1
|
Taniguchi K, Okumura N, Jinno N, Seiyama A, Shimouchi A. Salivary chromogranin A levels relate to fatigability after waking up. MethodsX 2025; 14:103085. [PMID: 39741896 PMCID: PMC11683262 DOI: 10.1016/j.mex.2024.103085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 12/05/2024] [Indexed: 01/03/2025] Open
Abstract
This study aimed to assess fatigue using a noninvasive, quantitative, and simple method using salivary chromogranin A (CgA). In total, 171 adults participated in this study. We used the Cornell Medical Index (CMI) as a questionnaire that included a fatigability section. The high-fatigability group had significantly (p < 0.01, d = 0.21) lower levels of salivary CgA after waking up than those of the low-fatigability group. Before sleep, participants with high stress on the musculoskeletal system (CMI E, p = 0.008, d = 0.18), skin (CMI F, p = 0.017, d = 0.16), nervous system (CMI G, p = 0.019, d = 0.16), habit (CMI L, p = 0.028, d = 0.16), sensitivity (CMI P, p = 0.022, d = 0.16), and anger (CMI Q, p = 0.011, d = 0.16) had significantly lower CgA levels than those of low stress. In conclusion, we found that salivary CgA levels after waking up could reflect fatigability, and those before night sleep could reflect chronic physical complaints.•Assessment of Salivary CgA levels using an enzyme-linked immunosorbent assay.•Routine saliva analysis could enable allow detection of chronic fatigue or stress, leading to timely lifestyle adjustments or interventions to maintain overall well-being.
Collapse
Affiliation(s)
- Kentaro Taniguchi
- Department of Medical Laboratory Science, Faculty of Health Sciences, Kochi Gakuen University, Kochi, Kochi, Japan
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Naoya Okumura
- College of Life and Health Sciences, Chubu University, Kasugai, Aichi Japan
- Faculty of Human Relations, Tokai Gakuin University, Kakamigahara, Gifu, Japan
| | - Naoya Jinno
- National Cerebral and Cardiovascular Research Center, Suita, Osaka, Japan
| | - Akitoshi Seiyama
- Creative Design & Data Science Center, Akita International University, Akita, Akita, Japan
| | - Akito Shimouchi
- College of Life and Health Sciences, Chubu University, Kasugai, Aichi Japan
- National Cerebral and Cardiovascular Research Center, Suita, Osaka, Japan
| |
Collapse
|
2
|
Jati S, Munoz-Mayorga D, Shahabi S, Tang K, Tao Y, Dickson DW, Litvan I, Ghosh G, Mahata SK, Chen X. Chromogranin A deficiency attenuates tauopathy by altering epinephrine-alpha-adrenergic receptor signaling in PS19 mice. Nat Commun 2025; 16:4703. [PMID: 40393970 PMCID: PMC12092710 DOI: 10.1038/s41467-025-59682-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 04/30/2025] [Indexed: 05/22/2025] Open
Abstract
Metabolic disorders such as insulin resistance and hypertension are potential risk factors for aging and neurodegenerative diseases. These conditions are reversed in Chromogranin A (CgA) knockout (CgA-KO) mice. CgA is known to be associated with protein aggregates in the brains of neurodegenerative diseases including Alzheimer's disease (AD). Here, we investigated the role of CgA in Tau pathogenesis in AD and corticobasal degeneration (CBD). CgA ablation in Tauopathy mice (PS19) (CgA-KO/PS19) reduced pathological Tau aggregation and spreading, extended lifespan, and improved cognitive function. Transcriptomic and metabolite analysis of mouse cortices revealed elevated alpha-1-adrenergic receptors (Adra1) expression and high Epinephrine (EPI) levels in PS19 mice compared to WT mice, mirroring observations in AD and CBD patients. CgA depletion in PS19 mice lowered cortical EPI levels and the expression of Adra1 back to normal. Treatment of WT hippocampal organotypic slice cultures with EPI or Adra1 agonist promoted, while an Adra1 antagonist inhibited Tau hyperphosphorylation and formation of neurofibrillary tangles, which is unaltered upon CgA depletion. These findings demonstrate the involvement of CgA in Tau pathogenesis and highlight the interplay between the EPI-Adra1 signaling pathway and CgA in Tauopathy.
Collapse
Affiliation(s)
- Suborno Jati
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, CA, United States of America
| | - Daniel Munoz-Mayorga
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States of America
| | - Shandy Shahabi
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, CA, United States of America
| | - Kechun Tang
- Department of Medicine, University of California San Diego, La Jolla, CA, United States of America
| | - Yuren Tao
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States of America
| | | | - Irene Litvan
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States of America
- Parkinson and Other Movement Disorders Center, University of California San Diego, La Jolla, CA, United States of America
| | - Gourisankar Ghosh
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, CA, United States of America.
| | - Sushil K Mahata
- Department of Medicine, University of California San Diego, La Jolla, CA, United States of America.
- Veterans Affairs San Diego Healthcare System, San Diego, CA, United States of America.
| | - Xu Chen
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States of America
| |
Collapse
|
3
|
Lin Y, Ji Z, Li C, Liang Q, Shi J, Su Z, Yao X, Zhang X. Proteomics analysis for key molecules in adrenal glands of Wenchang chickens for their resistance to heat stress. Poult Sci 2024; 103:104161. [PMID: 39190996 PMCID: PMC11396071 DOI: 10.1016/j.psj.2024.104161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/20/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Rising temperatures and intensified agricultural practices have heightened heat stress (HS)-related challenges in poultry farming, notably heat-induced sudden death in chickens. Wenchang chickens, recognized for their heat resistance, have emerged as the potential candidates for improving the economic efficiency of poultry farming. The adrenal gland plays a crucial role in preventing HS-induced heart failure sudden death by secreting hormones. However, little is known about the damage to and resilience of Wenchang chicken adrenal glands during HS. In this study, 34 healthy Wenchang chickens with similar weights were selected for formal experimentation, with 10 as the control group (Con). Following a single exposure to acute HS of 42 ± 1°C and 65% relative humidity for 5 h, 15 deceased individuals formed the HS death (HSD) group, and 9 survived comprised the HS survival (HSS) group. ELISA revealed significant higher (P < 0.05) levels of COR and NE in the HSS and the lowest levels of CORT and EPI in the HSD. Histopathological analysis indicated major degeneration in HSS cortical and chromaffin cells and extensive cell necrosis (nuclear pyknosis) in HSD. Proteomic analysis identified 572 DEPs in HSD vs. Con and 191 DEPs in HSS vs. Con. Bioinformatics highlighted ER protein processing, especially ERAD as a key pathway for heat stress resistance (HSR) in the adrenal gland, with HSPH1, DNAJA1, HSP90AA1, HSPA8 and HERPUD1 identified as regulating key molecules. Western blotting validated significantly higher (P < 0.01) protein levels in both HSS and HSD compared to the Con. Immunohistochemical staining showed increased cytoplasmic HSPH1-positive signal intensity under HS and enhanced HSP90AA1 nuclear signals, strongest in HSS. In summary, HS induces pathological damage in Wenchang chicken adrenal glands, affecting hormone secretion, and various heat shock proteins play crucial roles in cellular resistance. These results elucidate the biological basis of HSR in Wenchang chickens from the perspective of the adrenal gland and provide necessary research foundations for enhancing economic performance of various broilers in high-heat environments and screening drugs for HS treatment.
Collapse
Affiliation(s)
- Yiduo Lin
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570100, China
| | - Zeping Ji
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570100, China
| | - Chengyun Li
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570100, China
| | - Qijun Liang
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570100, China
| | - Jiachen Shi
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570100, China
| | - Zhiqing Su
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570100, China
| | - Xu Yao
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570100, China
| | - Xiaohui Zhang
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570100, China.
| |
Collapse
|
4
|
Guérineau NC, Aunis D. Chromaffin Cells in the Mammalian Adrenomedullary Tissue: Ultrastructural Aspects of Stimulus-Secretion Coupling - A Tribute to Odile Grynszpan-Winograd (1938-2023). Neuroendocrinology 2024; 114:511-516. [PMID: 38626738 DOI: 10.1159/000538302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 04/18/2024]
Affiliation(s)
- Nathalie C Guérineau
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | |
Collapse
|
5
|
Yamada A, Akahane D, Takeuchi S, Miyata K, Sato T, Gotoh A. Robot therapy aids mental health in patients with hematological malignancy during hematopoietic stem cell transplantation in a protective isolation unit. Sci Rep 2024; 14:4737. [PMID: 38413634 PMCID: PMC10899246 DOI: 10.1038/s41598-024-54286-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/10/2024] [Indexed: 02/29/2024] Open
Abstract
Patients with hematological malignancy experience physical and psychological pain, such as a sense of isolation and confinement due to intensive chemotherapy in a protective isolation unit (PIU). We examined whether the intervention of a robotic puppy, aibo (manufactured by Sony), could improve patients' mental health as an alternative therapy for pet therapy, which is not feasible in PIU. This study included 21 patients undergoing allogeneic hematopoietic stem cell transplantation (HSCT) (n = 16) or autologous HSCT (n = 5). The patients were randomly divided into the aibo and control groups. Psychological effects were regularly assessed by measuring the levels of salivary stress hormone chromogranin A (CgA), serum oxytocin, and serum cortisol and the quick Inventory of Depressive Symptomatology Self-Report (QIDS-SR) scores. The aibo group demonstrated a significant decrease in CgA level, while the control group showed the opposite trend. In addition, changes in serum oxytocin and cortisol levels indicated that aibo helped reduce stress. There was no significant difference in the QIDS-SR scores between the two groups; however, the psychomotor activity in the aibo group improved significantly. These findings suggest that aibo intervention during a stay in a PIU can improve the mental health of patients with hematological malignancies who have undergone HSCT.
Collapse
Affiliation(s)
- Akiko Yamada
- Department of Hematology, Tokyo Medical University, 6-7-1, Nishi-Shinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan.
| | - Daigo Akahane
- Department of Hematology, Tokyo Medical University, 6-7-1, Nishi-Shinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Shiho Takeuchi
- Center for Diversity, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Kaori Miyata
- Department of Nursing, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Takako Sato
- Department of Nursing, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Akihiko Gotoh
- Department of Hematology, Tokyo Medical University, 6-7-1, Nishi-Shinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| |
Collapse
|
6
|
Eisenhofer G, Pamporaki C, Lenders JWM. Biochemical Assessment of Pheochromocytoma and Paraganglioma. Endocr Rev 2023; 44:862-909. [PMID: 36996131 DOI: 10.1210/endrev/bnad011] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/24/2023] [Accepted: 03/29/2023] [Indexed: 03/31/2023]
Abstract
Pheochromocytoma and paraganglioma (PPGL) require prompt consideration and efficient diagnosis and treatment to minimize associated morbidity and mortality. Once considered, appropriate biochemical testing is key to diagnosis. Advances in understanding catecholamine metabolism have clarified why measurements of the O-methylated catecholamine metabolites rather than the catecholamines themselves are important for effective diagnosis. These metabolites, normetanephrine and metanephrine, produced respectively from norepinephrine and epinephrine, can be measured in plasma or urine, with choice according to available methods or presentation of patients. For patients with signs and symptoms of catecholamine excess, either test will invariably establish the diagnosis, whereas the plasma test provides higher sensitivity than urinary metanephrines for patients screened due to an incidentaloma or genetic predisposition, particularly for small tumors or in patients with an asymptomatic presentation. Additional measurements of plasma methoxytyramine can be important for some tumors, such as paragangliomas, and for surveillance of patients at risk of metastatic disease. Avoidance of false-positive test results is best achieved by plasma measurements with appropriate reference intervals and preanalytical precautions, including sampling blood in the fully supine position. Follow-up of positive results, including optimization of preanalytics for repeat tests or whether to proceed directly to anatomic imaging or confirmatory clonidine tests, depends on the test results, which can also suggest likely size, adrenal vs extra-adrenal location, underlying biology, or even metastatic involvement of a suspected tumor. Modern biochemical testing now makes diagnosis of PPGL relatively simple. Integration of artificial intelligence into the process should make it possible to fine-tune these advances.
