1
|
Jabłońska-Trypuć A. A review on triclosan in wastewater: Mechanism of action, resistance phenomenon, environmental risks, and sustainable removal techniques. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10920. [PMID: 37610032 DOI: 10.1002/wer.10920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 08/24/2023]
Abstract
Triclosan, belonging to the bisphenols, is a known antiseptic broad-spectrum biocide. It has a very wide range of applications, both in health care and in the household. Triclosan enters the environment, both water bodies and soil, because of its high prevalence and the ability to accumulation. Excessive use of antimicrobial formulations may cause the generation of resistance among microorganisms. Reduced susceptibility to triclosan is observed more frequently and in an expanded group of microorganisms and is conditioned by a number of different mechanisms occurring on the molecular level. Conventional wastewater treatment processes are not always able to provide a reliable barrier to triclosan. Therefore, additional advanced treatment technologies are being considered in areas, where a triclosan contamination problem has been identified. Removal of triclosan from wastewater is carried out using different biological and chemical techniques; however, it should be pointed out that physico-chemical methods often generate toxic by-products. Toxicity of triclosan and its degradation products, bacterial resistance to this compound, and evident problems with triclosan elimination from wastewater are currently the main problems faced by companies creating products containing triclosan. PRACTITIONER POINTS: Triclosan is an emerging pollutant in the environment because of its ability to accumulation and high prevalence. Reduced susceptibility to triclosan is being observed more frequently. Conventional wastewater treatment processes are not always able to provide a reliable barrier to triclosan. Additional advanced treatment technologies should be implemented to remove triclosan from wastewater.
Collapse
Affiliation(s)
- Agata Jabłońska-Trypuć
- Department of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Białystok, Poland
| |
Collapse
|
2
|
Marques AC, Mariana M, Cairrao E. Triclosan and Its Consequences on the Reproductive, Cardiovascular and Thyroid Levels. Int J Mol Sci 2022; 23:ijms231911427. [PMID: 36232730 PMCID: PMC9570035 DOI: 10.3390/ijms231911427] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
Hygiene is essential to avoid diseases, and this is thanks to daily cleaning and disinfection habits. Currently, there are numerous commercial products containing antimicrobial agents, and although they are efficient in disinfecting, it is still not known the effect of the constant use of these products on human health. In fact, a massive use of disinfectants has been observed due to COVID-19, but the possible adverse effects are not yet known. Triclosan is one of the antimicrobial agents used in cosmetic products, toothpaste, and disinfectants. This compound is an endocrine disruptor, which means it can interfere with hormonal function, with its estrogenic and androgenic activity having already been stated. Even if the use of triclosan is well-regulated, with the maximum allowed concentration in the European Union of 0.3% (m/m), its effects on human health are still uncertain. Studies in animals and humans suggest the possibility of harmful health outcomes, particularly for the reproductive system, and in a less extent for the cardiovascular and thyroid functions. Thus, the purpose of this review was to analyse the possible implications of the massive use of triclosan, mainly on the reproductive and cardiovascular systems and on the thyroid function, both in animals and humans.
Collapse
Affiliation(s)
- Ana C. Marques
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences (FCS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Melissa Mariana
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences (FCS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Elisa Cairrao
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences (FCS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
- Correspondence: ; Tel.: +351-275-329-049
| |
Collapse
|
3
|
Alfhili MA, Hussein HAM, Park Y, Lee MH, Akula SM. Triclosan induces apoptosis in Burkitt lymphoma-derived BJAB cells through caspase and JNK/MAPK pathways. Apoptosis 2021; 26:96-110. [PMID: 33387145 DOI: 10.1007/s10495-020-01650-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2020] [Indexed: 12/23/2022]
Abstract
Burkitt's lymphoma (BL) is the fastest growing human tumor. Current treatment consists of a multiagent regimen of cytotoxic drugs with serious side effjects including tumor lysis, cardiotoxicity, hepatic impairment, neuropathy, myelosuppression, increased susceptibility to malignancy, and death. Furthermore, therapeutic interventions in areas of BL prevalence are not as feasible as in high-income countries. Therefore, there exists an urgent need to identify new therapies with a safer profile and improved accessibility. Triclosan (TCS), an antimicrobial used in personal care products and surgical scrubs, has gained considerable interest as an antitumor agent due to its interference with fatty acid synthesis. Here, we investigate the antitumor properties and associated molecular mechanisms of TCS in BL-derived BJAB cells. Dose-dependent cell death was observed following treatment with 10-100 µM TCS for 24 h, which was associated with membrane phospholipid scrambling, compromised permeability, and cell shrinkage. TCS-induced cell death was accompanied by elevated intracellular calcium, perturbed redox balance, chromatin condensation, and DNA fragmentation. TCS upregulated Bad expression and downregulated that of Bcl2. Moreover, caspase and JNK MAPK signaling were required for the full apoptotic activity of TCS. In conclusion, this report identifies TCS as an antitumor agent and provides new insights into the molecular mechanisms governing TCS-induced apoptosis in BL cells.
Collapse
Affiliation(s)
- Mohammad A Alfhili
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11433, Saudi Arabia
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Hosni A M Hussein
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC. 27834, USA
- Faculty of Science, Assiut Branch, Al Azhar University, Assiut, 71524, Egypt
| | - Youngyong Park
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Myon Hee Lee
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Shaw M Akula
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC. 27834, USA.
| |
Collapse
|
4
|
Abstract
Triclosan and chloroxylenol are broad-spectrum biocides used extensively in healthcare and consumer products. They have been suggested to perturb the structure of bacterial membranes, but studies so far have not considered that most bacterial membranes contain large amounts of branched-chain lipids. Here, molecular dynamics simulation is used to examine the effect of the two biocides on membranes consisting of lipids with methyl-branched chains, cyclopropanated chains, and nonbranched chains. It is shown that triclosan and chloroxylenol induced a phase transition in membranes from a liquid-crystalline to a liquid-ordered phase irrespective of the presence and nature of branching groups. At high concentration, chloroxylenol promoted chain interdigitation. Our results suggest that triclosan and chloroxylenol decrease the degree of fluidity of membranes and that this effect is more pronounced in bacterial membranes. As a result, their biocidal activity could be associated with a change in the function of membrane proteins.
