1
|
Fatma M, Parveen S, Mir SS. Unraveling the kinase code: Role of protein kinase in lung cancer pathogenesis and therapeutic strategies. Biochim Biophys Acta Rev Cancer 2025; 1880:189309. [PMID: 40169080 DOI: 10.1016/j.bbcan.2025.189309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 02/05/2025] [Accepted: 03/28/2025] [Indexed: 04/03/2025]
Abstract
Lung cancer is a prominent cause of cancer-related deaths globally, prompting exploration into the molecular pathways governing cancer cell signaling. Recent insights highlight the critical role of kinases in carcinogenesis and metastasis, particularly in non-small cell lung cancer (NSCLC), where protein kinases significantly contribute to drug resistance. These diverse enzymes catalyze protein phosphorylation and are implicated in cancer through misregulated expression, amplification, aberrant phosphorylation, mutations, and chromosomal translocations. Amplifications of kinases serve as important diagnostic, prognostic, and predictive biomarkers across various cancers. Notably, the Phosphatidylinositol 3-kinase (PI3K)/AKT pathway is crucial for the survival and proliferation of tumor cells. Novel therapeutic approaches are being explored to precisely target these pathways. Peptide-based therapies offer specificity and reduced toxicity compared to conventional treatments, while gene therapy targets abnormal genetic expressions. Advances in nanotechnology and CRISPR/Cas9 systems enhance gene delivery methods, holding promise for targeting specific molecular pathways in lung cancer treatment and minimizing systemic toxicity.
Collapse
Affiliation(s)
- Mariyam Fatma
- Molecular Cell Biology Laboratory, Integral Centre of Excellence for Interdisciplinary Research-4 (ICEIR-4) Integral University, Kursi Road, Lucknow 226026, India; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India
| | - Sana Parveen
- Molecular Cell Biology Laboratory, Integral Centre of Excellence for Interdisciplinary Research-4 (ICEIR-4) Integral University, Kursi Road, Lucknow 226026, India; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India
| | - Snober S Mir
- Molecular Cell Biology Laboratory, Integral Centre of Excellence for Interdisciplinary Research-4 (ICEIR-4) Integral University, Kursi Road, Lucknow 226026, India; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India.
| |
Collapse
|
2
|
Si L, Zhang L, Xing S, Fang P, Tian X, Liu X, Xv X. Curcumin as a therapeutic agent in cancer therapy: Focusing on its modulatory effects on circular RNAs. Phytother Res 2023. [PMID: 37200228 DOI: 10.1002/ptr.7863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/17/2023] [Accepted: 04/17/2023] [Indexed: 05/20/2023]
Abstract
Curcumin, a natural polyphenol compound, has been identified as an effective therapeutic agent against cancer that exerts its anti-tumor activities by up/downregulating signaling mediators and modulating various cellular processes, including angiogenesis, autophagy, apoptosis, metastasis, and epithelial-mesenchymal transition (EMT). Since almost 98% of genomic transcriptional production is noncoding RNAs in humans, there is evidence that curcumin exerts therapeutic effects through the alterations of noncoding RNAs in various types of cancers. Circular RNAs (circRNAs) are formed by the back-splicing of immature mRNAs and have several functions, including functioning as miRNA sponges. It has been shown that curcumin modulated various circRNAs, including circ-HN1, circ-PRKCA, circPLEKHM3, circZNF83, circFNDC3B, circ_KIAA1199, circRUNX1, circ_0078710, and circ_0056618. The modulation of these circRNAs targeted the expression of mRNAs and modified various signaling pathways and hallmarks of cancer. In this article, we reviewed the pharmacokinetics of curcumin, its anti-cancer activities, as well as the biology and structure of circRNAs. Our main focus was on how curcumin exerts anti-cancer functions by modulating circRNAs and their target mRNAs and pathways.
Collapse
Affiliation(s)
- Lihui Si
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Lina Zhang
- Research and Development Department, Jilin Zhongke Bio-engineering Joint Stock Co., Ltd, Changchun, People's Republic of China
| | - Shaoliang Xing
- Research and Development Department, Jilin Zhongke Bio-engineering Joint Stock Co., Ltd, Changchun, People's Republic of China
| | - Panke Fang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Xiu Tian
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Xiaoyan Liu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Xiaohong Xv
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
3
|
Rioseras B, Moro-García MA, García-Torre A, Bueno-García E, López-Martínez R, Iglesias-Escudero M, Diaz-Peña R, Castro-Santos P, Arias-Guillén M, Alonso-Arias R. Acquisition of New Migratory Properties by Highly Differentiated CD4+CD28 null T Lymphocytes in Rheumatoid Arthritis Disease. J Pers Med 2021; 11:jpm11070594. [PMID: 34202487 PMCID: PMC8306508 DOI: 10.3390/jpm11070594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
Expanded CD4+CD28null T lymphocytes are found in the tissues and peripheral blood of patients with many autoimmune diseases, such as rheumatoid arthritis (RA). These highly differentiated cells present potent inflammatory activity and capability to induce tissue destruction, which has been suggested to predispose to the development of more aggressive disease. In fact, preferential migration to inflammatory sites has been proposed to be a contributing factor in the progression of autoimmune and cardiovascular diseases frequently found in these patients. The functional activity of CD4+CD28null T lymphocytes is largely dependent on interleukin 15 (IL-15), and this cytokine may also act as a selective attractor of these cells to local inflammatory infiltrates in damaged tissues. We have analysed, in RA patients, the migratory properties and transcriptional motility profile of CD4+CD28null T lymphocytes compared to their counterparts CD28+ T lymphocytes and the enhancing role of IL-15. Identification of the pathways involved in this process will allow us to design strategies directed to block effector functions that CD4+CD28null T lymphocytes have in the target tissue, which may represent therapeutic approaches in this immune disorder.
Collapse
Affiliation(s)
- Beatriz Rioseras
- Immunology Department, Medicine Laboratory, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (B.R.); (A.G.-T.); (E.B.-G.); rociolopez-@hotmail.com (R.L.-M.)
- Health Research Institute of the Principality of Asturias—ISPA, 33011 Oviedo, Spain;
| | - Marco Antonio Moro-García
- Health Research Institute of the Principality of Asturias—ISPA, 33011 Oviedo, Spain;
- Medicine Laboratory, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Alejandra García-Torre
- Immunology Department, Medicine Laboratory, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (B.R.); (A.G.-T.); (E.B.-G.); rociolopez-@hotmail.com (R.L.-M.)
- Health Research Institute of the Principality of Asturias—ISPA, 33011 Oviedo, Spain;
| | - Eva Bueno-García
- Immunology Department, Medicine Laboratory, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (B.R.); (A.G.-T.); (E.B.-G.); rociolopez-@hotmail.com (R.L.-M.)
- Health Research Institute of the Principality of Asturias—ISPA, 33011 Oviedo, Spain;
| | - Rocio López-Martínez
- Immunology Department, Medicine Laboratory, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (B.R.); (A.G.-T.); (E.B.-G.); rociolopez-@hotmail.com (R.L.-M.)
- Health Research Institute of the Principality of Asturias—ISPA, 33011 Oviedo, Spain;
| | | | - Roberto Diaz-Peña
- Faculty of Health Sciences, Universidad Autónoma de Chile, Talca 3460000, Chile;
| | - Patricia Castro-Santos
- Inmunologia, Centro de Investigaciones Biomédicas (CINBIO), Universidad de Vigo, 36310 Vigo, Spain;
| | - Miguel Arias-Guillén
- Health Research Institute of the Principality of Asturias—ISPA, 33011 Oviedo, Spain;
- Servicio de Neumología, Hospital Universitario Central Asturias, 33011 Oviedo, Spain;
- CIBER—Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rebeca Alonso-Arias
- Immunology Department, Medicine Laboratory, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (B.R.); (A.G.-T.); (E.B.-G.); rociolopez-@hotmail.com (R.L.-M.)
- Health Research Institute of the Principality of Asturias—ISPA, 33011 Oviedo, Spain;
- Correspondence:
| |
Collapse
|
4
|
Chen S, Lu S, Yao Y, Chen J, Yang G, Tu L, Zhang Z, Zhang J, Chen L. Downregulation of hsa_circ_0007580 inhibits non-small cell lung cancer tumorigenesis by reducing miR-545-3p sponging. Aging (Albany NY) 2020; 12:14329-14340. [PMID: 32681720 PMCID: PMC7425484 DOI: 10.18632/aging.103472] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023]
Abstract
Non-small cell lung cancer (NSCLC) is a highly malignant tumor. Many circular RNAs (circRNAs) are reportedly in regulating the progression of NSCLC. To identify potential therapeutic targets for NSCLC, we conducted a bioinformatics analysis of circRNAs differentially expressed between NSCLC tissues and adjacent normal tissues. Hsa_circ_0007580 was upregulated in NSCLC tumor tissues, and the expression of its host gene (protein kinase Ca) correlated negatively with overall survival. Short-hairpin RNAs were used to knock down hsa_circ_0007580 in NSCLC cells, and gene and protein levels were measured with qRT-PCR and Western blotting, respectively. NSCLC cell proliferation, migration and apoptosis were evaluated with CCK-8 assays, Ki-67 staining, Transwell assays and flow cytometry, respectively. Knocking down hsa_circ_0007580 inhibited proliferation and invasion by NSCLC cells and induced their apoptosis. Dual luciferase reporter assays indicated that miR-545-3p can bind to hsa_circ_0007580 (suggesting that hsa_circ_0007580 sponges miR-545-3p) and to protein kinase Ca (suggesting that miR-545-3p directly inhibits this gene). In a xenograft tumor model, downregulating hsa_circ_0007580 inhibited NSCLC tumorigenesis by inactivating p38/mitogen-activated protein kinase signaling. Thus, silencing hsa_circ_0007580 notably inhibited NSCLC progression in vitro and in vivo, suggesting this circRNA could be a novel treatment target for NSCLC.
Collapse
Affiliation(s)
- Shuifang Chen
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Shan Lu
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yinan Yao
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Junjun Chen
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Guangdie Yang
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Lingfang Tu
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Zeying Zhang
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jianli Zhang
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Lina Chen
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
5
|
Yang S, Svensson MND, Harder NHO, Hsieh WC, Santelli E, Kiosses WB, Moresco JJ, Yates JR, King CC, Liu L, Stanford SM, Bottini N. PTPN22 phosphorylation acts as a molecular rheostat for the inhibition of TCR signaling. Sci Signal 2020; 13:13/623/eaaw8130. [PMID: 32184287 DOI: 10.1126/scisignal.aaw8130] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The hematopoietic-specific protein tyrosine phosphatase nonreceptor type 22 (PTPN22) is encoded by a major autoimmunity risk gene. PTPN22 inhibits T cell activation by dephosphorylating substrates involved in proximal T cell receptor (TCR) signaling. Here, we found by mass spectrometry that PTPN22 was phosphorylated at Ser751 by PKCα in Jurkat and primary human T cells activated with phorbol ester/ionomycin or antibodies against CD3/CD28. The phosphorylation of PTPN22 at Ser751 prolonged its half-life by inhibiting K48-linked ubiquitination and impairing recruitment of the phosphatase to the plasma membrane, which is necessary to inhibit proximal TCR signaling. Additionally, the phosphorylation of PTPN22 at Ser751 enhanced the interaction of PTPN22 with the carboxyl-terminal Src kinase (CSK), an interaction that is impaired by the PTPN22 R620W variant associated with autoimmune disease. The phosphorylation of Ser751 did not affect the recruitment of PTPN22 R620W to the plasma membrane but protected this mutant from degradation. Together, out data indicate that phosphorylation at Ser751 mediates a reciprocal regulation of PTPN22 stability versus translocation to TCR signaling complexes by CSK-dependent and CSK-independent mechanisms.