Collapse
Affiliation(s)
- Graeme Eisenhofer
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Christina Pamporaki
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Jacques W M Lenders
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Department of Internal Medicine, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
7
|
Maneu V, Borges R, Gandía L, García AG. Forty years of the adrenal chromaffin cell through ISCCB meetings around the world. Pflugers Arch 2023; 475:667-690. [PMID: 36884064 PMCID: PMC10185644 DOI: 10.1007/s00424-023-02793-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/20/2023] [Accepted: 01/28/2023] [Indexed: 03/09/2023]
Abstract
This historical review focuses on the evolution of the knowledge accumulated during the last two centuries on the biology of the adrenal medulla gland and its chromaffin cells (CCs). The review emerged in the context of a series of meetings that started on the Spanish island of Ibiza in 1982 with the name of the International Symposium on Chromaffin Cell Biology (ISCCB). Hence, the review is divided into two periods namely, before 1982 and from this year to 2022, when the 21st ISCCB meeting was just held in Hamburg, Germany. The first historical period extends back to 1852 when Albert Kölliker first described the fine structure and function of the adrenal medulla. Subsequently, the adrenal staining with chromate salts identified the CCs; this was followed by the establishment of the embryological origin of the adrenal medulla, and the identification of adrenaline-storing vesicles. By the end of the nineteenth century, the basic morphology, histochemistry, and embryology of the adrenal gland were known. The twentieth century began with breakthrough findings namely, the experiment of Elliott suggesting that adrenaline was the sympathetic neurotransmitter, the isolation of pure adrenaline, and the deciphering of its molecular structure and chemical synthesis in the laboratory. In the 1950s, Blaschko isolated the catecholamine-storing vesicles from adrenal medullary extracts. This switched the interest in CCs as models of sympathetic neurons with an explosion of studies concerning their functions, i.e., uptake of catecholamines by chromaffin vesicles through a specific coupled transport system; the identification of several vesicle components in addition to catecholamines including chromogranins, ATP, opioids, and other neuropeptides; the calcium-dependence of the release of catecholamines; the underlying mechanism of exocytosis of this release, as indicated by the co-release of proteins; the cross-talk between the adrenal cortex and the medulla; and the emission of neurite-like processes by CCs in culture, among other numerous findings. The 1980s began with the introduction of new high-resolution techniques such as patch-clamp, calcium probes, marine toxins-targeting ion channels and receptors, confocal microscopy, or amperometry. In this frame of technological advances at the Ibiza ISCCB meeting in 1982, 11 senior researchers in the field predicted a notable increase in our knowledge in the field of CCs and the adrenal medulla; this cumulative knowledge that occurred in the last 40 years of history of the CC is succinctly described in the second part of this historical review. It deals with cell excitability, ion channel currents, the exocytotic fusion pore, the handling of calcium ions by CCs, the kinetics of exocytosis and endocytosis, the exocytotic machinery, and the life cycle of secretory vesicles. These concepts together with studies on the dynamics of membrane fusion with super-resolution imaging techniques at the single-protein level were extensively reviewed by top scientists in the field at the 21st ISCCB meeting in Hamburg in the summer of 2022; this frontier topic is also briefly reviewed here. Many of the concepts arising from those studies contributed to our present understanding of synaptic transmission. This has been studied in physiological or pathophysiological conditions, in CCs from animal disease models. In conclusion, the lessons we have learned from CC biology as a peripheral model for brain and brain disease pertain more than ever to cutting-edge research in neurobiology. In the 22nd ISCCB meeting in Israel in 2024 that Uri Asheri is organizing, we will have the opportunity of seeing the progress of the questions posed in Ibiza, and on other questions that undoubtedly will arise.
Collapse
Affiliation(s)
- Victoria Maneu
- Departamento de Óptica, Farmacología y Anatomía, Universidad de Alicante, Alicante, Spain
| | - Ricardo Borges
- Unidad de Farmacología, Departamento de Medicina Física y Farmacología, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - Luis Gandía
- Instituto Fundación Teófilo Hernando, Madrid, Spain
- Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio G. García
- Instituto Fundación Teófilo Hernando, Madrid, Spain
- Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain
- Facultad de Medicina, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
8
|
Borges R, Gu C, Machado JD, Ewing AG. The dynamic nature of exocytosis from large secretory vesicles. A view from electrochemistry and imaging. Cell Calcium 2023; 110:102699. [PMID: 36708611 DOI: 10.1016/j.ceca.2023.102699] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
In this brief review, we discuss the factors that modulate the quantum size and the kinetics of exocytosis. We also discuss the determinants which motivate the type of exocytosis from the so-called kiss-and-run to full fusion and along the intermediate mode of partial release. Kiss-and-run release comprises the transient opening of a nanometer (approx. 2 nm diameter) fusion pore between vesicle and plasma membrane allowing a small amount of release. Partial release comprises a larger more extended opening of the pore to allow a larger fraction of released vesicle content and is what is observed as normal full release in most electrochemical measurements. Partial release appears to be dominant in dense core vesicles and perhaps synaptic vesicles. The concept of partial release leads to the fraction released as a plastic component of exocytosis. Partial vesicular distension and the kinetics of exocytosis can be modulated by second messengers, physiological modulators, and drugs. This concept adds a novel point of regulation for the exocytotic process.
Collapse
Affiliation(s)
- Ricardo Borges
- Pharmacology Unit, Medical School, Universidad de la Laguna, Tenerife. Spain
| | - Chaoyi Gu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Sweden
| | - José-David Machado
- Pharmacology Unit, Medical School, Universidad de la Laguna, Tenerife. Spain
| | - Andrew G Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, Sweden.
| |
Collapse
|
9
|
Komarnicki P, Musiałkiewicz J, Stańska A, Maciejewski A, Gut P, Mastorakos G, Ruchała M. Circulating Neuroendocrine Tumor Biomarkers: Past, Present and Future. J Clin Med 2022; 11:5542. [PMID: 36233409 PMCID: PMC9570647 DOI: 10.3390/jcm11195542] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Neuroendocrine tumors are a heterogeneous group of neoplasms originating from the diffuse endocrine system. Depending on primary location and hormonal status, they range in terms of clinical presentation, prognosis and treatment. Functional tumors often develop symptoms indicating an excess of hormones produced by the neoplasm (exempli gratia insulinoma, glucagonoma and VIPoma) and can be diagnosed using monoanalytes. For non-functional tumors (inactive or producing insignificant amounts of hormones), universal biomarkers have not been established. The matter remains an important unmet need in the field of neuroendocrine tumors. Substances researched over the years, such as chromogranin A and neuron-specific enolase, lack the desired sensitivity and specificity. In recent years, the potential use of Circulating Tumor Cells or multianalytes such as a circulating microRNA and NETest have been widely discussed. They offer superior diagnostic parameters in comparison to traditional biomarkers and depict disease status in a more comprehensive way. Despite a lot of promise, no international standards have yet been developed regarding their routine use and clinical application. In this literature review, we describe the analytes used over the years and cover novel biomarkers that could find a use in the future. We discuss their pros and cons while showcasing recent advances in the field of neuroendocrine tumor biomarkers.
Collapse
Affiliation(s)
- Paweł Komarnicki
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, 60-355 Poznań, Poland
| | - Jan Musiałkiewicz
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, 60-355 Poznań, Poland
| | - Alicja Stańska
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, 60-355 Poznań, Poland
| | - Adam Maciejewski
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, 60-355 Poznań, Poland
| | - Paweł Gut
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, 60-355 Poznań, Poland
| | - George Mastorakos
- Unit of Endocrinology, Diabetes Mellitus and Metabolism, Aretaieion University Hospital, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, 60-355 Poznań, Poland
| |
Collapse
|
10
|
Perez-Rodriguez A, Eraso E, Quindós G, Mateo E. Antimicrobial Peptides with Anti-Candida Activity. Int J Mol Sci 2022; 23:ijms23169264. [PMID: 36012523 PMCID: PMC9409312 DOI: 10.3390/ijms23169264] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 02/06/2023] Open
Abstract
Mycoses are accountable for millions of infections yearly worldwide. Invasive candidiasis is the most usual, presenting a high morbidity and mortality. Candida albicans remains the prevalent etiologic agent, but the incidence of other species such as Candida parapsilosis, Candida glabrata and Candida auris keeps increasing. These pathogens frequently show a reduced susceptibility to commonly used antifungal drugs, including polyenes, triazoles and echinocandins, and the incidence of emerging multi-drug-resistant strains of these species continues to increase. Therefore, the need to search for new molecules that target these pathogenic species in a different manner is now more urgent than ever. Nature is an almost endless source of interesting new molecules that could meet this need. Among these molecules, antimicrobial peptides, present in different sources in nature, possess some advantages over conventional antifungal agents, even with their own drawbacks, and are considered as a promising pharmacological option against a wide range of microbial infections. In this review, we describe 20 antimicrobial peptides from different origins that possess an activity against Candida.
Collapse
|
11
|
Luo P, Xu J, Xu K, Jing W, Liu L, Xu P. Exploring the genetic relationship between deep vein thrombosis and plasma protein: a new research idea. Expert Rev Hematol 2022; 15:867-873. [PMID: 35857435 DOI: 10.1080/17474086.2022.2104707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND The aim of this article is to scan and analyze the genetic correlation between plasma proteome and deep venous thrombosis(DVT), and to explore the correlation between plasma protein and DVT. RESEARCH DESIGN AND METHODS GWAS data of DVT and plasma proteins were analyzed with linkage disequilibrium scores, and plasma proteins that were genetically associated with DVT were screened out. To ascertain the causal link between potential plasma proteins and DVT, a Mendelian randomized (MR) study was used. This study used STRING to examine the pathogenesis of DVT in connection with the gene encoding plasma protein. RESULTS Several suggestive plasma proteins were detected for DVT, such as Complement factor B (correlation coefficient =0.3883 P value=0.0177), Chromogranin-A (correlation coefficient =-0.4786, P value=0.0158). Through MR analysis, we found that there was a significant positive causal relationship between Chromogranin-A (exposure) and DVT (outcome) (β=-0.0117, SE=0.0013, P<0.0001). Our STRING analysis revealed that hsa04610 was associated with coagulation cascade in the KEGG pathway of Complement factor B(P<0.0001), which was based on GO and KEGG analysis of 8 selected plasma proteins. CONCLUSIONS A genetic link between plasma protein and DVT was thoroughly investigated. Our findings provide a fresh perspective on the genetics and pathogenesis of DVT.
Collapse
Affiliation(s)
- Pan Luo
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi, 710054, China
| | - Jiawen Xu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, 37# Guoxue Road, Chengdu, 610041, People's Republic of China
| | - Ke Xu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi, 710054, China
| | - Wensen Jing
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi, 710054, China
| | - Lin Liu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi, 710054, China
| | - Peng Xu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi, 710054, China
| |
Collapse
|
12
|
Zalewska E, Kmieć P, Sworczak K. Role of Catestatin in the Cardiovascular System and Metabolic Disorders. Front Cardiovasc Med 2022; 9:909480. [PMID: 35665253 PMCID: PMC9160393 DOI: 10.3389/fcvm.2022.909480] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/25/2022] [Indexed: 12/19/2022] Open
Abstract
Catestatin is a multifunctional peptide that is involved in the regulation of the cardiovascular and immune systems as well as metabolic homeostatis. It mitigates detrimental, excessive activity of the sympathetic nervous system by inhibiting catecholamine secretion. Based on in vitro and in vivo studies, catestatin was shown to reduce adipose tissue, inhibit inflammatory response, prevent macrophage-driven atherosclerosis, and regulate cytokine production and release. Clinical studies indicate that catestatin may influence the processes leading to hypertension, affect the course of coronary artery diseases and heart failure. This review presents up-to-date research on catestatin with a particular emphasis on cardiovascular diseases based on a literature search.
Collapse
|
13
|
Cargo receptor Surf4 regulates endoplasmic reticulum export of proinsulin in pancreatic β-cells. Commun Biol 2022; 5:458. [PMID: 35562580 PMCID: PMC9106718 DOI: 10.1038/s42003-022-03417-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 04/26/2022] [Indexed: 11/08/2022] Open
Abstract
Insulin is an essential peptide hormone that maintains blood glucose levels. Although the mechanisms underlying insulin exocytosis have been investigated, the mechanism of proinsulin export from the endoplasmic reticulum (ER) remains unclear. Here, we demonstrated that Surf4, a cargo receptor homolog, regulates the ER export of proinsulin via its recruitment to ER exit sites (ERES). Under high-glucose conditions, Surf4 expression was upregulated, and Surf4 proteins mainly localized to the ER at a steady state and accumulated in the ERES, along with proinsulin in rat insulinoma INS-1 cells. Surf4-knockdown resulted in proinsulin retention in the ER and decreased the levels of mature insulin in secretory granules, thereby significantly reducing insulin secretion. Surf4 forms an oligomer and can physically interact with proinsulin and Sec12, essential for COPII vesicle formation. Our findings suggest that Surf4 interacts with proinsulin and delivers it into COPII vesicles for ER export in co-operation with Sec12 and COPII.