Collapse
Affiliation(s)
- David Poger
- School of Chemistry & Molecular Biosciences , The University of Queensland , Brisbane QLD 4072 , Australia
| | - Alan E Mark
- School of Chemistry & Molecular Biosciences , The University of Queensland , Brisbane QLD 4072 , Australia
| |
Collapse
|
5
|
Motta CM, Tizzano M, Tagliafierro AM, Simoniello P, Panzuto R, Esposito L, Migliaccio V, Rosati L, Avallone B. Biocide triclosan impairs byssus formation in marine mussels Mytilus galloprovincialis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:388-396. [PMID: 29857307 DOI: 10.1016/j.envpol.2018.05.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/28/2018] [Accepted: 05/18/2018] [Indexed: 06/08/2023]
Abstract
The effects of the biocide Triclosan, used in personal care products and known as a common environmental contaminant, on byssal apparatus were studied in the marine mussel Mytilus galloprovincialis. Experimental evidences indicated that an exposure for 7 days at a concentration of 10 μg/L induced marked alterations in the byssus gland resulting in a significant delay in byssus regrowth and in a decrease in threads resistance to traction. Such alterations in animals exposed to tidal and waves action would cause a significant loss in ecological fitness and severely impact on mussel survival. Triclosan release in coastal environments therefore should be more carefully monitored to prevent drastic consequences.
Collapse
Affiliation(s)
- C M Motta
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - M Tizzano
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - A M Tagliafierro
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - P Simoniello
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | - R Panzuto
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - L Esposito
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - V Migliaccio
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - L Rosati
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - B Avallone
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
6
|
Belosludtsev KN, Belosludtseva NV, Tenkov KS, Penkov NV, Agafonov AV, Pavlik LL, Yashin VA, Samartsev VN, Dubinin MV. Study of the mechanism of permeabilization of lecithin liposomes and rat liver mitochondria by the antimicrobial drug triclosan. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2018; 1860:264-271. [PMID: 28939382 DOI: 10.1016/j.bbamem.2017.09.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/30/2017] [Accepted: 09/17/2017] [Indexed: 12/22/2022]
Abstract
The effect of the antimicrobial compound triclosan (5-chloro-2'-(2,4-dichlorophenoxy)phenol) on the permeability of lecithin liposomes and rat liver mitochondria was studied. It was found that triclosan was able to increase nonspecific permeability of liposomes in a dose-dependent manner, which was detected by the release of the fluorescent probe sulforhodamine B (SRB) from vesicles. A partial release of SRB occurs instantly at the moment of triclosan addition, which is followed by a slow leakage of the dye. The triclosan-induced release of SRB from liposomes grew as pH of the medium was decreased from 9.5 to 7.5. As revealed by the laurdan generalized polarization (GP) technique, triclosan increased laurdan GP in lecithin liposomes, indicating a decrease in membrane fluidity. Measurements of GP as a function of fluorescence excitation wavelength gave an ascending line for triclosan-containing liposomes, which can be interpreted as phase heterogeneity of the lipid/triclosan system. Dynamic light scattering experiments also showed that at a high triclosan-to-lipid molar ratio (~0.5), a population of smaller light-scattering particles (~0.4 of the size of liposomes) appear in the system. Experiments with rat liver mitochondria demonstrated that triclosan (10-70μM) induced a high-amplitude cyclosporin А-insensitive swelling of the organelles accompanied the release of cytochrome c. On the basis of the results obtained, possible mechanisms of the toxic effect of triclosan in eukaryotic cells are discussed.
Collapse
Affiliation(s)
- Konstantin N Belosludtsev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, Moscow region, 142290, Russia; Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El 424001, Russia.
| | - Natalia V Belosludtseva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, Moscow region, 142290, Russia
| | - Kirill S Tenkov
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El 424001, Russia
| | - Nikita V Penkov
- Institute of Cell Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, Moscow region 142290, Russia
| | - Alexey V Agafonov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, Moscow region, 142290, Russia
| | - Lyubov L Pavlik
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, Moscow region, 142290, Russia
| | - Valery A Yashin
- Institute of Cell Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, Moscow region 142290, Russia
| | - Victor N Samartsev
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El 424001, Russia
| | - Mikhail V Dubinin
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El 424001, Russia
| |
Collapse
|
7
|
Pinckney JL, Thompson L, Hylton S. Triclosan alterations of estuarine phytoplankton community structure. MARINE POLLUTION BULLETIN 2017; 119:162-168. [PMID: 28363428 DOI: 10.1016/j.marpolbul.2017.03.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 03/20/2017] [Accepted: 03/25/2017] [Indexed: 06/07/2023]
Abstract
Antimicrobial additives in pharmaceutical and personal care products are a major environmental concern due to their potential ecological impacts on aquatic ecosystems. Triclosan (TCS) has been used as an antiseptic, disinfectant, and preservative in various media. The sublethal and lethal effects of TCS on estuarine phytoplankton community composition were investigated using bioassays of natural phytoplankton communities to measure phytoplankton responses to different concentrations of TCS ranging from 1 to 200μgl-1. The EC50 (the concentration of an inhibitor where the growth is reduced by half) for phytoplankton groups (diatoms, chlorophytes, cryptophytes) examined in this ranged from 10.7 to 113.8μg TCS l-1. Exposures resulted in major shifts in phytoplankton community composition at concentrations as low as 1.0μg TCS l-1. This study demonstrates estuarine ecosystem sensitivity to TCS exposure and highlights potential alterations in phytoplankton community composition at what are typically environmental concentrations of TCS in urbanized estuaries.
