1
|
Kaiser NL, Groschup MH, Sadeghi B. Identification of bioinformatic pipelines for virus monitoring using nanopore sequence data: A systematic assessment. J Virol Methods 2025; 336:115153. [PMID: 40194661 DOI: 10.1016/j.jviromet.2025.115153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/21/2025] [Accepted: 03/31/2025] [Indexed: 04/09/2025]
Abstract
Nanopore sequencing has proven to be a promising technique in virus surveillance efforts, especially due to the portability of its sequencers. In order to process the long, error-prone reads generated, specialised bioinformatic programs are required. These can be run automatically within pipelines so as to effectively provide decision makers with all relevant information about the molecular characteristics of a virus. The purpose of this systematic assessment was to identify pipelines that are suitable for virus surveillance programs using nanopore sequencing. Promising candidates were then compared in terms of their functional scope. Of 239 initial papers, 22 pipelines were tested, of which six were included in the final assessment. The four pipelines that were exclusively available offline were each missing individual downstream analysis steps considered in our assessment. The other two executed all steps. One of these was only available online and subject to a charge, while the other was freely available both online and offline. While we were able to identify two pipelines that are broadly suitable for virus surveillance using nanopore sequencing, we discovered two major shortcomings in this domain. None of the pipelines integrated basecalling, the initial step of data processing. In addition, there was no pipeline that was easy to install and provided all relevant analysis results with a single program call. We therefore see a need for the development of a pipeline that incorporates both aspects.
Collapse
Affiliation(s)
- Nick Laurenz Kaiser
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald, Insel Riems 17493, Germany.
| | - Martin H Groschup
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald, Insel Riems 17493, Germany.
| | - Balal Sadeghi
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald, Insel Riems 17493, Germany.
| |
Collapse
|
2
|
Chang Z, Liu B, Lu H, Guo Q, Li Z, Liu R, Liu X. Cloning and characterization of the lysis protein LysSGF3 from Shigella Microviridae phage SGF3 for control of pathogenic bacteria and biofilms. Int J Biol Macromol 2025:144676. [PMID: 40425115 DOI: 10.1016/j.ijbiomac.2025.144676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 05/12/2025] [Accepted: 05/24/2025] [Indexed: 05/29/2025]
Abstract
Endolysins (lysins) are novel bactericidal agents derived from phages. In contrast, single-stranded DNA (ssDNA) phages can lyse host bacteria via an isolated lysis protein, with improved efficiency and speed compared to the binary lysis system "lysin-holin" employed by double-stranded DNA (dsDNA) phages. In this study, three uncharacterized proteins from Shigella Microviridae phage SGF3 were cloned and expressed. From them, a novel lysis protein, LysSGF3, was identified, and factors influencing its bactericidal activity and properties were investigated. These features were applied to biofilm control. LysSGF3 at a concentration of 100 μg/mL exhibited robust lysis activity of 76.13 % against S. flexneri 1.10599 at 37 °C and pH = 7. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of LysSGF3 on S. flexneri 1.10599 were 50 μg/mL and 300 μg/mL, respectively. Moreover, LysSGF3 exhibited a wider lysis spectrum than phage SGF3, with robust effects against 11 Gram-negative strains of Shigella, Escherichia coli, and Edwardsiella and three Gram-positive strains including Staphylococcus aureus and Bacillus. The biofilm formed by strains of Shigella, E. coli, and S. aureus experienced a removal rate of at least 50 %. At the same time, the combined biofilm of S. flexneri 1.10599 and other strains also experienced adequate removal. In summary, LysSGF3 is a promising new bactericidal agent that will provide alternative solutions to overcome antibiotic resistance.
Collapse
Affiliation(s)
- Zhankun Chang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingxin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Han Lu
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250100, China
| | - Qiucui Guo
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zong Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruyin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xinchun Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Abdelhak M, Al-Bedak OAHM, Abdelmoez MN, Abdellah AA, Abdel-Rahman ESA, El-Wahab MMA. Bacterial biodiversity and optimization of pilot plant-based storage parameters of beet thick juice under Egyptian environmental conditions. Sci Rep 2025; 15:17095. [PMID: 40379897 DOI: 10.1038/s41598-025-99870-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 04/23/2025] [Indexed: 05/19/2025] Open
Abstract
In hot-weather regions such as Egypt, where maintaining lower storage temperatures is both economically unfeasible and a significantly difficult, this study was directed towards optimizing the storage of beet thick juice in order to enhance white sugar yield and reduce the impact of climate change. In this study, a pilot plant consisting of 12 storage cylinders was used to maintain thick beet juice with total soluble solids (ºBrix) of 67, 68, and 69 at 15, 25, and 35 ºC, respectively. Betastab® XL (Hop ß-acids) and KEBOCID 310 (sodium dimethyldithiocarbamate) were employed as biocides at 40 ppm. Surface sealing using 25.0% NaOH along with air removal was also applied. The relationships between bacterial count (CFUs), pH, lactic acid (LA) concentration, and reducing sugars (RS) content were evaluated. CFUs increased gradually with the length of the storage period in all tanks, reaching its peak (350 CFU/mL) in the control tank at 35 °C. LA and RS values were determined in all tanks and occurred at very low concentrations. pH exhibited a stable behavior with the exception of the control tank at 35 ºC that displayed degradation correlated to a pH drop to 7.32. Species of bacteria associated with the stored thick juice were isolated and identified by sequencing the 16 S rRNA. These included Bacillus cereus, B. licheniformis, B. paralicheniformis, B. subtilis, Bordetella muralis, Brevibacillus agri, Pseudomonas juntendi, and Stenotrophomonas geniculata. Antibacterial activity of both biocides at three concentrations-20, 40, and 60 ppm-was investigated against the species isolated. Hop ß-acid concentrations showed significant effects on the investigated bacteria with the exception of B. muralis and P. juntendi. All bacteria, with the exception of B. licheniformis AUMC B-550, were significantly affected by KEBOCID 310 concentrations. However, S. geniculata responded negatively to 20 ppm of KEBOCID 310. For the investigated strains, the effects of KEBOCID 310 at 40 and 60 ppm were almost identical. Along with better control over juice solids content and storage temperature, identifying the source and type of the bacterial infection can assist with managing the process and reduce thick juice deterioration. Sugar industry designers could potentially benefit from this study's elucidation of the ideal circumstances for cost-effective storage in hot temperature zones.
Collapse
Affiliation(s)
- Marwa Abdelhak
- Department of Science and Technology of Sugar Industry, Faculty of Sugar and Integrated Industries Technology, Assiut University, Assiut, 71511, Egypt
| | - Osama Abdel-Hafeez Mohamed Al-Bedak
- Assiut University Mycological Centre (AUMC), Assiut University, Assiut, 71511, Egypt
- ERU Science & Innovation Center of Excellence, Egyptian Russian University, Badr city, Cairo, 11829, Egypt
| | - Mahmoud N Abdelmoez
- Department of Mechanical Power Engineering, Faculty of Engineering, Assiut University, Assiut, 71511, Egypt
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Adel Ahmed Abdellah
- Alexandria Sugar Company (Savola Foods), Burg El Arab 21934, Alexandria, Egypt
| | - El-Sayed A Abdel-Rahman
- Department of Food Science and Technology, Faculty of Agriculture, Assiut University, Assiut, 71511, Egypt
| | | |
Collapse
|
4
|
Zhao Y, Xiong C, Wang B, Li D, Liu J, Wei S, Hou Y, Zhou Y, Zheng R. The Discovery of Phages in the Substantia Nigra and Its Implication for Parkinson's Disease. RESEARCH (WASHINGTON, D.C.) 2025; 8:0657. [PMID: 40308709 PMCID: PMC12041648 DOI: 10.34133/research.0657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/28/2025] [Accepted: 03/10/2025] [Indexed: 05/02/2025]
Abstract
Background: A century ago, a mystery between a virus and Parkinson's disease (PD) was described. Owing to the limitation of human brain biopsy and the challenge of electron microscopy in observing virions in human brain tissue, it has been difficult to study the viral etiology of PD. Recent discovery of virobiota reveals that viruses coexist with humans as symbionts. Newly developed transcriptomic sequencing and novel bioinformatic approaches for mining the encrypted virome in human transcriptome make it possible to study the relationship between symbiotic viruses and PD. Nevertheless, whether viruses exist in the human substantia nigra (SN) and whether symbiotic viruses underlie PD pathogenesis remain unknown. Methods: We collected current worldwide human SN transcriptomic datasets from the United States, the United Kingdom, the Netherlands, and Switzerland. We used bioinformatic approaches including viruSITE and the Viral-Track to identify the existence of viruses in the SN of patients. The comprehensive RNA sequencing-based virome analysis pipeline was used to characterize the virobiota in the SN. The Pearson's correlation analysis was used to examine the association between the viral RNA fragment counts (VRFCs) and PD-related human gene sequencing reads in the SN. The differentially expressed genes (DEGs) in the SN between PD patients and non-PD individuals were used to examine the molecular signatures of PD and also evaluate the impact of symbiotic viruses on the SN. Findings: We observed the existence of viruses in the human SN. A dysbiosis of virobiota was found in the SN of PD patients. A marked correlation between VRFC and PD-related human gene expression was detected in the SN of PD patients. These PD-related human genes correlated to VRFC were named as the virus-correlated PD-related genes (VPGs). We identified 3 bacteriophages (phages), including the Proteus phage VB_PmiS-Isfahan, the Escherichia phage phiX174, and the Lactobacillus phage Sha1, that might impair the gene expression of neural cells in the SN of PD patients. The Proteus phage VB_PmiS-Isfahan was a common virus in the SN of patients from the United Kingdom, the Netherlands, and Switzerland. VPGs and DEGs together highlighted that the phages might dampen dopamine biosynthesis and weaken the cGAS-STING function. Interpretation: This is the first study to discover the involvement of phages in PD pathogenesis. A lifelong low symbiotic viral load in the SN may be a contributor to PD pathogenesis. Our findings unlocked the black box between brain virobiota and PD, providing a novel insight into PD etiology from the perspective of phage-human symbiosis.