Collapse
Affiliation(s)
- Shen Yang
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mattias N D Svensson
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nathaniel H O Harder
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.,Division of Cellular Biology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Wan-Chen Hsieh
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eugenio Santelli
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - William B Kiosses
- Core Microscopy, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - James J Moresco
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Charles C King
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lin Liu
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA, 92037, USA.,Veterans Affairs San Diego Healthcare System, San Diego, CA 90026, USA
| | - Stephanie M Stanford
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.,Division of Cellular Biology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Nunzio Bottini
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA. .,Division of Cellular Biology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| |
Collapse
|
6
|
Zhuang Y, Di Y, Huang L, Zhu J. PRKCH polymorphism is associated with rheumatoid arthritis in a Chinese population. Biosci Trends 2020; 13:556-561. [PMID: 31875586 DOI: 10.5582/bst.2019.01247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Genetic factors have been widely considered to have a substantial effect on the susceptibility to rheumatoid arthritis (RA). The purpose of this study was to determine whether the four newly discovered polymorphisms in a genome-wide association study (GWAS) meta-analysis confer susceptibility to RA in a Chinese Han population. We conducted a case-control study involving 359 RA cases and 873 age-and gender-matched controls and performed genotyping of four single nucleotide polymorphisms (SNPs), rs227163, rs726288, rs3783782 and rs2469434, using the dye terminator-based SNaPshot method. Consequently, we detected significant differences of genotype distribution of rs3783782 in PRKCH between RA and controls. The minor allele frequencies (MAFs) of rs3783782 were significantly higher in RA patients compared to control subjects. Moreover, the rs227163 in TNFRSF9 had higher MAFs in male RA compared with male controls. In addition, the polymorphism of rs3783782 in PRKCH was significantly associated with RA susceptibility (OR = 1.67, 95% CI = 1.32-2.11, p = 1.32 × 10-5). After stratification by gender, the minor (A) allele was strongly associated with increased risk for RA in males (OR = 1.87, 95% CI = 1.34-2.60; p = 1.62 × 10-4) and in females (OR = 1.51, 95% CI = 1.08-2.10; p = 0.014). For rs227163, the minor (C) allele was found to be associated with RA risk only in males (OR = 1.34, 95% CI = 1.02-1.75; p = 0.036). These findings for the first time confirmed that rs3783782 in PRKCH was associated with RA susceptibility in a Chinese population, and rs227163 in TNFRSF9 was associated with RA risk in Chinese males; these SNPs may serve as genetic markers for RA.
Collapse
Affiliation(s)
- Yue Zhuang
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Affiliated Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yanan Di
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Affiliated Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Lulin Huang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Affiliated Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Zhu
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Affiliated Hospital of University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
7
|
Jiang H, Fu Q, Song X, Ge C, Li R, Li Z, Zeng B, Li C, Wang Y, Xue Y, Luo R, Fang W. HDGF and PRKCA upregulation is associated with a poor prognosis in patients with lung adenocarcinoma. Oncol Lett 2019; 18:4936-4946. [PMID: 31612005 DOI: 10.3892/ol.2019.10812] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 07/09/2019] [Indexed: 12/15/2022] Open
Abstract
Lung adenocarcinoma is the most common histologic subtype of lung cancer. The aim of the present study was to assess the expression of hepatoma-derived growth factor (HDGF) and protein kinase Cα (PRKCA) in lung adenocarcinoma (LADC), and to determine the association between the combined expression of these two proteins and clinicopathological characteristics of patients with LADC. The expression of HDGF and PRKCA mRNA was assessed by GEO database analysis, and HDGF and PRKCA protein levels were examined by immunohistochemistry using a tissue microarray. High HDGF and PRKCA expression was observed in LADC tissue compared to normal samples, and increased HDGF and PRKCA expression was associated with AJCC clinical stage, tumor classification, node classification, and lymph node metastasis. GEO database analysis revealed no significant differences between HDGF mRNA and PRKCA mRNA in LADC tissue. However, high PRKCA protein expression was associated with high HDGF protein expression, and patients with high HDGF and PRKCA expression exhibited poorer overall survival rates than patients with low expression levels of the two proteins. The results of the present study suggest that upregulation of both HDGF and PRKCA may be an unfavourable factor for lung adenocarcinoma progression.
Collapse
Affiliation(s)
- Honghong Jiang
- Cancer Centre, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510315, P.R. China.,Department of Cancer Biotherapy Centre, Third Affiliated Hospital of Kunming Medical University (Tumour Hospital of Yunnan Province), Kunming, Yunnan 510118, P.R. China.,Department of Ultrasound, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - Qiaofen Fu
- Cancer Centre, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510315, P.R. China.,Department of Cancer Biotherapy Centre, Third Affiliated Hospital of Kunming Medical University (Tumour Hospital of Yunnan Province), Kunming, Yunnan 510118, P.R. China
| | - Xin Song
- Cancer Centre, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510315, P.R. China.,Department of Cancer Biotherapy Centre, Third Affiliated Hospital of Kunming Medical University (Tumour Hospital of Yunnan Province), Kunming, Yunnan 510118, P.R. China
| | - Chunlei Ge
- Department of Cancer Biotherapy Centre, Third Affiliated Hospital of Kunming Medical University (Tumour Hospital of Yunnan Province), Kunming, Yunnan 510118, P.R. China
| | - Ruilei Li
- Department of Cancer Biotherapy Centre, Third Affiliated Hospital of Kunming Medical University (Tumour Hospital of Yunnan Province), Kunming, Yunnan 510118, P.R. China
| | - Zhen Li
- Department of Cancer Biotherapy Centre, Third Affiliated Hospital of Kunming Medical University (Tumour Hospital of Yunnan Province), Kunming, Yunnan 510118, P.R. China
| | - Baozhen Zeng
- Department of Cancer Biotherapy Centre, Third Affiliated Hospital of Kunming Medical University (Tumour Hospital of Yunnan Province), Kunming, Yunnan 510118, P.R. China
| | - Chunyan Li
- Department of Cancer Biotherapy Centre, Third Affiliated Hospital of Kunming Medical University (Tumour Hospital of Yunnan Province), Kunming, Yunnan 510118, P.R. China
| | - Ying Wang
- Department of Cancer Biotherapy Centre, Third Affiliated Hospital of Kunming Medical University (Tumour Hospital of Yunnan Province), Kunming, Yunnan 510118, P.R. China
| | - Yuanbo Xue
- Department of Cancer Biotherapy Centre, Third Affiliated Hospital of Kunming Medical University (Tumour Hospital of Yunnan Province), Kunming, Yunnan 510118, P.R. China
| | - Rongcheng Luo
- Cancer Centre, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510315, P.R. China
| | - Weiyi Fang
- Cancer Centre, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510315, P.R. China
| |
Collapse
|
8
|
Fu Q, Song X, Liu Z, Deng X, Luo R, Ge C, Li R, Li Z, Zhao M, Chen Y, Lin X, Zhang Q, Fang W. miRomics and Proteomics Reveal a miR-296-3p/PRKCA/FAK/Ras/c-Myc Feedback Loop Modulated by HDGF/DDX5/β-catenin Complex in Lung Adenocarcinoma. Clin Cancer Res 2017; 23:6336-6350. [PMID: 28751441 DOI: 10.1158/1078-0432.ccr-16-2813] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 04/19/2017] [Accepted: 07/20/2017] [Indexed: 12/11/2022]
Abstract
Purpose: This study was performed to identify the detailed mechanisms by which miR-296-3p functions as a tumor suppressor to prevent lung adenocarcinoma (LADC) cell growth, metastasis, and chemoresistance.Experimental Design: The miR-296-3p expression was examined by real-time PCR and in situ hybridization. MTT, EdU incorporation, Transwell assays, and MTT cytotoxicity were respectively performed for cell proliferation, metastasis, and chemoresistance; Western blotting was performed to analyze the pathways by miR-296-3p and HDGF/DDX5 complex. The miRNA microarray and luciferase reporter assays were respectively used for the HDGF-mediated miRNAs and target genes of miR-296-3p. The ChIP, EMSA assays, and coimmunoprecipitation combined with mass spectrometry and GST pull-down were respectively designed to analyze the DNA-protein complex and HDGF/DDX5/β-catenin complex.Results: We observed that miR-296-3p not only controls cell proliferation and metastasis, but also sensitizes LADC cells to cisplatin (DDP) in vitro and in vivo Mechanistic studies demonstrated that miR-296-3p directly targets PRKCA to suppress FAK-Ras-c-Myc signaling, thus stimulating its own expression in a feedback loop that blocks cell cycle and epithelial-mesenchymal transition (EMT) signal. Furthermore, we observed that suppression of HDGF-β-catenin-c-Myc signaling activates miR-296-3p, ultimately inhibiting the PRKCA-FAK-Ras pathway. Finally, we found that DDX5 directly interacts with HDGF and induces β-catenin-c-Myc, which suppresses miR-296-3p and further activates PRKCA-FAK-Ras, cell cycle, and EMT signaling. In clinical samples, reduced miR-296-3p is an unfavorable factor that inversely correlates with HDGF/DDX5, but not PRKCA.Conclusions: Our study provides a novel mechanism that the miR-296-3p-PRKCA-FAK-Ras-c-Myc feedback loop modulated by HDGF/DDX5/β-catenin complex attenuates cell growth, metastasis, and chemoresistance in LADC. Clin Cancer Res; 23(20); 6336-50. ©2017 AACR.
Collapse
Affiliation(s)
- Qiaofen Fu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, P.R. China
- Cancer Research Institute of Southern Medical University, Guangzhou, Guangdong, P.R. China
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, P.R. China
| | - Xin Song
- Cancer Research Institute of Southern Medical University, Guangzhou, Guangdong, P.R. China
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, P.R. China
| | - Zhen Liu
- Cancer Research Institute of Southern Medical University, Guangzhou, Guangdong, P.R. China
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, P.R. China
| | - Xiaojie Deng
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, P.R. China
- Cancer Research Institute of Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Rongcheng Luo
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Chunlei Ge
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, P.R. China
| | - Ruilei Li
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, P.R. China
| | - Zhen Li
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, P.R. China
| | - Mengyang Zhao
- Cancer Research Institute of Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Yiyu Chen
- Cancer Research Institute of Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Xian Lin
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Qianbing Zhang
- Cancer Research Institute of Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Weiyi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, P.R. China.