Collapse
Affiliation(s)
- James L Pinckney
- Marine Science Program and Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| | - Laura Thompson
- Marine Science Program and Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Sarah Hylton
- Marine Science Program and Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
8
|
Phosphatidylserine Lateral Organization Influences the Interaction of Influenza Virus Matrix Protein 1 with Lipid Membranes. J Virol 2017; 91:JVI.00267-17. [PMID: 28356535 DOI: 10.1128/jvi.00267-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/21/2017] [Indexed: 01/21/2023] Open
Abstract
Influenza A virus matrix protein 1 (M1) is an essential component involved in the structural stability of the virus and in the budding of new virions from infected cells. A deeper understanding of the molecular basis of virion formation and the budding process is required in order to devise new therapeutic approaches. We performed a detailed investigation of the interaction between M1 and phosphatidylserine (PS) (i.e., its main binding target at the plasma membrane [PM]), as well as the distribution of PS itself, both in model membranes and in living cells. To this end, we used a combination of techniques, including Förster resonance energy transfer (FRET), confocal microscopy imaging, raster image correlation spectroscopy, and number and brightness (N&B) analysis. Our results show that PS can cluster in segregated regions in the plane of the lipid bilayer, both in model bilayers constituted of PS and phosphatidylcholine and in living cells. The viral protein M1 interacts specifically with PS-enriched domains, and such interaction in turn affects its oligomerization process. Furthermore, M1 can stabilize PS domains, as observed in model membranes. For living cells, the presence of PS clusters is suggested by N&B experiments monitoring the clustering of the PS sensor lactadherin. Also, colocalization between M1 and a fluorescent PS probe suggest that, in infected cells, the matrix protein can specifically bind to the regions of PM in which PS is clustered. Taken together, our observations provide novel evidence regarding the role of PS-rich domains in tuning M1-lipid and M1-M1 interactions at the PM of infected cells.IMPORTANCE Influenza virus particles assemble at the plasma membranes (PM) of infected cells. This process is orchestrated by the matrix protein M1, which interacts with membrane lipids while binding to the other proteins and genetic material of the virus. Despite its importance, the initial step in virus assembly (i.e., M1-lipid interaction) is still not well understood. In this work, we show that phosphatidylserine can form lipid domains in physical models of the inner leaflet of the PM. Furthermore, the spatial organization of PS in the plane of the bilayer modulates M1-M1 interactions. Finally, we show that PS domains appear to be present in the PM of living cells and that M1 seems to display a high affinity for them.
Collapse
|
9
|
Abstract
Triclosan antimicrobial molecular fluctuating energies of nonbonding electron pairs for the oxygen atom by ether bond rotations are reviewed with conformational computational chemistry analyses. Subsequent understanding of triclosan alternating ether bond rotations is able to help explain several material properties in Polymer Science. Unique bond rotation entanglements between triclosan and the polymer chains increase both the mechanical properties of polymer toughness and strength that are enhanced even better through secondary bonding relationships. Further, polymer blend compatibilization is considered due to similar molecular relationships and polarities. With compatibilization of triclosan in polymers a more uniform stability for nonpolar triclosan in the polymer solid state is retained by the antimicrobial for extremely low release with minimum solubility into aqueous solution. As a result, triclosan is projected for long extended lifetimes as an antimicrobial polymer additive. Further, triclosan rapid alternating ether bond rotations disrupt secondary bonding between chain monomers in the resin state to reduce viscosity and enhance polymer blending. Thus, triclosan is considered for a polymer additive with multiple properties to be an antimicrobial with additional benefits as a nonpolar toughening agent and a hydrophobic wetting agent. The triclosan material relationships with alternating ether bond rotations are described through a complete different form of medium by comparisons with known antimicrobial properties that upset bacterial cell membranes through rapid fluctuating mechanomolecular energies. Also, triclosan bond entanglements with secondary bonding can produce structural defects in weak bacterial lipid membranes requiring pliability that can then interfere with cell division. Regarding applications with polymers, triclosan can be incorporated by mixing into a resin system before cure, melt mixed with thermoplastic polymers that set on cooling into a solid or alternatively applied as a coating through several different methods with dissolving into an organic solvent and dried on by evaporation as a common means.
Collapse
Affiliation(s)
- Richard C Petersen
- Department of Biomaterials and Restorative Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
10
|
Doğangün M, Hang MN, Troiano JM, McGeachy AC, Melby ES, Pedersen JA, Hamers RJ, Geiger FM. Alteration of Membrane Compositional Asymmetry by LiCoO2 Nanosheets. ACS NANO 2015; 9:8755-8765. [PMID: 26247387 DOI: 10.1021/acsnano.5b01440] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Given the projected massive presence of redox-active nanomaterials in the next generation of consumer electronics and electric vehicle batteries, they are likely to eventually come in contact with cell membranes, with biological consequences that are currently not known. Here, we present nonlinear optical studies showing that lithium nickel manganese cobalt oxide nanosheets carrying a negative ζ-potential have no discernible consequences for lipid alignment and interleaflet composition in supported lipid bilayers formed from zwitterionic and negatively charged lipids. In contrast, lithiated and delithiated LiCoO2 nanosheets having positive and neutral ζ-potentials, respectively, alter the compositional asymmetry of the two membrane leaflets, and bilayer asymmetry remains disturbed even after rinsing. The insight that some cobalt oxide nanoformulations induce alterations to the compositional asymmetry in idealized model membranes may represent an important step toward assessing the biological consequences of their predicted widespread use.
Collapse
Affiliation(s)
- Merve Doğangün
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | | | - Julianne M Troiano
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Alicia C McGeachy
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | | | | | | | - Franz M Geiger
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| |
Collapse
|
11
|
Turbica I, Gallais Y, Gueguen C, Tharinger H, Al Sabbagh C, Gorges R, Gary-Gouy H, Kerdine-Ro¨mer S, Pallardy M, Mascarell L, Gleizes A, Chollet-Martin S. Ectosomes from neutrophil-like cells down-regulate nickel-induced dendritic cell maturation and promote Th2 polarization. J Leukoc Biol 2015; 97:737-49. [DOI: 10.1189/jlb.3a0314-132rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
12
|
Johansson CH, Janmar L, Backhaus T. Triclosan causes toxic effects to algae in marine biofilms, but does not inhibit the metabolic activity of marine biofilm bacteria. MARINE POLLUTION BULLETIN 2014; 84:208-212. [PMID: 24928457 DOI: 10.1016/j.marpolbul.2014.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 04/29/2014] [Accepted: 05/03/2014] [Indexed: 06/03/2023]
Abstract
Effects of the antimicrobial agent triclosan to natural periphyton communities (biofilms, comprising primarily microalgae and bacteria) were assessed in two independent experiments during spring and summer. For that purpose a semi-static test system was used in which periphyton was exposed to a concentration range of 5-9054 nmol/L triclosan. Effects on algae were analyzed as content and composition of photosynthetic pigments. The corresponding EC50 values were 39.25 and 302.45 nmol/L for the spring and summer experiment, respectively. Effects on periphytic bacteria were assessed as effects on carbon utilization patterns, using Biolog Ecoplates. No inhibition of either total carbon utilization or functional diversity was observed, indicating a pronounced triclosan tolerance of the marine bacteria. In contrast, a small stimulation of the total carbon utilization was observed at triclosan concentrations exceeding 100 nmol/L.