Collapse
Affiliation(s)
- Yun Zhao
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Changxian Xiong
- Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Bingwei Wang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Daotong Li
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Jiarui Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Shizhang Wei
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Yujia Hou
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Yuan Zhou
- Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Ruimao Zheng
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences,
Peking University, Beijing, China
- Neuroscience Research Institute,
Peking University, Beijing, China
- Key Laboratory for Neuroscience of Ministry of Education,
Peking University, Beijing, China
- Key Laboratory for Neuroscience of National Health Commission,
Peking University, Beijing, China
- Beijing Life Science Academy, Beijing, China
| |
Collapse
|
5
|
Li X, Basak B, Tanpure RS, Zheng X, Jeon BH. Unraveling the genetic basis of microbial metal resistance: Shift from mendelian to systems biology. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138350. [PMID: 40280066 DOI: 10.1016/j.jhazmat.2025.138350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/01/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
Microbial metal resistance, a trait that enables microorganisms to withstand high levels of toxic metals, has been studied for over a century. The significance of uncovering these mechanisms goes beyond basic science as they have implications for human health through their connection to microbial pathogenesis, metal bioremediation, and biomining. Recent advances in analytical chemistry and molecular biology have accelerated the discovery and understanding of genetic mechanisms underlying microbial metal resistance, identifying specific metal resistance genes and their operons. The emergence of omics tools has further propelled research towards a comprehensive understanding of how cells respond to metal stress at the systemic level, revealing the complex regulatory networks and evolutionary dynamics that drive microbial adaptation to metal-rich environments. In this article, we present a historical overview of the evolving understanding of the genetic determinants of metal resistance in microbes. Through multiple narrative threads, we illustrate how our knowledge of microbial metal resistance and genetics has interacted with genetic tools and concept development. This review also discusses how our understanding of microbial metal resistance has progressed from the Mendelian perspective to the current systems biology viewpoint, particularly as omics approaches have considerably enhanced our understanding. This system-level understanding has opened new possibilities for genetically engineered microorganisms to regulate metal homeostasis.
Collapse
Affiliation(s)
- Xiaofang Li
- Centre for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
| | - Bikram Basak
- Center for Creative Convergence Education, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; Petroleum and Mineral Research Institute, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Rahul S Tanpure
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Xin Zheng
- Centre for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China.
| | - Byong-Hun Jeon
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
6
|
Ortonne V, Bouvier-Alias M, Vo-Quang E, Cappy P, Ingiliz P, Leroy V, Pawlotsky JM, Chevaliez S. Performance evaluation of a fully automated deep sequencing platform for hepatitis B genotyping and resistance testing. J Antimicrob Chemother 2025; 80:919-926. [PMID: 39918840 DOI: 10.1093/jac/dkae418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/30/2024] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND Treatment of chronic hepatitis B infection requires lifelong administration of nucleos(t)ide analogues with a high barrier to resistance and effective viral suppression. The major limitation of lifelong therapy is the possible selection of drug-resistant hepatitis B virus (HBV) strains. International Liver Society guidelines recommend that hepatitis B resistance testing must be performed by a reference laboratory. OBJECTIVES Performance of the deep sequencing-based ViroKey® SQ FLEX Genotyping Assay for the determination of HBV genotypes and resistance profiles were evaluated. PATIENTS AND METHODS Plasma samples collected from patients with chronic hepatitis B have been sequenced by two methods including Sanger (population) sequencing of a portion of the P/S overlapping gene and the deep sequencing-based ViroKey® SQ FLEX Genotyping Assay (Vela Diagnostics). RESULTS A high concordance rate with population sequencing was found regardless of HBV genotypes. Deep sequencing with the Sentosa platform was more sensitive than population sequencing in detecting minor variant populations. CONCLUSIONS The deep sequencing-based ViroKey® SQ FLEX Genotyping Assay can be confidently used in clinical practice for hepatitis B genotyping and resistance testing.
Collapse
Affiliation(s)
- Valérie Ortonne
- Department of Virology, French National Reference Center for Hepatitis B, C and D Viruses, Hôpital Henri Mondor (AP-HP), Université Paris-Est, Créteil, France
- 'Team Viruses, Hepatology, Cancer', Institut de Recherche Biomédicale, INSERM U955, Créteil, France
| | - Magali Bouvier-Alias
- Department of Virology, French National Reference Center for Hepatitis B, C and D Viruses, Hôpital Henri Mondor (AP-HP), Université Paris-Est, Créteil, France
- 'Team Viruses, Hepatology, Cancer', Institut de Recherche Biomédicale, INSERM U955, Créteil, France
| | - Erwan Vo-Quang
- 'Team Viruses, Hepatology, Cancer', Institut de Recherche Biomédicale, INSERM U955, Créteil, France
- Department of Hepatology, Hôpital Henri Mondor (AP-HP), Créteil, France
| | - Pierre Cappy
- Department of Virology, French National Reference Center for Hepatitis B, C and D Viruses, Hôpital Henri Mondor (AP-HP), Université Paris-Est, Créteil, France
- 'Team Viruses, Hepatology, Cancer', Institut de Recherche Biomédicale, INSERM U955, Créteil, France
| | - Patrick Ingiliz
- 'Team Viruses, Hepatology, Cancer', Institut de Recherche Biomédicale, INSERM U955, Créteil, France
- Department of Hepatology, Hôpital Henri Mondor (AP-HP), Créteil, France
| | - Vincent Leroy
- 'Team Viruses, Hepatology, Cancer', Institut de Recherche Biomédicale, INSERM U955, Créteil, France
- Department of Hepatology, Hôpital Henri Mondor (AP-HP), Créteil, France
| | - Jean-Michel Pawlotsky
- Department of Virology, French National Reference Center for Hepatitis B, C and D Viruses, Hôpital Henri Mondor (AP-HP), Université Paris-Est, Créteil, France
- 'Team Viruses, Hepatology, Cancer', Institut de Recherche Biomédicale, INSERM U955, Créteil, France
| | - Stéphane Chevaliez
- Department of Virology, French National Reference Center for Hepatitis B, C and D Viruses, Hôpital Henri Mondor (AP-HP), Université Paris-Est, Créteil, France
- 'Team Viruses, Hepatology, Cancer', Institut de Recherche Biomédicale, INSERM U955, Créteil, France
| |
Collapse
|
7
|
Howard-Varona C, Solonenko NE, Burris M, Urvoy M, Sanderson CM, Bolduc B, Sullivan MB. Infection and Genomic Properties of Single- and Double-Stranded DNA Cellulophaga Phages. Viruses 2025; 17:365. [PMID: 40143293 PMCID: PMC11946311 DOI: 10.3390/v17030365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Bacterial viruses (phages) are abundant and ecologically impactful, but laboratory-based experimental model systems vastly under-represent known phage diversity, particularly for ssDNA phages. Here, we characterize the genomes and infection properties of two unrelated marine flavophages-ssDNA generalist phage phi18:4 (6.5 Kbp) and dsDNA specialist phage phi18:1 (39.2 Kbp)-when infecting the same Cellulophaga baltica strain #18 (Cba18), of the class Flavobacteriia. Phage phi18:4 belongs to a new family of ssDNA phages, has an internal lipid membrane, and its genome encodes primarily structural proteins, as well as a DNA replication protein common to ssDNA phages and a unique lysis protein. Phage phi18:1 is a siphovirus that encodes several virulence genes, despite not having a known temperate lifestyle, a CAZy enzyme likely for regulatory purposes, and four DNA methyltransferases dispersed throughout the genome that suggest both host modulation and phage DNA protection against host restriction. Physiologically, ssDNA phage phi18:4 has a shorter latent period and smaller burst size than dsDNA phage phi18:1, and both phages efficiently infect this host. These results help augment the diversity of characterized environmental phage-host model systems by studying infections of genomically diverse phages (ssDNA vs. dsDNA) on the same host.
Collapse
Affiliation(s)
- Cristina Howard-Varona
- Department of Microbiology, The Ohio State University, 484 W 12th Ave, Columbus, OH 43210, USA; (C.H.-V.); (N.E.S.); (M.B.); (M.U.); (C.M.S.); (B.B.)
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Natalie E. Solonenko
- Department of Microbiology, The Ohio State University, 484 W 12th Ave, Columbus, OH 43210, USA; (C.H.-V.); (N.E.S.); (M.B.); (M.U.); (C.M.S.); (B.B.)
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Marie Burris
- Department of Microbiology, The Ohio State University, 484 W 12th Ave, Columbus, OH 43210, USA; (C.H.-V.); (N.E.S.); (M.B.); (M.U.); (C.M.S.); (B.B.)
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Marion Urvoy
- Department of Microbiology, The Ohio State University, 484 W 12th Ave, Columbus, OH 43210, USA; (C.H.-V.); (N.E.S.); (M.B.); (M.U.); (C.M.S.); (B.B.)
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Courtney M. Sanderson
- Department of Microbiology, The Ohio State University, 484 W 12th Ave, Columbus, OH 43210, USA; (C.H.-V.); (N.E.S.); (M.B.); (M.U.); (C.M.S.); (B.B.)
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Bejamin Bolduc
- Department of Microbiology, The Ohio State University, 484 W 12th Ave, Columbus, OH 43210, USA; (C.H.-V.); (N.E.S.); (M.B.); (M.U.); (C.M.S.); (B.B.)
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Matthew B. Sullivan
- Department of Microbiology, The Ohio State University, 484 W 12th Ave, Columbus, OH 43210, USA; (C.H.-V.); (N.E.S.); (M.B.); (M.U.); (C.M.S.); (B.B.)
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, 2070 Neil Ave, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, 484 W 12th Ave, Columbus, OH 43210, USA
| |
Collapse
|
8
|
Parab L, Romeyer Dherbey J, Rivera N, Schwarz M, Gallie J, Bertels F. Chloramphenicol and gentamicin reduce the evolution of resistance to phage ΦX174 by suppressing a subset of E. coli LPS mutants. PLoS Biol 2025; 23:e3002952. [PMID: 39841243 PMCID: PMC11753469 DOI: 10.1371/journal.pbio.3002952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/25/2024] [Indexed: 01/23/2025] Open
Abstract
Bacteriophages infect gram-negative bacteria by attaching to molecules present on the bacterial surface, often lipopolysaccharides (LPS). Modification of LPS can lead to resistance to phage infection. In addition, LPS modifications can impact antibiotic susceptibility, allowing for phage-antibiotic synergism. The evolutionary mechanism(s) behind such synergistic interactions remain largely unclear. Here, we show that the presence of antibiotics can affect the evolution of resistance to phage infection, using phage ΦX174 and Escherichia coli C. We use a collection of 34 E. coli C LPS strains, each of which is resistant to ΦX174, and has either a "rough" or "deep rough" LPS phenotype. Growth of the bacterial strains with the deep rough phenotype is inhibited at low concentrations of chloramphenicol and, to a much lesser degree, gentamicin. Treating E. coli C wild type with ΦX174 and chloramphenicol eliminates the emergence of mutants with the deep rough phenotype, and thereby slows the evolution of resistance to phage infection. At slightly lower chloramphenicol concentrations, phage resistance rates are similar to those observed at high concentrations; yet, we show that the diversity of possible mutants is much larger than at higher chloramphenicol concentrations. These data suggest that specific antibiotic concentrations can lead to synergistic phage-antibiotic interactions that disappear at higher antibiotic concentrations. Overall, we show that the change in survival of various ΦX174-resistant E. coli C mutants in the presence of antibiotics can explain the observed phage-antibiotic synergism.