| |
Collapse
|
9
|
Valverde P, Kawai T, Taubman MA. Potassium Channel-blockers as Therapeutic Agents to Interfere with Bone Resorption of Periodontal Disease. J Dent Res 2016; 84:488-99. [PMID: 15914584 DOI: 10.1177/154405910508400603] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Inflammatory lesions of periodontal disease contain all the cellular components, including abundant activated/memory T- and B-cells, necessary to control immunological interactive networks and to accelerate bone resorption by RANKL-dependent and -independent mechanisms. Blockade of RANKL function has been shown to ameliorate periodontal bone resorption and other osteopenic disorders without affecting inflammation. Development of therapies aimed at decreasing the expression of RANKL and pro-inflammatory cytokines by T-cells constitutes a promising strategy to ameliorate not only bone resorption, but also inflammation. Several reports have demonstrated that the potassium channels Kv1.3 and IKCa1, through the use of selective blockers, play important roles in T-cell-mediated events, including T-cell proliferation and the production of pro-inflammatory cytokines. More recently, a potassium channel-blocker for Kv1.3 has been shown to down-regulate bone resorption by decreasing the ratio of RANKL-to-OPG expression by memory-activated T-cells. In this article, we first summarize the mechanisms by which chronically activated/memory T-cells, in concert with B-cells and macrophages, trigger inflammatory bone resorption. Then, we describe the main structural and functional characteristics of potassium channels Kv1.3 and IKCa1 in some of the cells implicated in periodontal disease progression. Finally, this review elucidates some recent advances in the use of potassium channel-blockers of Kv1.3 and IKCa1 to ameliorate the clinical signs or side-effects of several immunological disorders and to decrease inflammatory bone resorption in periodontal disease. ABBREVIATIONS: AICD, activation-induced cell death; APC, antigen-presenting cells; B(K), large conductance; CRAC, calcium release-activated calcium channels; DC, dendritic cell; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; IFN-γ, interferon-γ; IP3, inositol (1,4,5)-triphosphate; (K)ir, inward rectifier; JNK, c-Jun N-terminal kinase; I(K), intermediate conductance; LPS, lipopolysaccharide; L, ligand; MCSF, macrophage colony-stimulating factor; MHC, major histocompatibility complex; NFAT, nuclear factor of activated T-cells; RANK, receptor activator of nuclear factor-κB; TCM, central memory T-cells; TEM, effector memory T-cells; TNF, tumor necrosis factor; TRAIL, TNF-related apoptosis-inducing ligand; OPG, osteoprotegerin; Omp29, 29-kDa outer membrane protein; PKC, protein kinase C; PLC, phospholipase C; RT-PCR, reverse-transcriptase polymerase chain-reaction; S(K), small conductance; TCR, T-cell receptor; and (K)v, voltage-gated.
Collapse
Affiliation(s)
- P Valverde
- Tufts University School of Dental Medicine, One Kneeland Street, Boston, MA 02111, USA.
| | | | | |
Collapse
|
10
|
López-Huertas MR, Li J, Zafar A, Rodríguez-Mora S, García-Domínguez C, Mateos E, Alcamí J, Rao S, Coiras M. PKCθ and HIV-1 Transcriptional Regulator Tat Co-exist at the LTR Promoter in CD4(+) T Cells. Front Immunol 2016; 7:69. [PMID: 26973648 PMCID: PMC4770193 DOI: 10.3389/fimmu.2016.00069] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 02/15/2016] [Indexed: 11/17/2022] Open
Abstract
PKCθ is essential for the activation of CD4+ T cells. Upon TCR/CD28 stimulation, PKCθ is phosphorylated and migrates to the immunological synapse, inducing the activation of cellular transcription factors such as NF-κB and kinases as ERK that are critical for HIV-1 replication. We previously demonstrated that PKCθ is also necessary for HIV-1 replication but the precise mechanism is unknown. Efficient HIV-1 transcription and elongation are absolutely dependent on the synergy between NF-κB and the viral regulator Tat. Tat exerts its function by binding a RNA stem-loop structure proximal to the viral mRNA cap site termed TAR. Besides, due to its effect on cellular metabolic pathways, Tat causes profound changes in infected CD4+ T cells such as the activation of NF-κB and ERK. We hypothesized that the aberrant upregulation of Tat-mediated activation of NF-κB and ERK occurred through PKCθ signaling. In fact, Jurkat TetOff cells with stable and doxycycline-repressible expression of Tat (Jurkat-Tat) expressed high levels of mRNA for PKCθ. In these cells, PKCθ located at the plasma membrane was phosphorylated at T538 residue in undivided cells, in the absence of stimulation. Treatment with doxycycline inhibited PKCθ phosphorylation in Jurkat-Tat, suggesting that Tat expression was directly related to the activation of PKCθ. Both NF-κB and Ras/Raf/MEK/ERK signaling pathway were significantly activated in Jurkat-Tat cells, and this correlated with high transactivation of HIV-1 LTR promoter. RNA interference for PKCθ inhibited NF-κB and ERK activity, as well as LTR-mediated transactivation even in the presence of Tat. In addition to Tat-mediated activation of PKCθ in the cytosol, we demonstrated by sequential ChIP that Tat and PKCθ coexisted in the same complex bound at the HIV-1 LTR promoter, specifically at the region containing TAR loop. In conclusion, PKCθ-Tat interaction seemed to be essential for HIV-1 replication in CD4+ T cells and could be used as a therapeutic target.
Collapse
Affiliation(s)
- María Rosa López-Huertas
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III , Madrid , Spain
| | - Jasmine Li
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne , Melbourne, VIC , Australia
| | - Anjum Zafar
- Biomedical Sciences, Faculty of Education, Science, Technology and Mathematics, University of Canberra , Canberra, ACT , Australia
| | - Sara Rodríguez-Mora
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III , Madrid , Spain
| | - Carlota García-Domínguez
- Functional Research Unit in Chronic Diseases, National Center of Microbiology, Instituto de Salud Carlos III , Madrid , Spain
| | - Elena Mateos
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III , Madrid , Spain
| | - José Alcamí
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III , Madrid , Spain
| | - Sudha Rao
- Biomedical Sciences, Faculty of Education, Science, Technology and Mathematics, University of Canberra , Canberra, ACT , Australia
| | - Mayte Coiras
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III , Madrid , Spain
| |
Collapse
|
11
|
Phetsouphanh C, Kelleher AD. The Role of PKC-θ in CD4+ T Cells and HIV Infection: To the Nucleus and Back Again. Front Immunol 2015; 6:391. [PMID: 26284074 PMCID: PMC4519685 DOI: 10.3389/fimmu.2015.00391] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/17/2015] [Indexed: 11/13/2022] Open
Abstract
Protein kinase C (PKC)-θ is the only member of the PKC family that has the ability to translocate to the immunological synapse between T cells and antigen-presenting cells upon T cell receptor and MHC-II recognition. PKC-θ interacts functionally and physically with other downstream effector molecules to mediate T cell activation, differentiation, and migration. It plays a critical role in the generation of Th2 and Th17 responses and is less important in Th1 and CTL responses. PKC-θ has been recently shown to play a role in the nucleus, where it mediates inducible gene expression in the development of memory CD4+ T cells. This novel PKC (nPKC) can up-regulate HIV-1 transcription and PKC-θ activators such as Prostratin have been used in early HIV-1 reservoir eradication studies. The exact manner of the activation of virus by these compounds and the role of PKC-θ, particularly its nuclear form and its association with NF-κB in both the cytoplasmic and nuclear compartments, needs further precise elucidation especially given the very important role of NF-κB in regulating transcription from the integrated retrovirus. Continued studies of this nPKC isoform will give further insight into the complexity of T cell signaling kinases.
Collapse
Affiliation(s)
- Chansavath Phetsouphanh
- The Kirby Institute of Infectious Diseases in Society, University of New South Wales , Sydney, NSW , Australia
| | - Anthony D Kelleher
- The Kirby Institute of Infectious Diseases in Society, University of New South Wales , Sydney, NSW , Australia
| |
Collapse
|
12
|
Nifedipine inhibits ox-LDL-induced lipid accumulation in human blood-derived macrophages. Biochem Biophys Res Commun 2015; 457:440-4. [DOI: 10.1016/j.bbrc.2015.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 01/05/2015] [Indexed: 11/20/2022]
|
13
|
Fukahori H, Chida N, Maeda M, Tasaki M, Kawashima T, Matsuoka H, Suzuki K, Ishikawa T, Tanaka A, Higashi Y. Effect of AS2521780, a novel PKCθ selective inhibitor, on T cell-mediated immunity. Eur J Pharmacol 2014; 745:217-22. [DOI: 10.1016/j.ejphar.2014.10.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 10/23/2014] [Accepted: 10/28/2014] [Indexed: 01/29/2023]
|
14
|
de Weerd A, Kho M, Kraaijeveld R, Zuiderwijk J, Weimar W, Baan C. The protein kinase C inhibitor sotrastaurin allows regulatory T cell function. Clin Exp Immunol 2014; 175:296-304. [PMID: 24131367 DOI: 10.1111/cei.12225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2013] [Indexed: 12/28/2022] Open
Abstract
The novel immunosuppressant sotrastaurin is a selective inhibitor of protein kinase C isoforms that are critical in signalling pathways downstream of the T cell receptor. Sotrastaurin inhibits nuclear factor (NF)-κB, which directly promotes the transcription of forkhead box protein 3 (FoxP3), the key regulator for the development and function of regulatory T cells (Tregs). Our center participated in a randomized trial comparing sotrastaurin (n = 14) and the calcineurin inhibitor Neoral (n = 7) in renal transplant recipients. We conducted ex vivo mixed lymphocyte reaction (MLR) and flow cytometry studies on these patient samples, as well as in vitro studies on samples of blood bank volunteers (n = 38). Treg numbers remained stable after transplantation and correlated with higher trough levels of sotrastaurin (r = 0·68, P = 0·03). A dose-dependent effect of sotrastaurin on alloresponsiveness was observed: the half maximal inhibitory concentration (IC50 ) to inhibit alloactivated T cell proliferation was 45 ng/ml (90 nM). In contrast, Treg function was not affected by sotrastaurin: in the presence of in vitro-added sotrastaurin (50 ng/ml) Tregs suppressed the proliferation of alloactivated T effector cells at a 1:5 ratio by 35 versus 47% in the absence of the drug (P = 0·33). Signal transducer and activator of transcription 5 (STAT)-5 phosphorylation in Tregs remained intact after incubation with sotrastaurin. This potent Treg function was also found in cells of patients treated with sotrastaurin: Tregs inhibited the anti-donor response in MLR by 67% at month 6, which was comparable to pretransplantation (82%). Sotrastaurin is a potent inhibitor of alloreactivity in vitro, while it did not affect Treg function in patients after kidney transplantation.
Collapse
Affiliation(s)
- A de Weerd
- Department of Internal Medicine, Erasmus Medical Center Rotterdam, the Netherlands
| | | | | | | | | | | |
Collapse
|
15
|
Lin R, Taylor BV, Simpson S, Charlesworth J, Ponsonby AL, Pittas F, Dwyer T, van der Mei IAF. Novel modulating effects of PKC family genes on the relationship between serum vitamin D and relapse in multiple sclerosis. J Neurol Neurosurg Psychiatry 2014; 85:399-404. [PMID: 23868949 DOI: 10.1136/jnnp-2013-305245] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND The interplay between genes and environmental factors on multiple sclerosis (MS) clinical course has been little studied. METHODS We conducted a prospective cohort study of 141 participants with relapsing-remitting MS (RRMS) and genotype data followed from 2002 to 2005 and examined genes in the vitamin D metabolism and vitamin D receptor (VDR)/retinoid X receptor (RXR) transcription factor formation pathway. Gene-vitamin D interactions and the genetic predictors of relapse were assessed using survival analysis. Genetic predictors of 25-hydroxyvitamin D (25(OH)D) were evaluated by multilevel mixed-effects linear regression. Significance threshold was adjusted by Bonferroni correction for the number of genes evaluated. RESULTS The relationship between 25(OH)D and hazard of relapse was significantly different for different alleles of two intronic single nucleotide polymorphisms (SNPs) (rs908742 in PRKCZ and rs3783785 in PRKCH) in the protein kinase C (PKC) family genes (p(interaction)=0.001, p(adj)=0.021, respectively). Two other intronic SNPs (rs1993116 in CYP2R1and rs7404928 in PRKCB) were significantly associated with lower levels of 25(OH)D (p(interaction)=0.001, p(adj)=0.021, respectively). A cumulative effect of multiple 'risk' genotypes on 25(OH)D levels and hazard of relapse was observed for the significant SNPs (p(trend)=7.12×10(-6) for 25(OH)D levels, p(trend)=8.86×10(-6) for hazard of relapse). CONCLUSIONS Our data support the hypothesis that gene-vitamin D interactions may influence MS clinical course and that the PKC family genes may play a role in the pathogenesis of MS relapse through modulating the association between 25(OH)D and relapse.
