regulated upon activation, normal T cell expressed and secreted (RANTES), thymus and activation-regulated chemokine (TARC), macrophage-derived chemokine (MDC), MCP-1, and MIP-3a, which are inflammatory cytokines and chemokines related to AD, and inhibited the mRNA expression of RANTES, TARC, and MDC in TNF-α/IFN-γ-stimulated HaCaT cells. Overall, the results revealed that WIF ameliorated AD-like skin inflammation by suppressing proinflammatory cytokine and chemokine production via nuclear factor-κB pathway inhibition, suggesting WIF as a potential candidate for AD treatment.
Collapse
Affiliation(s)
- Ga-Yul Min
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, 70 Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Tae In Kim
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, 70 Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Ji-Hye Kim
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, 70 Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Won-Kyung Cho
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, 70 Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Ju-Hye Yang
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, 70 Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Jin Yeul Ma
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, 70 Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| |
Collapse
|
3
|
Imiquimod induces skin inflammation in humanized BRGSF mice with limited human immune cell activity. PLoS One 2023; 18:e0281005. [PMID: 36800344 PMCID: PMC9937455 DOI: 10.1371/journal.pone.0281005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/09/2023] [Indexed: 02/18/2023] Open
Abstract
Human immune system (HIS) mouse models can be valuable when cross-reactivity of drug candidates to mouse systems is missing. However, no HIS mouse models of psoriasis have been established. In this study, it was investigated if imiquimod (IMQ) induced psoriasis-like skin inflammation was driven by human immune cells in human FMS-related tyrosine kinase 3 ligand (hFlt3L) boosted (BRGSF-HIS mice). BRGSF-HIS mice were boosted with hFlt3L prior to two or three topical applications of IMQ. Despite clinical skin inflammation, increased epidermal thickness and influx of human immune cells, a human derived response was not pronounced in IMQ treated mice. However, the number of murine neutrophils and murine cytokines and chemokines were increased in the skin and systemically after IMQ application. In conclusion, IMQ did induce skin inflammation in hFlt3L boosted BRGSF-HIS mice, although, a limited human immune response suggest that the main driving cellular mechanisms were of murine origin.
Collapse
|
4
|
Neuwirth T, Knapp K, Stary G. (Not) Home alone: Antigen presenting cell - T Cell communication in barrier tissues. Front Immunol 2022; 13:984356. [PMID: 36248804 PMCID: PMC9556809 DOI: 10.3389/fimmu.2022.984356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
Priming of T cells by antigen presenting cells (APCs) is essential for T cell fate decisions, enabling T cells to migrate to specific tissues to exert their effector functions. Previously, these interactions were mainly explored using blood-derived cells or animal models. With great advances in single cell RNA-sequencing techniques enabling analysis of tissue-derived cells, it has become clear that subsets of APCs are responsible for priming and modulating heterogeneous T cell effector responses in different tissues. This composition of APCs and T cells in tissues is essential for maintaining homeostasis and is known to be skewed in infection and inflammation, leading to pathological T cell responses. This review highlights the commonalities and differences of T cell priming and subsequent effector function in multiple barrier tissues such as the skin, intestine and female reproductive tract. Further, we provide an overview of how this process is altered during tissue-specific infections which are known to cause chronic inflammation and how this knowledge could be harnessed to modify T cell responses in barrier tissue.
Collapse
Affiliation(s)
- Teresa Neuwirth
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Katja Knapp
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| |
Collapse
|
5
|
Equine keratinocytes in the pathogenesis of insect bite hypersensitivity: Just another brick in the wall? PLoS One 2022; 17:e0266263. [PMID: 35913947 PMCID: PMC9342730 DOI: 10.1371/journal.pone.0266263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 03/17/2022] [Indexed: 11/19/2022] Open
Abstract
Equine insect bite hypersensitivity (IBH) is the most common skin disease affecting horses. It is described as an IgE-mediated, Type I hypersensitivity reaction to salivary gland proteins of Culicoides insects. Together with Th2 cells, epithelial barrier cells play an important role in development of Type I hypersensitivities. In order to elucidate the role of equine keratinocytes in development of IBH, we stimulated keratinocytes derived from IBH-affected (IBH-KER) (n = 9) and healthy horses (H-KER) (n = 9) with Culicoides recombinant allergens and extract, allergic cytokine milieu (ACM) and a Toll like receptor ligand 1/2 (TLR-1/2-L) and investigated their transcriptomes. Stimulation of keratinocytes with Culicoides allergens did not induce transcriptional changes. However, when stimulated with allergic cytokine milieu, their gene expression significantly changed. We found upregulation of genes encoding for CCL5, -11, -20, -27 and interleukins such as IL31. We also found a strong downregulation of genes such as SCEL and KRT16 involved in the formation of epithelial barrier. Following stimulation with TLR-1/2-L, keratinocytes significantly upregulated expression of genes affecting Toll like receptor and NOD-receptor signaling pathway as well as NF-kappa B signaling pathway, among others. The transcriptomes of IBH-KER and H-KER were very similar: without stimulations they only differed in one gene (CTSL); following stimulation with allergic cytokine milieu we found only 23 differentially expressed genes (e.g. CXCL10 and 11) and following stimulation with TLR-1/2-L they only differed by expression of seven genes. Our data suggests that keratinocytes contribute to the innate immune response and are able to elicit responses to different stimuli, possibly playing a role in the pathogenesis of IBH.
Collapse
|
6
|
Rascu AM, Otelea MR, Mambet C, Handra C, Neagu AI, Rascu A, Giurcaneanu C, Diaconu CC. Modified Plasma Cytokine Profile in Occupational Dermatitis. Endocr Metab Immune Disord Drug Targets 2021; 20:1295-1302. [PMID: 32515314 DOI: 10.2174/1871530320666200607194021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/03/2020] [Accepted: 04/29/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Despite significant progress in the diagnosis of contact dermatitis, the identification by specific tests or biomarkers remains an unsolved issue, particularly when needed for the confirmation of the occupational origin of the disease. OBJECTIVE To characterize the plasma proteome profile in occupational dermatitis in workers of paint industry. METHODS The study has a case-control design, comparing exposed workers with and without occupational contact dermatitis, matched for age, gender, occupational history, and comorbidities. An immunological assay (Human XL Cytokine Array Kit - ARY022B, R&D Systems) was used to measure the plasma levels of 105 cytokines and chemokines in a pooled sample of the cases and a pooled sample of the controls. RESULTS A 1.5-fold increase was noticed for interleukin 3, interleukin 10, and leptin in cases, as compared to controls. Fibroblast growth factor-7 and growth/differentiation factor-15 showed a 1.4-fold increase, while interleukin 19, interleukin 31, and macrophage inflammatory protein 3a.had only a 1.3- fold increase. The leukemia inhibitory factor was the only plasma cytokine that showed a 1.3-fold decrease. All other cytokines had a variation of less than 1.2-fold between cases and controls. CONCLUSION The recognition of the molecular signatures is very important for an accurate and indisputable diagnosis of occupational contact dermatitis. In workers from the paint industry, plasma levels of interleukins 3, 10, 13 and 19, fibroblast growth factor-7, and growth/differentiation factor-15, together with leukemia inducible factor, may differentiate subjects with contact dermatitis from those without skin lesions.
Collapse
Affiliation(s)
- Alexandra M Rascu
- Clinic Department, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Marina R Otelea
- Clinic Department, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | | | - Claudia Handra
- Clinic Department, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Ana I Neagu
- Stefan S. Nicolau Institute of Virology, Bucharest, Romania
| | - Agripina Rascu
- Clinic Department, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,Colentina Clinical Hospital, Bucharest, Romania
| | - Calin Giurcaneanu
- Clinic Department, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,Dermatology Clinic, Elias Hospital, Bucharest, Romania
| | | |
Collapse
|
7
|
Kong WS, Tsuyama N, Inoue H, Guo Y, Mokuda S, Nobukiyo A, Nakatani N, Yamaide F, Nakano T, Kohno Y, Ikeda K, Nakanishi Y, Ohno H, Arita M, Shimojo N, Kanno M. Long-chain saturated fatty acids in breast milk are associated with the pathogenesis of atopic dermatitis via induction of inflammatory ILC3s. Sci Rep 2021; 11:13109. [PMID: 34162906 PMCID: PMC8222289 DOI: 10.1038/s41598-021-92282-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/04/2021] [Indexed: 02/05/2023] Open
Abstract
Breastfeeding influences the immune system development in infants and may even affect various immunological responses later in life. Breast milk provides a rich source of early nutrition for infant growth and development. However, the presence of certain compounds in breast milk, related to an unhealthy lifestyle or the diet of lactating mothers, may negatively impact infants. Based on a cohort study of atopic dermatitis (AD), we find the presence of damage-associated molecular patterns (DAMPs) activity in the mother's milk. By non-targeted metabolomic analysis, we identify the long-chain saturated fatty acids (LCSFA) as a biomarker DAMPs (+) breast milk samples. Similarly, a mouse model in which breastfed offspring are fed milk high in LCSFA show AD onset later in life. We prove that LCSFA are a type of damage-associated molecular patterns, which initiate a series of inflammatory events in the gut involving type 3 innate lymphoid cells (ILC3s). A remarkable increase in inflammatory ILC3s is observed in the gut, and the migration of these ILC3s to the skin may be potential triggers of AD. Gene expression analysis of ILC3s isolated from the gut reveal upregulation of genes that increase ILC3s and chemokines/chemokine receptors, which may play a role in ILC migration to the skin. Even in the absence of adaptive immunity, Rag1 knockout mice fed a high-LCSFA milk diet develop eczema, accompanied by increased gut ILC3s. We also present that gut microbiota of AD-prone PA milk-fed mice is different from non-AD OA/ND milk-fed mice. Here, we propose that early exposure to LCSFAs in infants may affect the balance of intestinal innate immunity, inducing a highly inflammatory environment with the proliferation of ILC3s and production of interleukin-17 and interleukin-22, these factors may be potential triggers or worsening factors of AD.