Collapse
|
14
|
De Lorenzo R, Sciorati C, Ramirez GA, Colombo B, Lorè NI, Capobianco A, Tresoldi C, Bio Angels for COVID-BioB Study Group, Cirillo DM, Ciceri F, Corti A, Rovere-Querini P, Manfredi AA. Chromogranin A plasma levels predict mortality in COVID-19. PLoS One 2022; 17:e0267235. [PMID: 35468164 PMCID: PMC9037919 DOI: 10.1371/journal.pone.0267235] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/04/2022] [Indexed: 02/06/2023] Open
Abstract
Background Chromogranin A (CgA) and its fragment vasostatin I (VS-I) are secreted in the blood by endocrine/neuroendocrine cells and regulate stress responses. Their involvement in Coronavirus 2019 disease (COVID-19) has not been investigated. Methods CgA and VS-I plasma concentrations were measured at hospital admission from March to May 2020 in 190 patients. 40 age- and sex-matched healthy volunteers served as controls. CgA and VS-I levels relationship with demographics, comorbidities and disease severity was assessed through Mann Whitney U test or Spearman correlation test. Cox regression analysis and Kaplan Meier survival curves were performed to investigate the impact of the CgA and VS-I levels on in-hospital mortality. Results Median CgA and VS-I levels were higher in patients than in healthy controls (CgA: 0.558 nM [interquartile range, IQR 0.358–1.046] vs 0.368 nM [IQR 0.288–0.490] respectively, p = 0.0017; VS-I: 0.357 nM [IQR 0.196–0.465] vs 0.144 nM [0.144–0.156] respectively, p<0.0001). Concentration of CgA, but not of VS-I, significantly increased in patients who died (n = 47) than in survivors (n = 143) (median 0.948 nM [IQR 0.514–1.754] vs 0.507 nM [IQR 0.343–0.785], p = 0.00026). Levels of CgA were independent predictors of in-hospital mortality (hazard ratio 1.28 [95% confidence interval 1.077–1.522], p = 0.005) when adjusted for age, number of comorbidities, respiratory insufficiency degree, C-reactive protein levels and time from symptom onset to sampling. Kaplan Meier curves revealed a significantly increased mortality rate in patients with CgA levels above 0.558 nM (median value, log rank test, p = 0.001). Conclusion Plasma CgA levels increase in COVID-19 patients and represent an early independent predictor of mortality.
Collapse
Affiliation(s)
- Rebecca De Lorenzo
- Division of Immunology, Transplantation & Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Clara Sciorati
- Division of Immunology, Transplantation & Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- * E-mail:
| | - Giuseppe A. Ramirez
- Division of Immunology, Transplantation & Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Barbara Colombo
- Tumor Biology & Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nicola I. Lorè
- Division of Immunology, Transplantation & Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Annalisa Capobianco
- Division of Immunology, Transplantation & Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Tresoldi
- Hematology & Bone Marrow Transplant, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Daniela M. Cirillo
- Division of Immunology, Transplantation & Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Ciceri
- Vita-Salute San Raffaele University, Milan, Italy
- Hematology & Bone Marrow Transplant, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angelo Corti
- Vita-Salute San Raffaele University, Milan, Italy
- Tumor Biology & Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Patrizia Rovere-Querini
- Division of Immunology, Transplantation & Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Angelo A. Manfredi
- Division of Immunology, Transplantation & Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
15
|
Moawad UK, Soliman SMM, Mazher KM, Hassan RM, Nabil TM. Histological, histochemical, ultrastructural and immunohistochemical identification and characterization of the neurosecretory cells of the adult rabbit's adrenal medulla. Anat Histol Embryol 2022; 51:280-288. [PMID: 35119700 DOI: 10.1111/ahe.12789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/01/2022] [Accepted: 01/22/2022] [Indexed: 11/27/2022]
Abstract
The present investigation was conducted on the adrenal glands of 40 adult New Zealand rabbits of both sexes to characterize and identify the histological, histochemical, ultrastructural, and immunohistochemical features of the neurosecretory cells of the adrenal medulla. The obtained specimens of adrenal medulla were subjected to routine histological techniques and then stained with different histological stains, including general, non-specific, specific, and highly specific stains for neurosecretory cells, in addition to immunohistochemical reactions. The obtained results showed two types of adrenal medullary neurosecretory cells containing secretory granules (SGs) of different electron densities: adrenaline and noradrenaline (NA) secreting cells. These secretory granules showed a strong positive reaction to the Grimelius silver impregnation technique. Sections stained with Gomori's chrome alum haematoxylin stain, and the secretory granules showed a strong dark blackish-blue positive colour. The medullary cells showed typical chromaffin reactions when stained by H&E and Giemsa stains after formol dichromate 'Ortha's fluid' fixation. The noradrenaline secretory granules gave a strong positive Schmorl's test, while the adrenaline ones showed a moderate reaction. Immunohistochemically, the adrenal medullary cells were subjected to anti-chromogranin A (CHGA) antibody using the PAP technique, which gave positive reactions.
Collapse
Affiliation(s)
- Usama Kamal Moawad
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | | | - Khaled Mohamed Mazher
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Randa Mohamed Hassan
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Taghreed Mohamed Nabil
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
16
|
Yu H, Wang H, Su X, Cao A, Yao X, Wang Y, Zhu B, Wang H, Fang J. Serum chromogranin A correlated with albuminuria in diabetic patients and is associated with early diabetic nephropathy. BMC Nephrol 2022; 23:41. [PMID: 35062888 PMCID: PMC8783443 DOI: 10.1186/s12882-022-02667-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/11/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The kidney is the main site for the removal of chromogranin A (CgA). Previous studies have found that patients with renal impairment displayed elevated concentrations of CgA in plasma and that CgA concentrations reflect a deterioration of renal function. In this study, we aimed to estimate serum CgA levels and to evaluate the role of serum CgA in the early diagnosis of diabetic nephropathy (DN). METHODS A total of 219 patients with type 2 diabetes mellitus (T2DM) were included in this cross-sectional study. These patients were classified into normoalbuminuria (n = 121), microalbuminuria (n = 73), or macroalbuminuria (n = 25) groups based on their urine albumin to creatinine ratios (UACRs). The degree of DN is reflected by UACR. A control group consisted of 45 healthy subjects. The serum CgA levels were measured by ELISA, and other key parameters were assayed. RESULTS Serum CgA levels were higher in patients with T2DM than in control subjects, and a statistically significant difference among the studied subgroups regarding CgA was found (P < 0.05). The levels of serum CgA increased gradually with the degree of DN (P < 0.001). Serum CgA levels showed a moderate-intensity positive correlation with UACRs (P < 0.001). A cutoff level of 3.46 ng/ml CgA showed 69.86% sensitivity and 66.12% specificity to detect DN in the early stage. CONCLUSION The levels of serum CgA increased gradually with the degree of DN and can be used as a biomarker in the early detection of DN.
Collapse
Affiliation(s)
- Hui Yu
- Department of Nephrology, Laboratory of Renal Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Hongping Wang
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Xue Su
- Department of Nephrology, Laboratory of Renal Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Aili Cao
- Department of Nephrology, Laboratory of Renal Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Xingmei Yao
- Department of Nephrology, Laboratory of Renal Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Yunman Wang
- Department of Nephrology, Laboratory of Renal Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Bingbing Zhu
- Department of Nephrology, Laboratory of Renal Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Hao Wang
- Department of Nephrology, Laboratory of Renal Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
| | - Ji Fang
- Department of Nephrology, Laboratory of Renal Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
| |
Collapse
|
17
|
Yogi W, Tsukada M, Sato Y, Izuno T, Inoue T, Tsunokawa Y, Okumo T, Hisamitsu T, Sunagawa M. Influences of Lavender Essential Oil Inhalation on Stress Responses during Short-Duration Sleep Cycles: A Pilot Study. Healthcare (Basel) 2021; 9:healthcare9070909. [PMID: 34356287 PMCID: PMC8303840 DOI: 10.3390/healthcare9070909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/10/2021] [Accepted: 07/16/2021] [Indexed: 11/29/2022] Open
Abstract
Lavender essential oil (LEO) was reported to improve sleep quality. We investigated the influence of aromatherapy by testing the effects of LEO on stress responses during a short-duration sleep in a single-blind, randomized, crossover trial. The subjects were twelve healthy adults who were nonsmokers without any known disease and who were not prescribed medications, and nine of these completed the study. After the subjects had fallen asleep, they were sprayed with LEO using an aroma diffuser. Before and after 90 min of sleep, α-amylase, chromogranin A (CgA), and cortisol levels in saliva were measured as objective stress indicators, and the Japanese version of the UWIST Mood Adjective Checklist was used as a subjective indicator. A comparison of changes before and after sleep, with and without LEO, revealed that the cortisol level did not significantly change; however, α-amylase (p < 0.05) and CgA (p < 0.01) levels significantly decreased after LEO inhalation. A mood test indicated no change in mood before and after sleep, with or without LEO. Since α-amylase and CgA reflect the sympathetic nervous system response, these results indicate that LEO aromatherapy during a short-duration sleep cycle suppresses the stress response, especially that of the sympathetic nervous system.
Collapse
Affiliation(s)
- Wakako Yogi
- Department of Physiology, School of Medicine, Showa University, Tokyo 142-8555, Japan; (W.Y.); (T.I.); (T.I.); (Y.T.); (T.O.); (T.H.); (M.S.)
- Pharmaceutical Department, Showa University Hospital, Tokyo 142-8666, Japan
| | - Mana Tsukada
- Department of Physiology, School of Medicine, Showa University, Tokyo 142-8555, Japan; (W.Y.); (T.I.); (T.I.); (Y.T.); (T.O.); (T.H.); (M.S.)
- Correspondence: ; Tel.: +81-3-3784-8110
| | - Yosuke Sato
- Department of Neurosurgery, School of Medicine, Showa University, Tokyo 142-8666, Japan;
| | - Takuji Izuno
- Department of Physiology, School of Medicine, Showa University, Tokyo 142-8555, Japan; (W.Y.); (T.I.); (T.I.); (Y.T.); (T.O.); (T.H.); (M.S.)
| | - Tatsuki Inoue
- Department of Physiology, School of Medicine, Showa University, Tokyo 142-8555, Japan; (W.Y.); (T.I.); (T.I.); (Y.T.); (T.O.); (T.H.); (M.S.)
- Department of Urology, School of Medicine, Showa University, Tokyo 142-8666, Japan
| | - Yoshiki Tsunokawa
- Department of Physiology, School of Medicine, Showa University, Tokyo 142-8555, Japan; (W.Y.); (T.I.); (T.I.); (Y.T.); (T.O.); (T.H.); (M.S.)