Collapse
Affiliation(s)
- Lavisha Parab
- Microbial Molecular Evolution Group, Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Jordan Romeyer Dherbey
- Microbial Molecular Evolution Group, Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Norma Rivera
- Microbial Molecular Evolution Group, Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Michael Schwarz
- Microbial Molecular Evolution Group, Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Jenna Gallie
- Microbial Evolutionary Dynamics Group, Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Frederic Bertels
- Microbial Molecular Evolution Group, Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
9
|
Pokhriyall M, Shukla N, Singh TR, Suravajhala P. Proteogenomic Approaches for Diseasome Studies. Methods Mol Biol 2025; 2859:253-264. [PMID: 39436606 DOI: 10.1007/978-1-0716-4152-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
During the last three decades, technological advancements in high-throughput next-generation sequencing have resulted in an increased understanding of proteomic and genomic data, aptly termed proteogenomics. Efforts in developing such approaches have not only been limited but also focused on protein identification and subcellular localization. These approaches, however, have also been explored for their broad understanding of how genomics/transcriptomics data have yielded measures, for example, gene expression regulation/signal cascading and diseasome studies. In this review, we discuss methods and tools developed through sequence-centric integrative modeling of proteogenomic approaches.
Collapse
Affiliation(s)
- Medhavi Pokhriyall
- Centre of Excellence in Healthcare Technologies and Informatics (CEHTI), Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology (JUIT), Solan, India
| | - Nidhi Shukla
- Dr. B. Lal Institute of Biotechnology, Jaipur, India
| | - Tiratha Raj Singh
- Centre of Excellence in Healthcare Technologies and Informatics (CEHTI), Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology (JUIT), Solan, India
| | - Prashanth Suravajhala
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeethaam, Amritapuri, Clappana, Kerala, India.
- Bioclues.org, Hyderabad, India.
| |
Collapse
|
10
|
Ferreira MR, Carratto TMT, Frontanilla TS, Bonadio RS, Jain M, de Oliveira SF, Castelli EC, Mendes-Junior CT. Advances in forensic genetics: Exploring the potential of long read sequencing. Forensic Sci Int Genet 2025; 74:103156. [PMID: 39427416 DOI: 10.1016/j.fsigen.2024.103156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/22/2024]
Abstract
DNA-based technologies have been used in forensic practice since the mid-1980s. While PCR-based STR genotyping using Capillary Electrophoresis remains the gold standard for generating DNA profiles in routine casework worldwide, the research community is continually seeking alternative methods capable of providing additional information to enhance discrimination power or contribute with new investigative leads. Oxford Nanopore Technologies (ONT) and PacBio third-generation sequencing have revolutionized the field, offering real-time capabilities, single-molecule resolution, and long-read sequencing (LRS). ONT, the pioneer of nanopore sequencing, uses biological nanopores to analyze nucleic acids in real-time. Its devices have revolutionized sequencing and may represent an interesting alternative for forensic research and routine casework, given that it offers unparalleled flexibility in a portable size: it enables sequencing approaches that range widely from PCR-amplified short target regions (e.g., CODIS STRs) to PCR-free whole transcriptome or even ultra-long whole genome sequencing. Despite its higher error rate compared to Illumina sequencing, it can significantly improve accuracy in read alignment against a reference genome or de novo genome assembly. This is achieved by generating long contiguous sequences that correctly assemble repetitive sections and regions with structural variation. Moreover, it allows real-time determination of DNA methylation status from native DNA without the need for bisulfite conversion. LRS enables the analysis of thousands of markers at once, providing phasing information and eliminating the need for multiple assays. This maximizes the information retrieved from a single invaluable sample. In this review, we explore the potential use of LRS in different forensic genetics approaches.
Collapse
Affiliation(s)
- Marcel Rodrigues Ferreira
- Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit - Unipex, School of Medicine, São Paulo State University - Unesp, Botucatu, São Paulo, Brazil
| | - Thássia Mayra Telles Carratto
- Departamento de Química, Laboratório de Pesquisas Forenses e Genômicas, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - Tamara Soledad Frontanilla
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Raphael Severino Bonadio
- Depto Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
| | - Miten Jain
- Department of Bioengineering, Department of Physics, Khoury College of Computer Sciences, Northeastern University, Boston, MA, United States
| | | | - Erick C Castelli
- Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit - Unipex, School of Medicine, São Paulo State University - Unesp, Botucatu, São Paulo, Brazil; Pathology Department, School of Medicine, São Paulo State University - Unesp, Botucatu, São Paulo, Brazil
| | - Celso Teixeira Mendes-Junior
- Departamento de Química, Laboratório de Pesquisas Forenses e Genômicas, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil.
| |
Collapse
|
11
|
Madrigal G, Minhas BF, Catchen J. Klumpy: A tool to evaluate the integrity of long-read genome assemblies and illusive sequence motifs. Mol Ecol Resour 2025; 25:e13982. [PMID: 38800997 PMCID: PMC11646305 DOI: 10.1111/1755-0998.13982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
The improvement and decreasing costs of third-generation sequencing technologies has widened the scope of biological questions researchers can address with de novo genome assemblies. With the increasing number of reference genomes, validating their integrity with minimal overhead is vital for establishing confident results in their applications. Here, we present Klumpy, a tool for detecting and visualizing both misassembled regions in a genome assembly and genetic elements (e.g. genes) of interest in a set of sequences. By leveraging the initial raw reads in combination with their respective genome assembly, we illustrate Klumpy's utility by investigating antifreeze glycoprotein (afgp) loci across two icefishes, by searching for a reported absent gene in the northern snakehead fish, and by scanning the reference genomes of a mudskipper and bumblebee for misassembled regions. In the two former cases, we were able to provide support for the noncanonical placement of an afgp locus in the icefishes and locate the missing snakehead gene. Furthermore, our genome scans were able identify an unmappable locus in the mudskipper reference genome and identify a putative repetitive element shared among several species of bees.
Collapse
Affiliation(s)
- Giovanni Madrigal
- Department of Evolution, Ecology, and BehaviorUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Bushra Fazal Minhas
- Informatics ProgramUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Julian Catchen
- Department of Evolution, Ecology, and BehaviorUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Informatics ProgramUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
12
|
Ruppeka Rupeika E, D’Huys L, Leen V, Hofkens J. Sequencing and Optical Genome Mapping for the Adventurous Chemist. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:784-807. [PMID: 39735829 PMCID: PMC11673194 DOI: 10.1021/cbmi.4c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 12/31/2024]
Abstract
This review provides a comprehensive overview of the chemistries and workflows of the sequencing methods that have been or are currently commercially available, providing a very brief historical introduction to each method. The main optical genome mapping approaches are introduced in the same manner, although only a subset of these are or have ever been commercially available. The review comes with a deck of slides containing all of the figures for ease of access and consultation.
Collapse
Affiliation(s)
| | - Laurens D’Huys
- Faculty
of Science, Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, Flanders 3001, Belgium
| | - Volker Leen
- Perseus
Biomics B.V., Industriepark
6 bus 3, Tienen 3300, Belgium
| | - Johan Hofkens
- Faculty
of Science, Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, Flanders 3001, Belgium
- Max
Planck Institute for Polymer Research, Mainz, Rheinland-Pfalz 55128, Germany
| |
Collapse
|
13
|
Singh AN, Singh A, Nath G. Evaluation of bacteriophage cocktail on urinary tract infection caused by colistin-resistant Klebsiella pneumoniae in mice model. J Glob Antimicrob Resist 2024; 39:41-53. [PMID: 39159829 DOI: 10.1016/j.jgar.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/21/2024] Open
Abstract
OBJECTIVE The colistin-resistant Klebsiella pneumoniae causes complicated urinary tract infections (UTIs). Of them, 73% of strains of K. pneumoniae formed moderate to strong biofilm. Multidrug-resistant (MDR)/Pandrug-resistant (PDR) bacteria causing UTIs are very challenging to conventional antibiotic therapy. However, bacteriophages may be a promising alternative as they easily disrupt the biofilm and act on receptors unrelated to antibiotic resistance mechanisms. This preclinical study evaluated the efficacy of a phage cocktail with different routes and dosages (in quantity and frequency) to eradicate the K. pneumoniae-associated UTI in the mice model. METHODS The three lytic phages with the broadest spectrum activity (ΦKpnBHU1, ΦKpnBHU2 and ΦKpnBHU3) were meticulously characterized using SEM and sequencing. The cocktails were administered to mice through urethral, rectal, subcutaneous and oral routes after establishing the UTI with 1 × 108 colony-forming unit/mouse (CFU/mouse) of K. pneumoniae (KpnBHU09) resistant to both the drugs carbapenem and colistin. The efficacy of different routes with varying dosages and frequency of administration was thoroughly optimized. RESULTS We observed that two doses of a phage cocktail containing 1 × 105 Plaque-Forming Unit (PFU/mouse) and a single dose of 1 × 109 PFU/mouse per urethra could eradicate KpnBHU09. Intriguingly, the non-invasive administration through oral and rectal routes required higher concentration and many dosages of phages to eliminate KpnBHU09 at any stage of acute UTI. The subcutaneous route was found unsatisfactory in curing the infection. CONCLUSION Bacteriophage cocktails administered through transurethral, oral and rectal routes may cure UTIs.
Collapse
Affiliation(s)
- Alakh Narayan Singh
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Aprajita Singh
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Gopal Nath
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
| |
Collapse
|
14
|
Qi L, Li Z, Liu J, Chen X. Omics-Enhanced Nanomedicine for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409102. [PMID: 39473316 DOI: 10.1002/adma.202409102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/10/2024] [Indexed: 12/13/2024]
Abstract
Cancer nanomedicine has emerged as a promising approach to overcome the limitations of conventional cancer therapies, offering enhanced efficacy and safety in cancer management. However, the inherent heterogeneity of tumors presents increasing challenges for the application of cancer nanomedicine in both diagnosis and treatment. This heterogeneity necessitates the integration of advanced and high-throughput analytical techniques to tailor nanomedicine strategies to individual tumor profiles. Omics technologies, encompassing genomics, epigenomics, transcriptomics, proteomics, metabolomics, and more, provide unparalleled insights into the molecular and cellular mechanisms underlying cancer. By dissecting tumor heterogeneity across multiple levels, these technologies offer robust support for the development of personalized and precise cancer nanomedicine strategies. In this review, the principles, techniques, and applications of key omics technologies are summarized. Especially, the synergistic integration of omics and nanomedicine in cancer therapy is explored, focusing on enhanced diagnostic accuracy, optimized therapeutic strategies and the assessment of nanomedicine-mediated biological responses. Moreover, this review addresses current challenges and outlines future directions in the field of omics-enhanced nanomedicine. By offering valuable insights and guidance, this review aims to advance the integration of omics with nanomedicine, ultimately driving improved diagnostic and therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Lin Qi
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, Hunan, 410011, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, Hunan, 410011, China
| | - Jianping Liu
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Xiaoyuan Chen
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, Hunan, 410011, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore, 138667, Singapore
| |
Collapse
|
15
|
Ren L, Chen DB, Yan X, She S, Yang Y, Zhang X, Liao W, Chen H. Bridging the Gap Between Imaging and Molecular Characterization: Current Understanding of Radiomics and Radiogenomics in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:2359-2372. [PMID: 39619602 PMCID: PMC11608547 DOI: 10.2147/jhc.s423549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/19/2024] [Indexed: 01/04/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common malignancy worldwide and the third leading cause of cancer-related deaths. Imaging plays a crucial role in the screening, diagnosis, and monitoring of HCC; however, the potential mechanism regarding phenotypes or molecular subtyping remains underexplored. Radiomics significantly expands the selection of features available by extracting quantitative features from imaging data. Radiogenomics bridges the gap between imaging and genetic/transcriptomic information by associating imaging features with critical genes and pathways, thereby providing biological annotations to these features. Despite challenges in interpreting these connections, assessing their universality, and considering the diversity in HCC etiology and genetic information across different populations, radiomics and radiogenomics offer new perspectives for precision treatment in HCC. This article provides an up-to-date summary of the advancements in radiomics and radiogenomics throughout the HCC care continuum, focusing on the clinical applications, advantages, and limitations of current techniques and offering prospects. Future research should aim to overcome these challenges to improve the prognosis of HCC patients and leverage imaging information for patient benefit.