Collapse
Affiliation(s)
- Weng Sheng Kong
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Naohiro Tsuyama
- Analytical Molecular Medicine and Devices Laboratory, Hiroshima University, Hiroshima, Japan
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Department of Radiation Life Sciences, Fukushima Medical University, Fukushima, Japan
| | - Hiroko Inoue
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yun Guo
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Sho Mokuda
- Department of Clinical Immunology and Rheumatology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Asako Nobukiyo
- Natural Science Centre for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| | | | - Fumiya Yamaide
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Taiji Nakano
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yoichi Kohno
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
- Chiba Rosai Hospital, Chiba, Japan
| | - Kazutaka Ikeda
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Laboratory of Medical Omics Research, Kazusa DNA Research Institute, Chiba, Japan
| | - Yumiko Nakanishi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
- Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
- Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
- AMED-CREST Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Naoki Shimojo
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
- AMED-CREST Japan Agency for Medical Research and Development, Tokyo, Japan
- Center for Preventive Medicine, Chiba University, Chiba, Japan
| | - Masamoto Kanno
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
- AMED-SENTAN, Tokyo, Japan.
- AMED-CREST Japan Agency for Medical Research and Development, Tokyo, Japan.
| |
Collapse
|
8
|
Tohyama M, Matsumoto A, Tsuda T, Dai X, Shiraishi K, Sayama K. Suppression of IL-17A-induced CCL20 production by cytokine inducible SH2-containing protein 1 in epidermal keratinocytes. J Dermatol Sci 2021; 101:202-209. [PMID: 33509657 DOI: 10.1016/j.jdermsci.2021.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/08/2021] [Accepted: 01/14/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Lesions of atopic dermatitis have fewer Th17 cells than those of psoriasis, resulting in frequent skin infections. Expression of CCL20, a chemokine that is important for recruiting Th17 cells, is suppressed in the lesions of atopic dermatitis. We previously reported that IL-4 induces the expression of cytokine-inducible SH2-containing protein 1 (CIS1), a member of the CIS/SOCS family, in epidermal keratinocytes. OBJECTIVE To investigate whether CIS1 influences CCL20 production in epidermal keratinocytes. METHODS Expression of CIS1 was examined in atopic dermatitis skin and in cultured keratinocytes. The effects of overexpression of CIS1 on CCL20 production by IL-17A, and on signaling pathways inhibited by CIS1, were assessed in vitro. RESULTS Expression of CIS1 was enhanced in the basal layer of the lesional epidermis of skin with atopic dermatitis. When CIS1 was expressed in keratinocytes using adenoviral vectors, IL-17A-induced CCL20 expression, but not HBD2 or S100A7 expression, was significantly suppressed. TNF-α/IL-1-induced CCL20 production was not altered by CIS1. Overexpression of CIS1 attenuated IL-17A-induced ERK phosphorylation. ERK phosphorylation was mediated by the Act1 and Src family kinase pathways. CIS1 overexpression suppressed Src phosphorylation. Among the Src family kinases, the Yes kinase may have an important role because knockdown of Yes in epidermal keratinocytes resulted in suppression of ERK phosphorylation and CCL20 mRNA expression by IL-17A. CONCLUSION CIS1 induced by Th2 cytokines has the ability to change the response of epidermal keratinocytes to IL-17A by suppression of Src family kinases.
Collapse
Affiliation(s)
- Mikiko Tohyama
- Department of Dermatology, National Hospital Organization Shikoku Cancer Center, Matsuyama, Ehime, Japan; Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan.
| | - Akira Matsumoto
- Department of Infection and Host Defenses, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Teruko Tsuda
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Xiuju Dai
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Ken Shiraishi
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Koji Sayama
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| |
Collapse
|
9
|
Liu F, Wang T, Hu Y, Tian G, Secombes CJ, Wang T. Expansion of fish CCL20_like chemokines by genome and local gene duplication: Characterisation and expression analysis of 10 CCL20_like chemokines in rainbow trout (Oncorhynchus mykiss). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103502. [PMID: 31568810 DOI: 10.1016/j.dci.2019.103502] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
Mammalian CCL20, or macrophage inflammatory protein-3α, can function as a homeostatic and inflammatory chemokine. In relation to the latter, it is responsible for the chemoattraction of lymphocytes and dendritic cells to mucosal immune sites under inflammatory and pathological conditions. CK1, CK8A and CK8B are rainbow trout (Oncorhynchus mykiss) CC chemokines that were reported previously to be phylogenetically related to mammalian CCL20. In the current study, an additional seven CCL20_L paralogues in rainbow trout are reported, that are divided into three subgroups and have been designated here as: CCL20_L1a (also referred to as CK1), CCL20_L1b1-2, CCL20_L2a (CK8A), CCL20_L2b (CK8B), CCL20_L3a, and CCL20_L3b1-4. Multiple CCL20_L genes were also identified in other salmonids that arose from both whole genome duplication and local gene duplication. Phylogenetic tree, homology and synteny analysis support that CCL20_L1-3 found in salmonids are also present in most teleosts arose from the 3 R whole genome duplication and in some species, local gene duplication. Like mammalian CCL20, rainbow trout CCL20_L molecules possess a high positive net charge with a pI of 9.34-10.16, that is reported to be important for antimicrobial activity. Rainbow trout CCL20_L paralogues are differentially expressed and in general highly expressed in mucosal tissues, such as gills, thymus and intestine. The expression levels of rainbow trout CCL20_L paralogues are increased during development and following PAMP/cytokine stimulation. For example, in RTS-11 cells CCL20_L3b1 and CCL20_L3b2 are highly up-regulated by LPS, Poly I:C, recombinant(r) IFNa and rIL-1β. Trout CCL20_L paralogues are also increased after Yersinia ruckeri infection or Poly I:C stimulation in vivo, with CCL20_L3b1 and CCL20_L3b2 again highly up-regulated. Overall, this is the first report of the complete CCL20 chemokine subfamily in rainbow trout, and the analysis of their expression and modulation in vitro and in vivo. These results suggest that teleosts possess divergent CCL20_L molecules that may have important roles in anti-viral/anti-bacterial defence and in mucosal immunity.
Collapse
Affiliation(s)
- Fuguo Liu
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, United Kingdom
| | - Tingyu Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, United Kingdom
| | - Yehfang Hu
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, United Kingdom
| | - Guangming Tian
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, United Kingdom; School of Animal Science, Yangtze University, Jingzhou, 434020, PR China
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, United Kingdom.
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, United Kingdom.
| |
Collapse
|
10
|
De Laere M, Berneman ZN, Cools N. To the Brain and Back: Migratory Paths of Dendritic Cells in Multiple Sclerosis. J Neuropathol Exp Neurol 2019; 77:178-192. [PMID: 29342287 PMCID: PMC5901086 DOI: 10.1093/jnen/nlx114] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Migration of dendritic cells (DC) to the central nervous system (CNS) is a critical event in the pathogenesis of multiple sclerosis (MS). While up until now, research has mainly focused on the transmigration of DC through the blood-brain barrier, experimental evidence points out that also the choroid plexus and meningeal vessels represent important gateways to the CNS, especially in early disease stages. On the other hand, DC can exit the CNS to maintain immunological tolerance to patterns expressed in the CNS, a process that is perturbed in MS. Targeting trafficking of immune cells, including DC, to the CNS has demonstrated to be a successful strategy to treat MS. However, this approach is known to compromise protective immune surveillance of the brain. Unravelling the migratory paths of regulatory and pathogenic DC within the CNS may ultimately lead to the design of new therapeutic strategies able to selectively interfere with the recruitment of pathogenic DC to the CNS, while leaving host protective mechanisms intact.
Collapse
Affiliation(s)
- Maxime De Laere
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp
| | - Zwi N Berneman
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp
| |
Collapse
|
11
|
Jacquelot N, Duong CPM, Belz GT, Zitvogel L. Targeting Chemokines and Chemokine Receptors in Melanoma and Other Cancers. Front Immunol 2018; 9:2480. [PMID: 30420855 PMCID: PMC6215820 DOI: 10.3389/fimmu.2018.02480] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/08/2018] [Indexed: 12/19/2022] Open
Abstract
The tumor microenvironment is highly heterogeneous. It is composed of a diverse array of immune cells that are recruited continuously into lesions. They are guided into the tumor through interactions between chemokines and their receptors. A variety of chemokine receptors are expressed on the surface of both tumor and immune cells rendering them sensitive to multiple stimuli that can subsequently influence their migration and function. These features significantly impact tumor fate and are critical in melanoma control and progression. Indeed, particular chemokine receptors expressed on tumor and immune cells are strongly associated with patient prognosis. Thus, potential targeting of chemokine receptors is highly attractive as a means to quench or eliminate unconstrained tumor cell growth.
Collapse
Affiliation(s)
- Nicolas Jacquelot
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Connie P M Duong
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,INSERM U1015, Villejuif, France
| | - Gabrielle T Belz
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,INSERM U1015, Villejuif, France.,Faculty of Medicine, Paris Sud/Paris XI University, LeKremlin-Bicêtre, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| |
Collapse
|
12
|
Loss-of-function mutations in caspase recruitment domain-containing protein 14 (CARD14) are associated with a severe variant of atopic dermatitis. J Allergy Clin Immunol 2018; 143:173-181.e10. [PMID: 30248356 DOI: 10.1016/j.jaci.2018.09.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) is a highly prevalent chronic inflammatory skin disease that is known to be, at least in part, genetically determined. Mutations in caspase recruitment domain-containing protein 14 (CARD14) have been shown to result in various forms of psoriasis and related disorders. OBJECTIVE We aimed to identify rare DNA variants conferring a significant risk for AD through genetic and functional studies in a cohort of patients affected with severe AD. METHODS Whole-exome and direct gene sequencing, immunohistochemistry, real-time PCR, ELISA, and functional assays in human keratinocytes were used. RESULTS In a cohort of patients referred with severe AD, DNA sequencing revealed in 4 patients 2 rare heterozygous missense mutations in the gene encoding CARD14, a major regulator of nuclear factor κB (NF-κB). A dual luciferase reporter assay demonstrated that both mutations exert a dominant loss-of-function effect and result in decreased NF-κB signaling. Accordingly, immunohistochemistry staining showed decreased expression of CARD14 in patients' skin, as well as decreased levels of activated p65, a surrogate marker for NF-κB activity. CARD14-deficient or mutant-expressing keratinocytes displayed abnormal secretion of key mediators of innate immunity. CONCLUSIONS Although dominant gain-of-function mutations in CARD14 are associated with psoriasis and related diseases, loss-of-function mutations in the same gene are associated with a severe variant of AD.