Collapse
Affiliation(s)
- Rui Lin
- Menzies Research Institute Tasmania, University of Tasmania, , Hobart, Australia
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Vitamin E-gene interactions in aging and inflammatory age-related diseases: implications for treatment. A systematic review. Ageing Res Rev 2014; 14:81-101. [PMID: 24418256 DOI: 10.1016/j.arr.2014.01.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 12/27/2013] [Accepted: 01/02/2014] [Indexed: 02/07/2023]
Abstract
Aging is a complex biological phenomenon in which the deficiency of the nutritional state combined with the presence of chronic inflammation and oxidative stress contribute to the development of many age-related diseases. Under this profile, the free radicals produced by the oxidative stress lead to a damage of DNA, lipids and proteins with subsequent altered cellular homeostasis and integrity. In young-adult age, the cell has a complex efficient system to maintain a proper balance between the levels of free radicals and antioxidants ensuring the integrity of cellular components. In contrast, in old age this balance is poorly efficient compromising cellular homeostasis. Supplementation with Vitamin E can restore the balance and protect against the deteriorating effects of oxidative stress, progression of degenerative diseases, and aging. Experiments in cell cultures and in animals have clearly shown that Vitamin E has a pivotal role as antioxidant agent against the lipid peroxidation on cell membranes preserving the tissue cells from the oxidative damage. Such a role has been well documented in immune, endothelial, and brain cells from old animals describing how the Vitamin E works both at cytoplasmatic and nuclear levels with an influence on many genes related to the inflammatory/immune response. All these findings have supported a lot of clinical trials in old humans and in inflammatory age-related diseases with however contradictory and inconsistent results and even indicating a dangerous role of Vitamin E able to affect mortality. Various factors can contribute to all the discrepancies. Among them, the doses and the various isoforms of Vitamin E family (α,β,γ,δ tocopherols and the corresponding tocotrienols) used in different trials. However, the more plausible gap is the poor consideration of the Vitamin E-gene interactions that may open new roadmaps for a correct and personalized Vitamin E supplementation in aging and age-related diseases with satisfactory results in order to reach healthy aging and longevity. In this review, this peculiar nutrigenomic and/or nutrigenetic aspect is reported and discussed at the light of specific polymorphisms affecting the Vitamin E bioactivity.
Collapse
|
17
|
Neuroprotective effects of quercetin in chemical hypoxia: in silico evaluation of the hypothesis exploring PKC inhibition-mediated pharmacotherapy. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0503-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Ma AZS, Zhang Q, Song ZY. TNFa alter cholesterol metabolism in human macrophages via PKC-θ-dependent pathway. BMC BIOCHEMISTRY 2013; 14:20. [PMID: 23914732 PMCID: PMC3751201 DOI: 10.1186/1471-2091-14-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 07/27/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND Studies have shown that inflammation promoted atherosclerotic progression; however, it remains unclear whether inflammation promoted atherosclerotic progression properties by altering cholesterol metabolism in human macrophages. In the present study, we evaluated a potential mechanism of inflammation on atherogenic effects. We evaluated the ability of TNFa to affect Reverse cholesterol transport (RCT) and cholesterol uptake and its mechanism(s) of action in human macrophages. RESULTS We initially determined the potential effects of TNFa on cholesterol efflux in the human macrophages. We also determined alterations in mRNA and protein levels of ABCA1, ABCG1, LXRa, CD-36, SR-A in human macrophages using quantitative real-time polymerase chain reaction (PCR) and Western immunoblot analyses. The cholesterol efflux rate and protein expression of ABCA1, ABCG1, LXRa, CD-36, SR-A were quantified in human macrophages under PKC-θ inhibition using PKC-θ siRNA. Our results showed that TNFa inhibited the rate of cholesterol efflux and down-regulation the expression levels of ABCA1, ABCG1 and LXRa and up-regulation the expression levels of CD-36, SR-A in human macrophages; PKC-θ inhibition by PKC-θ siRNA attenuated the effect of TNFa on ABCA1, ABCG1, LXRa, SR-A, CD-36 expression. CONCLUSIONS Our results suggest TNFa alter cholesterol metabolism in human macrophages through the inhibition of Reverse cholesterol transport and enhancing cholesterol uptake via PKC-θ-dependent pathway, implicating a potential mechanism of inflammation on atherogenic effects.
Collapse
Affiliation(s)
- A Zhi Sha Ma
- Department of Cardiology, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | | | | |
Collapse
|
19
|
Pharmacologic inhibition of PKCα and PKCθ prevents GVHD while preserving GVL activity in mice. Blood 2013; 122:2500-11. [PMID: 23908466 DOI: 10.1182/blood-2012-12-471938] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Allogeneic hematopoietic cell transplantation (HCT) is the most effective therapy for hematopoietic malignancies through T-cell-mediated graft-vs-leukemia (GVL) effects but often leads to severe graft-vs-host disease (GVHD). Given that protein kinase Cθ (PKCθ), in cooperation with PKCα, is essential for T-cell signaling and function, we have evaluated PKCθ and PKCα as potential therapeutic targets in allogeneic HCT using genetic and pharmacologic approaches. We found that the ability of PKCα(-/-)/θ(-/-) donor T cells to induce GVHD was further reduced compared with PKCθ(-/-) T cells in relation with the relevance of both isoforms to allogeneic donor T-cell proliferation, cytokine production, and migration to GVHD target organs. Treatment with a specific inhibitor for both PKCθ and PKCα impaired donor T-cell proliferation, migration, and chemokine/cytokine production and significantly decreased GVHD in myeloablative preclinical murine models of allogeneic HCT. Moreover, pharmacologic inhibition of PKCθ and PKCα spared T-cell cytotoxic function and GVL effects. Our findings indicate that PKCα and θ contribute to T-cell activation with overlapping functions essential for GVHD induction while less critical to the GVL effect. Thus, targeting PKCα and PKCθ signaling with pharmacologic inhibitors presents a therapeutic option for GVHD prevention while largely preserving the GVL activity in patients receiving HCT.
Collapse
|
20
|
Lutz-Nicoladoni C, Christina LN, Thuille N, Nikolaus T, Wachowicz K, Katarzyna W, Gruber T, Thomas G, Leitges M, Michael L, Baier G, Gottfried B. PKCα and PKCβ cooperate functionally in CD3-induced de novo IL-2 mRNA transcription. Immunol Lett 2013; 151:31-8. [PMID: 23439007 PMCID: PMC3641392 DOI: 10.1016/j.imlet.2013.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 01/29/2013] [Accepted: 02/05/2013] [Indexed: 12/12/2022]
Abstract
The physiological functions of PKCα and PKCθ isotypes downstream of the antigen receptor have been defined in CD3(+) T cells. In contrast, no function of the second conventional PKC member, PKCβ, has been described yet in T cell antigen receptor signalling. To investigate the hypothesis that both conventional PKCα and PKCβ isotypes may have overlapping functions in T cell activation signalling, we generated mice that lacked the genes for both isotypes. We found that PKCα(-/-)/β(-/-) animals are viable, live normal life spans and display normal T cell development. However, these animals possess additive defects in T cell responses in comparison to animals that carry single mutations in these genes. Our studies demonstrate that the activities of PKCα and PKCβ converge to regulate IL-2 cytokine responses in anti-CD3 stimulated primary mouse T cells. Here, we present genetic evidence that PKCα and PKCβ cooperate in IL-2 transcriptional transactivation in primary mouse T cells independently of the actions of PKCθ.
Collapse
|
21
|
Yan Zhang E, Kong KF, Altman A. The yin and yang of protein kinase C-theta (PKCθ): a novel drug target for selective immunosuppression. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2013; 66:267-312. [PMID: 23433459 PMCID: PMC3903317 DOI: 10.1016/b978-0-12-404717-4.00006-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Protein kinase C-theta (PKCθ) is a protein kinase C (PKC) family member expressed predominantly in T lymphocytes, and extensive studies addressing its function have been conducted. PKCθ is the only T cell-expressed PKC that localizes selectively to the center of the immunological synapse (IS) following conventional T cell antigen stimulation, and this unique localization is essential for PKCθ-mediated downstream signaling. While playing a minor role in T cell development, early in vitro studies relying, among others, on the use of PKCθ-deficient (Prkcq(-/-)) T cells revealed that PKCθ is required for the activation and proliferation of mature T cells, reflecting its importance in activating the transcription factors nuclear factor kappa B, activator protein-1, and nuclear factor of activated T cells, as well as for the survival of activated T cells. Upon subsequent analysis of in vivo immune responses in Prkcq(-/-) mice, it became clear that PKCθ has a selective role in the immune system: it is required for experimental Th2- and Th17-mediated allergic and autoimmune diseases, respectively, and for alloimmune responses, but is dispensable for protective responses against pathogens and for graft-versus-leukemia responses. Surprisingly, PKCθ was recently found to be excluded from the IS of regulatory T cells and to negatively regulate their suppressive function. These attributes of PKCθ make it an attractive target for catalytic or allosteric inhibitors that are expected to selectively suppress harmful inflammatory and alloimmune responses without interfering with beneficial immunity to infections. Early progress in developing such drugs is being made, but additional studies on the role of PKCθ in the human immune system are urgently needed.