Collapse
Affiliation(s)
- Liying Ren
- Peking University People’s Hospital, Peking University Hepatology Institute, Infectious Disease and Hepatology Center of Peking University People’s Hospital, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, 100044, People’s Republic of China
| | - Dong Bo Chen
- Peking University People’s Hospital, Peking University Hepatology Institute, Infectious Disease and Hepatology Center of Peking University People’s Hospital, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, 100044, People’s Republic of China
| | - Xuanzhi Yan
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, People’s Republic of China
| | - Shaoping She
- Peking University People’s Hospital, Peking University Hepatology Institute, Infectious Disease and Hepatology Center of Peking University People’s Hospital, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, 100044, People’s Republic of China
| | - Yao Yang
- Peking University People’s Hospital, Peking University Hepatology Institute, Infectious Disease and Hepatology Center of Peking University People’s Hospital, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, 100044, People’s Republic of China
| | - Xue Zhang
- Peking University People’s Hospital, Peking University Hepatology Institute, Infectious Disease and Hepatology Center of Peking University People’s Hospital, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, 100044, People’s Republic of China
| | - Weijia Liao
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, People’s Republic of China
| | - Hongsong Chen
- Peking University People’s Hospital, Peking University Hepatology Institute, Infectious Disease and Hepatology Center of Peking University People’s Hospital, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, 100044, People’s Republic of China
| |
Collapse
|
16
|
Tsoumbris PR, Vincent RM, Jaschke PR. Designing a simple and efficient phage biocontainment system using the amber suppressor initiator tRNA. Arch Virol 2024; 169:248. [PMID: 39557717 DOI: 10.1007/s00705-024-06170-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/21/2024] [Indexed: 11/20/2024]
Abstract
Multidrug-resistant infections are becoming increasingly prevalent worldwide. One of the fastest-emerging alternative and adjuvant therapies being proposed is phage therapy. Naturally isolated phages are used in the vast majority of phage therapy treatments today. Engineered phages are being developed to enhance the effectiveness of phage therapy, but concerns over their potential escape remain a salient issue. To address this problem, we designed a biocontained phage system based on conditional replication using amber stop codon suppression. This system can be easily installed on any natural phage with a known genome sequence. To test the system, we individually mutated the start codons of three essential capsid genes in phage φX174 to the amber stop codon (UAG). These phages were able to efficiently infect host cells expressing the amber initiator tRNA, which suppresses the amber stop codon and initiates translation at TAG stop codons. The amber phage mutants were also able to successfully infect host cells and reduce their population on solid agar and liquid culture but could not produce infectious particles in the absence of the amber initiator tRNA or complementing capsid gene. We did not detect any growth-inhibiting effects on E. coli strains known to lack a receptor for φX174 and we showed that engineered phages have a limited propensity for reversion. The approach outlined here may be useful to control engineered phage replication in both the lab and clinic.
Collapse
Affiliation(s)
- Pamela R Tsoumbris
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Russel M Vincent
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Paul R Jaschke
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia.
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia.
| |
Collapse
|
17
|
Hill AM, Ingle TA, Wilke CO. A computational model for bacteriophage ϕX174 gene expression. PLoS One 2024; 19:e0313039. [PMID: 39480761 PMCID: PMC11527146 DOI: 10.1371/journal.pone.0313039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
Bacteriophage ϕX174 has been widely used as a model organism to study fundamental processes in molecular biology. However, several aspects of ϕX174 gene regulation are not fully resolved. Here we construct a computational model for ϕX174 and use the model to study gene regulation during the phage infection cycle. We estimate the relative strengths of transcription regulatory elements (promoters and terminators) by fitting the model to transcriptomics data. We show that the specific arrangement of a promoter followed immediately by a terminator, which occurs naturally in the ϕX174 genome, poses a parameter identifiability problem for the model, since the activity of one element can be partially compensated for by the other. We also simulate ϕX174 gene expression with two additional, putative transcription regulatory elements that have been proposed in prior studies. We find that the activities of these putative elements are estimated to be weak, and that variation in ϕX174 transcript abundances can be adequately explained without them. Overall, our work demonstrates that ϕX174 gene regulation is well described by the canonical set of promoters and terminators widely used in the literature.
Collapse
Affiliation(s)
- Alexis M. Hill
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, United States of America
| | - Tanvi A. Ingle
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, United States of America
| | - Claus O. Wilke
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, United States of America
| |
Collapse
|
18
|
Lin S, Huang B, Zhao LL, Xu F, Pan D, Chen X, Lin S. A Python program to merge Sanger sequences: an update. PeerJ 2024; 12:e18363. [PMID: 39465179 PMCID: PMC11505972 DOI: 10.7717/peerj.18363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/29/2024] [Indexed: 10/29/2024] Open
Abstract
Gene cloning is an important step in investigating gene structure and function. To verify gene sequence, Sanger sequencing is used, which may produce several overlapping sequencing files that need to be merged before alignment to the target gene sequence is performed. Previously, we reported the Python program to Merge Sanger sequences (https://peerj.com/articles/11354/), which ran in command line and relied heavily on EMBOSS suite. In this updated version of the program, we have made several remarkable improvements. It provides a graphical user interface (GUI) written with tkinter, which is convenient and stable. It does not require users to rename the input sequences before performing merging. With regard to the implementation, the updated version utilizes Python function (Align.PairwiseAligner) to align adjacent sequences, which is more flexible (can adjust program parameter i.e., the number of first-time consecutive matching bases). The new version of the program makes merging Sanger sequences much more convenient and facilitates gene study.
Collapse
Affiliation(s)
- Shiming Lin
- School of Computing and Information Science, Fuzhou Institute of Technology, Fuzhou, Fujian, China
| | - Bifang Huang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Li-li Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fei Xu
- College of Agronomy, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Danni Pan
- College of Agronomy, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xuanyang Chen
- College of Agronomy, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shiqiang Lin
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
19
|
Boie W, Schemmel M, Ye W, Hasler M, Goll M, Verreet JA, Cai D. An assessment of the species diversity and disease potential of Pythium communities in Europe. Nat Commun 2024; 15:8369. [PMID: 39333145 PMCID: PMC11437173 DOI: 10.1038/s41467-024-52761-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/19/2024] [Indexed: 09/29/2024] Open
Abstract
Pythium sensu lato (s.l.) is a genus of parasitic oomycetes that poses a serious threat to agricultural production worldwide, but their severity is often neglected because little knowledge about them is available. Using an internal transcribed spacer (ITS) amplicon-based-metagenomics approach, we investigate the occurrence, abundance, and diversity of Pythium spp. s.l. in 127 corn fields of 11 European countries from the years 2019 to 2021. We also identify 73 species, with up to 20 species in a single soil sample, and the prevalent species, which show high species diversity, varying disease potential, and are widespread in most countries. Further, we show species-species co-occurrence patterns considering all detected species and link species abundance to soil parameter using the LUCAS topsoil dataset. Infection experiments with recovered isolates show that Pythium s.l. differ in disease potential, and that effective interference with plant hormone networks suppressing JA (jasmonate)-mediated defenses is an essential component of the virulence mechanism of Pythium s.l. species. This study provides a valuable dataset that enables deep insights into the structure and species diversity of Pythium s.l. communities in European corn fields and knowledge for better understanding plant-Pythium interactions, facilitating the development of an effective strategy to cope with this pathogen.
Collapse
Affiliation(s)
- Wilken Boie
- Molecular Phytopathology and Biotechnology, Institute for Phytopathology, Christian-Albrechts-University of Kiel, Hermann-Rodewald Str. 9, Kiel, Germany
| | - Markus Schemmel
- Molecular Phytopathology and Biotechnology, Institute for Phytopathology, Christian-Albrechts-University of Kiel, Hermann-Rodewald Str. 9, Kiel, Germany
| | - Wanzhi Ye
- Molecular Phytopathology and Biotechnology, Institute for Phytopathology, Christian-Albrechts-University of Kiel, Hermann-Rodewald Str. 9, Kiel, Germany
| | - Mario Hasler
- Lehrfach Variationsstatistik, Christian-Albrechts-University of Kiel, Hermann-Rodewald Str. 9, Kiel, Germany
| | - Melanie Goll
- Syngenta Agro GmbH, Lindleystraße 8 D, Frankfurt am Main, Germany
| | - Joseph-Alexander Verreet
- Phytopathology and Crop Protection, Institute for Phytopathology, Christian-Albrechts-University of Kiel, Hermann-Rodewald Str. 9, Kiel, Germany
| | - Daguang Cai
- Molecular Phytopathology and Biotechnology, Institute for Phytopathology, Christian-Albrechts-University of Kiel, Hermann-Rodewald Str. 9, Kiel, Germany.
| |
Collapse
|
20
|
Gao Z, Lu Y, Li M, Chong Y, Hong J, Wu J, Wu D, Xi D, Deng W. Application of Pan-Omics Technologies in Research on Important Economic Traits for Ruminants. Int J Mol Sci 2024; 25:9271. [PMID: 39273219 PMCID: PMC11394796 DOI: 10.3390/ijms25179271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
The economic significance of ruminants in agriculture underscores the need for advanced research methodologies to enhance their traits. This review aims to elucidate the transformative role of pan-omics technologies in ruminant research, focusing on their application in uncovering the genetic mechanisms underlying complex traits such as growth, reproduction, production performance, and rumen function. Pan-omics analysis not only helps in identifying key genes and their regulatory networks associated with important economic traits but also reveals the impact of environmental factors on trait expression. By integrating genomics, epigenomics, transcriptomics, metabolomics, and microbiomics, pan-omics enables a comprehensive analysis of the interplay between genetics and environmental factors, offering a holistic understanding of trait expression. We explore specific examples of economic traits where these technologies have been pivotal, highlighting key genes and regulatory networks identified through pan-omics approaches. Additionally, we trace the historical evolution of each omics field, detailing their progression from foundational discoveries to high-throughput platforms. This review provides a critical synthesis of recent advancements, offering new insights and practical recommendations for the application of pan-omics in the ruminant industry. The broader implications for modern animal husbandry are discussed, emphasizing the potential for these technologies to drive sustainable improvements in ruminant production systems.