Collapse
|
13
|
Cruz MS, Diamond A, Russell A, Jameson JM. Human αβ and γδ T Cells in Skin Immunity and Disease. Front Immunol 2018; 9:1304. [PMID: 29928283 PMCID: PMC5997830 DOI: 10.3389/fimmu.2018.01304] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/25/2018] [Indexed: 12/14/2022] Open
Abstract
γδ T lymphocytes maintain skin homeostasis by balancing keratinocyte differentiation and proliferation with the destruction of infected or malignant cells. An imbalance in skin-resident T cell function can aggravate skin-related autoimmune diseases, impede tumor eradication, or disrupt proper wound healing. Much of the published work on human skin T cells attributes T cell function in the skin to αβ T cells, while γδ T cells are an often overlooked participant. This review details the roles played by both αβ and γδ T cells in healthy human skin and then focuses on their roles in skin diseases, such as psoriasis and alopecia areata. Understanding the contribution of skin-resident and skin-infiltrating T cell populations and cross-talk with other immune cells is leading to the development of novel therapeutics for patients. However, there is still much to be learned in order to effectively modulate T cell function and maintain healthy skin homeostasis.
Collapse
Affiliation(s)
| | | | | | - Julie Marie Jameson
- Department of Biological Sciences, California State University of San Marcos, San Marcos, CA, United States
| |
Collapse
|
14
|
Iuliano M, Mangino G, Chiantore MV, Zangrillo MS, Accardi R, Tommasino M, Fiorucci G, Romeo G. Human Papillomavirus E6 and E7 oncoproteins affect the cell microenvironment by classical secretion and extracellular vesicles delivery of inflammatory mediators. Cytokine 2018; 106:182-189. [PMID: 29137858 DOI: 10.1016/j.cyto.2017.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/26/2017] [Accepted: 11/06/2017] [Indexed: 12/16/2022]
Abstract
The connection between chronic inflammation and risk of cancer has been supported by several studies. The development of cancer might be a process driven by the presence of a specific combination of inflammatory mediators, including cytokines, chemokines and enzymes, in the tumor microenvironment. Virus-induced tumors, like HPV-induced Squamous Cell Carcinomas, represent a paradigmatic example of the interplay between inflammation, as integral part of the innate antiviral response, and malignant transformation. Here, the role of inflammatory microenvironment in the HPV-induced carcinogenesis is addressed, with a specific focus on the involvement of the immune molecules as well as their delivery through the microvesicle cargo possibly correlated to the different HPV genotype. The expression of the inflammatory mediators in HPV positive cells has been analyzed in primary human foreskin keratinocytes and keratinocytes transduced by E6 and E7 from mucosal HPV-16 or cutaneous HPV-38 genotypes. HPV E6 and E7 proteins can modulate the expression of immune mediators in HPV-infected cells and can affect the levels of immune molecules, mainly chemokines, in the extracellular milieu. HPV-16 E6 and E7 oncoproteins have been silenced to confirm the specificity of the modulation of the inflammatory microenvironment. Our results suggest that the expression of HPV oncoproteins allows the modification of the tumor milieu through the synthesis and release of specific pro-inflammatory cytokines and chemokines, affecting the efficacy of the immune response. The microenvironment can also be conditioned by an altered mRNA cargo delivered by extracellular vesicles, thereby efficiently affecting the surrounding cells with possible implication for tumorigenesis and tumor diagnosis.
Collapse
Affiliation(s)
- Marco Iuliano
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100 Latina, Italy
| | - Giorgio Mangino
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100 Latina, Italy
| | - Maria Vincenza Chiantore
- Department of Infectious Diseases, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161 Rome, Italy
| | - Maria Simona Zangrillo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100 Latina, Italy
| | - Rosita Accardi
- Infections and Cancer Biology Group, International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372 Lyon Cedex 08, France
| | - Massimo Tommasino
- Infections and Cancer Biology Group, International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372 Lyon Cedex 08, France
| | - Gianna Fiorucci
- Department of Infectious Diseases, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161 Rome, Italy; Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche, Via Palestro 32, 00185 Rome, Italy
| | - Giovanna Romeo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100 Latina, Italy; Department of Infectious Diseases, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
15
|
Sun X, Zhang H, Xu S, Shi L, Dong J, Gao D, Chen Y, Feng H. Membrane-anchored CCL20 augments HIV Env-specific mucosal immune responses. Virol J 2017; 14:163. [PMID: 28830557 PMCID: PMC5568278 DOI: 10.1186/s12985-017-0831-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 08/16/2017] [Indexed: 12/15/2022] Open
Abstract
Background Induction of broad immune responses at mucosal site remains a primary goal for most vaccines against mucosal pathogens. Abundance of evidence indicates that the co-delivery of mucosal adjuvants, including cytokines, is necessary to induce effective mucosal immunity. In the present study, we set out to evaluate the role of a chemokine, CCL20, as an effective mucosal adjuvant for HIV vaccine. Methods To evaluate the role of CCL20 as a potent adjuvant for HIV vaccine, we examined its effects on antigen-specific antibody responses, level of antibody-secreting cells, cytokine production and intestinal homing of plasma cells in vaccine immunized mice. Results CCL20-incorporated VLP administered by mucosal route (intranasal (n = 10, p = 0.0085) or intravaginal (n = 10, p = 0.0091)) showed much higher potency in inducing Env-specific IgA antibody response than those administered by intramuscular route (n = 10). For intranasal administration, the HIV Env-specific IFN-γ(751 pg/ml), IL-4 (566 pg/ml), IL-5 (811 pg/ml) production and IgA-secreting plasma cells (62 IgA-secreting plasma cells/106 cells) in mucosal lamina propria were significantly augmented in CCL20-incorporated VLP immunized mice as compared to those immunized with Env only VLPs (p = 0.0332, 0.0398, 0.033, 0.0302 for IFN-γ, IL-4, IL-5, and IgA-secreting plasma cells, respectively). Further, anti-CCL20 mAb partially suppressed homing of Env-specific IgA ASCs into small intestine in mice immunized with CCL20-incorporated VLP by intranasal (62 decreased to 16 IgA- secreting plasma cells/106 cells, p = 0.0341) or intravaginal (52 decreased to 13 IgA- secreting plasma cells/106 cells, p = 0.0332) routes. Conclusion Our data indicated that the VLP-incorporated CCL20 can enhance HIV Env-specific immune responses in mice, especially those occurring in the mucosal sites. We also found that i.m. prime followed by mucosal boost is critical and required for CCL20 to exert its full function as an effective mucosal adjuvant. Therefore, co-incorporation of CCL20 into Env VLPs when combined with mucosal administration could represent a novel and promising HIV vaccine candidate.
Collapse
Affiliation(s)
- Xianliang Sun
- Medical school of Jiaxing University, Jiahang road 118#, Nanhu District, Jiaxing City, Zhejiang Province, 314000, China
| | - Han Zhang
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Shuiling Xu
- Medical school of Jiaxing University, Jiahang road 118#, Nanhu District, Jiaxing City, Zhejiang Province, 314000, China
| | - Lili Shi
- Medical school of Jiaxing University, Jiahang road 118#, Nanhu District, Jiaxing City, Zhejiang Province, 314000, China
| | - Jingjian Dong
- Medical school of Jiaxing University, Jiahang road 118#, Nanhu District, Jiaxing City, Zhejiang Province, 314000, China
| | - Dandan Gao
- Jiaxing Maternity and Child Health Care Hospital, Jiaxing, Zhejiang, 314000, China
| | - Yan Chen
- Medical school of Jiaxing University, Jiahang road 118#, Nanhu District, Jiaxing City, Zhejiang Province, 314000, China
| | - Hao Feng
- Medical school of Jiaxing University, Jiahang road 118#, Nanhu District, Jiaxing City, Zhejiang Province, 314000, China.
| |
Collapse
|
16
|
Dutta P, Ta A, Thakur BK, Dasgupta N, Das S. Biphasic Ccl20 regulation by Toll-like receptor 9 through the activation of ERK-AP-1 and non-canonical NF-κB signaling pathways. Biochim Biophys Acta Gen Subj 2016; 1861:3365-3377. [PMID: 27590109 DOI: 10.1016/j.bbagen.2016.08.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/24/2016] [Accepted: 08/28/2016] [Indexed: 12/27/2022]
Abstract
BACKGROUND Chemokines play key roles in immune homeostasis and inflammatory response. Considering the role of Ccl20 and Toll-like receptor 9 (TLR9) in gut homeostasis and inflammatory bowel disease (IBD), regulation of Ccl20 by bacterial DNA, the TLR9 ligand, merits in-depth studies. METHODS We analyzed Ccl20 expression in various epithelial cell (EC) lines by q-PCR and ELISA. In-vivo expression was investigated in isolated murine colonocytes by immunoblotting. Transcriptional regulation of Ccl20 was studied by reporter assays, gene knock-down, electrophoretic mobility shift assay and chromatin immunoprecipitation. Activation of upstream kinases was checked by immunoblotting. RESULTS We showed low levels of Ccl20 expression in mouse colonic ECs, but marked induction by in vivo treatment with bacterial DNA. This corroborated with persistent Ccl20 induction in different EC lines. We found involvement of MAP-kinases during the early hours after stimulation, and a novel AP-1site (-252bp) regulated the expression in colonic ECs. More importantly, mutually exclusive transcriptional regulation by AP-1 (cjun/cfos) and non-canonical NF-κB (RelB/p52) downstream of MEK-ERK and NIK-IKK-α-NF-κB2 (p100) phosphorylation, respectively was responsible for persistent Ccl20 expression in the colonic cells, while canonical NF-κB isoforms played no role. CONCLUSIONS Persistent Ccl20 induction by TLR9 in colonic ECs involves early and delayed activation of two independent signaling pathways. This is the first report of non-canonical NF-κB activation and Ccl20 expression in the colonic ECs by TLR9. GENERAL SIGNIFICANCE Our study will help to better understand immune regulation by Ccl20 in the intestine and may be exploited for future development of novel therapeutics against IBD.