Collapse
Affiliation(s)
| | | | - Amnon Altman
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| |
Collapse
|
22
|
Joo DJ, Fang YH, Huh KH, Kim MS, Suh H, Kim YS. Changes in Serum Cytokine Profile after AEB071 (Sotrastaurin) or Tacrolimus versus Their Combinations in Rat Heterotopic Cardiac Allografts. KOREAN JOURNAL OF TRANSPLANTATION 2012. [DOI: 10.4285/jkstn.2012.26.4.248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Dong Jin Joo
- The Research Institute for Transplantation,Yonsei University College of Medicine, Seoul, Korea
- Department of Transplantation Surgery, Yonsei University Health System, Seoul, Korea
| | - Yu Hui Fang
- The Research Institute for Transplantation,Yonsei University College of Medicine, Seoul, Korea
- Graduate Program of Nanoscience and Technology, Yonsei University Health System, Seoul, Korea
| | - Kyu Ha Huh
- The Research Institute for Transplantation,Yonsei University College of Medicine, Seoul, Korea
- Department of Transplantation Surgery, Yonsei University Health System, Seoul, Korea
| | - Myoung Soo Kim
- The Research Institute for Transplantation,Yonsei University College of Medicine, Seoul, Korea
- Department of Transplantation Surgery, Yonsei University Health System, Seoul, Korea
| | - Hwal Suh
- Graduate Program of Nanoscience and Technology, Yonsei University Health System, Seoul, Korea
| | - Yu Seun Kim
- The Research Institute for Transplantation,Yonsei University College of Medicine, Seoul, Korea
- Department of Transplantation Surgery, Yonsei University Health System, Seoul, Korea
- Graduate Program of Nanoscience and Technology, Yonsei University Health System, Seoul, Korea
- Yonsei University, BK for Medical Science, Yonsei University Health System, Seoul, Korea
| |
Collapse
|
23
|
Fu G, Gascoigne NRJ. The role of protein kinase cη in T cell biology. Front Immunol 2012; 3:177. [PMID: 22754555 PMCID: PMC3384082 DOI: 10.3389/fimmu.2012.00177] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 06/11/2012] [Indexed: 12/24/2022] Open
Abstract
Protein kinase Cη (PKCη) is a member of the novel PKC subfamily, which also includes δ, ε, and θ isoforms. Compared to the other novel PKCs, the function of PKCη in the immune system is largely unknown. Several studies have started to reveal the role of PKCη, particularly in T cells. PKCη is highly expressed in T cells, and is upregulated during thymocyte positive selection. Interestingly, like the θ isoform, PKCη is also recruited to the immunological synapse that is formed between a T cell and an antigen-presenting cell. However, unlike PKCθ, which becomes concentrated to the central region of the synapse, PKCη remains in a diffuse pattern over the whole area of the synapse, suggesting distinctive roles of these two isoforms in signal transduction. Although PKCη is dispensable for thymocyte development, further analysis of PKCη- or PKCθ-deficient and double-knockout mice revealed the redundancy of these two isoforms in thymocyte development. In contrast, PKCη rather than PKCθ, plays an important role for T cell homeostatic proliferation, which requires recognition of self-antigen. Another piece of evidence demonstrating that PKCη and PKCθ have isoform-specific as well as redundant roles come from the analysis of CD4 to CD8 T cell ratios in the periphery of these knockout mice. Deficiency in PKCη or PKCθ had opposing effects as PKCη knockout mice had a higher ratio of CD4 to CD8 T cells compared to that of wild-type mice, whereas PKCθ-deficient mice had a lower ratio. Biochemical studies showed that calcium flux and NFκB translocation is impaired in PKCη-deficient T cells upon TCR crosslinking stimulation, a character shared with PKCθ-deficient T cells. However, unlike the case with PKCθ, the mechanistic study of PKCη is at early stage and the signaling pathways involving PKCη, at least in T cells, are essentially unknown. In this review, we will cover the topics mentioned above as well as provide some perspectives for further investigations regarding PKCη.
Collapse
Affiliation(s)
- Guo Fu
- Department of Immunology and Microbial Science, The Scripps Research InstituteLa Jolla, CA, USA
| | | |
Collapse
|
24
|
Kwon MJ, Ma J, Ding Y, Wang R, Sun Z. Protein kinase C-θ promotes Th17 differentiation via upregulation of Stat3. THE JOURNAL OF IMMUNOLOGY 2012; 188:5887-97. [PMID: 22586032 DOI: 10.4049/jimmunol.1102941] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although protein kinase C-θ (PKC-θ)-deficient mice are resistant to the induction of Th17-dependent experimental autoimmune encephalomyelitis, the function of PKC-θ in Th17 differentiation remains unknown. In this article, we show that purified, naive CD4 PKC-θ(-/-) T cells were defective in Th17 differentiation, whereas Th1 and Th2 differentiation appeared normal. Activation of PKC-θ with PMA promoted Th17 differentiation in wild type (WT) but not PKC-θ(-/-) T cells. Furthermore, PKC-θ(-/-) T cells had notably lower levels of Stat3, a transcription factor required for Th17 differentiation, and PMA markedly stimulated the expression of Stat3 in WT but not PKC-θ(-/-) T cells. In contrast, activation of Stat4 and Stat6, which are critical for Th1 and Th2 differentiation, was normal in PKC-θ(-/-) T cells. Forced expression of Stat3 significantly increased Th17 differentiation in PKC-θ(-/-) T cells, suggesting that reduced Stat3 levels were responsible for impaired Th17 differentiation, and that Stat3 lies downstream of PKC-θ. Constitutively active PKC-θ, or WT PKC-θ activated by either PMA or TCR cross-linking, stimulated expression of a luciferase reporter gene driven by the Stat3 promoter. PKC-θ-mediated activation of the Stat3 promoter was inhibited by dominant-negative AP-1 and IκB kinase-β, but stimulated by WT AP-1 and IκB kinase-β, suggesting that PKC-θ stimulates Stat3 transcription via the AP-1 and NF-κB pathways. Lastly, conditions favoring Th17 differentiation induced the highest activation level of PKC-θ. Altogether, the data indicate that PKC-θ integrates the signals from TCR signaling and Th17 priming cytokines to upregulate Stat3 via NF-κB and AP-1, resulting in the stimulation of Th17 differentiation.
Collapse
Affiliation(s)
- Myung-Ja Kwon
- Division of Immunology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | | | | | | |
Collapse
|
25
|
Freeley M, O'Dowd F, Paul T, Kashanin D, Davies A, Kelleher D, Long A. L-plastin regulates polarization and migration in chemokine-stimulated human T lymphocytes. THE JOURNAL OF IMMUNOLOGY 2012; 188:6357-70. [PMID: 22581862 DOI: 10.4049/jimmunol.1103242] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chemokines such as SDF-1α play a crucial role in orchestrating T lymphocyte polarity and migration via polymerization and reorganization of the F-actin cytoskeleton, but the role of actin-associated proteins in this process is not well characterized. In this study, we have investigated a role for L-plastin, a leukocyte-specific F-actin-bundling protein, in SDF-1α-stimulated human T lymphocyte polarization and migration. We found that L-plastin colocalized with F-actin at the leading edge of SDF-1α-stimulated T lymphocytes and was also phosphorylated at Ser(5), a site that when phosphorylated regulates the ability of L-plastin to bundle F-actin. L-plastin phosphorylation was sensitive to pharmacological inhibitors of protein kinase C (PKC), and several PKC isoforms colocalized with L-plastin at the leading edge of SDF-1α-stimulated lymphocytes. However, PKC ζ, an established regulator of cell polarity, was the only isoform that regulated L-plastin phosphorylation. Knockdown of L-plastin expression with small interfering RNAs demonstrated that this protein regulated the localization of F-actin at the leading edge of chemokine-stimulated cells and was also required for polarization, lamellipodia formation, and chemotaxis. Knockdown of L-plastin expression also impaired the Rac1 activation cycle and Akt phosphorylation in response to SDF-1α stimulation. Furthermore, L-plastin also regulated SDF-1α-mediated lymphocyte migration on the integrin ligand ICAM-1 by influencing velocity and persistence, but in a manner that was independent of LFA-1 integrin activation or adhesion. This study, therefore, demonstrates an important role for L-plastin and the signaling pathways that regulate its phosphorylation in response to chemokines and adds L-plastin to a growing list of proteins implicated in T lymphocyte polarity and migration.
Collapse
Affiliation(s)
- Michael Freeley
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin, Dublin 2, Ireland.
| | | | | | | | | | | | | |
Collapse
|
26
|
Li Q, Shakya A, Guo X, Zhang H, Tantin D, Jensen PE, Chen X. Constitutive nuclear localization of NFAT in Foxp3+ regulatory T cells independent of calcineurin activity. THE JOURNAL OF IMMUNOLOGY 2012; 188:4268-77. [PMID: 22490438 DOI: 10.4049/jimmunol.1102376] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Foxp3 plays an essential role in conferring suppressive functionality to CD4(+)/Foxp3(+) regulatory T cells (Tregs). Although studies showed that Foxp3 has to form cooperative complexes with NFAT to bind to target genes, it remains unclear whether NFAT is available in the nucleus of primary Tregs for Foxp3 access. It is generally believed that NFAT in resting cells resides in the cytoplasm, and its nuclear translocation depends on calcineurin (CN) activation. We report that a fraction of NFAT protein constitutively localizes in the nucleus of primary Tregs, where it selectively binds to Foxp3 target genes. Treating Tregs with CN inhibitor does not induce export of NFAT from the nucleus, indicating that its nuclear translocation is independent of CN activity. Consistently, Tregs are resistant to CN inhibitors in the presence of IL-2 and continue to proliferate in response to anti-CD3 stimulation, whereas proliferation of non-Tregs is abrogated by CN inhibitors. In addition, PMA, which activates other transcription factors required for T cell activation but not NFAT, selectively induces Treg proliferation in the absence of ionomycin. TCR interaction with self-MHC class II is not required for PMA-induced Treg proliferation. Tregs expanded by PMA or in the presence of CN inhibitors maintain Treg phenotype and functionality. These findings shed light on Treg biology, paving the way for strategies to selectively activate Tregs.
Collapse
Affiliation(s)
- Qiuxia Li
- Department of Pathology, University of Utah, Salt Lake City, UT 84132, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Sotrastaurin (AEB071) alone and in combination with cyclosporine A prolongs survival times of non-human primate recipients of life-supporting kidney allografts. Transplantation 2012; 93:156-64. [PMID: 22179400 DOI: 10.1097/tp.0b013e31823cf92f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Sotrastaurin (STN), a novel oral protein kinase C inhibitor that inhibits early T-cell activation, was assessed in non-human primate recipients of life-supporting kidney allografts. METHODS Cynomolgus monkey recipients of life-supporting kidney allografts were treated orally with STN alone or in combination with cyclosporine A (CsA). RESULTS STN monotherapy at 50 mg/kg once daily prolonged recipient survival times to the predefined endpoint of 29 days (n=2); when given at 25 mg/kg twice daily, the median survival time (MST) was 27 days (n=4). Neither once-daily monotherapy of STN 20 mg/kg nor CsA 20 mg/kg was effective (MST 6 days [n=2] and 7 days [n=5], respectively). In combination, however, STN 20 mg/kg and CsA 20 mg/kg prolonged MST to more than 100 days (n=5). By combining lower once-daily doses of STN (7 or 2 mg/kg) with CsA (20 mg/kg), MST was more than 100 (n=3) and 22 days (n=2), respectively. Neither in single-dose pharmacokinetic studies nor the transplant recipients were STN or CsA blood levels for combined treatment greater than when either drug was administered alone. STN blood levels in transplant recipients during combination therapy were dose related (20 mg/kg, 30-182 ng/mL; 7 mg/kg, 7-41 ng/mL; and 2 mg/kg, 3-5 ng/mL). STN at a daily dose of up to 20 mg/kg was relatively well tolerated. CONCLUSIONS STN prolonged survival times of non-human primate kidney allograft recipients both as monotherapy and most effectively in combination with CsA. Pharmacokinetic interactions were not responsible for the potentiation of immunosuppressive efficacy by coadministering STN and CsA.
Collapse
|
28
|
Fu G, Gascoigne NRJ. Protein kinase Cη, an emerging player in T-cell biology. Cell Cycle 2012; 11:837-8. [PMID: 22356750 DOI: 10.4161/cc.11.5.19677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
29
|
Madaro L, Pelle A, Nicoletti C, Crupi A, Marrocco V, Bossi G, Soddu S, Bouché M. PKC theta ablation improves healing in a mouse model of muscular dystrophy. PLoS One 2012; 7:e31515. [PMID: 22348094 PMCID: PMC3279361 DOI: 10.1371/journal.pone.0031515] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 01/11/2012] [Indexed: 12/22/2022] Open
Abstract
Inflammation is a key pathological characteristic of dystrophic muscle lesion formation, limiting muscle regeneration and resulting in fibrotic and fatty tissue replacement of muscle, which exacerbates the wasting process in dystrophic muscles. Limiting immune response is thus one of the therapeutic options to improve healing, as well as to improve the efficacy of gene- or cell-mediated strategies to restore dystrophin expression. Protein kinase C θ (PKCθ) is a member of the PKCs family highly expressed in both immune cells and skeletal muscle; given its crucial role in adaptive, but also innate, immunity, it is being proposed as a valuable pharmacological target for immune disorders. In our study we asked whether targeting PKCθ could represent a valuable approach to efficiently prevent inflammatory response and disease progression in a mouse model of muscular dystrophy. We generated the bi-genetic mouse model mdx/θ(-/-), where PKCθ expression is lacking in mdx mice, the mouse model of Duchenne muscular dystrophy. We found that muscle wasting in mdx/θ(-/-) mice was greatly prevented, while muscle regeneration, maintenance and performance was significantly improved, as compared to mdx mice. This phenotype was associated to reduction in inflammatory infiltrate, pro-inflammatory gene expression and pro-fibrotic markers activity, as compared to mdx mice. Moreover, BM transplantation experiments demonstrated that the phenotype observed was primarily dependent on lack of PKCθ expression in hematopoietic cells.These results demonstrate a hitherto unrecognized role of immune-cell intrinsic PKCθ activity in the development of DMD. Although the immune cell population(s) involved remain unidentified, our findings reveal that PKCθ can be proposed as a new pharmacological target to counteract the disease, as well as to improve the efficacy of gene- or cell- therapy approaches.