Collapse
Affiliation(s)
- Zhendong Gao
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Kunming 650201, China
| | - Ying Lu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Mengfei Li
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yuqing Chong
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jieyun Hong
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jiao Wu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Dongwang Wu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Dongmei Xi
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Weidong Deng
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Kunming 650201, China
| |
Collapse
|
21
|
Phillips-Rose LS, Yu CK, West NP, Fraser JA. A Chimeric ORF Fusion Phenotypic Reporter for Cryptococcus neoformans. J Fungi (Basel) 2024; 10:567. [PMID: 39194893 DOI: 10.3390/jof10080567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
The plethora of genome sequences produced in the postgenomic age has not resolved many of our most pressing biological questions. Correlating gene expression with an interrogatable and easily observable characteristic such as the surrogate phenotype conferred by a reporter gene is a valuable approach to gaining insight into gene function. Many reporters including lacZ, amdS, and the fluorescent proteins mRuby3 and mNeonGreen have been used across all manners of organisms. Described here is an investigation into the creation of a robust, synthetic, fusion reporter system for Cryptococcus neoformans that combines some of the most useful fluorophores available in this system with the versatility of the counter-selectable nature of amdS. The reporters generated include multiple composition and orientation variants, all of which were investigated for differences in expression. Evaluation of known promoters from the TEF1 and GAL7 genes was undertaken, elucidating novel expression tendencies of these biologically relevant C. neoformans regulators of transcription. Smaller than lacZ but providing multiple useful surrogate phenotypes for interrogation, the fusion ORF serves as a superior whole-cell assay compared to traditional systems. Ultimately, the work described here bolsters the array of relevant genetic tools that may be employed in furthering manipulation and understanding of the WHO fungal priority group pathogen C. neoformans.
Collapse
Affiliation(s)
- Louis S Phillips-Rose
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chendi K Yu
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nicholas P West
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - James A Fraser
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
22
|
Gauthier CH, Hatfull GF. A Bioinformatic Ecosystem for Bacteriophage Genomics: PhaMMSeqs, Phamerator, pdm_utils, PhagesDB, DEPhT, and PhamClust. Viruses 2024; 16:1278. [PMID: 39205252 PMCID: PMC11359507 DOI: 10.3390/v16081278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
The last thirty years have seen a meteoric rise in the number of sequenced bacteriophage genomes, spurred on by both the rise and success of groups working to isolate and characterize phages, and the rapid and significant technological improvements and reduced costs associated with sequencing their genomes. Over the course of these decades, the tools used to glean evolutionary insights from these sequences have grown more complex and sophisticated, and we describe here the suite of computational and bioinformatic tools used extensively by the integrated research-education communities such as SEA-PHAGES and PHIRE, which are jointly responsible for 25% of all complete phage genomes in the RefSeq database. These tools are used to integrate and analyze phage genome data from different sources, for identification and precise extraction of prophages from bacterial genomes, computing "phamilies" of related genes, and displaying the complex nucleotide and amino acid level mosaicism of these genomes. While over 50,000 SEA-PHAGES students have primarily benefitted from these tools, they are freely available for the phage community at large.
Collapse
Affiliation(s)
| | - Graham F. Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| |
Collapse
|
23
|
Ramos YFM, Rice SJ, Ali SA, Pastrello C, Jurisica I, Rai MF, Collins KH, Lang A, Maerz T, Geurts J, Ruiz-Romero C, June RK, Thomas Appleton C, Rockel JS, Kapoor M. Evolution and advancements in genomics and epigenomics in OA research: How far we have come. Osteoarthritis Cartilage 2024; 32:858-868. [PMID: 38428513 DOI: 10.1016/j.joca.2024.02.656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/29/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
OBJECTIVE Osteoarthritis (OA) is the most prevalent musculoskeletal disease affecting articulating joint tissues, resulting in local and systemic changes that contribute to increased pain and reduced function. Diverse technological advancements have culminated in the advent of high throughput "omic" technologies, enabling identification of comprehensive changes in molecular mediators associated with the disease. Amongst these technologies, genomics and epigenomics - including methylomics and miRNomics, have emerged as important tools to aid our biological understanding of disease. DESIGN In this narrative review, we selected articles discussing advancements and applications of these technologies to OA biology and pathology. We discuss how genomics, deoxyribonucleic acid (DNA) methylomics, and miRNomics have uncovered disease-related molecular markers in the local and systemic tissues or fluids of OA patients. RESULTS Genomics investigations into the genetic links of OA, including using genome-wide association studies, have evolved to identify 100+ genetic susceptibility markers of OA. Epigenomic investigations of gene methylation status have identified the importance of methylation to OA-related catabolic gene expression. Furthermore, miRNomic studies have identified key microRNA signatures in various tissues and fluids related to OA disease. CONCLUSIONS Sharing of standardized, well-annotated omic datasets in curated repositories will be key to enhancing statistical power to detect smaller and targetable changes in the biological signatures underlying OA pathogenesis. Additionally, continued technological developments and analysis methods, including using computational molecular and regulatory networks, are likely to facilitate improved detection of disease-relevant targets, in-turn, supporting precision medicine approaches and new treatment strategies for OA.
Collapse
Affiliation(s)
- Yolande F M Ramos
- Dept. Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Sarah J Rice
- Biosciences Institute, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Shabana Amanda Ali
- Henry Ford Health + Michigan State University Health Sciences, Detroit, MI, USA
| | - Chiara Pastrello
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, UHN, Toronto, Ontario, Canada
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, UHN, Toronto, Ontario, Canada; Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - Muhammad Farooq Rai
- Department of Biological Sciences, Center for Biotechnology, College of Medicine & Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Kelsey H Collins
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Annemarie Lang
- Departments of Orthopaedic Surgery and Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Tristan Maerz
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Jeroen Geurts
- Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Cristina Ruiz-Romero
- Grupo de Investigación de Reumatología (GIR), Unidad de Proteómica, INIBIC -Hospital Universitario A Coruña, SERGAS, A Coruña, Spain
| | - Ronald K June
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT, USA
| | - C Thomas Appleton
- Department of Medicine, University of Western Ontario, London, Ontario, Canada
| | - Jason S Rockel
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, UHN, Toronto, Ontario, Canada
| | - Mohit Kapoor
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, UHN, Toronto, Ontario, Canada.
| |
Collapse
|
24
|
Jansz N, Faulkner GJ. Viral genome sequencing methods: benefits and pitfalls of current approaches. Biochem Soc Trans 2024; 52:1431-1447. [PMID: 38747720 PMCID: PMC11346438 DOI: 10.1042/bst20231322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 06/27/2024]
Abstract
Whole genome sequencing of viruses provides high-resolution molecular insights, enhancing our understanding of viral genome function and phylogeny. Beyond fundamental research, viral sequencing is increasingly vital for pathogen surveillance, epidemiology, and clinical applications. As sequencing methods rapidly evolve, the diversity of viral genomics applications and catalogued genomes continues to expand. Advances in long-read, single molecule, real-time sequencing methodologies present opportunities to sequence contiguous, haplotype resolved viral genomes in a range of research and applied settings. Here we present an overview of nucleic acid sequencing methods and their applications in studying viral genomes. We emphasise the advantages of different viral sequencing approaches, with a particular focus on the benefits of third-generation sequencing technologies in elucidating viral evolution, transmission networks, and pathogenesis.
Collapse
Affiliation(s)
- Natasha Jansz
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Geoffrey J. Faulkner
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
25
|
Mohammad N, Talton L, Dalgan S, Hetzler Z, Steksova A, Wei Q. Ratiometric nonfluorescent CRISPR assay utilizing Cas12a-induced plasmid supercoil relaxation. Commun Chem 2024; 7:130. [PMID: 38851849 PMCID: PMC11162422 DOI: 10.1038/s42004-024-01214-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/30/2024] [Indexed: 06/10/2024] Open
Abstract
Most CRISPR-based biosensors rely on labeled reporter molecules and expensive equipment for signal readout. A recent approach quantifies analyte concentration by sizing λ DNA reporters via gel electrophoresis, providing a simple solution for label-free detection. Here, we report an alternative strategy for label-free CRISPR-Cas12a, which relies on Cas12a trans-nicking induced supercoil relaxation of dsDNA plasmid reporters to generate a robust and ratiometric readout. The ratiometric CRISPR (rCRISPR) measures the relative percentage of supercoiled plasmid DNA to the relaxed circular DNA by gel electrophoresis for more accurate target concentration quantification. This simple method is two orders of magnitude more sensitive than the typical fluorescent reporter. This self-referenced strategy solves the potential application limitations of previously demonstrated DNA sizing-based CRISPR-Dx without compromising the sensitivity. Finally, we demonstrated the applicability of rCRISPR for detecting various model DNA targets such as HPV 16 and real AAV samples, highlighting its feasibility for point-of-care CRISPR-Dx applications.