- Department of Urology, School of Medicine, Showa University, Tokyo 142-8666, Japan
| | - Takayuki Okumo
- Department of Physiology, School of Medicine, Showa University, Tokyo 142-8555, Japan; (W.Y.); (T.I.); (T.I.); (Y.T.); (T.O.); (T.H.); (M.S.)
| | - Tadashi Hisamitsu
- Department of Physiology, School of Medicine, Showa University, Tokyo 142-8555, Japan; (W.Y.); (T.I.); (T.I.); (Y.T.); (T.O.); (T.H.); (M.S.)
| | - Masataka Sunagawa
- Department of Physiology, School of Medicine, Showa University, Tokyo 142-8555, Japan; (W.Y.); (T.I.); (T.I.); (Y.T.); (T.O.); (T.H.); (M.S.)
| |
Collapse
|
18
|
The Emerging Roles of Chromogranins and Derived Polypeptides in Atherosclerosis, Diabetes, and Coronary Heart Disease. Int J Mol Sci 2021; 22:ijms22116118. [PMID: 34204153 PMCID: PMC8201018 DOI: 10.3390/ijms22116118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
Chromogranin A (CgA), B (CgB), and C (CgC), the family members of the granin glycoproteins, are associated with diabetes. These proteins are abundantly expressed in neurons, endocrine, and neuroendocrine cells. They are also present in other areas of the body. Patients with diabetic retinopathy have higher levels of CgA, CgB, and CgC in the vitreous humor. In addition, type 1 diabetic patients have high CgA and low CgB levels in the circulating blood. Plasma CgA levels are increased in patients with hypertension, coronary heart disease, and heart failure. CgA is the precursor to several functional peptides, including catestatin, vasostatin-1, vasostatin-2, pancreastatin, chromofungin, and many others. Catestatin, vasostain-1, and vasostatin-2 suppress the expression of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 in human vascular endothelial cells. Catestatin and vasostatin-1 suppress oxidized low-density lipoprotein-induced foam cell formation in human macrophages. Catestatin and vasostatin-2, but not vasostatin-1, suppress the proliferation and these three peptides suppress the migration in human vascular smooth muscles. Chronic infusion of catestatin, vasostatin-1, or vasostatin-2 suppresses the development of atherosclerosis of the aorta in apolipoprotein E-deficient mice. Catestatin, vasostatin-1, vasostatin-2, and chromofungin protect ischemia/reperfusion-induced myocardial dysfunction in rats. Since pancreastatin inhibits insulin secretion from pancreatic β-cells, and regulates glucose metabolism in liver and adipose tissues, pancreastatin inhibitor peptide-8 (PSTi8) improves insulin resistance and glucose homeostasis. Catestatin stimulates therapeutic angiogenesis in the mouse hind limb ischemia model. Gene therapy with secretoneurin, a CgC-derived peptide, stimulates postischemic neovascularization in apolipoprotein E-deficient mice and streptozotocin-induced diabetic mice, and improves diabetic neuropathy in db/db mice. Therefore, CgA is a biomarker for atherosclerosis, diabetes, hypertension, and coronary heart disease. CgA- and CgC--derived polypeptides provide the therapeutic target for atherosclerosis and ischemia-induced tissue damages. PSTi8 is useful in the treatment of diabetes.
Collapse
|
19
|
Wei R, Wu Q, Ai N, Wang L, Zhou M, Shaw C, Chen T, Ye RD, Ge W, Siu SW, Kwok HF. A novel bioengineered fragment peptide of Vasostatin-1 exerts smooth muscle pharmacological activities and anti-angiogenic effects via blocking VEGFR signalling pathway. Comput Struct Biotechnol J 2021; 19:2664-2675. [PMID: 34093983 PMCID: PMC8131715 DOI: 10.1016/j.csbj.2021.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 12/14/2022] Open
Abstract
Chromogranin A (CgA) is a hydrophilic glycoprotein released by post-ganglionic sympathetic neurons. CgA consists of a single peptide chain containing numerous paired basic residues, which are typical cleavage sites in prohormones to generate bioactive peptides. It is recognized as a diagnostic and prognostic serum marker for neuroendocrine tumours. Vasostatin-1 is one of the most conserved regions of CgA and has diverse inhibitory biological activities. In this study, a novel peptide fragment that contains three typical functional structures of Vasostatin-1 was synthesized. This unique bioengineered Vasostatin-1 Derived Peptide (named V1DP) includes a highly conserved domain between vertebrate species in its N-terminal region, comprising a disulphide bridge formed by two cysteine residues at amino acid positions 17 and 38, respectively. Besides, V1DP contains two significant tripeptide recognition sequences: the amino acid triplets, RGD and KGD. Our data demonstrated that V1DP could induce a dose-dependent relaxation of rat arterial smooth muscle and also increase the contraction activity of rat uterus smooth muscle. More importantly, we found that V1DP inhibits cancer cell proliferation, modulate the HUVEC cell migration, and exhibit anti-angiogenesis effect both in vitro and in vivo. We further investigated the actual mechanism of V1DP, and our results confirmed that V1DP involves inhibiting the vascular endothelial growth factor receptor (VEGFR) signalling. We docked V1DP to the apo structures of VEGFR2 and examined the stability of the peptide in the protein pockets. Our simulation and free energy calculations results indicated that V1DP can bind to the catalytic domain and regulatory domain pockets, depending on whether the conformational state of the protein is JM-in or JM-out. Taken together, our data suggested that V1DP plays a role as the regulator of endothelial cell function and smooth muscle pharmacological homeostasis. V1DP is a water-soluble and biologically stable peptide and could further develop as an anti-angiogenic drug for cancer treatment.
Collapse
Affiliation(s)
- Ran Wei
- CCZU-JITRI Joint Bio-X Lab, School of Pharmacy & School of Medicine, Changzhou University, Changzhou, China; Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR, China
| | - Qiushuang Wu
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR, China
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR; MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau SAR, China
| | - Nana Ai
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, Avenida de Universidade, University of Macau, Macau SAR, China
| | - Lei Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - Mei Zhou
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - Chris Shaw
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - Richard Dequan Ye
- School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, Avenida de Universidade, University of Macau, Macau SAR, China
| | - Shirley W.I. Siu
- Department of Computer and Information Science, Faculty of Science and Technology University of Macau, Avenida de Universidade, Taipa, Macau SAR, China
| | - Hang Fai Kwok
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR, China
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR; MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau SAR, China
- Corresponding author at: Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR, China.
| |
Collapse
|
20
|
Goetze JP, Hilsted LM, Rehfeld JF. Chromogranin A in cardiovascular endocrinology. Acta Physiol (Oxf) 2021; 231:e13615. [PMID: 33460488 DOI: 10.1111/apha.13615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jens P. Goetze
- Department of Clinical Biochemistry, Rigshospitalet University of Copenhagen Copenhagen Denmark
| | - Linda M. Hilsted
- Department of Clinical Biochemistry, Rigshospitalet University of Copenhagen Copenhagen Denmark
| | - Jens F. Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet University of Copenhagen Copenhagen Denmark
| |
Collapse
|
21
|
Catestatin peptide of chromogranin A as a potential new target for several risk factors management in the course of metabolic syndrome. Biomed Pharmacother 2020; 134:111113. [PMID: 33341043 DOI: 10.1016/j.biopha.2020.111113] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/29/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity, lipodystrophy, diabetes, and hypertension collectively constitute the main features of Metabolic Syndrome (MetS), together with insulin resistance (IR), which is considered as a defining element. MetS generally leads to the development of cardiovascular disease (CVD), which is a determinant cause of mortality and morbidity in humans and animals. Therefore, it is essential to implement and put in place adequate management strategies for the treatment of this disease. Catestatin is a bioactive peptide with 21 amino acids, which is derived through cleaving of the prohormone chromogranin A (CHGA/CgA) that is co-released with catecholamines from secretory vesicles and, which is responsible for hepatic/plasma lipids and insulin levels regulation, improves insulin sensitivity, reduces hypertension and attenuates obesity in murine models. In humans, there were few published studies, which showed that low levels of catestatin are significant risk factors for hypertension in adult patients. These accumulating evidence documents clearly that catestatin peptide (CST) is linked to inflammatory and metabolic syndrome diseases and can be a novel regulator of insulin and lipid levels, blood pressure, and cardiac function. The goal of this review is to provide an overview of the CST effects in metabolic syndrome given its role in metabolic regulation and thus, provide new insights into the use of CST as a diagnostic marker and therapeutic target.
Collapse
|
22
|
Shi H, Jiang C, Zhang Q, Qi C, Yao H, Lin R. Clinicopathological heterogeneity between primary and metastatic sites of gastroenteropancreatic neuroendocrine neoplasm. Diagn Pathol 2020; 15:108. [PMID: 32917216 PMCID: PMC7488304 DOI: 10.1186/s13000-020-01030-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022] Open
Abstract
Background Chromogranin A (CgA), synaptophysin (Syn) and the Ki-67 index play significant roles in diagnosis or the evaluation of the proliferative activity of gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs). However, little is known about whether these biological markers change during tumor metastasis and whether such changes have effect on prognosis. Methods We analyzed 35 specimens of both primary and metastatic tumor from 779 patients who had been diagnosed as GEP-NENs at Wuhan Union Hospital from August 2011 to October 2019. The heterogeneity of CgA, Syn and Ki-67 index was evaluated by immunohistochemical analysis. Results Among these 779 patients, the three most common sites of NENs in the digestive tract were the pancreas, rectum and stomach. Metastases were found in 311 (39.9%) patients. Among the 35 patients with both primary and metastatic pathological specimens, differences in the Ki-67 level were detected in 54.3% of the patients, while 37.1% showed a difference in CgA and only 11.4% showed a difference in Syn. Importantly, due to the difference in the Ki-67 index between primary and metastatic lesions, the WHO grade was changed in 8.6% of the patients. In addition, a Kaplan–Meier survival analysis showed that patients with Ki-67 index variation had a shorter overall survival (p = 0.0346), while neither Syn variation nor CgA variation was related to patient survival (p = 0.7194, p = 0.4829). Conclusions Our data indicate that primary and metastatic sites of GEP-NENs may exhibit pathological heterogeneity. Ki-67 index variation is closely related to the poor prognosis of patients with tumor metastasis, but neither Syn variation nor CgA variation is related to patient prognosis. Therefore, clinicopathologic evaluation of the primary tumor and metastatic sites could be helpful for predicting the prognosis.
Collapse
Affiliation(s)
- Huiying Shi
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chen Jiang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qin Zhang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cuihua Qi
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hailing Yao
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Rong Lin
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
23
|
Höglund K, Häggström J, Höglund OV, Stridsberg M, Tidholm A, Ljungvall I. The chromogranin A-derived peptides catestatin and vasostatin in dogs with myxomatous mitral valve disease. Acta Vet Scand 2020; 62:43. [PMID: 32758260 PMCID: PMC7405357 DOI: 10.1186/s13028-020-00541-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/30/2020] [Indexed: 11/10/2022] Open
Abstract
Background The protein chromogranin A (CgA) is stored and co-released with catecholamines from the stimulated adrenal glands. Increased plasma concentrations of CgA have been shown in people with heart disease. The aim of the study was to investigate whether plasma concentrations of the CgA-derived biologically active peptides catestatin and vasostatin were associated with the severity of myxomatous mitral valve disease (MMVD) in dogs and to assess potential associations between these blood variables and dog characteristics, echocardiographic variables, heart rate (HR), blood pressure (BP) and plasma N-terminal-proBNP (NT-proBNP) concentration. Sixty-seven privately owned dogs with or without MMVD were included. The dogs underwent physical examination, blood pressure measurement, blood sample collection, and echocardiographic examination. Plasma concentrations of catestatin and vasostatin were analyzed using radioimmunoassay. Results Catestatin concentration decreased with increasing left atrial and ventricular size (R2 ≤ 0.09, P ≤ 0.019), and increased with increasing systolic and diastolic blood pressures (R2 ≤ 0.08, P ≤ 0.038). Regression analyses showed no significant associations for vasostatin. No differences in plasma concentrations of catestatin or vasostatin were found between the disease severity groups used in the study. Conclusions In the present dog population, the catestatin concentration showed weak negative associations with left atrial and ventricular sizes, both of which are known to increase with increasing severity of MMVD. Furthermore, the catestatin concentration showed weak positive associations with blood pressure.
Collapse
|
24
|
Castañeyra-Ruiz L, Castañeyra A, González-Santana A, Machado JD, Borges R. Combining the lack of chromogranins with chronic L-DOPA treatment affects motor activity in mice. Cell Tissue Res 2020; 380:59-66. [PMID: 31900665 DOI: 10.1007/s00441-019-03159-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/10/2019] [Indexed: 11/29/2022]
Abstract
We have tested whether the lack of chromogranins (Cgs) A and B could provoke CNS disorders when combined with an excess of dopamine. We chronically treated (over 6 months) mice lacking both chromogranins A and B (Cgs-KO) with a low oral dosage of L-DOPA/benserazide (10/2.5 mg/kg). Motor performance in the rota-rod test, open field activity, and metabolic cages indicated a progressive impairment in motor coordination in these mice, and an increase in rearing behavior, which was accompanied by an increase in DA within the substantia nigra. We conclude that mild chronic L-DOPA treatment does not produce nigro-striatal toxicity that could be associated with parkinsonism, neither in control nor Cgs-KO mice. Rather, Cgs-KO mice exhibit behaviors compatible with an amphetamine-like effect, probably caused by the excess of catecholamines in the CNS.