Collapse
Affiliation(s)
- C Henrik Johansson
- University of Gothenburg, Department of Biological and Environmental Sciences, Sweden.
| | - Lisa Janmar
- University of Gothenburg, Department of Biological and Environmental Sciences, Sweden
| | - Thomas Backhaus
- University of Gothenburg, Department of Biological and Environmental Sciences, Sweden
| |
Collapse
|
13
|
Petersen RC. Computational conformational antimicrobial analysis developing mechanomolecular theory for polymer biomaterials in materials science and engineering. INTERNATIONAL JOURNAL OF COMPUTATIONAL MATERIALS SCIENCE AND ENGINEERING 2014; 3:1450003. [PMID: 25598972 PMCID: PMC4295723 DOI: 10.1142/s2047684114500031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Single-bond rotations or pyramidal inversions tend to either hide or expose relative energies that exist for atoms with nonbonding lone-pair electrons. Availability of lone-pair electrons depends on overall molecular electron distributions and differences in the immediate polarity of the surrounding pico/nanoenvironment. Stereochemistry three-dimensional aspects of molecules provide insight into conformations through single-bond rotations with associated lone-pair electrons on oxygen atoms in addition to pyramidal inversions with nitrogen atoms. When electrons are protected, potential energy is sheltered toward an energy minimum value to compatibilize molecularly with nonpolar environments. When electrons are exposed, maximum energy is available toward polar environment interactions. Computational conformational analysis software calculated energy profiles that exist during specific oxygen ether single-bond rotations with easy-to-visualize three-dimensional models for the trichlorinated bisaromatic ether triclosan antimicrobial polymer additive. As shown, fluctuating alternating bond rotations can produce complex interactions between molecules to provide entanglement strength for polymer toughness or alternatively disrupt weak secondary bonds of attraction to lower resin viscosity for new additive properties with nonpolar triclosan as a hydrophobic toughening/wetting agent. Further, bond rotations involving lone-pair electrons by a molecule at a nonpolar-hydrocarbon-membrane/polar-biologic-fluid interface might become sufficiently unstable to provide free mechanomolecular energies to disrupt weaker microbial membranes, for membrane transport of molecules into cells, provide cell signaling/recognition/defense and also generate enzyme mixing to speed reactions.
Collapse
Affiliation(s)
- Richard C Petersen
- Departments of Biomedical Engineering and Biomaterial Sciences University of Alabama at Birmingham, SDB 539, 1919 7th Avenue South Birmingham, Alabama 35294, USA
| |
Collapse
|
14
|
Higgins J, Pinjon E, Oltean HN, White TC, Kelly SL, Martel CM, Sullivan DJ, Coleman DC, Moran GP. Triclosan antagonizes fluconazole activity against Candida albicans. J Dent Res 2011; 91:65-70. [PMID: 21972257 DOI: 10.1177/0022034511425046] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Triclosan is a broad-spectrum antimicrobial compound commonly used in oral hygiene products. Investigation of its activity against Candida albicans showed that triclosan was fungicidal at concentrations of 16 mg/L. However, at subinhibitory concentrations (0.5-2 mg/L), triclosan antagonized the activity of fluconazole. Although triclosan induced CDR1 expression in C. albicans, antagonism was still observed in cdr1Δ and cdr2Δ strains. Triclosan did not affect fluconazole uptake or alter total membrane sterol content, but did induce the expression of FAS1 and FAS2, indicating that its mode of action may involve inhibition of fatty acid synthesis, as it does in prokaryotes. However, FAS2 mutants did not exhibit increased susceptibility to triclosan, and overexpression of both FAS1 and FAS2 alleles did not alter triclosan susceptibility. Unexpectedly, the antagonistic effect was specific for C. albicans under hypha-inducing conditions and was absent in the non-filamentous efg1Δ strain. This antagonism may be due to the membranotropic activity of triclosan and the unique composition of hyphal membranes.
Collapse
Affiliation(s)
- J Higgins
- Microbiology Research Unit, Division of Oral Biosciences, Dublin Dental University Hospital, University of Dublin, Trinity College Dublin, Lincoln Place, Dublin 2, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Jagoda A, Ketikidis P, Zinn M, Meier W, Kita-Tokarczyk K. Interactions of biodegradable poly([R]-3-hydroxy-10-undecenoate) with 1,2-dioleoyl-sn-glycero-3-phosphocholine lipid: a monolayer study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:10878-10885. [PMID: 21749038 DOI: 10.1021/la201654d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are biodegradable, biocompatible polyesters and very attractive candidates for biomedical applications as materials for tissue engineering. They have a hydrophobic character, but some are able to spread at the air-water interface to form monomolecularly thin films (Langmuir monolayers). This is a very convenient model to analyze PHA self-assembly in two dimensions and to study their molecular interactions with other amphiphilic compounds, which is very important considering compatibility between biomaterials and cell membranes. We used the Langmuir monolayer technique and Brewster angle microscopy to study the properties of poly([R]-3-hydroxy-10-undecenoate) (PHUE) films on the free water surface in various experimental conditions. Moreover, we investigated the interactions between the polymer and one of the main biomembrane components, 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). The addition of lipid to a polymer film does not change the monolayer phase behavior; however, the interactions between these two materials are repulsive and fall in two composition-dependent regimes. In summary, this is the first systematic study of the monolayer behavior of PHUE, thus forming a solid basis for a thorough understanding of material interactions, in particular in the context of biomaterials and implants.