Collapse
Affiliation(s)
- Luca Madaro
- Unit of Histology, and IIM, Sapienza University, DAHFMO, Rome, Italy
| | - Andrea Pelle
- Unit of Histology, and IIM, Sapienza University, DAHFMO, Rome, Italy
| | - Carmine Nicoletti
- Unit of Histology, and IIM, Sapienza University, DAHFMO, Rome, Italy
| | - Annunziata Crupi
- Unit of Histology, and IIM, Sapienza University, DAHFMO, Rome, Italy
| | - Valeria Marrocco
- Unit of Histology, and IIM, Sapienza University, DAHFMO, Rome, Italy
| | - Gianluca Bossi
- Department of Experimental Oncology, Regina Elena Cancer Institute, Rome, Italy
| | - Silvia Soddu
- Department of Experimental Oncology, Regina Elena Cancer Institute, Rome, Italy
| | - Marina Bouché
- Unit of Histology, and IIM, Sapienza University, DAHFMO, Rome, Italy
- * E-mail:
| |
Collapse
|
30
|
Ameliorated ConA-induced hepatitis in the absence of PKC-theta. PLoS One 2012; 7:e31174. [PMID: 22347449 PMCID: PMC3274545 DOI: 10.1371/journal.pone.0031174] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 01/04/2012] [Indexed: 11/23/2022] Open
Abstract
Severe liver injury that occurs when immune cells mistakenly attack an individual's own liver cells leads to autoimmune hepatitis. In mice, acute hepatitis can be induced by concanavalin A (ConA) treatment, which causes rapid activation of CD1d-positive natural killer (NK) T cells. These activated NKT cells produce large amounts of cytokines, which induce strong inflammation that damages liver tissues. Here we show that PKC-θ−/− mice were resistant to ConA-induced hepatitis due to essential function of PKC-θ in NKT cell development and activation. A dosage of ConA (25 mg/kg) that was lethal to wild-type (WT) mice failed to induce death resulting from liver injury in PKC-θ−/− mice. Correspondingly, ConA-induced production of cytokines such as IFNγ, IL-6, and TNFα, which mediate the inflammation responsible for liver injury, were significantly lower in PKC-θ−/− mice. Peripheral NKT cells had developmental defects at early stages in the thymus in PKC-θ−/− mice, and as a result their frequency and number were greatly reduced. Furthermore, PKC-θ−/− bone marrow adoptively transferred to WT mice displayed similar defects in NKT cell development, suggesting an intrinsic requirement for PKC-θ in NKT cell development. In addition, upon stimulation with NKT cell-specific lipid ligand, peripheral PKC-θ−/− NKT cells produced lower levels of inflammatory cytokines than that of WT NKT cells, suggesting that activation of NKT cells also requires PKC-θ. Our results suggest PKC-θ is an essential molecule required for activation of NKT cell to induce hepatitis, and thus, is a potential drug target for prevention of autoimmune hepatitis.
Collapse
|
31
|
Fu G, Hu J, Niederberger-Magnenat N, Rybakin V, Casas J, Yachi PP, Feldstein S, Ma B, Hoerter JAH, Ampudia J, Rigaud S, Lambolez F, Gavin AL, Sauer K, Cheroutre H, Gascoigne NRJ. Protein kinase C η is required for T cell activation and homeostatic proliferation. Sci Signal 2011; 4:ra84. [PMID: 22155788 PMCID: PMC3242502 DOI: 10.1126/scisignal.2002058] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Protein kinase C η (PKCη) is abundant in T cells and is recruited to the immunological synapse that is formed between a T cell and an antigen-presenting cell; however, its function in T cells is unknown. We showed that PKCη was required for the activation of mature CD8+ T cells through the T cell receptor. Compared with wild-type T cells, PKCη-/- T cells showed poor proliferation in response to antigen stimulation, a trait shared with T cells deficient in PKCθ, which is the most abundant PKC isoform in T cells and was thought to be the only PKC isoform with a specific role in T cell activation. In contrast, only PKCη-deficient T cells showed defective homeostatic proliferation, which requires self-antigen recognition. PKCη was dispensable for thymocyte development; however, thymocytes from mice doubly deficient in PKCη and PKCθ exhibited poor development, indicating some redundancy between the PKC isoforms. Deficiency in PKCη or PKCθ had opposing effects on the relative numbers of CD4+ and CD8+ T cells. PKCη-/- mice had a higher ratio of CD4+ to CD8+ T cells compared to that of wild-type mice, whereas PKCθ-/- mice had a lower ratio. Mice deficient in both isoforms exhibited normal cell ratios. Together, these data suggest that PKCη shares some redundant roles with PKCθ in T cell biology and also performs nonredundant functions that are required for T cell homeostasis and activation.
Collapse
Affiliation(s)
- Guo Fu
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jianfang Hu
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Nathalie Niederberger-Magnenat
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
- Department of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Vasily Rybakin
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Javier Casas
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Pia P. Yachi
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Stephanie Feldstein
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Bo Ma
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - John A. H. Hoerter
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jeanette Ampudia
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Stephanie Rigaud
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Florence Lambolez
- Department of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Amanda L. Gavin
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Karsten Sauer
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Hilde Cheroutre
- Department of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Nicholas R. J. Gascoigne
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
32
|
Kamo N, Shen XD, Ke B, Busuttil RW, Kupiec-Weglinski JW. Sotrastaurin, a protein kinase C inhibitor, ameliorates ischemia and reperfusion injury in rat orthotopic liver transplantation. Am J Transplant 2011; 11:2499-507. [PMID: 21883905 PMCID: PMC3625141 DOI: 10.1111/j.1600-6143.2011.03700.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Sotraustaurin (STN), a small molecule, targeted protein kinase C (PKC) inhibitor that prevents T-lymphocyte activation via a calcineurin-independent pathway, is currently being tested in Phase II renal and liver transplantation clinical trials. We have documented the key role of activated T cells in the inflammation cascade leading to liver ischemia/reperfusion injury (IRI). This study explores putative cytoprotective functions of STN in a clinically relevant rat model of hepatic cold ischemia followed by orthotopic liver transplantation (OLT). Livers from Sprague-Dawley rats were stored for 30 h at 4°C in UW solution, and then transplanted to syngeneic recipients. STN treatment of liver donors/recipients or recipients only prolonged OLT survival to >90% (vs. 40% in controls), decreased hepatocellular damage and improved histological features of IRI. STN treatment decreased activation of T cells, and diminished macrophage/neutrophil accumulation in OLTs. These beneficial effects were accompanied by diminished apoptosis, NF-κB/ERK signaling, depressed proapoptotic cleaved caspase-3, yet upregulated antiapoptotic Bcl-2/Bcl-xl and hepatic cell proliferation. In vitro, STN decreased PKCθ/IκBα activation and IL-2/IFN-γ production in ConA-stimulated spleen T cells, and diminished TNF-α/IL-1β in macrophage-T cell cocultures. This study documents positive effects of STN on liver IRI in OLT rat model that may translate as an additional benefit of STN in clinical liver transplantation.
Collapse
Affiliation(s)
- N Kamo
- Department of Surgery, Division of Liver and Pancreas Transplantation, Dumont-UCLA Transplant Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
33
|
Wagner J, von Matt P, Faller B, Cooke NG, Albert R, Sedrani R, Wiegand H, Jean C, Beerli C, Weckbecker G, Evenou JP, Zenke G, Cottens S. Structure–Activity Relationship and Pharmacokinetic Studies of Sotrastaurin (AEB071), a Promising Novel Medicine for Prevention of Graft Rejection and Treatment of Psoriasis. J Med Chem 2011; 54:6028-39. [DOI: 10.1021/jm200469u] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jürgen Wagner
- Novartis Institutes for BioMedical Research, Basel CH-4002, Switzerland
| | - Peter von Matt
- Novartis Institutes for BioMedical Research, Basel CH-4002, Switzerland
| | - Bernard Faller
- Novartis Institutes for BioMedical Research, Basel CH-4002, Switzerland
| | - Nigel G. Cooke
- Novartis Institutes for BioMedical Research, Basel CH-4002, Switzerland
| | - Rainer Albert
- Novartis Institutes for BioMedical Research, Basel CH-4002, Switzerland
| | - Richard Sedrani
- Novartis Institutes for BioMedical Research, Basel CH-4002, Switzerland
| | - Hansjörg Wiegand
- Novartis Institutes for BioMedical Research, Basel CH-4002, Switzerland
| | - Christian Jean
- Novartis Institutes for BioMedical Research, Basel CH-4002, Switzerland
| | - Christian Beerli
- Novartis Institutes for BioMedical Research, Basel CH-4002, Switzerland
| | | | | | - Gerhard Zenke
- Novartis Institutes for BioMedical Research, Basel CH-4002, Switzerland
| | - Sylvain Cottens
- Novartis Institutes for BioMedical Research, Basel CH-4002, Switzerland
| |
Collapse
|
34
|
López-Huertas MR, Mateos E, Díaz-Gil G, Gómez-Esquer F, Sánchez del Cojo M, Alcamí J, Coiras M. Protein kinase Ctheta is a specific target for inhibition of the HIV type 1 replication in CD4+ T lymphocytes. J Biol Chem 2011; 286:27363-77. [PMID: 21669868 DOI: 10.1074/jbc.m110.210443] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Integration of HIV-1 genome in CD4(+) T cells produces latent reservoirs with long half-life that impedes the eradication of the infection. Control of viral replication is essential to reduce the size of latent reservoirs, mainly during primary infection when HIV-1 infects CD4(+) T cells massively. The addition of immunosuppressive agents to highly active antiretroviral therapy during primary infection would suppress HIV-1 replication by limiting T cell activation, but these agents show potential risk for causing lymphoproliferative disorders. Selective inhibition of PKC, crucial for T cell function, would limit T cell activation and HIV-1 replication without causing general immunosuppression due to PKC being mostly expressed in T cells. Accordingly, the effect of rottlerin, a dose-dependent PKC inhibitor, on HIV-1 replication was analyzed in T cells. Rottlerin was able to reduce HIV-1 replication more than 20-fold in MT-2 (IC(50) = 5.2 μM) and Jurkat (IC(50) = 2.2 μM) cells and more than 4-fold in peripheral blood lymphocytes (IC(50) = 4.4 μM). Selective inhibition of PKC, but not PKCδ or -ζ, was observed at <6.0 μM, decreasing the phosphorylation at residue Thr(538) on the kinase catalytic domain activation loop and avoiding PKC translocation to the lipid rafts. Consequently, the main effector at the end of PKC pathway, NF-κB, was repressed. Rottlerin also caused a significant inhibition of HIV-1 integration. Recently, several specific PKC inhibitors have been designed for the treatment of autoimmune diseases. Using these inhibitors in combination with highly active antiretroviral therapy during primary infection could be helpful to avoid massive viral infection and replication from infected CD4(+) T cells, reducing the reservoir size at early stages of the infection.