Collapse
Affiliation(s)
- Leandro Castañeyra-Ruiz
- Department of Neurosurgery, School of Medicine, Washington University in Saint Louis, St. Louis, MO, USA
- Unidad de Farmacología, Facultad de Medicina, Universidad de La Laguna, E-38200, La Laguna, Tenerife, Spain
| | - Agustín Castañeyra
- Dept. Ciencias Médicas Basicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - Ayoze González-Santana
- Department of Neurosurgery, School of Medicine, Washington University in Saint Louis, St. Louis, MO, USA
- Unidad de Farmacología, Facultad de Medicina, Universidad de La Laguna, E-38200, La Laguna, Tenerife, Spain
- Dept. Ciencias Médicas Basicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - José D Machado
- Unidad de Farmacología, Facultad de Medicina, Universidad de La Laguna, E-38200, La Laguna, Tenerife, Spain
| | - Ricardo Borges
- Unidad de Farmacología, Facultad de Medicina, Universidad de La Laguna, E-38200, La Laguna, Tenerife, Spain.
| |
Collapse
|
25
|
Malczewska A, Kidd M, Matar S, Kos-Kudła B, Bodei L, Oberg K, Modlin IM. An Assessment of Circulating Chromogranin A as a Biomarker of Bronchopulmonary Neuroendocrine Neoplasia: A Systematic Review and Meta-Analysis. Neuroendocrinology 2020; 110:198-216. [PMID: 31266019 DOI: 10.1159/000500525] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/23/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Management of bronchopulmonary neuroendocrine neoplasia (NEN; pulmonary carcinoids [PCs], small-cell lung cancer [SCLC], and large cell neuroendocrine carcinoma) is hampered by the paucity of biomarkers. Chromogranin A (CgA), the default neuroendocrine tumor biomarker, has undergone wide assessment in gastroenteropancreatic neuroendocrine tumors. OBJECTIVES To evaluate CgA in lung NEN, define its clinical utility as a biomarker, assess its diagnostic, prognostic, and predictive efficacy, as well as its accuracy in the identification of disease recurrence. METHODS A systematic review of PubMed was undertaken using the preferred reporting items for systematic reviews and meta-analyses guidelines. No language restrictions were applied. Overall, 33 original scientific papers and 3 case reports, which met inclusion criteria, were included in qualitative analysis, and meta-analysis thereafter. All studies, except 2, were retrospective. Meta-analysis statistical assessment by generic inverse variance methodology. RESULTS Ten different CgA assay types were reported, without consistency in the upper limit of normal (ULN). For PCs (n = 16 studies; median patient inclusion 21 [range 1-200, total: 591 patients]), the CgA diagnostic sensitivity was 34.5 ± 2.7% with a specificity of 93.8 ± 4.7. CgA metrics were not available separately for typical or atypical carcinoids. CgA >100 ng/mL (2.7 × ULN) and >600 ng/mL (ULN unspecified) were anecdotally prognostic for overall survival (n = 2 retrospective studies). No evidence was presented for predicting treatment response or identifying post-surgery residual disease. For SCLC (n = 19 studies; median patient inclusion 23 [range 5-251, total: 1,241 patients]), the mean diagnostic sensitivity was 59.9 ± 6.8% and specificity 79.4 ± 3.1. Extensive disease typically exhibited higher CgA levels (diagnostic accuracy: 61 ± 2.5%). An elevated CgA was prognostic for overall survival (n = 4 retrospective studies). No prospective studies evaluating predictive benefit or prognostic utility were identified. CONCLUSION The available data are scarce. An assessment of all published data showed that CgA exhibits major limitations as an effective and accurate biomarker for either PC or SCLC. Its utility especially for localized PC/limited SCLC (when surgery is potentially curative), is limited. The clinical value of CgA remains to be determined. This requires validated, well-constructed, multicenter, prospective, randomized studies. An assessment of all published data indicates that CgA does not exhibit the minimum required metrics to function as a clinically useful biomarker for lung NENs.
Collapse
Affiliation(s)
- Anna Malczewska
- Department of Endocrinology and Neuroendocrine Tumors, Medical University of Silesia, Katowice, Poland
| | - Mark Kidd
- Wren Laboratories, Branford, Connecticut, USA
| | - Somer Matar
- Wren Laboratories, Branford, Connecticut, USA
| | - Beata Kos-Kudła
- Department of Endocrinology and Neuroendocrine Tumors, Medical University of Silesia, Katowice, Poland
| | - Lisa Bodei
- Memorial Sloan Kettering Cancer Centre, New York, New York, USA
| | - Kjell Oberg
- Department of Endocrine Oncology, University Hospital, Uppsala, Sweden
| | - Irvin M Modlin
- Yale University School of Medicine, New Haven, Connecticut, USA,
| |
Collapse
|
26
|
Laguerre F, Anouar Y, Montero-Hadjadje M. Chromogranin A in the early steps of the neurosecretory pathway. IUBMB Life 2019; 72:524-532. [PMID: 31891241 DOI: 10.1002/iub.2218] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022]
Abstract
Chromogranin A (CgA) is a soluble glycoprotein stored with hormones and neuropeptides in secretory granules (SG) of most (neuro)endocrine cells and neurons. Since its discovery in 1967, many studies have reported its structural characteristics, biological roles, and mechanisms of action. Indeed, CgA is both a precursor of various biologically active peptides and a granulogenic protein regulating the storage and secretion of hormones and neuropeptides. This review emphasizes the findings and theoretical concepts around the CgA-linked molecular machinery controlling hormone/neuropeptide aggregation and the interaction of CgA-hormone/neuropeptide aggregates with the trans-Golgi membrane to allow hormone/neuropeptide targeting and SG biogenesis. We will also discuss the intriguing alteration of CgA expression and secretion in various neurological disorders, which could provide insights to elucidate the molecular mechanisms underlying these pathophysiological conditions.
Collapse
Affiliation(s)
- Fanny Laguerre
- Normandie Univ, UNIROUEN, INSERM, U1239, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Rouen, France
| | - Youssef Anouar
- Normandie Univ, UNIROUEN, INSERM, U1239, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Rouen, France
| | - Maité Montero-Hadjadje
- Normandie Univ, UNIROUEN, INSERM, U1239, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Rouen, France
| |
Collapse
|
27
|
Mishra R, Haldar S, Suchanti S, Bhowmick NA. Epigenetic changes in fibroblasts drive cancer metabolism and differentiation. Endocr Relat Cancer 2019; 26:R673-R688. [PMID: 31627186 PMCID: PMC6859444 DOI: 10.1530/erc-19-0347] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 10/17/2019] [Indexed: 12/17/2022]
Abstract
Genomic changes that drive cancer initiation and progression contribute to the co-evolution of the adjacent stroma. The nature of the stromal reprogramming involves differential DNA methylation patterns and levels that change in response to the tumor and systemic therapeutic intervention. Epigenetic reprogramming in carcinoma-associated fibroblasts are robust biomarkers for cancer progression and have a transcriptional impact that support cancer epithelial progression in a paracrine manner. For prostate cancer, promoter hypermethylation and silencing of the RasGAP, RASAL3 that resulted in the activation of Ras signaling in carcinoma-associated fibroblasts. Stromal Ras activity initiated a process of macropinocytosis that provided prostate cancer epithelia with abundant glutamine for metabolic conversion to fuel its proliferation and a signal to transdifferentiate into a neuroendocrine phenotype. This epigenetic oncogenic metabolic/signaling axis seemed to be further potentiated by androgen receptor signaling antagonists and contributed to therapeutic resistance. Intervention of stromal signaling may complement conventional therapies targeting the cancer cell.
Collapse
Affiliation(s)
- Rajeev Mishra
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Subhash Haldar
- Department of Biotechnology, Brainware University, Kolkata, India
| | - Surabhi Suchanti
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Neil A Bhowmick
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Research, Greater Los Angeles Veterans Administration, Los Angeles, California, USA
- Correspondence should be addressed to N A Bhowmick:
| |
Collapse
|
28
|
Mahata SK, Corti A. Chromogranin A and its fragments in cardiovascular, immunometabolic, and cancer regulation. Ann N Y Acad Sci 2019; 1455:34-58. [PMID: 31588572 PMCID: PMC6899468 DOI: 10.1111/nyas.14249] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/09/2019] [Accepted: 09/13/2019] [Indexed: 12/11/2022]
Abstract
Chromogranin A (CgA)-the index member of the chromogranin/secretogranin secretory protein family-is ubiquitously distributed in endocrine, neuroendocrine, and immune cells. Elevated levels of CgA-related polypeptides, consisting of full-length molecules and fragments, are detected in the blood of patients suffering from neuroendocrine tumors, heart failure, renal failure, hypertension, rheumatoid arthritis, and inflammatory bowel disease. Full-length CgA and various CgA-derived peptides, including vasostatin-1, pancreastatin, catestatin, and serpinin, are expressed at different relative levels in normal and pathological conditions and exert diverse, and sometime opposite, biological functions. For example, CgA is overexpressed in genetic hypertension, whereas catestatin is diminished. In rodents, the administration of catestatin decreases hypertension, cardiac contractility, obesity, atherosclerosis, and inflammation, and it improves insulin sensitivity. By contrast, pancreastatin is elevated in diabetic patients, and the administration of this peptide to obese mice decreases insulin sensitivity and increases inflammation. CgA and the N-terminal fragment of vasostatin-1 can enhance the endothelial barrier function, exert antiangiogenic effects, and inhibit tumor growth in animal models, whereas CgA fragments lacking the CgA C-terminal region promote angiogenesis and tumor growth. Overall, the CgA system, consisting of full-length CgA and its fragments, is emerging as an important and complex player in cardiovascular, immunometabolic, and cancer regulation.
Collapse
Affiliation(s)
- Sushil K Mahata
- VA San Diego Healthcare System, San Diego, California.,Metabolic Physiology & Ultrastructural Biology Laboratory, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Angelo Corti
- IRCCS San Raffaele Scientific Institute, San Raffaele Vita-Salute University, Milan, Italy
| |
Collapse
|
29
|
Carbone E, Borges R, Eiden LE, García AG, Hernández-Cruz A. Chromaffin Cells of the Adrenal Medulla: Physiology, Pharmacology, and Disease. Compr Physiol 2019; 9:1443-1502. [PMID: 31688964 DOI: 10.1002/cphy.c190003] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Chromaffin cells (CCs) of the adrenal gland and the sympathetic nervous system produce the catecholamines (epinephrine and norepinephrine; EPI and NE) needed to coordinate the bodily "fight-or-flight" response to fear, stress, exercise, or conflict. EPI and NE release from CCs is regulated both neurogenically by splanchnic nerve fibers and nonneurogenically by hormones (histamine, corticosteroids, angiotensin, and others) and paracrine messengers [EPI, NE, adenosine triphosphate, opioids, γ-aminobutyric acid (GABA), etc.]. The "stimulus-secretion" coupling of CCs is a Ca2+ -dependent process regulated by Ca2+ entry through voltage-gated Ca2+ channels, Ca2+ pumps, and exchangers and intracellular organelles (RE and mitochondria) and diffusible buffers that provide both Ca2+ -homeostasis and Ca2+ -signaling that ultimately trigger exocytosis. CCs also express Na+ and K+ channels and ionotropic (nAChR and GABAA ) and metabotropic receptors (mACh, PACAP, β-AR, 5-HT, histamine, angiotensin, and others) that make CCs excitable and responsive to autocrine and paracrine stimuli. To maintain high rates of E/NE secretion during stressful conditions, CCs possess a large number of secretory chromaffin granules (CGs) and members of the soluble NSF-attachment receptor complex protein family that allow docking, fusion, and exocytosis of CGs at the cell membrane, and their recycling. This article attempts to provide an updated account of well-established features of the molecular processes regulating CC function, and a survey of the as-yet-unsolved but important questions relating to CC function and dysfunction that have been the subject of intense research over the past 15 years. Examples of CCs as a model system to understand the molecular mechanisms associated with neurodegenerative diseases are also provided. Published 2019. Compr Physiol 9:1443-1502, 2019.