Collapse
Affiliation(s)
- Pujarini Dutta
- Division of Clinical Medicine, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Atri Ta
- Division of Clinical Medicine, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Bhupesh Kumar Thakur
- Division of Clinical Medicine, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Nirmalya Dasgupta
- Division of Clinical Medicine, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Santasabuj Das
- Division of Clinical Medicine, National Institute of Cholera and Enteric Diseases, Kolkata, India.
| |
Collapse
|
17
|
van der Waart AB, van der Velden WJ, Blijlevens NM, Dolstra H. Targeting the IL17 Pathway for the Prevention of Graft-Versus-Host Disease. Biol Blood Marrow Transplant 2014; 20:752-9. [DOI: 10.1016/j.bbmt.2014.02.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 02/10/2014] [Indexed: 11/26/2022]
|
18
|
Santos CG, Nascimento MFD, Oliveira CRD, Melo GCD, Cardoso JC, Padilha FF, Lima SO, Albuquerque-Júnior RLCD. Bioassay-guided evaluation of wound healing effect of fatty acids-incorporated collagen-based films. Acta Cir Bras 2014; 28:346-52. [PMID: 23702936 DOI: 10.1590/s0102-86502013000500005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 04/17/2013] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To evaluate the effects of fatty acids-incorporated collagen-based dressing films on wound healing in rodents. METHODS Therefore, surgical wounds were performed in the back of 80 Wistar rats, and dressed with collgane-based films (COL), and collagen-based films containing fatty acids (AGEF50 and AGEF100). Undressed wounds were regarded as controls (CTR). The animals were euthanized after three, seven, 14 and 21 days, and the macroscopic wound contraction rates (WRC) were assessed. The wounded area was also analyzed by conventional and polarized light microscope. RESULTS No sign of abscess or hypertrophic scar formation was observed in none of the groups. At seven days, the WRR of AGEF50 was significantly higher than CTR (p<0.01), whereas at 14 days, both AGE 50 and AGE100 showed a significant increase of the WRR compared to CTR (p<0.001) and COL (p<0.01). Both films promoted increased influx of neutrophils at three days (p<0.01), but reduced significantly the mononuclear infiltrate at 14 days (p<0.05). It was also observed earlier maturation of the granulation tissue, full epithelization and cutaneous appendages development, as well as better collagenization, in AGEF50 and AGEF100. CONCLUSION The application of AGEF50/100 as wound dressing improved wound healing in rodents.
Collapse
Affiliation(s)
- Catharina Grace Santos
- Laboratory of Biomaterials, Department of Pharmacy, University Tiradentes, Aracaju, SE, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Kupetsky EA, Mathers AR, Ferris LK. Anti-cytokine therapy in the treatment of psoriasis. Cytokine 2013; 61:704-12. [DOI: 10.1016/j.cyto.2012.12.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 12/19/2012] [Accepted: 12/28/2012] [Indexed: 12/23/2022]
|
21
|
van der Waart AB, van der Velden WJFM, van Halteren AGS, Leenders MJLG, Feuth T, Blijlevens NMA, van der Voort R, Dolstra H. Decreased levels of circulating IL17-producing CD161+CCR6+ T cells are associated with graft-versus-host disease after allogeneic stem cell transplantation. PLoS One 2012; 7:e50896. [PMID: 23226545 PMCID: PMC3514180 DOI: 10.1371/journal.pone.0050896] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/26/2012] [Indexed: 12/23/2022] Open
Abstract
The C-type lectin-like receptor CD161 is a well-established marker for human IL17-producing T cells, which have been implicated to contribute to the development of graft-versus-host disease (GVHD) after allogeneic stem cell transplantation (allo-SCT). In this study, we analyzed CD161+ T cell recovery, their functional properties and association with GVHD occurrence in allo-SCT recipients. While CD161+CD4+ T cells steadily recovered, CD161hiCD8+ T cell numbers declined during tapering of Cyclosporine A (CsA), which can be explained by their initial growth advantage over CD161neg/lowCD8+ T cells due to ABCB1-mediated CsA efflux. Interestingly, occurrence of acute and chronic GVHD was significantly correlated with decreased levels of circulating CD161+CD4+ as well as CD161hiCD8+ T cells. In addition, these subsets from transplanted patients secreted high levels of IFNγ and IL17. Moreover, we found that CCR6 co-expression by CD161+ T cells mediated specific migration towards CCL20, which was expressed in GVHD biopsies. Finally, we demonstrated that CCR6+ T cells indeed were present in these CCL20+ GVHD-affected tissues. In conclusion, we showed that functional CD161+CCR6+ co-expressing T cells disappear from the circulation and home to GVHD-affected tissue sites. These findings support the hypothesis that CCR6+CD161-expressing T cells may be involved in the immune pathology of GVHD following their CCL20-dependent recruitment into affected tissues.
Collapse
Affiliation(s)
- Anniek B. van der Waart
- Department of Laboratory Medicine - Laboratory of Hematology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | - Astrid G. S. van Halteren
- Immunology Laboratory, Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marij J. L. G. Leenders
- Department of Laboratory Medicine - Laboratory of Hematology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Ton Feuth
- Department of Epidemiology, Biostatistics and Health Technology Assessment, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Nicole M. A. Blijlevens
- Department of Hematology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Robbert van der Voort
- Department of Laboratory Medicine - Laboratory of Hematology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Harry Dolstra
- Department of Laboratory Medicine - Laboratory of Hematology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
22
|
Gittler JK, Krueger JG, Guttman-Yassky E. Atopic dermatitis results in intrinsic barrier and immune abnormalities: implications for contact dermatitis. J Allergy Clin Immunol 2012; 131:300-13. [PMID: 22939651 DOI: 10.1016/j.jaci.2012.06.048] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 06/29/2012] [Indexed: 01/14/2023]
Abstract
Atopic dermatitis (AD), as well as irritant contact dermatitis (ICD) and allergic contact dermatitis (ACD), are common skin diseases. These diseases are characterized by skin inflammation mediated by activated innate immunity or acquired immune mechanisms. Although AD, ICD, and ACD can be encountered in pure forms by allergists and dermatologists, patients with AD often present with increased frequency of ICD and ACD. Although a disturbed barrier alone could potentiate immune reactivity in patients with AD through increased antigen penetration, additional immune mechanisms might explain the increased susceptibility of atopic patients to ICD and ACD. This review discusses cellular pathways associated with increased skin inflammation in all 3 conditions and presents mechanisms that might contribute to the increased rate of ICD and ACD in patients with AD.
Collapse
|
23
|
Sperling T, Ołdak M, Walch-Rückheim B, Wickenhauser C, Doorbar J, Pfister H, Malejczyk M, Majewski S, Keates AC, Smola S. Human papillomavirus type 8 interferes with a novel C/EBPβ-mediated mechanism of keratinocyte CCL20 chemokine expression and Langerhans cell migration. PLoS Pathog 2012; 8:e1002833. [PMID: 22911498 PMCID: PMC3406103 DOI: 10.1371/journal.ppat.1002833] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 06/18/2012] [Indexed: 01/01/2023] Open
Abstract
Infection with genus beta human papillomaviruses (HPV) is implicated in the development of non-melanoma skin cancer. This was first evidenced for HPV5 and 8 in patients with epidermodysplasia verruciformis (EV), a genetic skin disease. So far, it has been unknown how these viruses overcome cutaneous immune control allowing their persistence in lesional epidermis of these patients. Here we demonstrate that Langerhans cells, essential for skin immunosurveillance, are strongly reduced in HPV8-positive lesional epidermis from EV patients. Interestingly, the same lesions were largely devoid of the important Langerhans cells chemoattractant protein CCL20. Applying bioinformatic tools, chromatin immunoprecipitation assays and functional studies we identified the differentiation-associated transcription factor CCAAT/enhancer binding protein β (C/EBPβ) as a critical regulator of CCL20 gene expression in normal human keratinocytes. The physiological relevance of this finding is supported by our in vivo studies showing that the expression patterns of CCL20 and nuclear C/EBPβ converge spatially in the most differentiated layers of human epidermis. Our analyses further identified C/EBPβ as a novel target of the HPV8 E7 oncoprotein, which co-localizes with C/EBPβ in the nucleus, co-precipitates with it and interferes with its binding to the CCL20 promoter in vivo. As a consequence, the HPV8 E7 but not E6 oncoprotein suppressed C/EBPβ-inducible and constitutive CCL20 gene expression as well as Langerhans cell migration. In conclusion, our study unraveled a novel molecular mechanism central to cutaneous host defense. Interference of the HPV8 E7 oncoprotein with this regulatory pathway allows the virus to disrupt the immune barrier, a major prerequisite for its epithelial persistence and procarcinogenic activity.
Collapse
Affiliation(s)
- Tanya Sperling
- Institute of Virology and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Monika Ołdak
- Institute of Virology, Saarland University, Homburg/Saar, Germany
- Department of Histology and Embryology Center of Biostructure Research, Medical University of Warsaw, Warsaw, Poland
| | | | - Claudia Wickenhauser
- Institute of Pathology, University of Cologne, Cologne, Germany
- Institute of Pathology, University of Leipzig, Leipzig, Germany
| | - John Doorbar
- Division of Virology, National Institute for Medical Research, Mill Hill, London, United Kingdom
| | - Herbert Pfister
- Institute of Virology and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Magdalena Malejczyk
- Department of Dermatology and Venereology, Medical University of Warsaw, Warsaw, Poland
| | - Sławomir Majewski
- Department of Dermatology and Venereology, Medical University of Warsaw, Warsaw, Poland
| | - Andrew C. Keates
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Sigrun Smola
- Institute of Virology and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Institute of Virology, Saarland University, Homburg/Saar, Germany
| |
Collapse
|
24
|
Yao T, Lin Z. MiR-21 is involved in cervical squamous cell tumorigenesis and regulates CCL20. Biochim Biophys Acta Mol Basis Dis 2011; 1822:248-60. [PMID: 22001440 DOI: 10.1016/j.bbadis.2011.09.018] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 09/29/2011] [Accepted: 09/30/2011] [Indexed: 11/28/2022]
Abstract
MicroRNA 21 (miR-21) has been implicated in various aspects of carcinogenesis. However, its function and molecular mechanism in cervical squamous carcinoma have not been studied. Using TaqMan quantitative real-time PCR and Northern blot, we confirmed that miR-21 is significantly overexpressed in human cervical squamous cancer tissues and cell lines. Remarkably, we showed that the level of miR-21 correlates with the tumor differentiation and nodal status by ISH. Furthermore, we demonstrated that miR-21 regulates proliferation, apoptosis, and migration of HPV16-positive cervical squamous cells. In order to identify candidate target genes for miR-21, we used gene expression profiling. By luciferase reporter assays, we confirmed that CCL20 is one of its target genes, which is related to the HPV16 E6 and E7 oncogenes. Our results suggest that miR-21 may be involved in cervical squamous cell tumorigenesis.