Collapse
Affiliation(s)
- Agnieszka Jagoda
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
16
|
Brausch JM, Rand GM. A review of personal care products in the aquatic environment: environmental concentrations and toxicity. CHEMOSPHERE 2011; 82:1518-32. [PMID: 21185057 DOI: 10.1016/j.chemosphere.2010.11.018] [Citation(s) in RCA: 632] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 11/04/2010] [Accepted: 11/04/2010] [Indexed: 05/21/2023]
Abstract
Considerable research has been conducted examining occurrence and effects of human use pharmaceuticals in the aquatic environment; however, relatively little research has been conducted examining personal care products although they are found more often and in higher concentrations than pharmaceuticals. Personal care products are continually released into the aquatic environment and are biologically active and persistent. This article examines the acute and chronic toxicity data available for personal care products and highlights areas of concern. Toxicity and environmental data were synergized to develop a preliminary hazard assessment in which only triclosan and triclocarban presented any hazard. However, numerous PCPs including triclosan, paraben preservatives, and UV filters have evidence suggesting endocrine effects in aquatic organisms and thus need to be investigated and incorporated in definitive risk assessments. Additional data pertaining to environmental concentrations of UV filters and parabens, in vivo toxicity data for parabens, and potential for bioaccumulation of PCPs needs to obtained to develop definitive aquatic risk assessments.
Collapse
Affiliation(s)
- John M Brausch
- Ecotoxicology and Risk Assessment Laboratory, Southeast Environmental Research Center, Department of Earth and Environment, Florida International University, North Miami, FL 33181, USA
| | | |
Collapse
|
17
|
Barros SP, Wirojchanasak S, Barrow DA, Panagakos FS, Devizio W, Offenbacher S. Triclosan inhibition of acute and chronic inflammatory gene pathways. J Clin Periodontol 2010; 37:412-8. [PMID: 20507366 DOI: 10.1111/j.1600-051x.2010.01548.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIM We sought to determine whether triclosan (2,4,4'-trichloro-2'-hydroxydiphenylether), an extensively used anti-plaque agent with broad-spectrum anti-microbial activity, with reported anti-inflammatory effects via inhibition of prostaglandin E2 and interleukin 1 (IL-1)beta, could also more broadly suppress multiple inflammatory gene pathways responsible for the pathogenesis of gingivitis and periodontitis. MATERIALS AND METHODS As an exploratory study, the effects of triclosan on the inflammatory gene expression profile were assessed ex vivo using peripheral whole blood samples from eight periodontally healthy donors. Ten-millilitres whole blood aliquots were incubated 2 h with 0.3 microg/ml Escherichia coli lipopolysaccharide (LPS) with or without 0.5 microg/ml triclosan. Affymetrix microarray gene expression profiles from isolated leucocytes and pathway-specific quantitative polymerase chain reaction arrays were used to investigate changes in expression of target cytokines and cell signalling molecules. RESULTS Ex vivo human whole blood assays indicated that triclosan significantly down-regulated the LPS-stimulated expression of Toll-like receptor signalling molecules and other multiple inflammatory molecules including IL-1 and IL-6 and the dampening of signals that activate the T-helper type 1 acquired immune response via suppression of CD70 with concomitant up-regulation of growth factors related to bone morphogenetic protein (BMP)2 and BMP6 synthesis. CONCLUSIONS Anti-inflammatory effects were found in this exploratory survey, including suppression of microbial-pathogen recognition pathway molecules and the suppression of acute and chronic mediators of inflammation.
Collapse
Affiliation(s)
- Silvana P Barros
- School of Dentistry, Center for Oral and Systemic Diseases, North Carolina Oral Health Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27709, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Lyndall J, Fuchsman P, Bock M, Barber T, Lauren D, Leigh K, Perruchon E, Capdevielle M. Probabilistic risk evaluation for triclosan in surface water, sediments, and aquatic biota tissues. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2010; 6:419-40. [PMID: 20821705 DOI: 10.1897/ieam_2009-072.1] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Triclosan, an antimicrobial compound used in personal care products, occurs in the aquatic environment due to residual concentrations in municipal wastewater treatment effluent. We evaluate triclosan-related risks to the aquatic environment, for aquatic and sediment-dwelling organisms and for aquatic-feeding wildlife, based on measured and modeled exposure concentrations. Triclosan concentrations in surface water, sediment, and biota tissue are predicted using a fugacity model parameterized to run probabilistically, to supplement the limited available measurements of triclosan in sediment and tissue. Aquatic toxicity is evaluated based on a species sensitivity distribution, which is extrapolated to sediment and tissues assuming equilibrium partitioning. A probabilistic wildlife exposure model is also used, and estimated doses are compared with wildlife toxicity benchmarks identified from a review of published and proprietary studies. The 95th percentiles of measured and modeled triclosan concentrations in surface water, sediment, and biota tissues are consistently below the 5th percentile of the respective species sensitivity distributions, indicating that, under most scenarios, adverse affects due to triclosan are unlikely.
Collapse
Affiliation(s)
- Jennifer Lyndall
- ENVIRON International Corporation, 13801 West Center Street, Suite 1, PO Box 405, Burton, Ohio 44021, USA.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Is there a role for triclosan/copolymer toothpaste in the management of periodontal disease? Br Dent J 2009; 207:117-25. [DOI: 10.1038/sj.bdj.2009.669] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2009] [Indexed: 11/08/2022]
|
20
|
Binelli A, Cogni D, Parolini M, Riva C, Provini A. Cytotoxic and genotoxic effects of in vitro exposure to triclosan and trimethoprim on zebra mussel (Dreissena polymorpha) hemocytes. Comp Biochem Physiol C Toxicol Pharmacol 2009; 150:50-6. [PMID: 19232398 DOI: 10.1016/j.cbpc.2009.02.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 02/10/2009] [Accepted: 02/10/2009] [Indexed: 11/27/2022]
Abstract
Pharmaceuticals and personal care products (PPCPs) have been detected in several aquatic ecosystems for a number of years, but the potential for biological effects in exposed non-target organisms is only now being reported. In this study the potential cellular damage due to two of the main PPCPs found in aquatic environments was investigated by in vitro exposures. Hemolymph samples of the freshwater bivalve Dreissena polymorpha were collected and treated with increasing concentrations of the antibacterial agent Triclosan (TCS) and the antibiotic Trimethoprim (TMP). Doses selected for TCS were 0.1, 0.15, 0.2, and 0.3 microM, while 0.2, 1, and 5 microM for TMP exposures, respectively. We evaluated the potential genotoxicity on hemocytes by the SCGE (single cell gel electrophoresis) assay and apoptosis frequency evaluation, while the cytotoxicity was measured by the lysosomal membranes stability test (NRRA, neutral red retention assay). TCS genotoxicity increased in a dose-dependent manner and this pharmaceutical significantly affects hemocyte functionality due to severe DNA injuries at very low doses. In contrast, TMP seems to be less dangerous than TCS for D. polymorpha because the cytotoxic and the moderate genotoxic effects noticed were obtained only at very high concentration levels.