Collapse
Affiliation(s)
- Emilio Carbone
- Laboratory of Cellular and Molecular Neuroscience, Department of Drug Science, N.I.S. Centre, University of Torino, Torino, Italy
| | - Ricardo Borges
- Unidad de Farmacología, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - Lee E Eiden
- Section on Molecular Neuroscience, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Antonio G García
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain
| | - Arturo Hernández-Cruz
- Departamento de Neurociencia Cognitiva and Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Universidad Nacional Autonoma de México, Ciudad Universitaria, CDMX, México
| |
Collapse
|
30
|
Iizuka Y, Masaoka N, Ohashi K. Pain in labor assessed from two discomfort aspects: Physical pain intensity and psychological stress state. J Obstet Gynaecol Res 2018; 44:1243-1251. [PMID: 29978540 DOI: 10.1111/jog.13660] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/21/2018] [Indexed: 11/29/2022]
Abstract
AIM To assess two discomfort aspects of pain in labor, physical pain intensity and psychological stress state, we analyzed the association between the two parameters. METHODS Twenty-nine pregnant Japanese women with a singleton in 37-40 weeks of gestation were analyzed. Physical pain intensity was examined by the Numeric Rating Scale (NRS). Psychological stress state was measured by chromogranin A (CgA) in saliva. Data were collected thrice during labor (at 4-6 cm and 10 cm of cervical dilatation and immediately after delivery) and were accumulated from 4-6 cm and 10 cm of cervical dilatation. The study was approved by the Ethics Committees of Osaka University and Tokyo Women's Medical University. RESULTS The median NRS score (10, IQR = 10-18) and the median CgA in saliva (8.0, IQR = 4.3-12.0) pmol/mg at 10 cm of cervical dilatation were significantly higher than those at the other two time points (P < 0.05). Although there were no correlations between NRS scores and concentrations of CgA in saliva at the three time points, there was a significant correlation between accumulated NRS and accumulated CgA in saliva (r = 0.68, P = 0.000). There was a significant difference in the accumulated NRS scores (P = 0.005) but not in the accumulated concentrations of CgA between primiparae and multiparae. CONCLUSION Women in labor perceived severe pain and psychological stress with similar patterns during labor. However, these parameters were independent and need to be measured to evaluate these two discomfort aspects.
Collapse
Affiliation(s)
- Yukie Iizuka
- Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Naoki Masaoka
- Department of Maternal and Fetal Medicine, Tokyo Women's Medical University Yachiyo Medical Center, Chiba, Japan
| | - Kazutomo Ohashi
- Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
31
|
Álvarez de Toledo G, Montes MÁ, Montenegro P, Borges R. Phases of the exocytotic fusion pore. FEBS Lett 2018; 592:3532-3541. [PMID: 30169901 DOI: 10.1002/1873-3468.13234] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/25/2018] [Accepted: 08/28/2018] [Indexed: 01/19/2023]
Abstract
Membrane fusion and fission are fundamental processes in living organisms. Membrane fusion occurs through the formation of a fusion pore, which is the structure that connects two lipid membranes during their fusion. Fusion pores can form spontaneously, but cells endow themselves with a set of proteins that make the process of fusion faster and regulatable. The fusion pore starts with a narrow diameter and dilates relatively slowly; it may fluctuate in size or can even close completely, producing a transient vesicle fusion (kiss-and-run), or can finally expand abruptly to release all vesicle contents. A set of proteins control the formation, dilation, and eventual closure of the fusion pore and, therefore, the velocity at which the contents of secretory vesicles are released to the extracellular medium. Thus, the regulation of fusion pore expansion or closure is key to regulate the release of neurotransmitters and hormones. Here, we review the phases of the fusion pore and discuss the implications in the modes of exocytosis.
Collapse
Affiliation(s)
| | - María Ángeles Montes
- Dpto. Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Spain
| | - Pablo Montenegro
- Unidad de Farmacología, Facultad de Medicina, Universidad de La Laguna, Spain
| | - Ricardo Borges
- Unidad de Farmacología, Facultad de Medicina, Universidad de La Laguna, Spain
| |
Collapse
|
32
|
Chiba A, Watanabe-Takano H, Miyazaki T, Mochizuki N. Cardiomyokines from the heart. Cell Mol Life Sci 2018; 75:1349-1362. [PMID: 29238844 PMCID: PMC11105766 DOI: 10.1007/s00018-017-2723-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 12/12/2022]
Abstract
The heart is regarded as an endocrine organ as well as a pump for circulation, since atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) were discovered in cardiomyocytes to be secreted as hormones. Both ANP and BNP bind to their receptors expressed on remote organs, such as kidneys and blood vessels; therefore, the heart controls the circulation by pumping blood and by secreting endocrine peptides. Cardiomyocytes secrete other peptides besides natriuretic peptides. Although most of such cardiomyocyte-derived peptides act on the heart in autocrine/paracrine fashions, several peptides target remote organs. In this review, to overview current knowledge of endocrine properties of the heart, we focus on cardiomyocyte-derived peptides (cardiomyokines) that act on the remote organs as well as the heart. Cardiomyokines act on remote organs to regulate cardiovascular homeostasis, systemic metabolism, and inflammation. Therefore, through its endocrine function, the heart can maintain physiological conditions and prevent organ damage under pathological conditions.
Collapse
Affiliation(s)
- Ayano Chiba
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka, 565-8565, Japan
| | - Haruko Watanabe-Takano
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka, 565-8565, Japan
| | - Takahiro Miyazaki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka, 565-8565, Japan
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka, 565-8565, Japan.
- AMED-CREST, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka, 565-8565, Japan.
| |
Collapse
|
33
|
Georgantzi K, Sköldenberg EG, Stridsberg M, Kogner P, Jakobson Å, Janson ET, Christofferson RHB. Chromogranin A and neuron-specific enolase in neuroblastoma: Correlation to stage and prognostic factors. Pediatr Hematol Oncol 2018; 35:156-165. [PMID: 29737901 DOI: 10.1080/08880018.2018.1464087] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Chromogranin A (CgA) and neuron specific enolase (NSE) are important markers in adult neuroendocrine tumors (NET). Neuroblastoma (NB) has certain neuroendocrine properties. The aim of this study was to correlate blood concentrations of CgA, chromogranin B (CgB), and NSE to prognostic factors and outcome in children with NB. Blood samples from 92 patients with NB, 12 patients with benign ganglioneuroma (GN), 21 patients with non-NB solid tumors, 10 patients with acute leukemias, and 69 healthy children, were analyzed. CgA concentrations were higher in neonates vs. children older than one month in the control group (p < 0.0001), and in neonates with NB vs. the control group (p < 0.01). CgA and NSE concentrations were higher in patients with stages 3 and 4 disease (p < 0.05 and p < 0.05), in patients having tumors with amplification of MYCN (p < 0.05 and p < 0.001), or chromosome 1 p deletion (p < 0.05 and p < 0.05). NSE correlated to the tumor size at diagnosis (p < 0.001) and to tumor related death (p < 0.01) in NB. CgA and NSE concentrations were elevated in patients with NB and especially in those with advanced disease. Both CgA and NSE correlated to genetic markers, while only NSE correlated to primary tumor size and outcome in NB. We found that CgA and NSE are clinically valuable tumor markers in NB and they merit prospective clinical evaluations as such.
Collapse
Affiliation(s)
- Kleopatra Georgantzi
- a Department of Women's and Children's Health , Section of Pediatrics, University Children's Hospital , Uppsala , Sweden
| | - Erik G Sköldenberg
- b Department of Women's and Children's Health , Section of Pediatric Surgery, University Children's Hospital , Uppsala , Sweden
| | - Mats Stridsberg
- c Department of Clinical Chemistry , University Hospital , Uppsala , Sweden
| | - Per Kogner
- d Department of Women´s and Children´s Health , Karolinska University Hospital , Solna, Stockholm , Sweden
| | - Åke Jakobson
- a Department of Women's and Children's Health , Section of Pediatrics, University Children's Hospital , Uppsala , Sweden
| | - Eva Tiensuu Janson
- e Department of Medical Sciences , Uppsala University , Uppsala , Sweden
| | - Rolf H B Christofferson
- b Department of Women's and Children's Health , Section of Pediatric Surgery, University Children's Hospital , Uppsala , Sweden
| |
Collapse
|
34
|
Taleat Z, Estévez-Herrera J, Machado JD, Dunevall J, Ewing AG, Borges R. Electrochemical Investigation of the Interaction between Catecholamines and ATP. Anal Chem 2018; 90:1601-1607. [PMID: 29286231 DOI: 10.1021/acs.analchem.7b02494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The study of the colligative properties of adenosine 5'-triphosphate (ATP) and catecholamines has received the attention of scientists for decades, as they could explain the capabilities of secretory vesicles (SVs) to accumulate neurotransmitters. In this Article, we have applied electrochemical methods to detect such interactions in vitro, at the acidic pH of SVs (pH 5.5) and examined the effect of compounds having structural similarities that correlate with functional groups of ATP (adenosine, phosphoric acid and sodium phosphate salts) and catecholamines (catechol). Chronoamperometry and fast scan cyclic voltammetry (FSCV) provide evidence compatible with an interaction of the catechol and adenine rings. This interaction is also reinforced by an electrostatic interaction between the phosphate group of ATP and the protonated ammonium group of catecholamines. Furthermore, chronoamperometry data suggest that the presence of ATP subtlety reduces the apparent diffusion coefficient of epinephrine in aqueous media that adds an additional factor leading to a slower rate of catecholamine exocytosis. This adds another plausible mechanism to regulate individual exocytosis events to alter communication.
Collapse
Affiliation(s)
- Zahra Taleat
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology , 41296 Gothenburg, Sweden
| | - Judith Estévez-Herrera
- Unidad de Farmacología, Facultad de Medicina, Universidad de La Laguna , 38200 San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | - José D Machado
- Unidad de Farmacología, Facultad de Medicina, Universidad de La Laguna , 38200 San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | - Johan Dunevall
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology , 41296 Gothenburg, Sweden
| | - Andrew G Ewing
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology , 41296 Gothenburg, Sweden.,Department of Chemistry and Chemical Biology, University of Gothenburg , 41296 Gothenburg, Sweden
| | - Ricardo Borges
- Unidad de Farmacología, Facultad de Medicina, Universidad de La Laguna , 38200 San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain.,Instituto Universitario de BioOrgánica, Universidad de La Laguna , 38200 San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| |
Collapse
|
35
|
Srithunyarat T, Hagman R, Höglund OV, Stridsberg M, Hanson J, Lagerstedt AS, Pettersson A. Catestatin, vasostatin, cortisol, and visual analog scale scoring for stress assessment in healthy dogs. Res Vet Sci 2017; 117:74-80. [PMID: 29195227 DOI: 10.1016/j.rvsc.2017.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 10/11/2017] [Accepted: 11/20/2017] [Indexed: 01/08/2023]
Abstract
The neuroendocrine glycoprotein chromogranin A is a useful biomarker for stress in humans. Chromogranin A epitopes catestatin and vasostatin can be measured in dogs using radioimmunoassays. The objective of this study was to evaluate catestatin and vasostatin as canine stress biomarkers in a clinical setting. Blood and saliva were collected from 33 healthy dogs that were familiar with sampling procedures and the animal hospital environment (control group) and 30 healthy dogs that were unacquainted (stress group). During sampling, stress behavior was scored by the same observer using visual analog scale (VAS). Plasma was analyzed for catestatin and vasostatin, serum for cortisol, and saliva for catestatin. Differences between groups were analyzed using two-sample t-tests and P<0.05 was considered significant. Stress behavior VAS score in the control group was significantly lower than in the stress group during blood (P=0.002) and saliva (P=0.0009) sampling. Serum cortisol and saliva catestatin concentrations in the stress group were higher than the control group (P=0.003 and P<0.0001, respectively). Serum cortisol concentrations were correlated with those of saliva (r=0.34, P=0.04) and plasma catestatin (r=0.29, P=0.03). Plasma catestatin and vasostatin did not differ significantly between groups. In conclusion, concentrations of saliva catestatin, and serum cortisol, and stress behavior VAS scores were significantly higher in the stress group. The results indicate that saliva catestatin may be useful as a biomarker for acute psychological stress in dogs.