Collapse
Affiliation(s)
- Tingting Yao
- Department of Gynecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou 510120, People's Republic of China
| | | |
Collapse
|
25
|
Abstract
Irrespective of the immune status, the vast majority of all lymphocytes reside in peripheral tissues whereas those present in blood only amount to a small fraction of the total. It has been estimated that T cells in healthy human skin outnumber those present in blood by at least a factor of two. How lymphocytes within these two compartments relate to each other is not well understood. However, mounting evidence suggest that the study of T cell subsets present in peripheral blood does not reflect the function of their counterparts at peripheral sites. This is especially true under steady-state conditions whereby long-lived memory T cells in healthy tissues, notably those in epithelial tissues at body surfaces, are thought to fulfill a critical immune surveillance function by contributing to the first line of defense against a series of local threats, including microbes, tumors, and toxins, and by participating in wound healing. The relative scarcity of information regarding peripheral T cells and the factors regulating their localization is primarily due to inherent difficulties in obtaining healthy tissue for the extraction and study of immune cells on a routine basis. This is most certainly true for humans. Here, we review our current understanding of T cell homing to human skin and compare it when possible with gut-selective homing. We also discuss candidate chemokines that may account for the tissue selectivity in this process and present a model whereby CCR8, and its ligand CCL1, selectively regulate the homeostatic migration of memory lymphocytes to skin tissue.
Collapse
Affiliation(s)
- Michelle L McCully
- Department of Infection, Immunity and Biochemistry, School of Medicine, Cardiff University Cardiff, UK
| | | |
Collapse
|
26
|
Les lymphocytes TH17 : différenciation, phénotype, fonctions, et implications en pathologie et thérapeutique humaine. Rev Med Interne 2011; 32:292-301. [DOI: 10.1016/j.revmed.2009.12.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 12/17/2009] [Indexed: 01/08/2023]
|
27
|
Krejsgaard T, Ralfkiaer U, Clasen-Linde E, Eriksen KW, Kopp KL, Bonefeld CM, Geisler C, Dabelsteen S, Wasik MA, Ralfkiaer E, Woetmann A, Odum N. Malignant cutaneous T-cell lymphoma cells express IL-17 utilizing the Jak3/Stat3 signaling pathway. J Invest Dermatol 2011; 131:1331-8. [PMID: 21346774 DOI: 10.1038/jid.2011.27] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
IL-17 is a proinflammatory cytokine that is crucial for the host's protection against a range of extracellular pathogens. However, inappropriately regulated expression of IL-17 is associated with the development of inflammatory diseases and cancer. In cutaneous T-cell lymphoma (CTCL), malignant T cells gradually accumulate in skin lesions characterized by massive chronic inflammation, suggesting that IL-17 could be involved in the pathogenesis. In this study we show that IL-17 protein is present in 10 of 13 examined skin lesions but not in sera from 28 CTCL patients. Importantly, IL-17 expression is primarily observed in atypical lymphocytes with characteristic neoplastic cell morphology. In accordance, malignant T-cell lines from CTCL patients produce IL-17 and the synthesis is selectively increased by IL-2 receptor β chain cytokines. Small-molecule inhibitors or small interfering RNA against Jak3 and signal transducer and activator of transcription 3 (Stat3) reduce the production of IL-17, showing that the Jak3/Stat3 pathway promotes the expression of the cytokine. In summary, our findings indicate that the malignant T cells in CTCL lesions express IL-17 and that this expression is promoted by the Jak3/Stat3 pathway.
Collapse
|
28
|
Bal SM, Ding Z, van Riet E, Jiskoot W, Bouwstra JA. Advances in transcutaneous vaccine delivery: Do all ways lead to Rome? J Control Release 2010; 148:266-82. [DOI: 10.1016/j.jconrel.2010.09.018] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 09/13/2010] [Indexed: 01/09/2023]
|
29
|
|
30
|
Abstract
IMPORTANCE OF THE FIELD Psoriasis is a common, chronic autoimmune disease of the skin. Despite a number of effective treatments, new therapies are needed with enhanced efficacy, safety and convenience. Chemokine receptors are GPCRs that control leukocyte trafficking, and like other GPCRs, are good potential drug targets. The chemokine receptor CCR6 is expressed on the T(H)17 subset of CD4(+) T cells, which produces IL-17A/F, IL-22, TNF-alpha and other cytokines, and which has been implicated in the pathogenesis of psoriasis. CCR6 and its ligand, CCL20/MIP-3alpha, are highly expressed in psoriatic skin and CCR6 is necessary for the pathology induced in a mouse model of psoriasis-like inflammation. AREAS COVERED IN THIS REVIEW This review summarizes the evidence for the importance of the IL-23/T(H)17 axis, and in particular CCR6 and CCL20 in psoriasis, dating from 2000 to the present, and discusses the possibility of inhibiting CCR6 as a treatment for the disease. WHAT THE READER WILL GAIN The review informs the reader of the current thinking on the mechanisms of inflammation in psoriasis and the possible roles for CCR6 (and CCL20) in disease pathogenesis. TAKE HOME MESSAGE We conclude that CCR6 should be investigated as a potential therapeutic target in psoriasis.
Collapse
Affiliation(s)
- Michael N. Hedrick
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Anke S. Lonsdorf
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Sam T. Hwang
- Department of Dermatology, Medical College of Wisconsin, Froedtert Clinic East, Milwaukee, Wisconsin, USA
| | - Joshua M. Farber
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
31
|
Aerts NE, De Knop KJ, Leysen J, Ebo DG, Bridts CH, Weyler JJ, Stevens WJ, De Clerck LS. Increased IL-17 production by peripheral T helper cells after tumour necrosis factor blockade in rheumatoid arthritis is accompanied by inhibition of migration-associated chemokine receptor expression. Rheumatology (Oxford) 2010; 49:2264-72. [DOI: 10.1093/rheumatology/keq224] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
32
|
Nakajima A, Matsuki T, Komine M, Asahina A, Horai R, Nakae S, Ishigame H, Kakuta S, Saijo S, Iwakura Y. TNF, but Not IL-6 and IL-17, Is Crucial for the Development of T Cell-Independent Psoriasis-Like Dermatitis in Il1rn−/− Mice. THE JOURNAL OF IMMUNOLOGY 2010; 185:1887-93. [DOI: 10.4049/jimmunol.1001227] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
33
|
Regulation of the psoriatic chemokine CCL20 by E3 ligases Trim32 and Piasy in keratinocytes. J Invest Dermatol 2010; 130:1384-90. [PMID: 20054338 DOI: 10.1038/jid.2009.416] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Psoriasis is an inflammatory skin disorder with aberrant regulation of keratinocytes and immunocytes. Although it is well known that uncontrolled keratinocyte proliferation is largely driven by proinflammatory cytokines from the immunocytes, the functional role of keratinocytes in the regulation of immunocytes is poorly understood. Recently, we found that tripartite motif-containing protein 32 (Trim32), an E3-ubiquitin ligase, is elevated in the epidermal lesions of human psoriasis. We previously showed that Trim32 binds to the protein inhibitor of activated STAT-Y (Piasy) and mediates its degradation through ubiquitination. Interestingly, the Piasy gene is localized in the PSORS6 susceptibility locus on chromosome 19p13, and Piasy negatively regulates the activities of several transcription factors, including NF-kappaB, STAT, and SMADs, that are implicated in the pathogenesis of psoriasis. In this study, we show that Trim32 activates, and Piasy inhibits, keratinocyte production of CC chemokine ligand 20 (CCL20), a psoriatic chemokine essential for recruitment of DCs and T helper (Th)17 cells to the skin. Further, Trim32/Piasy regulation of CCL20 is mediated through Piasy interaction with the RelA/p65 subunit of NF-kappaB. As CCL20 is activated by Th17 cytokines, the upregulation of CCL20 production by Trim32 provides a positive feedback loop of CCL20 and Th17 activation in the self-perpetuating cycle of psoriasis.
Collapse
|
34
|
Jennings JA, Chen D, Feldman DS. Upregulation of chemokine (C-C motif) ligand 20 in adult epidermal keratinocytes in direct current electric fields. Arch Dermatol Res 2009; 302:211-20. [PMID: 19784662 DOI: 10.1007/s00403-009-0995-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 09/05/2009] [Accepted: 09/10/2009] [Indexed: 12/18/2022]
Abstract
Electric fields (EFs) of around 100 mV/mm are present in normal healing wounds and induce the directional migration of epithelial cells. Reepithelialization during wound healing thus may be controlled in part by this electrical signal. In this study, the early transcriptional response of human epidermal keratinocytes to EFs is examined using microarrays. Increased expression of various chemokines, interleukins, and other inflammatory response genes indicates that EFs stimulate keratinocyte activation and immune stimulatory activity. Gene expression activity further suggests that interleukin 1 is either released or activated in EFs. Expression of the chemokine CCL20 steadily increases at 100 mV/mm over time until around 8 h after exposure. This chemokine is also expressed at field strengths of 300 mV/mm-above the level of endogenous wound fields. The early effects of EFs on epithelial gene expression activity identified in these studies suggest the importance of naturally occurring EFs both in repair mechanisms and for the possibility of controlling these responses therapeutically.
Collapse
Affiliation(s)
- Jessica Amber Jennings
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1075 13th St. South, Birmingham, AL 35294, USA.
| | | | | |
Collapse
|
35
|
Yoshizaki T, Bandoh N, Ueda S, Nozawa H, Goto T, Kishibe K, Takahara M, Harabuchi Y. Up-regulation of CC chemokine receptor 6 on tonsillar T cells and its induction by in vitro stimulation with alpha-streptococci in patients with pustulosis palmaris et plantaris. Clin Exp Immunol 2009; 157:71-82. [PMID: 19659772 DOI: 10.1111/j.1365-2249.2009.03945.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pustulosis palmaris et plantaris (PPP) is a tonsil-related disease; tonsillectomy is somewhat effective in treating the condition. However, the aetiological association between the tonsils and PPP has not yet been elucidated fully. Recently, some chemokines and chemokine receptors, including CC chemokine receptor (CCR) 4, CCR6 and CX chemokine receptor (CXCR) 3, have been reported to play important roles in the development of psoriasis, a disease related closely to PPP. In this study, we found that CCR6 expression on both tonsillar and peripheral blood T cells was up-regulated more intensively in PPP patients than in non-PPP patients (P < 0.001 for both), but CCR4 and CXCR3 expressions were not. In vitro stimulation with alpha-streptococcal antigen enhanced CCR6 expression significantly on tonsillar T cells in PPP patients (P < 0.05), but this was not observed in non-PPP patients. The chemotactic response of tonsillar T cells to the CCR6 ligand CC chemokine ligand (CCL) 20 was significantly higher in PPP patients than in non-PPP patients (P < 0.05). The percentage of CCR6-positive peripheral blood T cells decreased after tonsillectomy in PPP patients (P < 0.01); this decrease correlated with an improvement of skin lesions (P < 0.05, r = -0.63). The numbers of CCR6-positive cells and the expression of CCL20 were increased significantly in pathological lesions compared with non-pathological lesions in PPP skin (P < 0.01, P < 0.05 respectively). These results suggest that a novel immune response to alpha-streptococci may enhance CCR6 expression on T cells in tonsils and that CCR6-positive T cells may move to peripheral blood circulation, resulting in recruitment to target skin lesions expressing CCL20 in PPP patients. This may be one of the key roles in pathogenesis of the tonsil-related disease PPP.