Collapse
Affiliation(s)
- A Binelli
- Department of Biology, University of Milan, Milan, Italy.
| | | | | | | | | |
Collapse
|
21
|
Lygre H, Moe G, Nerdal W, Holmsen H. Interaction of articaine hydrochloride with prokaryotic membrane lipids. Acta Odontol Scand 2009; 67:1-7. [PMID: 18941950 DOI: 10.1080/00016350802443466] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Local anesthetics are the most commonly used drugs in dentistry, with a wide range of effects, including antimicrobial activity. High antimicrobial effects have recently been reported on oral microbes from articaine hydrochloride, revealed by the minimum inhibitory concentration and minimal bactericidal concentration. Additionally, articaine has recently been used as an alkaline component in endodontic materials with a proposed antibacterial activity. However, the detailed mechanisms of action have not been discussed. MATERIAL AND METHODS We determined the Langmuir surface pressure/molecular area isotherms of prokaryotic lipid monolayers, as well as the phospholipid phase transitions, by employing differential scanning calorimetry on unilamellar prokaryotic liposomes (bilayers). RESULTS Articaine hydrochloride was found to interact with the prokaryotic membrane lipids in both monolayers and bilayers. An increase of the phospholipid molecular area of acidic glycerophospholipids as well as a decrease in phase transition temperature and enthalpy were found with increasing articaine hydrochloride concentration. The thermodynamic changes by adding articaine hydrochloride to prokaryotic membrane lipids are potentially related to the effects observed from antimicrobial peptides resulting from membrane insertion, aggregate composition, pore formation, and lysis. CONCLUSION Interaction of articaine hydrochloride with prokaryotic membrane lipids is indicated. Hence, further research is necessary to gain insight into where these compounds exert their effects at the molecular level.
Collapse
|
22
|
Paredes-Quijada G, Aranda-Espinoza H, Maldonado A. Shapes and coiling of mixed phospholipid vesicles. Lipids 2009; 44:283-9. [PMID: 19172324 DOI: 10.1007/s11745-009-3280-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 12/15/2008] [Indexed: 11/30/2022]
Abstract
We have studied some physical properties of mixed phosphatidylcholine (SOPC)-phosphatidylserine (SOPS) vesicles. In a previous work (Paredes et al. in J Biol Phys 32:177-181, 2006) it was shown that the shape of the vesicles depends on the SOPC:SOPS composition, and that coiled cylindrical vesicles exist in samples with low SOPS contents. In this work, we further studied the same system of mixed vesicles. Differential scanning calorimetry (DSC) experiments displayed peaks characteristic of lipid mixing in the liquid state, ruling out a possible phase transition as an explanation of vesicle coiling. In addition, small-angle X-ray scattering (SAXS) experiments allowed us to estimate the periodicity distance inside the vesicles. This distance is d approximately equal 60 A, as revealed by the Bragg peaks observed in the experiments. Finally, the coiling transition of a cylindrical vesicle was observed under solvent flow. This observation indicates that the vesicle coiling reported previously for this system (Paredes et al. in J Biol Phys 32:177-181, 2006) does not depend on the SOPC:SOPS composition alone, but also on mechanical perturbations during the preparation steps.
Collapse
|
23
|
Zorrilla LM, Gibson EK, Jeffay SC, Crofton KM, Setzer WR, Cooper RL, Stoker TE. The effects of triclosan on puberty and thyroid hormones in male Wistar rats. Toxicol Sci 2008; 107:56-64. [PMID: 18940961 DOI: 10.1093/toxsci/kfn225] [Citation(s) in RCA: 196] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Triclosan (5-chloro-2-(2,4-dichlorophenoxy)phenol) is a potent antibacterial and antifungal compound that is widely used in personal care products, plastics, and fabrics. Recently triclosan has been shown to alter endocrine function in a variety of species. The purpose of this study was to determine effects of triclosan on pubertal development and thyroid hormone concentrations in the male rat. Weanling rats were exposed to 0, 3, 30, 100, 200, or 300 mg/kg of triclosan by oral gavage from postnatal day (PND) 23 to 53. Preputial separation (PPS) was examined beginning on PND 33. Rats were killed on PND 53, organ weights were recorded and serum was collected for subsequent analysis. Triclosan did not affect growth or the onset of PPS. Serum testosterone was significantly decreased at 200 mg/kg, however no effects were observed on androgen-dependent reproductive tissue weights. Triclosan significantly decreased total serum thyroxine (T4) in a dose-dependent manner at 30 mg/kg and higher (no observed effect level of 3 mg/kg). Triiodothyronine (T3) was significantly decreased only at 200 mg/kg, but thyroid stimulating hormone was not statistically different at any dose. Liver weights were significantly increased at 100 mg/kg triclosan and above suggesting that the induction of hepatic enzymes may have contributed to the altered T4 and T3 concentrations, but it does not appear to correlate with the T4 dose-response. This study demonstrates that triclosan exposure does not alter androgen-dependent tissue weights or onset of PPS; however, triclosan exposure significantly impacts thyroid hormone concentrations in the male juvenile rat.