Collapse
Affiliation(s)
- María Rosa López-Huertas
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
35
|
Risk conferring genes in multiple sclerosis. FEBS Lett 2011; 585:3789-97. [DOI: 10.1016/j.febslet.2011.03.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 03/17/2011] [Accepted: 03/17/2011] [Indexed: 12/25/2022]
|
36
|
Thompson J, Burger ML, Whang H, Winoto A. Protein kinase C regulates mitochondrial targeting of Nur77 and its family member Nor-1 in thymocytes undergoing apoptosis. Eur J Immunol 2010; 40:2041-9. [PMID: 20411565 DOI: 10.1002/eji.200940231] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Nur77 orphan steroid receptor and its family member Nor-1 are required for apoptosis of developing T cells. In thymocytes, signals from the TCR complex induce Nur77 and Nor-1 expression followed by translocation from the nucleus to mitochondria. Nur77 and Nor-1 associate with Bcl-2 in the mitochondria, resulting in a conformation change that exposes the Bcl-2 BH3 domain, a presumed pro-apoptotic molecule of Bcl-2. As Nur77 and Nor-1 are heavily phosphorylated, we examined the requirement of Nur77 and Nor-1 phosphorylation in mitochondria translocation and Bcl-2 BH3 exposure. We found that HK434, a PKC agonist, in combination with calcium ionophore, can induce Nur77 and Nor-1 phosphorylation, translocation, Bcl-2 BH3 exposure and thymocyte apoptosis. Inhibitors of both classical and novel forms of PKC were able to block this process. In contrast, only the general but not classical PKC-specific inhibitors were able to block the same process initiated by PMA, a commonly used PKC agonist. These data demonstrate a differential activation of PKC isoforms by PMA and HK434 in thymocytes, and show the importance of PKC in mitochondria translocation of Nur77/Nor-1 and Bcl-2 conformation change during TCR-induced thymocyte apoptosis.
Collapse
Affiliation(s)
- Jennifer Thompson
- Cancer Research Laboratory and Department of Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California, Berkeley, CA, USA
| | | | | | | |
Collapse
|
37
|
Giroux M, Delisle JS, O'Brien A, Hébert MJ, Perreault C. T cell activation leads to protein kinase C theta-dependent inhibition of TGF-beta signaling. THE JOURNAL OF IMMUNOLOGY 2010; 185:1568-76. [PMID: 20592275 DOI: 10.4049/jimmunol.1000137] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
TGF-beta is an ubiquitous cytokine that plays a pivotal role in the maintenance of self-tolerance and prevention of immunopathologies. Under steady-state conditions, TGF-beta keeps naive T cells in a resting state and inhibits Th1 and Th2 cell differentiation. Because rapid generation of Th1 and Th2 effector cells is needed in response to pathogen invasion, how do naive T cells escape from the quiescent state maintained by TGF-beta? We hypothesized that stimulation by strong TCR agonists might interfere with TGF-beta signaling. Using both primary mouse CD4(+) T cells and human Jurkat cells, we observed that strong TCR agonists swiftly suppress TGF-beta signaling. TCR engagement leads to a rapid increase in SMAD7 levels and decreased SMAD3 phosphorylation. We present evidence that TCR signaling hinders SMAD3 activation by inducing recruitment of TGF-betaRs in lipid rafts together with inhibitory SMAD7. This effect is dependent on protein kinase C, a downstream TCR signaling intermediary, as revealed by both pharmacological inhibition and expression of dominant-negative and constitutively active protein kinase C mutants. This work broadens our understanding of the cross-talk occurring between the TCR and TGF-beta signaling pathways and reveals that strong TCR agonists can release CD4 T cells from constitutive TGF-beta signaling. We propose that this process may be of vital importance upon confrontation with microbial pathogens.
Collapse
Affiliation(s)
- Martin Giroux
- Institute for Research in Immunology and Cancer, Montreal, Quebec H3C 3J7, Canada
| | | | | | | | | |
Collapse
|
38
|
Paoletti R, Maffei A, Madaro L, Notte A, Stanganello E, Cifelli G, Carullo P, Molinaro M, Lembo G, Bouché M. Protein kinase Cθ is required for cardiomyocyte survival and cardiac remodeling. Cell Death Dis 2010; 1:e45. [PMID: 21364651 PMCID: PMC3032313 DOI: 10.1038/cddis.2010.24] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein kinase Cs (PKCs) constitute a family of serine/threonine kinases, which has distinguished and specific roles in regulating cardiac responses, including those associated with heart failure. We found that the PKCθ isoform is expressed at considerable levels in the cardiac muscle in mouse, and that it is rapidly activated after pressure overload. To investigate the role of PKCθ in cardiac remodeling, we used PKCθ−/− mice. In vivo analyses of PKCθ−/− hearts showed that the lack of PKCθ expression leads to left ventricular dilation and reduced function. Histological analyses showed a reduction in the number of cardiomyocytes, combined with hypertrophy of the remaining cardiomyocytes, cardiac fibrosis, myofibroblast hyper-proliferation and matrix deposition. We also observed p38 and JunK activation, known to promote cell death in response to stress, combined with upregulation of the fetal pattern of gene expression, considered to be a feature of the hemodynamically or metabolically stressed heart. In keeping with these observations, cultured PKCθ−/− cardiomyocytes were less viable than wild-type cardiomyocytes, and, unlike wild-type cardiomyocytes, underwent programmed cell death upon stimulation with α1-adrenergic agonists and hypoxia. Taken together, these results show that PKCθ maintains the correct structure and function of the heart by preventing cardiomyocyte cell death in response to work demand and to neuro-hormonal signals, to which heart cells are continuously exposed.
Collapse
Affiliation(s)
- R Paoletti
- Department of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Fang Y, Joo D, Lim B, Kim J, Kim M, Jeong H, Kim Y. AEB-071 Versus Tacrolimus Monotherapy to Prevent Acute Cardiac Allograft Rejection in the Rat: A Preliminary Report. Transplant Proc 2010; 42:976-9. [DOI: 10.1016/j.transproceed.2010.02.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
40
|
Durrbach A, Francois H, Beaudreuil S, Jacquet A, Charpentier B. Advances in immunosuppression for renal transplantation. Nat Rev Nephrol 2010; 6:160-7. [DOI: 10.1038/nrneph.2009.233] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Abstract
The current 5-year survival rate of pancreatic cancer is about 3% and the median survival less than 6 months because the chemotherapy and radiation therapy presently available provide only marginal benefit. Clearly, pancreatic cancer requires new therapeutic concepts. Recently, the kinase inhibitors imatinib and gefitinib, developed to treat chronic myelogenous leukaemia and breast cancer, respectively, gave very good results. Kinases are deregulated in many diseases, including cancer. Given that phosphorylation controls cell survival signalling, strategies targeting kinases should obviously improve cancer treatment. The purpose of this review is to summarize the present knowledge on kinases potentially usable as therapeutic targets in the treatment of pancreatic cancer. All clinical trials using available kinase inhibitors in monotherapy or in combination with chemotherapeutic drugs failed to improve survival of patients with pancreatic cancer. To detect kinases relevant to this disease, we undertook a systematic screening of the human kinome to define a 'survival kinase' catalogue for pancreatic cells. We selected 56 kinases that are potential therapeutic targets in pancreatic cancer. Preclinical studies using combined inhibition of PAK7, MAP3K7 and CK2 survival kinases in vitro and in vivo showed a cumulative effect on apoptosis induction. We also observed that these three kinases are rather specific of pancreatic cancer cells. In conclusion, if kinase inhibitors presently available are unfortunately not efficient for treating pancreatic cancer, recent data suggest that inhibitors of other kinases, involved more specifically in pancreatic cancer development, might, in the future, become interesting therapeutic targets.
Collapse
Affiliation(s)
- Valentin Giroux
- INSERM U624, Stress Cellulaire, Parc Scientifique et Technologique de Luminy, Marseille Cedex 9, France
| | | | | |
Collapse
|
42
|
Weckbecker G, Pally C, Beerli C, Burkhart C, Wieczorek G, Metzler B, Morris RE, Wagner J, Bruns C. Effects of the novel protein kinase C inhibitor AEB071 (Sotrastaurin) on rat cardiac allograft survival using single agent treatment or combination therapy with cyclosporine, everolimus or FTY720. Transpl Int 2009; 23:543-52. [PMID: 20003043 DOI: 10.1111/j.1432-2277.2009.01015.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
NVP-AEB071 (AEB, sotrastaurin), an oral inhibitor of protein kinase C (PKC), effectively blocks T-cell activation. The immunosuppressive effects of oral AEB were demonstrated in a rat local graft versus host (GvH) reaction and rat cardiac transplantation models. T-cell activation was suppressed by 95% in blood from AEB-treated rats, with a positive correlation between T-cell inhibition and AEB blood concentration. In GvH studies, AEB inhibited lymph node swelling dose-dependently (3-30 mg/kg). BN and DA cardiac allografts were acutely rejected within 6-10 days post-transplantation in untreated LEW rats. AEB at 10 and 30 mg/kg b.i.d. prolonged BN graft survival to a mean survival time of 15 and >28 days, and DA grafts to 6.5 and 17.5 days, respectively. In the DA to LEW model, combining a nonefficacious dose of AEB (10 mg/kg b.i.d.) with a nonefficacious dose of cyclosporine, everolimus or FTY720 led to prolonged median survival times (26 days, >68 days and >68 days, respectively). Pharmacokinetic monitoring excluded drug-drug interactions, suggesting synergy. In conclusion, these studies are the first to demonstrate that AEB prolongs rat heart allograft survival safely as monotherapy and in combination with nonefficacious doses of cyclosporine, everolimus or FTY720. Thus, AEB may have the potential to offer an alternative to calcineurin inhibitor-based therapies.
Collapse
Affiliation(s)
- Gisbert Weckbecker
- Novartis Institutes for BioMedical Research, Autoimmunity and Transplantation Disease Area, Novartis Pharma AG, Basel, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Bäckdahl L, Guo JP, Jagodic M, Becanovic K, Ding B, Olsson T, Lorentzen JC. Definition of arthritis candidate risk genes by combining rat linkage-mapping results with human case-control association data. Ann Rheum Dis 2009; 68:1925-32. [PMID: 19066175 DOI: 10.1136/ard.2008.090803] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To define genomic regions that link to rat arthritis and to determine the potential association with rheumatoid arthritis (RA) of the corresponding human genomic regions. METHODS Advanced intercross lines (AIL) between arthritis susceptible DA rats and arthritis resistant PVG.1AV1 rats were injected with differently arthritogenic oils to achieve an experimental situation with substantial phenotypic variation in the rat study population. Genotyping of microsatellite markers was performed over genomic regions with documented impact on arthritis, located on rat chromosomes 4, 10 and 12. Linkage between genotypes and phenotypes were determined by R/quantitative trait loci (QTL). Potential association with RA of single nucleotide polymorphisms (SNPs) in homologous human chromosome regions was evaluated from public Wellcome Trust Case Control Consortium (WTCCC) data derived from 2000 cases and 3000 controls. RESULTS A high frequency of arthritis (57%) was recorded in 422 rats injected with pristane. Maximum linkage to pristane-induced arthritis occurred less than 130 kb from the known genetic arthritis determinants Ncf1 and APLEC, demonstrating remarkable mapping precision. Five novel quantitative trait loci were mapped on rat chromosomes 4 and 10, with narrow confidence intervals. Some exerted sex-biased effects and some were linked to chronic arthritis. Human homologous genomic regions contain loci where multiple nearby SNPs associate nominally with RA (eg, at the genes encoding protein kinase Calpha and interleukin 17 receptor alpha). CONCLUSIONS High-resolution mapping in AIL populations defines limited sets of candidate risk genes, some of which appear also to associate with RA and thus may give clues to evolutionarily conserved pathways that lead to arthritis.