Collapse
Affiliation(s)
- T Yoshizaki
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical College, Asahikawa, Hokkaido, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Ghosh M, Shen Z, Schaefer TM, Fahey JV, Gupta P, Wira CR. CCL20/MIP3alpha is a novel anti-HIV-1 molecule of the human female reproductive tract. Am J Reprod Immunol 2009; 62:60-71. [PMID: 19527233 DOI: 10.1111/j.1600-0897.2009.00713.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
PROBLEM CCL20/MIP3alpha is a chemokine for immature dendritic cells as well as an antibacterial against gram-positive and gram-negative bacteria. The role of CCL20/MIP3alpha as an antiviral is unknown. In this study, we have examined the production of CCL20/MIP3alpha by epithelial cells from the upper female reproductive tract as well as its activity as an antiviral molecule. METHOD OF STUDY Primary uterine and Fallopian tube epithelial cells were treated with Poly(I:C) and CCL20/MIP3alpha mRNA and protein was measured by Realtime RT-PCR and ELISA assays. Anti-HIV activity was determined using an indicator cell line TZM-bl and quantified by using a luminometer. RESULTS Primary uterine and Fallopian tube epithelial cells produce CCL20/MIP3alpha constitutively and the production is enhanced following stimulation with viral double-stranded RNA mimic Poly(I:C). Recombinant CCL20/MIP3alpha was able to inhibit both T-cell-tropic X4/IIIB and macrophage-tropic R5/BaL HIV-1 when virus was directly incubated with CCL20/MIP3alpha but not when CCL20/MIP3alpha was added to cells either prior to infection or post-infection. This suggests that the mechanism of inhibition is likely to be a direct interaction between HIV-1 and CCL20/MIP3alpha. CONCLUSION This study demonstrates that CCL20/MIP3alpha is an important endogenous anti-HIV-1 microbicide of the female reproductive tract.
Collapse
Affiliation(s)
- Mimi Ghosh
- Department of Physiology, Dartmouth Medical School, Lebanon, NH, USA
| | | | | | | | | | | |
Collapse
|
37
|
Hedrick MN, Lonsdorf AS, Shirakawa AK, Lee CCR, Liao F, Singh SP, Zhang HH, Grinberg A, Love PE, Hwang ST, Farber JM. CCR6 is required for IL-23-induced psoriasis-like inflammation in mice. J Clin Invest 2009; 119:2317-29. [PMID: 19662682 PMCID: PMC2719919 DOI: 10.1172/jci37378] [Citation(s) in RCA: 183] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 05/06/2009] [Indexed: 01/09/2023] Open
Abstract
Psoriasis is a common immune-mediated chronic inflammatory skin disorder, but the mechanisms of pathogenesis are still poorly understood. IL-23 is expressed in psoriatic skin, and IL-23 injection produces IL-22-dependent psoriasiform changes in mouse skin. Th17 cells produce IL-22 and display CCR6, the CCL20 receptor; CCR6+ T cells and CCL20 are abundant in psoriatic skin. We investigated a possible role for CCR6 in recruiting Th17 cells and producing psoriasiform pathology by injecting IL-23 into the skin of WT and Ccr6-/- mice. Unlike for WT mice, IL-23-injected ears of Ccr6-/- mice showed neither substantial epidermal/dermal changes nor increased Il22 mRNA expression. However, injection of IL-22 yielded equivalent psoriasiform changes in WT and Ccr6-/- mice. Surprisingly, IL-23-injected ears of WT and Ccr6-/- mice contained similar numbers of Th cells able to make IL-17A and/or IL-22. Furthermore, in ears of Rag1-/- mice, IL-23 initially induced skin changes and levels of Il22 mRNA that were indistinguishable from WT mice, revealing at least one non-T cell source for IL-22. We conclude that CCR6 is essential in a model of IL-23-induced, IL-22-mediated dermatitis, which develops in sequential T cell-independent and T cell-dependent phases. These findings reveal an expanded role for CCR6 in IL-23-related responses and identify CCR6 as a potential therapeutic target in psoriasis.
Collapse
Affiliation(s)
- Michael N. Hedrick
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (NIAID), and
Dermatology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA.
Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany.
Laboratory of Pathology, Center for Cancer Research, NCI, and
Laboratory of Mammalian Genes and Development, National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, Maryland, USA
| | - Anke S. Lonsdorf
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (NIAID), and
Dermatology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA.
Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany.
Laboratory of Pathology, Center for Cancer Research, NCI, and
Laboratory of Mammalian Genes and Development, National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, Maryland, USA
| | - Aiko-Konno Shirakawa
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (NIAID), and
Dermatology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA.
Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany.
Laboratory of Pathology, Center for Cancer Research, NCI, and
Laboratory of Mammalian Genes and Development, National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, Maryland, USA
| | - Chyi-Chia Richard Lee
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (NIAID), and
Dermatology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA.
Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany.
Laboratory of Pathology, Center for Cancer Research, NCI, and
Laboratory of Mammalian Genes and Development, National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, Maryland, USA
| | - Fang Liao
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (NIAID), and
Dermatology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA.
Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany.
Laboratory of Pathology, Center for Cancer Research, NCI, and
Laboratory of Mammalian Genes and Development, National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, Maryland, USA
| | - Satya P. Singh
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (NIAID), and
Dermatology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA.
Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany.
Laboratory of Pathology, Center for Cancer Research, NCI, and
Laboratory of Mammalian Genes and Development, National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, Maryland, USA
| | - Hongwei H. Zhang
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (NIAID), and
Dermatology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA.
Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany.
Laboratory of Pathology, Center for Cancer Research, NCI, and
Laboratory of Mammalian Genes and Development, National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, Maryland, USA
| | - Alexander Grinberg
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (NIAID), and
Dermatology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA.
Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany.
Laboratory of Pathology, Center for Cancer Research, NCI, and
Laboratory of Mammalian Genes and Development, National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, Maryland, USA
| | - Paul E. Love
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (NIAID), and
Dermatology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA.
Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany.
Laboratory of Pathology, Center for Cancer Research, NCI, and
Laboratory of Mammalian Genes and Development, National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, Maryland, USA
| | - Sam T. Hwang
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (NIAID), and
Dermatology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA.
Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany.
Laboratory of Pathology, Center for Cancer Research, NCI, and
Laboratory of Mammalian Genes and Development, National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, Maryland, USA
| | - Joshua M. Farber
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (NIAID), and
Dermatology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA.
Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany.
Laboratory of Pathology, Center for Cancer Research, NCI, and
Laboratory of Mammalian Genes and Development, National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, Maryland, USA
| |
Collapse
|
38
|
Fusion of antigen to chemokine CCL20 or CXCL13 strategy to enhance DNA vaccine potency. Int Immunopharmacol 2009; 9:925-30. [DOI: 10.1016/j.intimp.2009.03.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 02/15/2009] [Accepted: 03/31/2009] [Indexed: 12/19/2022]
|
39
|
Elentner A, Finke D, Schmuth M, Chappaz S, Ebner S, Malissen B, Kissenpfennig A, Romani N, Dubrac S. Langerhans cells are critical in the development of atopic dermatitis-like inflammation and symptoms in mice. J Cell Mol Med 2009; 13:2658-2672. [PMID: 19538461 DOI: 10.1111/j.1582-4934.2009.00797.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Genetic or vitamin D3-induced overexpression of thymic stromal lymphopoietin (TSLP) by keratinocytes results in an atopic dermatitis (AD)-like inflammatory phenotype in mice echoing the discovery of high TSLP expression in epidermis from AD patients. Although skin dendritic cells (DC) are suspected to be involved in AD, direct evidence of a pathogenetic role for skin DC in TSLP-induced skin inflammation has not yet been demonstrated. In a mouse model of AD, i.e. mice treated with the low-calcemic vitamin D3 analogue, MC903, we show that epidermal Langerhans cells (LC)-depleted mice treated with MC903 do neither develop AD-like inflammation nor increased serum IgE as compared to vitamin D3 analogue-treated control mice. Accordingly, we show that, in mice treated with MC903 or in K14-TSLP transgenic mice, expression of maturation markers by LC is increased whereas maturation of dermal DC is not altered. Moreover, only LC are responsible for the polarization of naïve CD4(+) T cells to a Th2 phenotype, i.e. decrease in interferon-gamma and increase in interleukin (IL)-13 production by CD4(+) T cells. This effect of LC on T-lymphocytes does not require OX40-L/CD134 and is mediated by a concomitant down-regulation of IL-12 and CD70. Although it was previously stated that TSLP up-regulates the production of thymus and activation-regulated chemokine (TARC)/chemokine (C-C motif) ligand 17 (CCL17) and macrophage-derived chemokine (MDC)/CCL22 by human LC in vitro, our work shows that production of these Th2- cell attracting chemokines is increased only in keratinocytes in response to TSLP overexpression. These results demonstrate that LC are required for the development of AD in mouse models of AD involving epidermal TSLP overexpression.
Collapse
Affiliation(s)
- Andreas Elentner
- Department of Dermatology and Venereology, Innsbruck Medical University, Innsbruck, Austria
| | - Daniela Finke
- Developmental Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Matthias Schmuth
- Department of Dermatology and Venereology, Innsbruck Medical University, Innsbruck, Austria
| | - Stéphane Chappaz
- Developmental Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Susanne Ebner
- Department of Dermatology and Venereology, Innsbruck Medical University, Innsbruck, Austria.,Kompetenzzentrum Medizin Tirol / CEMIT, Innsbruck, Austria
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, Institut National de la Santé et de la Recherche Médicale Unité, Centre National de la Recherche Scientifique Unité Mixte de Recherche, Universite de la Mediterrannée, Marseille, France
| | - Adrien Kissenpfennig
- Center for cancer research and cell biology, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Nikolaus Romani
- Department of Dermatology and Venereology, Innsbruck Medical University, Innsbruck, Austria.,Kompetenzzentrum Medizin Tirol / CEMIT, Innsbruck, Austria
| | - Sandrine Dubrac
- Department of Dermatology and Venereology, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
40
|
Ouyang W, Filvaroff E, Hu Y, Grogan J. Novel therapeutic targets along the Th17 pathway. Eur J Immunol 2009; 39:670-5. [PMID: 19283720 DOI: 10.1002/eji.200839105] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The recent discovery of IL-17-producing CD4(+) Th subset significantly revised the Th1/Th2 dichotomy model proposed by Mosmann and Coffman almost two decades ago. Th17 cells are involved in the pathogenesis of many human autoimmune diseases. Th17 cells, their developmental pathways and their effector functions, therefore, provide novel therapeutic targets.