Collapse
Affiliation(s)
- T Srithunyarat
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Box 7054, SE 75007, Uppsala, Sweden; Department of Surgery and Theriogenology, Faculty of Veterinary Medicine, Khon Kaen University, 40002 Khon Kaen, Thailand.
| | - R Hagman
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Box 7054, SE 75007, Uppsala, Sweden.
| | - O V Höglund
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Box 7054, SE 75007, Uppsala, Sweden.
| | - M Stridsberg
- Department of Medical Sciences, Uppsala University, SE 75185, Uppsala, Sweden.
| | - J Hanson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Box 7054, SE 75007, Uppsala, Sweden.
| | - A S Lagerstedt
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Box 7054, SE 75007, Uppsala, Sweden.
| | - A Pettersson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Box 7054, SE 75007, Uppsala, Sweden.
| |
Collapse
|
36
|
Old and emerging concepts on adrenal chromaffin cell stimulus-secretion coupling. Pflugers Arch 2017; 470:1-6. [PMID: 29110079 DOI: 10.1007/s00424-017-2082-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 10/19/2017] [Indexed: 10/18/2022]
Abstract
The chromaffin cells (CCs) of the adrenal medulla play a key role in the control of circulating catecholamines to adapt our body function to stressful conditions. A huge research effort over the last 35 years has converted these cells into the Escherichia coli of neurobiology. CCs have been the testing bench for the development of patch-clamp and amperometric recording techniques and helped clarify most of the known molecular mechanisms that regulate cell excitability, Ca2+ signals associated with secretion, and the molecular apparatus that regulates vesicle fusion. This special issue provides a state-of-the-art on the many well-known and unsolved questions related to the molecular processes at the basis of CC function. The issue is also the occasion to highlight the seminal work of Antonio G. García (Emeritus Professor at UAM, Madrid) who greatly contributed to the advancement of our present knowledge on CC physiology and pharmacology. All the contributors of the present issue are distinguished scientists who are either staff members, external collaborators, or friends of Prof. García.
Collapse
|
37
|
Chromogranins: from discovery to current times. Pflugers Arch 2017; 470:143-154. [PMID: 28875377 DOI: 10.1007/s00424-017-2027-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 06/29/2017] [Accepted: 06/29/2017] [Indexed: 02/08/2023]
Abstract
The discovery in 1953 of the chromaffin granules as co-storage of catecholamines and ATP was soon followed by identification of a range of uniquely acidic proteins making up the isotonic vesicular storage complex within elements of the diffuse sympathoadrenal system. In the mid-1960s, the enzymatically inactive, major core protein, chromogranin A was shown to be exocytotically discharged from the stimulated adrenal gland in parallel with the co-stored catecholamines and ATP. A prohormone concept was introduced when one of the main storage proteins collectively named granins was identified as the insulin release inhibitory polypeptide pancreastatin. A wide range of granin-derived biologically active peptides have subsequently been identified. Both chromogranin A and chromogranin B give rise to antimicrobial peptides of relevance for combat of pathogens. While two of the chromogranin A-derived peptides, vasostatin-I and pancreastatin, are involved in modulation of calcium and glucose homeostasis, respectively, vasostatin-I and catestatin are important modulators of endothelial permeability, angiogenesis, myocardial contractility, and innate immunity. A physiological role is now evident for the full-length chromogranin A and vasostatin-I as circulating stabilizers of endothelial integrity and in protection against myocardial injury. The high circulating levels of chromogranin A and its fragments in patients suffering from various inflammatory diseases have emerged as challenges for future research and clinical applications.
Collapse
|
38
|
Jun E, Kim SC, Song KB, Hwang DW, Lee JH, Shin SH, Hong SM, Park KM, Lee YJ. Diagnostic value of chromogranin A in pancreatic neuroendocrine tumors depends on tumor size: A prospective observational study from a single institute. Surgery 2017; 162:120-130. [DOI: 10.1016/j.surg.2017.01.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 01/10/2017] [Accepted: 01/26/2017] [Indexed: 12/25/2022]
|
39
|
Troger J, Theurl M, Kirchmair R, Pasqua T, Tota B, Angelone T, Cerra MC, Nowosielski Y, Mätzler R, Troger J, Gayen JR, Trudeau V, Corti A, Helle KB. Granin-derived peptides. Prog Neurobiol 2017; 154:37-61. [PMID: 28442394 DOI: 10.1016/j.pneurobio.2017.04.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 04/10/2017] [Accepted: 04/16/2017] [Indexed: 12/14/2022]
Abstract
The granin family comprises altogether 7 different proteins originating from the diffuse neuroendocrine system and elements of the central and peripheral nervous systems. The family is dominated by three uniquely acidic members, namely chromogranin A (CgA), chromogranin B (CgB) and secretogranin II (SgII). Since the late 1980s it has become evident that these proteins are proteolytically processed, intragranularly and/or extracellularly into a range of biologically active peptides; a number of them with regulatory properties of physiological and/or pathophysiological significance. The aim of this comprehensive overview is to provide an up-to-date insight into the distribution and properties of the well established granin-derived peptides and their putative roles in homeostatic regulations. Hence, focus is directed to peptides derived from the three main granins, e.g. to the chromogranin A derived vasostatins, betagranins, pancreastatin and catestatins, the chromogranin B-derived secretolytin and the secretogranin II-derived secretoneurin (SN). In addition, the distribution and properties of the chromogranin A-derived peptides prochromacin, chromofungin, WE14, parastatin, GE-25 and serpinins, the CgB-peptide PE-11 and the SgII-peptides EM66 and manserin will also be commented on. Finally, the opposing effects of the CgA-derived vasostatin-I and catestatin and the SgII-derived peptide SN on the integrity of the vasculature, myocardial contractility, angiogenesis in wound healing, inflammatory conditions and tumors will be discussed.
Collapse
Affiliation(s)
- Josef Troger
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Markus Theurl
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Rudolf Kirchmair
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Teresa Pasqua
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Bruno Tota
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Tommaso Angelone
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Maria C Cerra
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Yvonne Nowosielski
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria
| | - Raphaela Mätzler
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jasmin Troger
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Vance Trudeau
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Angelo Corti
- Vita-Salute San Raffaele University and Division of Experimental Oncology, San Raffaele Scientific Institute, Milan, Italy
| | - Karen B Helle
- Department of Biomedicine, University of Bergen, Norway
| |
Collapse
|
40
|
Catestatin, vasostatin, cortisol, and pain assessments in dogs suffering from traumatic bone fractures. BMC Res Notes 2017; 10:129. [PMID: 28327184 PMCID: PMC5359833 DOI: 10.1186/s13104-017-2450-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 03/11/2017] [Indexed: 12/13/2022] Open
Abstract
Background Traumatic bone fractures cause moderate to severe pain, which needs to be minimized for optimal recovery and animal welfare, illustrating the need for reliable objective pain biomarkers for use in a clinical setting. The objectives of this study were to investigate catestatin (CST) and vasostatin (VS) concentrations as two new potential biomarkers, and cortisol concentrations, scores of the short form of the Glasgow composite measure pain scale (CMPS-SF), and visual analog scale (VAS) in dogs suffering from traumatic bone fractures before and after morphine administration in comparison with healthy dogs. Methods Fourteen dogs with hind limb or pelvic fractures and thirty healthy dogs were included. Dogs with fractures were divided into four groups according to analgesia received before participation. Physical examination, CMPS-SF, pain and stress behavior VAS scores were recorded in all dogs. Saliva and blood were collected once in healthy dogs and in dogs with fractures before and 35–70 min after morphine administration. Blood samples were analyzed for CST, VS, and cortisol. Saliva volumes, however, were insufficient for analysis. Results Catestatin and cortisol concentrations, and CMPS-SF, and VAS scores differed significantly between dogs with fractures prior to morphine administration and healthy dogs. After morphine administration, dogs with fractures had significantly decreased CMPS-SF and VAS scores and, compared to healthy dogs, CST concentrations, CMPS-SF, and VAS scores still differed significantly. However, CST concentrations remained largely within the normal range. Absolute delta values for CST significantly correlated with delta values for CMPS-SF. Catestatin and cortisol did not differ significantly before and after morphine administration. Vasostatin concentrations did not differ significantly between groups. Conclusions Catestatin and cortisol concentrations, CMPS-SF, and VAS scores differed significantly in the dogs with traumatic bone fractures compared to the healthy dogs. Morphine treatment partially relieved pain and stress according to the subjective but not according to the objective assessments performed. However, because of the large degree of overlap with normal values, our results suggest that plasma CST concentrations have a limited potential as a clinically useful biomarker for pain-induced stress.
Collapse
|
41
|
Srithunyarat T, Hagman R, Höglund OV, Olsson U, Stridsberg M, Jitpean S, Lagerstedt AS, Pettersson A. Catestatin and vasostatin concentrations in healthy dogs. Acta Vet Scand 2017; 59:1. [PMID: 28049540 PMCID: PMC5210291 DOI: 10.1186/s13028-016-0274-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 12/23/2016] [Indexed: 12/31/2022] Open
Abstract
Background The neuroendocrine glycoprotein chromogranin A is a useful biomarker in humans for neuroendocrine tumors and stress. Chromogranin A can be measured in both blood and saliva. The objective of this study was to investigate concentrations of and correlation between the chromogranin A epitopes catestatin and vasostatin in healthy dogs accustomed to the sample collection procedures. Blood and saliva samples were collected from 10 research Beagle dogs twice daily for 5 consecutive days, and from 33 privately-owned blood donor dogs in association with 50 different blood donation occasions. All dogs were familiar with sample collection procedures. During each sampling, stress behavior was scored by the same observer using a visual analog scale (VAS) and serum cortisol concentrations. Catestatin and vasostatin were analyzed using radioimmunoassays for dogs. Results The dogs showed minimal stress behavior during both saliva sampling and blood sampling as monitored by VAS scores and serum cortisol concentrations. Few and insufficient saliva volumes were obtained and therefore only catestatin could be analyzed. Catestatin concentrations differed significantly and did not correlate significantly with vasostatin concentrations (P < 0.0001). Age, gender, breed, and time of sample collection did not significantly affect concentrations of plasma catestatin, vasostatin, and saliva catestatin. Conclusions The normal ranges of plasma catestatin (0.53–0.98 nmol/l), vasostatin (0.11–1.30 nmol/l), and saliva catestatin (0.31–1.03 nmol/l) concentrations in healthy dogs accustomed to the sampling procedures were determined. Separate interpretation of the different chromogranin A epitopes from either saliva or plasma is recommended.
Collapse
|
42
|
Abstract
Catestatin (CST) was first named in 1997 for its catecholamine-inhibitory activity. It was discovered as a potent inhibitor of catecholamine secretion and as a regulator of histamine release. Accumulating evidence shows that CST is involved with cardiovascular diseases; however, whether CST is a protective factor for these conditions and the mechanisms by which such actions may be mediated are not well understood. In this article, we review recent basic research and clinical trials in the study of CST and summarize the association of CST with cardiovascular diseases. We review data obtained from MedLine via PubMed and from our own investigations.
Collapse
Affiliation(s)
- Yilin Zhao
- The Departments of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Dan Zhu
- Department of Cardiology, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology & Regulatory Peptides, Ministry of Health & Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100191, China
| |
Collapse
|
43
|
Estévez-Herrera J, González-Santana A, Baz-Dávila R, Machado JD, Borges R. The intravesicular cocktail and its role in the regulation of exocytosis. J Neurochem 2016; 137:897-903. [PMID: 26990968 DOI: 10.1111/jnc.13609] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/11/2016] [Accepted: 03/04/2016] [Indexed: 01/22/2023]
Abstract
The accumulation of neurotransmitters within secretory vesicles (SVs) far exceeds the theoretical tonic concentrations in the cytosol, a phenomenon that has captivated the attention of scientists for decades. For instance, chromaffin granules can accumulate close to molar concentrations of catecholamines, along with many other products like ATP, calcium, peptides, chromogranins, ascorbate, and other nucleotides. In this short review, we will summarize the interactions that are currently believed to occur between the elements that make up the vesicular cocktail in the acidic environment of SVs, and how they permit the accumulation of such high concentrations of certain components. In addition, we will examine how the vesicular cocktail regulates the exocytosis of neurotransmitters. In this review, we have highlighted the mechanisms that permit the storage of neurotransmitters and hormones inside secretory vesicles. We also have proposed a novel model based in the intravesicular interactions of the main components of this inner cocktail - catecholamines, ATP, and chromogranins - to allow the accumulation of near molar concentrations of transmitters in secretory vesicles. This article is part of a mini review series on Chromaffin cells (ISCCB Meeting, 2015).