Collapse
Affiliation(s)
- Leah M Zorrilla
- Department of Molecular Biomedical Sciences, North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina 27606, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Canesi L, Ciacci C, Lorusso LC, Betti M, Gallo G, Pojana G, Marcomini A. Effects of Triclosan on Mytilus galloprovincialis hemocyte function and digestive gland enzyme activities: possible modes of action on non target organisms. Comp Biochem Physiol C Toxicol Pharmacol 2007; 145:464-72. [PMID: 17347055 DOI: 10.1016/j.cbpc.2007.02.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 01/29/2007] [Accepted: 02/01/2007] [Indexed: 11/16/2022]
Abstract
Pharmaceuticals and Personal Care Products (PPCPs) are a class of emerging environmental pollutants with the potential of affecting various aquatic organisms through unexpected modes of action. Triclosan (2,4,4'-trichloro-2'-hydroxydiphenyl ether) (TCS), is a common antibacterial agent that is found in significant amounts in the aquatic environment. In this work, the possible effects and modes of action of TCS were investigated in the marine bivalve Mytilus galloprovincialis Lam. In mussel immune cells, the hemocytes, in vitro short-term exposure to TCS in the low microM range reduced lysosomal membrane stability (LMS) and induced extracellular release of lysosomal hydrolytic enzymes. The effects on LMS were mediated by activation of ERK MAPKs (Extracellularly Regulated Mitogen Activated Protein Kinases) and PKC (protein kinase C) alpha and betaII isoforms, as demonstrated by both specific kinase inhibitors and Western blotting with specific anti-phospho-antibodies. The effects of TCS were confirmed in vivo, in the hemocytes of mussels injected with different concentrations of TCS (corresponding to 0.29, 2.9 and 29 ng/g dry weight) and sampled at 24 h post-injection. The possible in vivo effects of TCS were also evaluated on the activity of different enzymes in the digestive gland, the tissue mainly involved in accumulation and metabolism of organic contaminants in mussels. Significant increases were observed in the activity of the glycolytic enzymes PFK (phosphofructokinase) and PK (pyruvate kinase), as well as of GST (GSH transferase) and GSR (GSSG reductase), whereas a decrease in catalase activity was observed. The results demonstrate that in mussels TCS can act on kinase-mediated cell signalling, lysosomal membranes and redox balance in different systems/organs. Although further studies are needed in order to evaluate possible consequences of environmental exposure to TCS on mussel health, the results represent the first data on the possible modes of action of this widespread antibacterial in aquatic invertebrates.
Collapse
Affiliation(s)
- Laura Canesi
- Dipartimento di Biologia, Università di Genova, Corso Europa 26, 16132, Italy.
| | | | | | | | | | | | | |
Collapse
|
25
|
Stelter K, El-Sayed NM, Seeber F. The Expression of a Plant-type Ferredoxin Redox System provides Molecular Evidence for a Plastid in the Early Dinoflagellate Perkinsus marinus. Protist 2007; 158:119-30. [PMID: 17123864 DOI: 10.1016/j.protis.2006.09.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Accepted: 09/29/2006] [Indexed: 11/18/2022]
Abstract
Perkinsus marinus is a parasitic protozoan with a phylogenetic positioning between Apicomplexa and dinoflagellates. It is thus of interest for reconstructing the early evolution of eukaryotes, especially with regard to the acquisition of secondary plastids in these organisms. It is also an important pathogen of oysters, and the definition of parasite-specific metabolic pathways would be beneficial for the identification of efficient treatments for infected mollusks. Although these different scientific interests have resulted in the start of a genome project for this organism, it is still unknown whether P. marinus contains a plastid or plastid-like organelle like the related dinoflagellates and Apicomplexa. Here, we show that in vitro-cultivated parasites contain transcripts of the plant-type ferredoxin and its associated reductase. Both proteins are nuclear-encoded and possess N-terminal targeting sequences similar to those characterized in dinoflagellates. Since this redox pair is exclusively found in cyanobacteria and plastid-harboring organisms its presence also in P. marinus is highly indicative of a plastid. We also provide additional evidence for such an organelle by demonstrating pharmacological sensitivity to inhibitors of plastid-localized enzymes involved in fatty acid biosynthesis (e.g. acetyl-CoA carboxylase) and by detection of genes for three enzymes of plastid-localized isoprenoid biosynthesis (1-deoxy-D-xylulose 5-phosphate reductoisomerase, (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate reductase, and (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate synthase).
Collapse
Affiliation(s)
- Kathrin Stelter
- FB Biologie/Parasitologie, Philipps-Universität Marburg, 35032 Marburg, Germany
| | | | | |
Collapse
|
26
|
Crawford MJ, Thomsen-Zieger N, Ray M, Schachtner J, Roos DS, Seeber F. Toxoplasma gondii scavenges host-derived lipoic acid despite its de novo synthesis in the apicoplast. EMBO J 2006; 25:3214-22. [PMID: 16778769 PMCID: PMC1500979 DOI: 10.1038/sj.emboj.7601189] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Accepted: 05/17/2006] [Indexed: 11/09/2022] Open
Abstract
In contrast to other eukaryotes, which manufacture lipoic acid, an essential cofactor for several vital dehydrogenase complexes, within the mitochondrion, we show that the plastid (apicoplast) of the obligate intracellular protozoan parasite Toxoplasma gondii is the only site of de novo lipoate synthesis. However, antibodies specific for protein-attached lipoate reveal the presence of lipoylated proteins in both, the apicoplast and the mitochondrion of T. gondii. Cultivation of T. gondii-infected cells in lipoate-deficient medium results in substantially reduced lipoylation of mitochondrial (but not apicoplast) proteins. Addition of exogenous lipoate to the medium can rescue this effect, showing that the parasite scavenges this cofactor from the host. Exposure of T. gondii to lipoate analogues in lipoate-deficient medium leads to growth inhibition, suggesting that T. gondii might be auxotrophic for this cofactor. Phylogenetic analyses reveal the secondary loss of the mitochondrial lipoate synthase gene after the acquisition of the plastid. Our studies thus reveal an unexpected metabolic deficiency in T. gondii and raise the question whether the close interaction of host mitochondria with the parasitophorous vacuole is connected to lipoate supply by the host.