Collapse
Affiliation(s)
- Wenjun Ouyang
- Department of Immunology, Genentech, South San Francisco, CA 94080, USA.
| | | | | | | |
Collapse
|
41
|
Sanmiguel JC, Olaru F, Li J, Mohr E, Jensen LE. Interleukin-1 regulates keratinocyte expression of T cell targeting chemokines through interleukin-1 receptor associated kinase-1 (IRAK1) dependent and independent pathways. Cell Signal 2009; 21:685-94. [PMID: 19166933 DOI: 10.1016/j.cellsig.2009.01.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 12/19/2008] [Accepted: 01/02/2009] [Indexed: 01/10/2023]
Abstract
IL-1 is a potent pro-inflammatory cytokine that activates intracellular signaling cascades some of which may involve IL-1 receptor associated kinase-1 (IRAK1). Psoriasis is a T cell dependent chronic inflammatory condition of the skin of unknown cause. IL-1 has been implicated in psoriasis pathology, but the mechanism has not been elucidated. Interestingly, expression of IRAK1 is elevated in psoriatic skin. To identify a potential link between IL-1, keratinocytes and T cells in skin inflammation we employed pathway-focused microarrays to evaluate IL-1 dependent gene expression in keratinocytes. Several candidate mRNAs encoding known T cell chemoattractants were identified in primary keratinocytes and the stable keratinocyte cell line HaCaT. CCL5 and CCL20 mRNA and protein levels were confirmed up-regulated by IL-1 in concentration and time-dependent manners. Furthermore IL-1 synergized with IFN-gamma and TNF-alpha. Expression of CXCL9, CXCL10 and CXCL11 mRNAs was also increased in response to IL-1, but protein could only be detected in medium from cells treated with IFN-gamma alone or in combination with IL-1. Over-expression of IRAK1 led to increased constitutive and cytokine induced production of CCL5 and CCL20. Inhibition of IRAK1 activity through RNAi or expression of a dominant negative mutant blocked production of CCL5 and CCL20 but had no effect upon the IL-1 enhancement of IFN-gamma induced CXCL9, CXCL10 and CXCL11 production. In conclusion IL-1 regulates T cell targeting chemokine production in keratinocytes through IRAK1 dependent and independent pathways. These pathways may contribute to acute and chronic skin inflammation.
Collapse
Affiliation(s)
- Julio C Sanmiguel
- Department of Pharmacology, University of Pennsylvania School of Medicine, 89 John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
42
|
Caberg JH, Hubert P, Herman L, Herfs M, Roncarati P, Boniver J, Delvenne P. Increased migration of Langerhans cells in response to HPV16 E6 and E7 oncogene silencing: role of CCL20. Cancer Immunol Immunother 2009; 58:39-47. [PMID: 18438663 PMCID: PMC11030152 DOI: 10.1007/s00262-008-0522-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 04/11/2008] [Indexed: 12/29/2022]
Abstract
Human papillomavirus (HPV) infection, particularly type 16, is causally associated with cancer of the uterine cervix. The persistence or progression of cervical lesions suggests that viral antigens are not adequately presented to the immune system. This hypothesis is reinforced by the observation that most squamous intraepithelial lesions (SILs) show quantitative and functional alterations of Langerhans cells (LC). The infiltration of immature LC in the squamous epithelium is mainly controlled by Macrophage Inflammatory Protein 3alpha/CCL20. After having shown that CCL20 production is altered in HPV-transformed keratinocytes (KC), the possible role of HPV16 E6 and E7 viral oncoproteins in the reduced CCL20 levels observed in SILs was investigated by silencing HPV16 E6 and E7 oncogenes by RNA interference (siRNA). This treatment not only increased CCL20 secretion but also resulted in the modulation of NF-kappaB p50, p52 and p65 precursor localization. Moreover, silencing of E6 and E7 oncogenes in HPV16-transformed KC induced a significantly higher migratory capacity of LC in a Boyden chamber assay and in an in vitro formed (pre)neoplastic epithelium reminiscent of high-grade SILs. Anti-CCL20 neutralizing antibody experiments showed that the increased migration of LC is due to the re-expression of CCL20 in E6 and E7 siRNA transfected KC. These data suggest that HPV16 E6/E7-induced down-regulation of CCL20 observed during the cervical carcinogenesis may contribute to a diminished capacity of the immune system to control HPV infection.
Collapse
Affiliation(s)
- Jean-Hubert Caberg
- Department of Pathology, GIGA-Cancer, B35, University of Liege, CHU Sart Tilman, Liege, Belgium.
| | | | | | | | | | | | | |
Collapse
|
43
|
Oyoshi MK, He R, Kumar L, Yoon J, Geha RS. Cellular and molecular mechanisms in atopic dermatitis. Adv Immunol 2009; 102:135-226. [PMID: 19477321 DOI: 10.1016/s0065-2776(09)01203-6] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Atopic dermatitis (AD) is a pruritic inflammatory skin disease associated with a personal or family history of allergy. The prevalence of AD is on the rise and estimated at approximately 17% in the USA. The fundamental lesion in AD is a defective skin barrier that results in dry itchy skin, and is aggravated by mechanical injury inflicted by scratching. This allows entry of antigens via the skin and creates a milieu that shapes the immune response to these antigens. This review discusses recent advances in our understanding of the abnormal skin barrier in AD, namely abnormalities in epidermal structural proteins, such as filaggrin, mutated in approximately 15% of patients with AD, epidermal lipids, and epidermal proteases and protease inhibitors. The review also dissects, based on information from mouse models of AD, the contributions of the innate and adaptive immune system to the pathogenesis of AD, including the effect of mechanical skin injury on the polarization of skin dendritic cells, mediated by keratinocyte-derived cytokines such as thymic stromal lymphopoietin (TSLP), IL-6, and IL-1, that results in a Th2-dominated immune response with a Th17 component in acute AD skin lesions and the progressive conversion to a Th1-dominated response in chronic AD skin lesions. Finally, we discuss the mechanisms of susceptibility of AD skin lesions to microbial infections and the role of microbial products in exacerbating skin inflammation in AD. Based on this information, we discuss current and future therapy of this common disease.
Collapse
Affiliation(s)
- Michiko K Oyoshi
- Division of Immunology, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
44
|
Takahashi K, Nakanishi T, Yumoto H, Adachi T, Matsuo T. CCL20 production is induced in human dental pulp upon stimulation by Streptococcus mutans and proinflammatory cytokines. ACTA ACUST UNITED AC 2008; 23:320-7. [PMID: 18582332 DOI: 10.1111/j.1399-302x.2008.00431.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Pulpitis is characterized by the marked infiltration of inflammatory cells in response to an invasion of caries-related bacteria. It is well known that chemokines regulate the trafficking of lymphocytes, and CC chemokine ligand 20 (CCL20) has been recently shown to play a crucial role in the recruitment of memory T cells and immature dendritic cells into inflammatory lesions. We previously reported that CCL20 was mainly expressed in microvascular endothelial cells and macrophages that accumulated in inflamed pulp tissues and that its specific receptor, CCR6, was expressed on infiltrated lymphocytes. However, the mechanism of CCL20 expression remains unclear. METHODS AND RESULTS In this study, we investigated the expression of CCL20 in monocytes/macrophages, endothelial cells, and pulpal fibroblasts after stimulation with Streptococcus mutans, a representative of caries-related bacteria, or proinflammatory cytokines. CCL20 messenger RNA was detected by reverse transcription-polymerase chain reaction in inflamed pulp, but not in clinically normal pulp. By enzyme-linked immunosorbent assay, S. mutans induced a human monocytic cell line, differentiated macrophage-like THP-1 cells, and human umbilical vein endothelial cells (HUVEC) to produce an increased amount of CCL20. Lipoteichoic acid from S. mutans also elicited CCL20 production by HUVEC. Moreover, CCL20 production from pulpal fibroblasts was increased by stimulation with inetrleukin-1beta and tumor necrosis factor-alpha. CONCLUSION Our results indicate that CCL20 expression is induced by stimulation with caries-related bacteria that have invaded deeply into the dentinal tubules as well as by proinflammatory cytokines in the inflamed pulpal lesions. It may be involved in the progression of pulpitis via accumulation of inflammatory cells.
Collapse
Affiliation(s)
- K Takahashi
- Department of Conservative Dentistry, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Tokushima, Japan.
| | | | | | | | | |
Collapse
|
45
|
Lee JS, Kim IS, Ryu JS, Yun CY. House dust mite, Dermatophagoides pteronissinus increases expression of MCP-1, IL-6, and IL-8 in human monocytic THP-1 cells. Cytokine 2008; 42:365-71. [PMID: 18490175 DOI: 10.1016/j.cyto.2008.03.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 03/04/2008] [Accepted: 03/20/2008] [Indexed: 01/02/2023]
Abstract
The house dust mite (Dermatophagoides pteronissinus) plays an important role in the pathogenesis of allergic diseases, including atopic dermatitis, and asthma. Monocyte chemotactic protein 1 (MCP-1/CCL2)/IL-6/IL-8 (CXCL8) plays a pivotal role in mediating the infiltration of various cells into the skin of atopic dermatitis and psoriasis. The aim of this study was to investigate the effect of D. pteronissinus extract (DpE) on expression of MCP-1/IL-6/IL-8 mRNA and protein and the signal transduction in the human monocytic cell line, THP-1. The mRNA and protein expression of MCP-1/CCL2, IL-6, and IL-8 were elevated by DpE in a time and dose-dependent manner in THP-1 cells. The increased expression of MCP-1, IL-6, and IL-8 was not affected by aprotinin (serine protease inhibitor) or E64 (cysteine protease inhibitor). We found that MCP-1 and IL-6 expression due to DpE was related to Src, protein kinase C delta (PKC delta), extracellular-signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) and IL-8 expression was involved in Src family tyrosine kinase, PKC delta, ERK. DpE increased the phosphorylation of ERK and p38 MAPK after 5min and peaked at 30min. The activation was significantly blocked by PP2, an inhibitor of Src family tyrosine kinase and rottlerin, an inhibitor of PKC delta (p<0.01). DpE increases MCP-1, IL-6, and IL-8 expression and transduces its signal via Src family tyrosine kinase, PKC, and ERK in a protease-independent manner. This finding may contribute to the elucidation of the pathogenic mechanism triggered by DpE .