Collapse
Affiliation(s)
| | | | - Rebeca Baz-Dávila
- Pharmacology Unit, University of La Laguna Medical School, Tenerife, Spain
| | - José D Machado
- Pharmacology Unit, University of La Laguna Medical School, Tenerife, Spain
| | - Ricardo Borges
- Pharmacology Unit, University of La Laguna Medical School, Tenerife, Spain
| |
Collapse
|
44
|
Li Q, Zhang CS, Zhang Y. Molecular aspects of prostate cancer with neuroendocrine differentiation. Chin J Cancer Res 2016; 28:122-9. [PMID: 27041934 DOI: 10.3978/j.issn.1000-9604.2016.01.02] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neuroendocrine differentiation (NED), which is not uncommon in prostate cancer, is increases in prostate cancer after androgen-deprivation therapy (ADT) and generally appears in castration-resistant prostate cancer (CRPC). Neuroendocrine cells, which are found in normal prostate tissue, are a small subset of cells and have unique function in regulating the growth of prostate cells. Prostate cancer with NED includes different types of tumor, including focal NED, pure neuroendocrine tumor or mixed neuroendocrine-adenocarcinoma. Although more and more studies are carried out on NED in prostate cancer, the molecular components that are involved in NED are still poorly elucidated. We review neuroendocrine cells in normal prostate tissue, NED in prostate cancer, terminology of NED and biomarkers used for detecting NED in routine pathological practice. Some recently reported molecular components which drive NED in prostate cancer are listed in the review.
Collapse
Affiliation(s)
- Qi Li
- 1 Department of Pathology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China ; 2 MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Connie S Zhang
- 1 Department of Pathology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China ; 2 MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yifen Zhang
- 1 Department of Pathology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China ; 2 MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
45
|
Gut P, Czarnywojtek A, Fischbach J, Bączyk M, Ziemnicka K, Wrotkowska E, Gryczyńska M, Ruchała M. Chromogranin A - unspecific neuroendocrine marker. Clinical utility and potential diagnostic pitfalls. Arch Med Sci 2016; 12:1-9. [PMID: 26925113 PMCID: PMC4754364 DOI: 10.5114/aoms.2016.57577] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 05/20/2014] [Indexed: 12/13/2022] Open
Abstract
Chromogranin A, despite a number of limitations, is still the most valuable marker of neuroendocrine tumors (NETs). Granins belong to the family of acidic proteins that constitute a major component of secretory granules of various endocrine and neuroendocrine cells, which are components of both the classical endocrine glands and the diffuse neuroendocrine system. These cells are a potential source of transformation into neuroendocrine tumors. The awareness of potential causes influencing the false results of its concentrations simplifies diagnosis and treatment. One of the disadvantages of this marker is its non-specificity and the existence of a number of pathological processes leading to an increase in its concentration, which often results in confusion and diagnostic difficulties. The molecular structure is characterized by a number of sites susceptible to the proteolytic activity of enzymes, resulting in the formation of a number of biologically active peptides. Presumably they act as precursors of active proteins. Chromogranin expression correlates with the amount of secretory vesicles in neuroendocrine cells. The peptide chain during biochemical changes becomes a precursor of biologically active proteins with a wide range of activities. There are a number of commercially available kits for the determination of chromogranin A, which differ in methodology. We present the evaluation of chromogranin A as a marker of neuroendocrine tumors in clinical practice and the possible factors that may affect the outcome of its concentration.
Collapse
Affiliation(s)
- Paweł Gut
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Agata Czarnywojtek
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Jakub Fischbach
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Maciej Bączyk
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Katarzyna Ziemnicka
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Elżbieta Wrotkowska
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Maria Gryczyńska
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
46
|
High Resolution Discovery Proteomics Reveals Candidate Disease Progression Markers of Alzheimer's Disease in Human Cerebrospinal Fluid. PLoS One 2015; 10:e0135365. [PMID: 26270474 PMCID: PMC4535975 DOI: 10.1371/journal.pone.0135365] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 07/21/2015] [Indexed: 11/21/2022] Open
Abstract
Disease modifying treatments for Alzheimer’s disease (AD) constitute a major goal in medicine. Current trends suggest that biomarkers reflective of AD neuropathology and modifiable by treatment would provide supportive evidence for disease modification. Nevertheless, a lack of quantitative tools to assess disease modifying treatment effects remains a major hurdle. Cerebrospinal fluid (CSF) biochemical markers such as total tau, p-tau and Ab42 are well established markers of AD; however, global quantitative biochemical changes in CSF in AD disease progression remain largely uncharacterized. Here we applied a high resolution open discovery platform, dMS, to profile a cross-sectional cohort of lumbar CSF from post-mortem diagnosed AD patients versus those from non-AD/non-demented (control) patients. Multiple markers were identified to be statistically significant in the cohort tested. We selected two markers SME-1 (p<0.0001) and SME-2 (p = 0.0004) for evaluation in a second independent longitudinal cohort of human CSF from post-mortem diagnosed AD patients and age-matched and case-matched control patients. In cohort-2, SME-1, identified as neuronal secretory protein VGF, and SME-2, identified as neuronal pentraxin receptor-1 (NPTXR), in AD were 21% (p = 0.039) and 17% (p = 0.026) lower, at baseline, respectively, than in controls. Linear mixed model analysis in the longitudinal cohort estimate a decrease in the levels of VGF and NPTXR at the rate of 10.9% and 6.9% per year in the AD patients, whereas both markers increased in controls. Because these markers are detected by mass spectrometry without the need for antibody reagents, targeted MS based assays provide a clear translation path for evaluating selected AD disease-progression markers with high analytical precision in the clinic.
Collapse
|
47
|
Öberg K. Neuroendocrine gastro-enteropancreatic tumors - from eminence based to evidence-based medicine - A Scandinavian view. Scand J Gastroenterol 2015; 50:727-39. [PMID: 25855088 DOI: 10.3109/00365521.2015.1033001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Neuroendocrine tumors (NETs) comprise a heterogenous group of neoplasms with variable clinical expression and progression. The primary tumors most frequently occur in the lungs, intestine and the pancreas. The NET incidence is approximately 6.1/100,000 per year with a prevalence higher than 35/100,000 per year. A NET may be functioning with symptoms related to hormone overproduction or non-functioning, not presenting any hormone-related symptoms. From the early 1980s and onwards, Uppsala University Hospital has contributed significantly to diagnosis, just to mention immunohistochemistry, radio-immunoassays for hormones and peptides and molecular imaging. On the therapeutic side, treatments with cytotoxics as well as biologicals such as, somatostatin analogs and interferons have been evaluated. We have furthermore been involved in important phase III trials for registration of so called, new targeted agents such as, RADIANT-3 and RADIANT-2. Our group were also the first to localize the gene for MEN I on chromosome 11 locus q13. Most recent developments have been the establishments of new biomarkers such as, olfactory receptor E51E1 as well as micro-RNAs in carcinoid tumors of the intestine and lung. A new oncolytic virus, Ad-Vince, for treatment of most NETs has been developed and is ready for the clinic. Furthermore, we have been involved in establishing Nordic and international collaborations. Today, NETs is an area with rapid development and recognized by international organizations at conferences, with large attendance. The Nordic countries continue to be significant contributors to the field.
Collapse
Affiliation(s)
- Kjell Öberg
- Department of Endocrine Oncology, Uppsala University Hospital , Entrance 40, 5th floor, SE-751 85 Uppsala , Sweden
| |
Collapse
|
48
|
Herold Z, Nagy P, Patócs A, Somogyi A. [The role of chromogranin-A and its derived peptide, WE-14 in the development of type 1 diabetes mellitus]. Orv Hetil 2015; 156:163-170. [PMID: 25618857 DOI: 10.1556/oh.2015.30087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chromogranin-A is a member of the granine protein family. It is produced in neuroendocrine cells via secretory granules. Many cleavage proteins are formed from chromogranin-A, from which some have well known biological activity, while the function of others is not yet fully known. Serum chromogranin-A levels are used in neuroendocrine tumour diagnostics. Recent studies showed that one of its cleavage protein, WE-14 may also play a role in the development of type 1 diabetes. WE-14 may function as an autoantigen for T-cells involved in the destruction of β-cells. This mechanism was previously observed only in non-obese diabetic mice. Novel results show that WE-14 also serves as a target for autoreactive cells in newly diagnosed type 1 diabetic patients as well, which reaction can be increased with transglutaminase. In this paper the authors summarize the recent knowledge about chromogranin-A and its potential role in the pathomechanism of type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Zoltán Herold
- Szent István Egyetem Állatorvos-tudományi Kar Budapest Semmelweis Egyetem, Általános Orvostudományi Kar II. Belgyógyászati Klinika Budapest Szentkirályi utca 46. 1088
| | - Péter Nagy
- Semmelweis Egyetem, Általános Orvostudományi Kar I. Patológiai és Kísérleti Rákkutató Intézet Budapest
| | - Attila Patócs
- Semmelweis Egyetem, Általános Orvostudományi Kar Laboratóriumi Medicina Intézet Budapest MTA-SE "Lendület" Örökletes Endokrin Daganatok Kutatócsoport Budapest
| | - Anikó Somogyi
- Semmelweis Egyetem, Általános Orvostudományi Kar II. Belgyógyászati Klinika Budapest Szentkirályi utca 46. 1088
| |
Collapse
|
49
|
Helle KB, Corti A. Chromogranin A: a paradoxical player in angiogenesis and vascular biology. Cell Mol Life Sci 2015; 72:339-48. [PMID: 25297920 PMCID: PMC11113878 DOI: 10.1007/s00018-014-1750-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/10/2014] [Accepted: 09/29/2014] [Indexed: 12/18/2022]
Abstract
Half a century after the discovery of chromogranin A as a secreted product of the catecholamine storage granules in the bovine adrenal medulla, the physiological role for the circulating pool of this protein has been recently coined, namely as an important player in vascular homeostasis. While the circulating chromogranin A since 1984 has proved to be a significant and useful marker of a wide range of pathophysiological and pathological conditions involving the diffuse neuroendocrine system, this protein has now been assigned a physiological "raison d'etre" as a regulator in vascular homeostasis. Moreover, chromogranin A processing in response to tissue damage and blood coagulation provides the first indication of a difference in time frame of the regulation of angiogenesis evoked by the intact chromogranin A and its two major peptide products, vasostatin-1 and catestatin. The impact of these discoveries on vascular homeostasis, angiogenesis, cancer, tissue repair and cardio-regulation will be discussed.
Collapse
Affiliation(s)
- Karen B. Helle
- Department of Biomedicine, University of Bergen, Haukelandsvei 1, 5009 Bergen, Norway
| | - Angelo Corti
- Division of Oncology, San Raffaele Scientific Institute, Via Olgettina 58, Milan, Italy
| |
Collapse
|
50
|
Escribano D, Gutiérrez AM, Fuentes-Rubio M, Cerón JJ. Saliva chromogranin A in growing pigs: a study of circadian patterns during daytime and stability under different storage conditions. Vet J 2014; 199:355-9. [PMID: 24507880 DOI: 10.1016/j.tvjl.2014.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 01/08/2014] [Accepted: 01/09/2014] [Indexed: 10/25/2022]
Abstract
Salivary chromogranin A (CgA) is considered to be a biomarker of activation of the sympatho-adrenomedullary system, and has recently been proposed as a useful indicator of the acute stress response in pigs. The aim of the present study was to determinate whether salivary CgA concentrations in healthy growing pigs exhibits any circadian pattern during the daytime, and to evaluate its stability under different storage conditions. A total of 80 pigs (40 in spring and another 40 in autumn) of two different ages and genders were used. To establish the circadian pattern, saliva samples were collected at 07.00, 11.00, 15.00 and 19.00 h on two consecutive days. Pooled samples were used for the stability study and were measured on the day of sampling and periodically for up to 360 days later. Samples were stored at 4 °C, -20 °C or -80 °C and the effect of repeated freezing and thawing was also evaluated. No circadian pattern was detected for salivary CgA in either season and there were no significant effects of gender or age. However, mean salivary CgA concentrations were significantly higher (P<0.0001) in the pigs sampled in autumn, compared to those sampled in the spring. Short term storage at 4 °C is recommended for up to 2 days, whereas frozen samples can be stored for 1 year at -20 °C or -80 °C, without substantial reduction in CgA values. In addition, samples can be frozen and thawed up to seven times without significant loss of the biomarker.
Collapse
Affiliation(s)
- Damián Escribano
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Espinardo, Murcia, Spain
| | - Ana M Gutiérrez
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Espinardo, Murcia, Spain
| | - María Fuentes-Rubio
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Espinardo, Murcia, Spain
| | - José J Cerón
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Espinardo, Murcia, Spain.
| |
Collapse
|