Collapse
Affiliation(s)
- Noor Mohammad
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - Logan Talton
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Selen Dalgan
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Zach Hetzler
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Anastasiia Steksova
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Qingshan Wei
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
26
|
Zhou Y, Tao L, Qiu J, Xu J, Yang X, Zhang Y, Tian X, Guan X, Cen X, Zhao Y. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct Target Ther 2024; 9:132. [PMID: 38763973 PMCID: PMC11102923 DOI: 10.1038/s41392-024-01823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 05/21/2024] Open
Abstract
Tumor biomarkers, the substances which are produced by tumors or the body's responses to tumors during tumorigenesis and progression, have been demonstrated to possess critical and encouraging value in screening and early diagnosis, prognosis prediction, recurrence detection, and therapeutic efficacy monitoring of cancers. Over the past decades, continuous progress has been made in exploring and discovering novel, sensitive, specific, and accurate tumor biomarkers, which has significantly promoted personalized medicine and improved the outcomes of cancer patients, especially advances in molecular biology technologies developed for the detection of tumor biomarkers. Herein, we summarize the discovery and development of tumor biomarkers, including the history of tumor biomarkers, the conventional and innovative technologies used for biomarker discovery and detection, the classification of tumor biomarkers based on tissue origins, and the application of tumor biomarkers in clinical cancer management. In particular, we highlight the recent advancements in biomarker-based anticancer-targeted therapies which are emerging as breakthroughs and promising cancer therapeutic strategies. We also discuss limitations and challenges that need to be addressed and provide insights and perspectives to turn challenges into opportunities in this field. Collectively, the discovery and application of multiple tumor biomarkers emphasized in this review may provide guidance on improved precision medicine, broaden horizons in future research directions, and expedite the clinical classification of cancer patients according to their molecular biomarkers rather than organs of origin.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Tao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiahao Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyu Yang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yu Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- School of Medicine, Tibet University, Lhasa, 850000, China
| | - Xinyu Tian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinqi Guan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaobo Cen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinglan Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
27
|
da Silva ÉBR, da Silva JAR, da Silva WC, Belo TS, Sousa CEL, dos Santos MRP, Neves KAL, Rodrigues TCGDC, Camargo-Júnior RNC, Lourenço-Júnior JDB. A Review of the Rumen Microbiota and the Different Molecular Techniques Used to Identify Microorganisms Found in the Rumen Fluid of Ruminants. Animals (Basel) 2024; 14:1448. [PMID: 38791665 PMCID: PMC11117383 DOI: 10.3390/ani14101448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 05/26/2024] Open
Abstract
Variations in environments, including climate, diet, and agricultural practices, significantly impact the composition and microbial activity. A profound understanding of these adaptations allows for the improvement of nutrition and ruminant production. Therefore, this review aims to compile data from the literature on the rumen microbiota and molecular techniques for identifying the different types of microorganisms from the rumen fluid of ruminants. Analyzing the literature on rumen microbiology in different ruminants is complex due to microbial interactions, influenced by the environment and nutrition of these animals. In addition, it is worth noting that the genera of protozoa and fungi most evident in the studies used in this review on the microbiology of rumen fluid were Entodinium spp. and Aspergillus spp., respectively, and Fibrobacter spp. for bacteria. About the techniques used, it can be seen that DNA extraction, amplification, and sequencing were the most cited in the studies evaluated. Therefore, this review describes what is present in the literature and provides an overview of the main microbial agents in the rumen and the molecular techniques used.
Collapse
Affiliation(s)
- Éder Bruno Rebelo da Silva
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Para (UFPA), Castanhal 68746-360, Brazil; (W.C.d.S.); (T.C.G.d.C.R.); (R.N.C.C.-J.); (J.d.B.L.-J.)
| | | | - Welligton Conceição da Silva
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Para (UFPA), Castanhal 68746-360, Brazil; (W.C.d.S.); (T.C.G.d.C.R.); (R.N.C.C.-J.); (J.d.B.L.-J.)
| | - Tatiane Silva Belo
- Department of Veterinary Medicine, University Center of the Amazon (UNAMA), Santarém 68010-200, Brazil; (T.S.B.); (C.E.L.S.)
| | - Carlos Eduardo Lima Sousa
- Department of Veterinary Medicine, University Center of the Amazon (UNAMA), Santarém 68010-200, Brazil; (T.S.B.); (C.E.L.S.)
| | | | | | - Thomaz Cyro Guimarães de Carvalho Rodrigues
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Para (UFPA), Castanhal 68746-360, Brazil; (W.C.d.S.); (T.C.G.d.C.R.); (R.N.C.C.-J.); (J.d.B.L.-J.)
| | - Raimundo Nonato Colares Camargo-Júnior
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Para (UFPA), Castanhal 68746-360, Brazil; (W.C.d.S.); (T.C.G.d.C.R.); (R.N.C.C.-J.); (J.d.B.L.-J.)
| | - José de Brito Lourenço-Júnior
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Para (UFPA), Castanhal 68746-360, Brazil; (W.C.d.S.); (T.C.G.d.C.R.); (R.N.C.C.-J.); (J.d.B.L.-J.)
| |
Collapse
|
28
|
Ouyang Y, Cheng Q, Cheng C, Tang Z, Huang Y, Tan E, Ma S, Lin X, Xie Y, Zhou H. Effects of plants-associated microbiota on cultivation and quality of Chinese herbal medicines. CHINESE HERBAL MEDICINES 2024; 16:190-203. [PMID: 38706825 PMCID: PMC11064599 DOI: 10.1016/j.chmed.2022.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/24/2022] [Accepted: 12/29/2022] [Indexed: 02/05/2023] Open
Abstract
Microbial resource influences the life activities of medicinal plants from several perspectives. Endophytes, rhizosphere microorganisms, and other environmental microorganisms play essential roles in medicinal plant growth and development, plant yield, and clinical efficacy. The microbiota can influence the biosynthesis of active compounds in medicinal plants by stimulating specific metabolic pathways. They induce host plants to improve their resistance to environmental stresses by accumulating secondary metabolites. Microorganisms can interact with their host plants to produce long-term, targeted selection results and improve their ability to adapt to the environment. Due to the interdependence and interaction between microorganisms and medicinal plants, Chinese herbal medicines (CHMs) quality is closely related to the associated microorganisms. This review summarizes the relationship between medicinal plants and their associated microorganisms, including their species, distribution, life activities, and metabolites. Microorganisms can aid in quality control, improve the efficacy of medicinal plants, and provide markers for identifying the origin and storage time of CHMs. Therefore, a comprehensive understanding of the relationship between microorganisms and medicinal plants will help to control the quality of CHMs from different perspectives.
Collapse
Affiliation(s)
- Yue Ouyang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Qiqing Cheng
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
- School of Pharmacy, Hubei University of Science and Technology, Xianning 437100, China
| | - Chunsong Cheng
- Key Laboratory of Plant Ex-situ Conservation and Research Center of Resource Plant, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
| | - Ziyu Tang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Yufeng Huang
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou 510006, China
| | - Eyu Tan
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou 510006, China
- Jiangmen Wuyi Hospital of Traditional Chinese Medicine, Jiangmen 529020, China
- Joint Laboratory for Translational Cancer Research of Chinese Medicine, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Shaofeng Ma
- Jiangmen Wuyi Hospital of Traditional Chinese Medicine, Jiangmen 529020, China
| | - Xinheng Lin
- Jiangmen Wuyi Hospital of Traditional Chinese Medicine, Jiangmen 529020, China
| | - Ying Xie
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou 510006, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Hua Zhou
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou 510006, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
- Joint Laboratory for Translational Cancer Research of Chinese Medicine, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
29
|
Pimentel MIS, Beltrão EMB, de Oliveira ÉM, Martins LR, Jucá MB, Lopes ACDS. Virulent Klebsiella pneumoniae ST11 clone carrying blaKPC and blaNDM from patients with and without COVID-19 in Brazil. J Appl Microbiol 2024; 135:lxae079. [PMID: 38520165 DOI: 10.1093/jambio/lxae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/10/2024] [Accepted: 03/21/2024] [Indexed: 03/25/2024]
Abstract
AIMS Investigated and compared the occurrence of virulence genes fimH, mrkD, irp2, entB, cps, rmpA, and wabG, resistance genes blaKPC and blaNDM, and the genetic variability and clonal relationship of 29 Klebsiella pneumoniae clinical isolates of patients with and without COVID-19, from a hospital in Brazil. METHODS AND RESULTS All isolates were resistant to beta-lactams. The genes were investigated by PCR, and for molecular typing, enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) and MLST were used. The detection of blaNDM was greater (n = 23) when compared to that of blaKPC (n = 14). The virulence genes that most occurred were fimH, entB, cps, and wabG, which are responsible for adhesins, siderophore enterobactin, capsule, and lipopolysaccharides, respectively. Among the isolates, 21 distinct genetic profiles were found by ERIC-PCR, with multiclonal dissemination. Four isolates belonged to the ST11 clone. CONCLUSIONS The occurrence of the ST11 is worrying as it is a high-risk clone involved in the dissemination of virulent strains throughout the world.
Collapse
Affiliation(s)
- Maria Izabely Silva Pimentel
- Universidade Federal de Pernambuco-UFPE, Laboratório de Microbiologia, Área de Medicina Tropical, Centro de Ciências Médicas-CCM, 50670-901, Recife-PE, Brasil
| | - Elizabeth Maria Bispo Beltrão
- Universidade Federal de Pernambuco-UFPE, Laboratório de Microbiologia, Área de Medicina Tropical, Centro de Ciências Médicas-CCM, 50670-901, Recife-PE, Brasil
| | - Érica Maria de Oliveira
- Universidade Federal de Pernambuco-UFPE, Laboratório de Microbiologia, Área de Medicina Tropical, Centro de Ciências Médicas-CCM, 50670-901, Recife-PE, Brasil
| | - Lamartine Rodrigues Martins
- Universidade Federal de Pernambuco-UFPE, Laboratório de Microbiologia, Área de Medicina Tropical, Centro de Ciências Médicas-CCM, 50670-901, Recife-PE, Brasil
| | | | - Ana Catarina de Souza Lopes
- Universidade Federal de Pernambuco-UFPE, Laboratório de Microbiologia, Área de Medicina Tropical, Centro de Ciências Médicas-CCM, 50670-901, Recife-PE, Brasil
| |
Collapse
|
30
|
Huber C, Strack M, Schultheiß I, Pielage J, Mechler X, Hornbogen J, Diller R, Frankenberg-Dinkel N. Darkness inhibits autokinase activity of bacterial bathy phytochromes. J Biol Chem 2024; 300:107148. [PMID: 38462162 PMCID: PMC11021371 DOI: 10.1016/j.jbc.2024.107148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/12/2024] Open
Abstract
Bathy phytochromes are a subclass of bacterial biliprotein photoreceptors that carry a biliverdin IXα chromophore. In contrast to prototypical phytochromes that adopt a red-light-absorbing Pr ground state, the far-red light-absorbing Pfr-form is the thermally stable ground state of bathy phytochromes. Although the photobiology of bacterial phytochromes has been extensively studied since their discovery in the late 1990s, our understanding of the signal transduction process to the connected transmitter domains, which are often histidine kinases, remains insufficient. Initiated by the analysis of the bathy phytochrome PaBphP from Pseudomonas aeruginosa, we performed a systematic analysis of five different bathy phytochromes with the aim to derive a general statement on the correlation of photostate and autokinase output. While all proteins adopt different Pr/Pfr-fractions in response to red, blue, and far-red light, only darkness leads to a pure or highly enriched Pfr-form, directly correlated with the lowest level of autokinase activity. Using this information, we developed a method to quantitatively correlate the autokinase activity of phytochrome samples with well-defined stationary Pr/Pfr-fractions. We demonstrate that the off-state of the phytochromes is the Pfr-form and that different Pr/Pfr-fractions enable the organisms to fine-tune their kinase output in response to a certain light environment. Furthermore, the output response is regulated by the rate of dark reversion, which differs significantly from 5 s to 50 min half-life. Overall, our study indicates that bathy phytochromes function as sensors of light and darkness, rather than red and far-red light, as originally postulated.