Collapse
Affiliation(s)
- Ji-Sook Lee
- Department of Biology, Daejeon University, 96-3 Yongun-dong, Dong-gu, Daejeon 300-716, Republic of Korea
| | | | | | | |
Collapse
|
46
|
Paradis TJ, Cole SH, Nelson RT, Gladue RP. Essential Role of CCR6 in Directing Activated T Cells to the Skin during Contact Hypersensitivity. J Invest Dermatol 2008; 128:628-33. [PMID: 17882271 DOI: 10.1038/sj.jid.5701055] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CCR6 is expressed in a number of dermatological inflammatory diseases. Here, we report that mice sensitized with the hapten oxazolone had increased numbers of CCR6+ T cells in the draining lymph nodes. Using CCR6-/- mice, we assessed the role of CCR6 on the development of contact hypersensitivity. After hapten sensitization and re-challenge, ear swelling in CCR6-/- animals was reduced 80% as compared with wild-type (WT) control mice. This decreased level of inflammation was not related to an inhibition in T-cell activation, because CCR6-/- lymph node cells from sensitized mice produced threefold higher levels of IFN-gamma in culture than cells from sensitized WT mice and, when these cells were directly injected into the site of hapten challenge, induced a robust inflammatory response. However, intravenous injection of CCR6-/- lymph node cells from sensitized mice were unable to prime naive mice to re-challenge whereas cells from primed WT mice were able to sensitize animals. These results suggest that CCR6 plays an important role in directing the trafficking of activated T cells into the skin and suggests that a CCR6 antagonist could be useful to treat skin-mediated inflammatory reactions.
Collapse
Affiliation(s)
- Timothy J Paradis
- Department of Immunology, Pfizer Global Research and Development, Groton, Connecticut 06340, USA. Timothy.J.Paradis@.Pfizer.com
| | | | | | | |
Collapse
|
47
|
Haider AS, Lowes MA, Suárez-Fariñas M, Zaba LC, Cardinale I, Khatcherian A, Novitskaya I, Wittkowski KM, Krueger JG. Identification of cellular pathways of "type 1," Th17 T cells, and TNF- and inducible nitric oxide synthase-producing dendritic cells in autoimmune inflammation through pharmacogenomic study of cyclosporine A in psoriasis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 180:1913-20. [PMID: 18209089 DOI: 10.4049/jimmunol.180.3.1913] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Therapeutic modulation of psoriasis with targeted immunosuppressive agents defines inflammatory genes associated with disease activity and may be extrapolated to a wide range of autoimmune diseases. Cyclosporine A (CSA) is considered a "gold standard" therapy for moderate-to-severe psoriasis. We conducted a clinical trial with CSA and analyzed the treatment outcome in blood and skin of 11 responding patients. In the skin, as expected, CSA modulated genes from activated T cells and the "type 1" pathway (p40, IFN-gamma, and STAT-1-regulated genes). However, CSA also modulated genes from the newly described Th17 pathway (IL-17, IL-22, and downstream genes S100A12, DEFB-2, IL-1beta, SEPRINB3, LCN2, and CCL20). CSA also affected dendritic cells, reducing TNF and inducible NO synthase (products of inflammatory TNF- and inducible NO synthase-producing dendritic cells), CD83, and IL-23p19. We detected 220 early response genes (day 14 posttreatment) that were down-regulated by CSA. We classified >95% into proinflammatory or skin resident cells. More myeloid-derived than activated T cell genes were modulated by CSA (54 myeloid genes compared with 11 lymphocyte genes), supporting the hypothesis that myeloid derived genes contribute to pathogenic inflammation in psoriasis. In circulating mononuclear leukocytes, in stark contrast, no inflammatory gene activity was detected. Thus, we have constructed a genomic signature of successful treatment of psoriasis which may serve as a reference to guide development of other new therapies. In addition, these data also identify new gene targets for therapeutic modulation and may be applied to wide range of autoimmune diseases.
Collapse
Affiliation(s)
- Asifa S Haider
- Laboratory for Investigative Dermatology, Rockefeller University, New York, NY, 10021, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
van Beelen AJ, Teunissen MBM, Kapsenberg ML, de Jong EC. Interleukin-17 in inflammatory skin disorders. Curr Opin Allergy Clin Immunol 2008; 7:374-81. [PMID: 17873575 DOI: 10.1097/aci.0b013e3282ef869e] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Recently, a novel and unique subset of interleukin (IL)-17-producing CD4+ T helper (Th17) cells, distinct from Th1 and Th2 cells, was discovered. The question is addressed as to what extent inflammatory skin diseases are associated with the actions of this newly discovered Th17 cell subset. RECENT FINDINGS Th17 cells are involved in protection against bacterial pathogens. In addition, it is now clear that Th17 cells may also be crucial in the pathogenesis of various chronic inflammatory diseases that were formerly categorized as Th1-mediated disorders. SUMMARY In this review, we summarize the current knowledge of IL-17 and Th17 cells and discuss the possible role of IL-17 in the pathology of psoriasis, contact hypersensitivity and atopic dermatitis. Whereas IL-17 may play an important role in the pathogenesis of psoriasis and contact hypersensitivity, its role in atopic dermatitis is still unclear.
Collapse
Affiliation(s)
- Astrid J van Beelen
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
49
|
Hamill N, Romero R, Gotsch F, Kusanovic JP, Edwin S, Erez O, Than NG, Mittal P, Espinoza J, Friel LA, Vaisbuch E, Mazaki-Tovi S, Hassan SS. Exodus-1 (CCL20): evidence for the participation of this chemokine in spontaneous labor at term, preterm labor, and intrauterine infection. J Perinat Med 2008; 36:217-27. [PMID: 18576931 PMCID: PMC3182481 DOI: 10.1515/jpm.2008.034] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIM CCL20, also known as MIP-3 alpha, is a chemokine that participates in chemotaxis of immature dendritic cells, effector/memory T-cells, and B-lymphocytes. The objectives of this study were to determine whether CCL20 can be detected in amniotic fluid (AF) and if AF concentration of this chemokine changes with advancing gestational age, parturition (term and preterm), and intra-amniotic infection/inflammation (IAI). METHODS A cross-sectional study was conducted including the following groups: (1) mid-trimester of pregnancy (n=65); (2) term not in labor (TNL; n=22); (3) term in labor (TIL; n=47); (4) spontaneous preterm labor (PTL) who delivered at term (n=57); (5) spontaneous PTL without IAI who delivered preterm (n=71); and (6) spontaneous PTL with IAI (n=38). AF CCL20 concentrations were determined using ELISA. RESULTS (1) The median AF CCL20 concentration in TNL was higher than that of mid-trimester patients; (2) Women in spontaneous labor at term had a higher median AF concentration of CCL20 than patients at term not in labor; (3) Patients with spontaneous PTL and IAI had a significantly higher median AF concentration of CCL20 than those without IAI who delivered preterm and those who delivered at term. Moreover, women with spontaneous PTL without IAI who delivered preterm had a significantly higher median AF concentration than those with PTL who subsequently delivered at term. CONCLUSIONS (1) CCL20 is a physiologic constituent of AF and its concentration increases as term approaches; (2) spontaneous labor (term and preterm) in the absence of IAI is associated with increased bioavailability of AF CCL20 suggesting that an increase in CCL20 is part of the common pathway of human parturition; (3) patients with IAI had dramatic elevations in the AF CCL20 concentrations suggesting that this chemokine participates in the host response to infection or other stimuli associated with intra-amniotic infection.
Collapse
Affiliation(s)
- Neil Hamill
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University/Hutzel Women’s Hospital, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Francesca Gotsch
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Juan Pedro Kusanovic
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Sam Edwin
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Offer Erez
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Nandor Gabor Than
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Pooja Mittal
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University/Hutzel Women’s Hospital, Detroit, Michigan, USA
| | - Jimmy Espinoza
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University/Hutzel Women’s Hospital, Detroit, Michigan, USA
| | - Lara A. Friel
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University/Hutzel Women’s Hospital, Detroit, Michigan, USA
| | - Edi Vaisbuch
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Shali Mazaki-Tovi
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University/Hutzel Women’s Hospital, Detroit, Michigan, USA
| | - Sonia S. Hassan
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University/Hutzel Women’s Hospital, Detroit, Michigan, USA
| |
Collapse
|
50
|
Yano S, Banno T, Walsh R, Blumenberg M. Transcriptional responses of human epidermal keratinocytes to cytokine interleukin-1. J Cell Physiol 2007; 214:1-13. [PMID: 17941080 DOI: 10.1002/jcp.21300] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interleukin-1 is a proinflammatory and immunomodulatory cytokine that plays a crucial role in inflammatory diseases of the skin, including bacterial infections, bullous diseases, UV damage, and especially psoriasis. To characterize the molecular effects of IL-1 in epidermis, we defined the transcriptional changes in human epidermal keratinocytes 1, 4, 24, and 48 h after treatment with IL-1alpha. IL-1 significantly regulated 388 genes, including genes associated with proteolysis, adhesion, signal transduction, proliferation, and epidermal differentiation. IL-1 induces many genes that have antimicrobial function. Secreted cytokines, chemokines, growth factors, and their receptors are the prominent targets of IL-1 regulation, including IL-8, IL-19, elafin, C3, and S100A proteins, which implicate IL-1 in the pathogenesis of inflammatory diseases. IL-1 induced not only proliferation-associated genes but also differentiation marker genes such as transglutaminase-1 and involucrin, which suggests that IL-1 plays an important role in the aberrant proliferation and differentiation seen in psoriasis. Correlation of IL-1 regulated genes with the TNFalpha and IFNgamma regulated ones showed more similarities between IL-1 and TNFalpha than IL-1 and IFNgamma, whereas Oncostatin-M (OsM) affected a largely unrelated set of genes. IL-1 regulates many genes previously shown to be specifically over-expressed in psoriasis. In summary, IL-1 regulates a characteristic set of genes that define its specific contribution to inflammation and aberrant differentiation in skin diseases.
Collapse
Affiliation(s)
- Shoichiro Yano
- Department of Dermatology, NYU School of Medicine, New York 10016, USA
| | | | | | | |
Collapse
|