Collapse
Affiliation(s)
- Michael J Crawford
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Manisha Ray
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - David S Roos
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Frank Seeber
- FB Biologie, Parasitologie, Philipps Universität, Marburg, Germany
- FB Biologie, Parasitologie, Universität Marburg, Karl-von-Frisch-Str., 35043 Marburg, Germany. Tel.: +49 6421 2823498; Fax: +49 6421 2821531; E-mail:
| |
Collapse
|
27
|
Newton APN, Cadena SMSC, Rocha MEM, Carnieri EGS, Martinelli de Oliveira MB. Effect of triclosan (TRN) on energy-linked functions of rat liver mitochondria. Toxicol Lett 2005; 160:49-59. [PMID: 16023799 DOI: 10.1016/j.toxlet.2005.06.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 06/06/2005] [Accepted: 06/07/2005] [Indexed: 11/22/2022]
Abstract
Bisphenols are a class of compounds that exhibit a broad spectrum of antimicrobial activity. One of the most widely used member of this group is triclosan (TRN). TRN is a synthetic, non-ionic, broad-spectrum antimicrobial agent, which is incorporated into several products, including hand soaps and detergents and those of skin care and oral hygiene. The effects of TRN on mitochondrial respiratory parameters and the inner mitochondrial membrane potential (DeltaPsi) are described. That of TRN (up to 60 nmol mg(-1) protein) on isolated liver mitochondria decreased oxygen consumption of state 3 respiration, as well as DeltaPsi, but increased oxygen consumption of state 4 respiration, characteristic of an uncoupler effect. Analysis of segments of the respiratory chain suggested that the TRN inhibition site is located between complexes II and III. Mitochondrial swelling, energized or driven by the K+ diffusion potential using valinomycin, was also inhibited by TRN, the former being completely inhibited at concentrations greater than 10 nmol TRN mg(-1) protein, suggesting that it is also able to interfere with fluidity of the inner mitochondrial membrane. These results suggest that, besides its antibacterial effect, TRN can also impair the mitochondrial function of animal cells.
Collapse
Affiliation(s)
- Ana Paula Negrelo Newton
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, C.P. 19046, CEP 81531-990, Curitiba, Paraná, Brazil
| | | | | | | | | |
Collapse
|
28
|
Abstract
Trypanosoma brucei genes encoding putative fatty acid synthesis enzymes are homologous to those encoding type II enzymes found in bacteria and organelles such as chloroplasts and mitochondria. It was therefore not surprising that triclosan, an inhibitor of type II enoyl-acyl carrier protein (enoyl-ACP) reductase, killed both procyclic forms and bloodstream forms of T. brucei in culture with 50% effective concentrations (EC(50)s) of 10 and 13 microM, respectively. Triclosan also inhibited cell-free fatty acid synthesis, though much higher concentrations were required (EC(50)s of 100 to 200 microM). Unexpectedly, 100 microM triclosan did not affect the elongation of [(3)H]laurate (C(12:0)) to myristate (C(14:0)) in cultured bloodstream form parasites, suggesting that triclosan killing of trypanosomes may not be through specific inhibition of enoyl-ACP reductase but through some other mechanism. Interestingly, 100 microM triclosan did reduce the level of incorporation of [(3)H]myristate into glycosyl phosphatidylinositol species (GPIs). Furthermore, we found that triclosan inhibited fatty acid remodeling in a cell-free assay in the same concentration range required for killing T. brucei in culture. In addition, we found that a similar concentration of triclosan also inhibited the myristate exchange pathway, which resides in a distinct subcellular compartment. However, GPI myristoylation and myristate exchange are specific to the bloodstream form parasite, yet triclosan kills both the bloodstream and procyclic forms. Therefore, triclosan killing may be due to a nonspecific perturbation of subcellular membrane structure leading to dysfunction in sensitive membrane-resident biochemical pathways.
Collapse
Affiliation(s)
- Kimberly S Paul
- Dept. of Biological Chemistry, Johns Hopkins School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
29
|
Wiesner J, Seeber F. The plastid-derived organelle ofprotozoan human parasites asa target of established and emerging drugs. Expert Opin Ther Targets 2005; 9:23-44. [PMID: 15757480 DOI: 10.1517/14728222.9.1.23] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Human diseases like malaria, toxoplasmosis or cryptosporidiosis are caused by intracellular protozoan parasites of the phylum Apicomplexa and are still a major health problem worldwide. In the case of Plasmodium falciparum, the causative agent of tropical malaria, resistance against previously highly effective drugs is widespread and requires the continued development of new and affordable drugs. Most apicomplexan parasites possess a single plastid-derived organelle called apicoplast, which offers the great opportunity to tailor highly specific inhibitors against vital metabolic pathways resident in this compartment. This is due to the fact that several of these pathways, being of bacterial or algal origin, are absent in the mammalian host. In fact, the targets of several antibiotics already in use for years against some of these diseases can now be traced to the apicoplast and by knowing the molecular entities which are affected by these substances, improved drugs or drug combinations can be envisaged to emerge from this knowledge. Likewise, apicoplast-resident pathways like fatty acid or isoprenoid biosynthesis have already been proven to be the likely targets of the next drug generation. In this review the current knowledge on the different targets and available inhibitors (both established and experimental) will be summarised and an overview of the clinical efficacy of drugs that inhibit functions in the apicoplast and which have been tested in humans so far will be given.
Collapse
Affiliation(s)
- Jochen Wiesner
- Justus-Liebig-Universität Giessen, Biochemisches Institut, Friedrichstr. 24, D-35392 Giessen, Germany
| | | |
Collapse
|
30
|
Abstract
With the versatility of the molecular mechanism of amphiphilic drugs there is the possibility that ibuprofen could interact with eukaryotic model membrane lipids. Using the Langmuir technique, we first determined the pressure/molecular area isotherms of glycerophospholipids monolayers at 37 degrees C, and, second, using differential scanning calorimetry (DSC), phase transition parameters in liposomes of the same lipids. Ibuprofen interacted in a concentration-independent manner with monolayers of saturated phosphatidylcholines (PC, i.e. markers of the outer membrane leaflet of eukaryotic cells). Ibuprofen was found to interact with liposomes of saturated and unsaturated phosphatidylcholines and -serines (PS, i.e. markers of the inner membrane leaflet of eukaryotic cells), and saturated ethanolamines (PE, i.e. markers of the inner membrane leaflet of eukaryotic cells). A lowering of the lipid melting temperature (Tm) and a change of enthalpy (deltaH) of the gel to liquid-crystalline phase transitions of liposomes were detected.
Collapse
Affiliation(s)
- Henning Lygre
- Department of Odontology-Dental Pharmacology, University of Bergen, Bergen, Norway.
| | | | | |
Collapse
|