Collapse
Affiliation(s)
- Christina Huber
- Department of Microbiology, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Merle Strack
- Department of Physics, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Isabel Schultheiß
- Department of Microbiology, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Julia Pielage
- Department of Microbiology, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Xenia Mechler
- Department of Physics, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Justin Hornbogen
- Department of Physics, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Rolf Diller
- Department of Physics, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Nicole Frankenberg-Dinkel
- Department of Microbiology, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Kaiserslautern, Germany.
| |
Collapse
|
31
|
Antillon SF, Bernhardt TG, Chamakura K, Young R. Physiological characterization of single-gene lysis proteins. J Bacteriol 2024; 206:e0038423. [PMID: 38426721 PMCID: PMC10955853 DOI: 10.1128/jb.00384-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/07/2024] [Indexed: 03/02/2024] Open
Abstract
Single-strand RNA (ssRNA) and single-strand DNA phages elicit host lysis using a single gene, in each case designated as sgl. Of the 11 identified Sgls, three have been shown to be specific inhibitors of different steps in the pathway that supplies lipid II to the peptidoglycan (PG) biosynthesis machinery. These Sgls have been called "protein antibiotics" because the lytic event is a septal catastrophe indistinguishable from that caused by cell wall antibiotics. Here, we designate these as type I Sgls. In this formalism, the other eight Sgls are assigned to type II, the best-studied of which is protein L of the paradigm F-specific ssRNA phage MS2. Comparisons have suggested that type II Sgls have four sequence elements distinguished by hydrophobic and polar character. Environmental metatranscriptomics has revealed thousands of new ssRNA phage genomes, each of which presumably has an Sgl. Here, we describe methods to distinguish type I and type II Sgls. Using phase contrast microscopy, we show that both classes of Sgls cause the formation of blebs prior to lysis, but the location of the blebs differs significantly. In addition, we show that L and other type II Sgls do not inhibit the net synthesis of PG, as measured by radio-labeling of PG. Finally, we provide direct evidence that the Sgl from Pseudomonas phage PP7 is a type I Sgl, in support of a recent report based on a genetic selection. This shows that the putative four-element sequence structure suggested for L is not a reliable discriminator for the operational characterization of Sgls. IMPORTANCE The ssRNA phage world has recently undergone a metagenomic expansion upward of a thousandfold. Each genome likely carries at least one single-gene lysis (sgl) cistron encoding a protein that single-handedly induces host autolysis. Here, we initiate an approach to segregate the Sgls into operational types based on physiological analysis, as a first step toward the alluring goal of finding many new ways to induce bacterial death and the attendant expectations for new antibiotic development.
Collapse
Affiliation(s)
- S. Francesca Antillon
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
- Center for Phage Technology, Texas A&M AgriLife Research, College Station, Texas, USA
| | - Thomas G. Bernhardt
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Karthik Chamakura
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
- Center for Phage Technology, Texas A&M AgriLife Research, College Station, Texas, USA
| | - Ry Young
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
- Center for Phage Technology, Texas A&M AgriLife Research, College Station, Texas, USA
| |
Collapse
|
32
|
Gunter HM, Youlten SE, Reis ALM, McCubbin T, Madala BS, Wong T, Stevanovski I, Cipponi A, Deveson IW, Santini NS, Kummerfeld S, Croucher PI, Marcellin E, Mercer TR. A universal molecular control for DNA, mRNA and protein expression. Nat Commun 2024; 15:2480. [PMID: 38509097 PMCID: PMC10954659 DOI: 10.1038/s41467-024-46456-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
The expression of genes encompasses their transcription into mRNA followed by translation into protein. In recent years, next-generation sequencing and mass spectrometry methods have profiled DNA, RNA and protein abundance in cells. However, there are currently no reference standards that are compatible across these genomic, transcriptomic and proteomic methods, and provide an integrated measure of gene expression. Here, we use synthetic biology principles to engineer a multi-omics control, termed pREF, that can act as a universal molecular standard for next-generation sequencing and mass spectrometry methods. The pREF sequence encodes 21 synthetic genes that can be in vitro transcribed into spike-in mRNA controls, and in vitro translated to generate matched protein controls. The synthetic genes provide qualitative controls that can measure sensitivity and quantitative accuracy of DNA, RNA and peptide detection. We demonstrate the use of pREF in metagenome DNA sequencing and RNA sequencing experiments and evaluate the quantification of proteins using mass spectrometry. Unlike previous spike-in controls, pREF can be independently propagated and the synthetic mRNA and protein controls can be sustainably prepared by recipient laboratories using common molecular biology techniques. Together, this provides a universal synthetic standard able to integrate genomic, transcriptomic and proteomic methods.
Collapse
Affiliation(s)
- Helen M Gunter
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
- BASE mRNA Facility, The University of Queensland, Brisbane, Queensland, Australia
- ARC Centre of Excellence in Synthetic Biology, The University of Queensland, Brisbane, Queensland, Australia
| | - Scott E Youlten
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06510, USA
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Andre L M Reis
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Sydney, New South Wales, Australia
- School of Electrical and Information Engineering, University of Sydney, Sydney, New South Wales, Australia
| | - Tim McCubbin
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
- ARC Centre of Excellence in Synthetic Biology, The University of Queensland, Brisbane, Queensland, Australia
| | - Bindu Swapna Madala
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Sydney, New South Wales, Australia
| | - Ted Wong
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Igor Stevanovski
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Sydney, New South Wales, Australia
| | - Arcadi Cipponi
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Ira W Deveson
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Sydney, New South Wales, Australia
- School of Electrical and Information Engineering, University of Sydney, Sydney, New South Wales, Australia
| | - Nadia S Santini
- Centro Nacional de Investigación Disciplinaria en Conservación y Mejoramiento de Ecosistemas Forestales, INIFAP, Ciudad de México, 04010, Mexico
| | - Sarah Kummerfeld
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Peter I Croucher
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Esteban Marcellin
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
- ARC Centre of Excellence in Synthetic Biology, The University of Queensland, Brisbane, Queensland, Australia
| | - Tim R Mercer
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia.
- BASE mRNA Facility, The University of Queensland, Brisbane, Queensland, Australia.
- ARC Centre of Excellence in Synthetic Biology, The University of Queensland, Brisbane, Queensland, Australia.
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia.
| |
Collapse
|
33
|
Gan Y, Qi G, Hao L, Xin T, Lou Q, Xu W, Song J. Analysis of Whole-Genome as a Novel Strategy for Animal Species Identification. Int J Mol Sci 2024; 25:2955. [PMID: 38474203 DOI: 10.3390/ijms25052955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/24/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Survival crises stalk many animals, especially endangered and rare animals. Accurate species identification plays a pivotal role in animal resource conservation. In this study, we developed an animal species identification method called Analysis of whole-GEnome (AGE), which identifies species by finding species-specific sequences through bioinformatics analysis of the whole genome and subsequently recognizing these sequences using experimental technologies. To clearly demonstrate the AGE method, Cervus nippon, a well-known endangered species, and a closely related species, Cervus elaphus, were set as model species, without and with published genomes, respectively. By analyzing the whole genomes of C. nippon and C. elaphus, which were obtained through next-generation sequencing and online databases, we built specific sequence databases containing 7,670,140 and 570,981 sequences, respectively. Then, the species specificities of the sequences were confirmed experimentally using Sanger sequencing and the CRISPR-Cas12a system. Moreover, for 11 fresh animal samples and 35 commercially available products, our results were in complete agreement with those of other authoritative identification methods, demonstrating AGE's precision and potential application. Notably, AGE found a mixture in the 35 commercially available products and successfully identified it. This study broadens the horizons of species identification using the whole genome and sheds light on the potential of AGE for conserving animal resources.
Collapse
Affiliation(s)
- Yutong Gan
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Guihong Qi
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Lijun Hao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Tianyi Xin
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Qian Lou
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Wenjie Xu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Jingyuan Song
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| |
Collapse
|
34
|
Zeng M, Yao X, Pan Y, Gu H, Xiong F, Yin X, Wu B, Chen T. A novel APC mutation associated with Gardner syndrome in a Chinese family. Gene 2024; 896:148051. [PMID: 38043837 DOI: 10.1016/j.gene.2023.148051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/19/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
Gardner syndrome (GS) is a specific form of familial adenomatous polyposis (FAP), which manifests as colorectal polyps, multiple osteomas and soft tissue tumors, and in the oral cavity as osteomas of the jaws, odontomas, and abnormal tooth counts. The underlying cause of GS is attributed to mutations in the APC gene. Mutations in this gene disrupt the normal functioning of the protein and lead to the development of GS. To further investigate GS, a family affected by the syndrome was selected from Dongguan, Guangdong Province. The family members underwent a comprehensive survey, which involved collecting clinical data and peripheral venous blood samples. The samples were then used for genetic analysis. Whole exome sequencing (WES) and Sanger sequencing techniques were utilized to screen and identify specific mutation sites in the APC gene. The clinical findings for the GS family included the presence of gastrointestinal polyps and odontomas. After analyzing the genetic sequencing results, a novel mutation site c.4266dupA on the APC gene was found in the patients, which leading to the APC protein truncation. As a result of this study, it is suggested that odontoma may be an early indicator of GS. Additionally, the identification of this novel mutation site in the APC gene expands the known spectrum of genetic mutations associated with the disease. This discovery has significant implications for the early diagnosis of GS, thus enabling timely intervention to reduce the risk of developing colon cancer and other related diseases.
Collapse
Affiliation(s)
- Ming Zeng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; School of Stomatology, Southern Medical University, Guangzhou 510515, China
| | - Xinchen Yao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; School of Stomatology, Southern Medical University, Guangzhou 510515, China
| | - Yuhua Pan
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Hongxiang Gu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastro Enterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Fu Xiong
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong, China; Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xuemin Yin
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Buling Wu
- Shenzhen Stomatological Hospital (Pingshan), Southern Medical University, Shenzhen 518118, China.
| | - Ting Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
35
|
Szymanski CM. Bacteriophages and their unique components provide limitless resources for exploitation. Front Microbiol 2024; 15:1342544. [PMID: 38380101 PMCID: PMC10877033 DOI: 10.3389/fmicb.2024.1342544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Affiliation(s)
- Christine M. Szymanski
- Department of Microbiology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| |
Collapse
|
36
|
Yang MQ, Wang ZJ, Zhai CB, Chen LQ. Research progress on the application of 16S rRNA gene sequencing and machine learning in forensic microbiome individual identification. Front Microbiol 2024; 15:1360457. [PMID: 38371926 PMCID: PMC10869621 DOI: 10.3389/fmicb.2024.1360457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024] Open
Abstract
Forensic microbiome research is a field with a wide range of applications and a number of protocols have been developed for its use in this area of research. As individuals host radically different microbiota, the human microbiome is expected to become a new biomarker for forensic identification. To achieve an effective use of this procedure an understanding of factors which can alter the human microbiome and determinations of stable and changing elements will be critical in selecting appropriate targets for investigation. The 16S rRNA gene, which is notable for its conservation and specificity, represents a potentially ideal marker for forensic microbiome identification. Gene sequencing involving 16S rRNA is currently the method of choice for use in investigating microbiomes. While the sequencing involved with microbiome determinations can generate large multi-dimensional datasets that can be difficult to analyze and interpret, machine learning methods can be useful in surmounting this analytical challenge. In this review, we describe the research methods and related sequencing technologies currently available for application of 16S rRNA gene sequencing and machine learning in the field of forensic identification. In addition, we assess the potential value of 16S rRNA and machine learning in forensic microbiome science.