Collapse
Affiliation(s)
- L Bäckdahl
- Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
44
|
Jeong SM, Lee C, Lee SK, Kim J, Seong RH. The SWI/SNF chromatin-remodeling complex modulates peripheral T cell activation and proliferation by controlling AP-1 expression. J Biol Chem 2009; 285:2340-50. [PMID: 19910461 DOI: 10.1074/jbc.m109.026997] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The SWI/SNF chromatin-remodeling complex has been implicated in the activation and proliferation of T cells. After T cell receptor signaling, the SWI/SNF complex rapidly associates with chromatin and controls gene expression in T cells. However, the process by which the SWI/SNF complex regulates peripheral T cell activation has not been elucidated. In this study, we show that the SWI/SNF complex regulates cytokine production and proliferation of T cells. During T cell activation, the SWI/SNF complex is recruited to the promoter of the transcription factor AP-1, and it increases the expression of AP-1. Increased expression of the SWI/SNF complex resulted in enhanced AP-1 activity, cytokine production, and proliferation of peripheral T cells, whereas knockdown of the SWI/SNF complex expression impaired the AP-1 expression and reduced the activation and proliferation of T cells. Moreover, mice that constitutively expressed the SWI/SNF complex in T cells were much more susceptible to experimentally induced autoimmune encephalomyelitis than the normal mice were. These results suggest that the SWI/SNF complex plays a critical role during T cell activation and subsequent immune responses.
Collapse
Affiliation(s)
- Seung Min Jeong
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, and Research Center for Functional Cellulomics, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul 151-742, Korea
| | | | | | | | | |
Collapse
|
45
|
Evenou JP, Wagner J, Zenke G, Brinkmann V, Wagner K, Kovarik J, Welzenbach KA, Weitz-Schmidt G, Guntermann C, Towbin H, Cottens S, Kaminski S, Letschka T, Lutz-Nicoladoni C, Gruber T, Hermann-Kleiter N, Thuille N, Baier G. The potent protein kinase C-selective inhibitor AEB071 (sotrastaurin) represents a new class of immunosuppressive agents affecting early T-cell activation. J Pharmacol Exp Ther 2009; 330:792-801. [PMID: 19491325 DOI: 10.1124/jpet.109.153205] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
There is a pressing need for immunosuppressants with an improved safety profile. The search for novel approaches to blocking T-cell activation led to the development of the selective protein kinase C (PKC) inhibitor AEB071 (sotrastaurin). In cell-free kinase assays AEB071 inhibited PKC, with K(i) values in the subnanomolar to low nanomolar range. Upon T-cell stimulation, AEB071 markedly inhibited in situ PKC catalytic activity and selectively affected both the canonical nuclear factor-kappaB and nuclear factor of activated T cells (but not activator protein-1) transactivation pathways. In primary human and mouse T cells, AEB071 treatment effectively abrogated at low nanomolar concentration markers of early T-cell activation, such as interleukin-2 secretion and CD25 expression. Accordingly, the CD3/CD28 antibody- and alloantigen-induced T-cell proliferation responses were potently inhibited by AEB071 in the absence of nonspecific antiproliferative effects. Unlike former PKC inhibitors, AEB071 did not enhance apoptosis of murine T-cell blasts in a model of activation-induced cell death. Furthermore, AEB071 markedly inhibited lymphocyte function-associated antigen-1-mediated T-cell adhesion at nanomolar concentrations. The mode of action of AEB071 is different from that of calcineurin inhibitors, and AEB071 and cyclosporine A seem to have complementary effects on T-cell signaling pathways.
Collapse
Affiliation(s)
- Jean-Pierre Evenou
- Novartis Institute for BioMedical Research, WSJ-386.5.27, CH-4002 Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sheng WY, Wang TCV. Proteomic analysis of the differential protein expression reveals nuclear GAPDH in activated T lymphocytes. PLoS One 2009; 4:e6322. [PMID: 19621076 PMCID: PMC2708351 DOI: 10.1371/journal.pone.0006322] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 06/15/2009] [Indexed: 11/19/2022] Open
Abstract
Despite the important role of T cell activation in the adaptive immunity, very little is known about the functions of proteins that are differentially expressed in the activated T cells. In this study, we have employed proteomic approach to study the differentially expressed proteins in activated T cells. A total of 25 proteins was characterized that displayed a decreased expression, while a total of 20 proteins was characterized that displayed an increased expression in the activated T cells. Among them, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was identified unexpectedly as one of the up-regulated proteins. Western blot analysis of proteins separated by 2-dimensional gel electrophoresis had identified several modified GAPDHs which were detectable only in the activated T cells, but not in resting T cells. These modified GAPDHs had higher molecular mass and more basic PI, and were present in the nucleus of activated T cells. Promoter occupancy studies by chromatin immunoprecipitation assay revealed that nuclear GAPDH could be detected in the promoter of genes that were up-regulated during T cell activation, but not in the promoter of genes that were not unaffected or down-regulated. Our results suggest that nuclear GAPDH may function as transcriptional regulator in activated T cells.
Collapse
Affiliation(s)
- Wei-Yun Sheng
- Department of Molecular and Cellular Biology, Chang Gung University, Kwei-San, Taiwan
| | - Tzu-Chien V. Wang
- Department of Molecular and Cellular Biology, Chang Gung University, Kwei-San, Taiwan
- * E-mail:
| |
Collapse
|
47
|
Gruber T, Hermann-Kleiter N, Hinterleitner R, Fresser F, Schneider R, Gastl G, Penninger JM, Baier G. PKC-theta modulates the strength of T cell responses by targeting Cbl-b for ubiquitination and degradation. Sci Signal 2009; 2:ra30. [PMID: 19549985 DOI: 10.1126/scisignal.2000046] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The E3 ubiquitin ligase Casitas B-lineage lymphoma (Cbl-b) is central to antigen-induced immune tolerance and regulates the CD28 dependence of T cell activation. Cbl-b undergoes ubiquitination and proteasomal degradation after adequate costimulation of T cells; however, the mechanism involved is unknown. Here, we identified protein kinase C-theta (PKC-theta) as the critical intermediary for the inactivation of Cbl-b in response to costimulation of T cells through CD28. PKC-theta associated with Cbl-b on stimulation of the T cell receptor. After costimulation of T cells through CD28, Cbl-b was ubiquitinated and degraded through a mechanism that depended on the kinase activity of PKC-theta. Consistent with this mechanism, the impaired responses of PKCtheta-deficient T cells were at least partially restored by the concomitant genetic loss of cblb. Thus, our data establish a nonredundant antagonism between PKC-theta and Cbl-b that regulates T cell activation responses.
Collapse
Affiliation(s)
- Thomas Gruber
- Department of Medical Genetics, Clinical and Molecular Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Gruber T, Hermann-Kleiter N, Pfeifhofer-Obermair C, Lutz-Nicoladoni C, Thuille N, Letschka T, Barsig J, Baudler M, Li J, Metzler B, Nüsslein-Hildesheim B, Wagner J, Leitges M, Baier G. PKC theta cooperates with PKC alpha in alloimmune responses of T cells in vivo. Mol Immunol 2009; 46:2071-9. [PMID: 19356803 DOI: 10.1016/j.molimm.2009.02.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 02/16/2009] [Accepted: 02/17/2009] [Indexed: 12/15/2022]
Abstract
The physiological roles of PKC alpha and PKC theta were defined in T cell immune functions downstream of the antigen receptor. To investigate the hypothesis that both PKC isotypes may have overlapping functions, we generated mice lacking both genes. We find that PKC alpha(-/-)/theta(-/-) animals have additive T cell response defects in comparison to animals carrying single mutations in these genes. Our studies demonstrate that the activities of PKC alpha and PKC theta converge to regulate both IL-2 cytokine responses and T cell intrinsic alloreactivity in vivo. Mechanistically, this PKC alpha/theta crosstalk primarily affects the NFAT transactivation pathway in T lymphocytes, as observed by decreased phosphorylation of Ser-9 on GSK3 beta, reduced nuclear translocation and DNA binding of NFAT in isolated PKC alpha(-/-)/theta(-/-) CD3(+) T cells. This additive defect proved to be of physiological relevance, because PKC alpha(-/-)/theta(-/-) mice demonstrated significantly prolonged allograft survival in heart transplantation experiments, whereas both PKC alpha(-/-) and PKC theta(-/-) mice showed only minimal graft prolongation when compared to wild type controls. While PKC theta appears to be the rate-limiting PKC isotype mediating T lymphocyte activation, we here provide genetic evidence that PKC alpha and PKC theta have overlapping functions in alloimmunoreactivity in vivo and both PKC theta and PKC alpha isotypes must be targeted to prevent organ allograft rejection.
Collapse
Affiliation(s)
- Thomas Gruber
- Department for Medical Genetics, Molecular and Clinical Pharmacology, Medical University Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Localized diacylglycerol drives the polarization of the microtubule-organizing center in T cells. Nat Immunol 2009; 10:627-35. [PMID: 19430478 DOI: 10.1038/ni.1734] [Citation(s) in RCA: 186] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 04/09/2009] [Indexed: 12/16/2022]
Abstract
The reorientation of the T cell microtubule-organizing center (MTOC) toward the antigen-presenting cell enables the directional secretion of cytokines and lytic factors. By single-cell photoactivation of the T cell antigen receptor, we show that MTOC polarization is driven by localized accumulation of diacylglycerol (DAG). MTOC reorientation was closely preceded first by production of DAG and then by recruitment of the microtubule motor protein dynein. Blocking DAG production or disrupting the localization of DAG impaired MTOC recruitment. Localized DAG accumulation was also required for cytotoxic T cell-mediated killing. Furthermore, photoactivation of DAG itself was sufficient to induce transient polarization. Our data identify a DAG-dependent pathway that signals through dynein to control microtubule polarity in T cells.
Collapse
|
50
|
van Rossum DB, Patterson RL. PKC and PLA2: probing the complexities of the calcium network. Cell Calcium 2009; 45:535-45. [PMID: 19345415 DOI: 10.1016/j.ceca.2009.02.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 02/24/2009] [Accepted: 02/26/2009] [Indexed: 11/15/2022]
Abstract
Lipid signaling and phosphorylation cascades are fundamental to calcium signaling networks. In this review, we will discuss the recent laboratory findings for the phospholipase A(2) (PLA(2))/protein kinase C (PKC) pathway within cellular calcium networks. The complexity and connectivity of these ubiquitous cellular signals make interpretation of experimental results extremely challenging. We present here computational methods which have been developed to conquer such complex data, and how they can be used to make models capable of accurately predicting cellular responses within multiple calcium signaling pathways. We propose that information obtained from network analysis and computational techniques provides a rich source of knowledge which can be directly translated to the laboratory benchtop.
Collapse
Affiliation(s)
- Damian B van Rossum
- Department of Biology, The Pennsylvania State University, PA, United States.
| | | |
Collapse
|