Collapse
Affiliation(s)
- Mai-Qing Yang
- Department of Pathology, Weifang People's Hospital (First Affiliated Hospital of Shandong Second Medical University), Weifang, China
| | - Zheng-Jiang Wang
- Department of Pathology, Weifang People's Hospital (First Affiliated Hospital of Shandong Second Medical University), Weifang, China
| | - Chun-Bo Zhai
- Department of Second Ward of Thoracic Surgery, Weifang People's Hospital (First Affiliated Hospital of Shandong Second Medical University), Weifang, China
| | - Li-Qian Chen
- Department of Pathology, Weifang People's Hospital (First Affiliated Hospital of Shandong Second Medical University), Weifang, China
| |
Collapse
|
37
|
Cook R, Brown N, Rihtman B, Michniewski S, Redgwell T, Clokie M, Stekel DJ, Chen Y, Scanlan DJ, Hobman JL, Nelson A, Jones MA, Smith D, Millard A. The long and short of it: benchmarking viromics using Illumina, Nanopore and PacBio sequencing technologies. Microb Genom 2024; 10:001198. [PMID: 38376377 PMCID: PMC10926689 DOI: 10.1099/mgen.0.001198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 01/25/2024] [Indexed: 02/21/2024] Open
Abstract
Viral metagenomics has fuelled a rapid change in our understanding of global viral diversity and ecology. Long-read sequencing and hybrid assembly approaches that combine long- and short-read technologies are now being widely implemented in bacterial genomics and metagenomics. However, the use of long-read sequencing to investigate viral communities is still in its infancy. While Nanopore and PacBio technologies have been applied to viral metagenomics, it is not known to what extent different technologies will impact the reconstruction of the viral community. Thus, we constructed a mock bacteriophage community of previously sequenced phage genomes and sequenced them using Illumina, Nanopore and PacBio sequencing technologies and tested a number of different assembly approaches. When using a single sequencing technology, Illumina assemblies were the best at recovering phage genomes. Nanopore- and PacBio-only assemblies performed poorly in comparison to Illumina in both genome recovery and error rates, which both varied with the assembler used. The best Nanopore assembly had errors that manifested as SNPs and INDELs at frequencies 41 and 157 % higher than found in Illumina only assemblies, respectively. While the best PacBio assemblies had SNPs at frequencies 12 and 78 % higher than found in Illumina-only assemblies, respectively. Despite high-read coverage, long-read-only assemblies recovered a maximum of one complete genome from any assembly, unless reads were down-sampled prior to assembly. Overall the best approach was assembly by a combination of Illumina and Nanopore reads, which reduced error rates to levels comparable with short-read-only assemblies. When using a single technology, Illumina only was the best approach. The differences in genome recovery and error rates between technology and assembler had downstream impacts on gene prediction, viral prediction, and subsequent estimates of diversity within a sample. These findings will provide a starting point for others in the choice of reads and assembly algorithms for the analysis of viromes.
Collapse
Affiliation(s)
- Ryan Cook
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, College Road, Loughborough, Leicestershire, LE12 5RD, UK
| | - Nathan Brown
- Centre for Phage Research, Dept Genetics and Genome Biology, University of Leicester, University Road, Leicester, Leicestershire, LE1 7RH, UK
| | - Branko Rihtman
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Slawomir Michniewski
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Tamsin Redgwell
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Ledreborg Alle 34, 2820, Gentofte, Denmark
| | - Martha Clokie
- Centre for Phage Research, Dept Genetics and Genome Biology, University of Leicester, University Road, Leicester, Leicestershire, LE1 7RH, UK
| | - Dov J. Stekel
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, College Road, Loughborough, Leicestershire, LE12 5RD, UK
- Department of Mathematics and Applied Mathematics, University of Johannesburg, Rossmore 2029, South Africa
| | - Yin Chen
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - David J. Scanlan
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Jon L. Hobman
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, College Road, Loughborough, Leicestershire, LE12 5RD, UK
| | - Andrew Nelson
- Faculty of Health and Life Sciences, University of Northumbria, Newcastle upon Tyne, NE1 8ST, UK
| | - Michael A. Jones
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, College Road, Loughborough, Leicestershire, LE12 5RD, UK
| | - Darren Smith
- Faculty of Health and Life Sciences, University of Northumbria, Newcastle upon Tyne, NE1 8ST, UK
| | - Andrew Millard
- Centre for Phage Research, Dept Genetics and Genome Biology, University of Leicester, University Road, Leicester, Leicestershire, LE1 7RH, UK
| |
Collapse
|
38
|
Liharska L, Charney A. Transcriptomics : Approaches to Quantifying Gene Expression and Their Application to Studying the Human Brain. Curr Top Behav Neurosci 2024; 68:129-176. [PMID: 38972894 DOI: 10.1007/7854_2024_466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
To date, the field of transcriptomics has been characterized by rapid methods development and technological advancement, with new technologies continuously rendering older ones obsolete.This chapter traces the evolution of approaches to quantifying gene expression and provides an overall view of the current state of the field of transcriptomics, its applications to the study of the human brain, and its place in the broader emerging multiomics landscape.
Collapse
Affiliation(s)
- Lora Liharska
- Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | | |
Collapse
|
39
|
ARISAKA F. Isolation and grouping of RNA phages by Itaru Watanabe et al. (1967). PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2024; 100:253-263. [PMID: 38599846 PMCID: PMC11170027 DOI: 10.2183/pjab.100.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/19/2024] [Indexed: 04/12/2024]
Abstract
I. Watanabe et al. isolated approximately 30 strains of RNA phages from various parts of Japan. To isolate RNA phages, they assessed the infection specificity of male Escherichia coli and RNase sensitivity. They found that the isolated strains of RNA phages could be serologically separated into three groups. Furthermore, most of them were serologically related, and the antiphage rabbit serum prepared by one of these phages neutralized most of the other phages. The only serologically unrelated phage was the RNA phage Qβ, which was isolated at the Institute for Virus Research, Kyoto University, in 1961.
Collapse
Affiliation(s)
- Fumio ARISAKA
- Emeritus Professor, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
40
|
Berkovich AK, Pyshkina OA, Zorina AA, Rodin VA, Panova TV, Sergeev VG, Zvereva ME. Direct Determination of the Structure of Single Biopolymer Molecules Using Nanopore Sequencing. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S234-S248. [PMID: 38621753 DOI: 10.1134/s000629792414013x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/21/2023] [Accepted: 09/01/2023] [Indexed: 04/17/2024]
Abstract
This review highlights operational principles, features, and modern aspects of the development of third-generation sequencing technology of biopolymers focusing on the nucleic acids analysis, namely the nanopore sequencing system. Basics of the method and technical solutions used for its realization are considered, from the first works showing the possibility of creation of these systems to the easy-to-handle procedure developed by Oxford Nanopore Technologies company. Moreover, this review focuses on applications, which were developed and realized using equipment developed by the Oxford Nanopore Technologies, including assembly of whole genomes, methagenomics, direct analysis of the presence of modified bases.
Collapse
Affiliation(s)
- Anna K Berkovich
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Olga A Pyshkina
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Anna A Zorina
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vladimir A Rodin
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Tatyana V Panova
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vladimir G Sergeev
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Maria E Zvereva
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
41
|
Yoshida H. Dissecting the Immune System through Gene Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1444:219-235. [PMID: 38467983 DOI: 10.1007/978-981-99-9781-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The immune system plays a dual role in human health, functioning both as a protector against pathogens and, at times, as a contributor to disease. This feature emphasizes the importance to uncover the underlying causes of its malfunctions, necessitating an in-depth analysis in both pathological and physiological conditions to better understand the immune system and immune disorders. Recent advances in scientific technology have enabled extensive investigations into gene regulation, a crucial mechanism governing cellular functionality. Studying gene regulatory mechanisms within the immune system is a promising avenue for enhancing our understanding of immune cells and the immune system as a whole. The gene regulatory mechanisms, revealed through various methodologies, and their implications in the field of immunology are discussed in this chapter.
Collapse
Affiliation(s)
- Hideyuki Yoshida
- YCI Laboratory for Immunological Transcriptomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
| |
Collapse
|
42
|
Brannan EO, Hartley GA, O’Neill RJ. Mechanisms of Rapid Karyotype Evolution in Mammals. Genes (Basel) 2023; 15:62. [PMID: 38254952 PMCID: PMC10815390 DOI: 10.3390/genes15010062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Chromosome reshuffling events are often a foundational mechanism by which speciation can occur, giving rise to highly derivative karyotypes even amongst closely related species. Yet, the features that distinguish lineages prone to such rapid chromosome evolution from those that maintain stable karyotypes across evolutionary time are still to be defined. In this review, we summarize lineages prone to rapid karyotypic evolution in the context of Simpson's rates of evolution-tachytelic, horotelic, and bradytelic-and outline the mechanisms proposed to contribute to chromosome rearrangements, their fixation, and their potential impact on speciation events. Furthermore, we discuss relevant genomic features that underpin chromosome variation, including patterns of fusions/fissions, centromere positioning, and epigenetic marks such as DNA methylation. Finally, in the era of telomere-to-telomere genomics, we discuss the value of gapless genome resources to the future of research focused on the plasticity of highly rearranged karyotypes.
Collapse
Affiliation(s)
- Emry O. Brannan
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; (E.O.B.); (G.A.H.)
| | - Gabrielle A. Hartley
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; (E.O.B.); (G.A.H.)
| | - Rachel J. O’Neill
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; (E.O.B.); (G.A.H.)
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
43
|
Diallo K, Missa KF, Tuo JK, Amoikon TLS, Bla BK, Bonfoh B. Narrative review of application of metagenomic approaches to study the link between oropharyngeal microbiome and infectious diseases. Front Microbiol 2023; 14:1292526. [PMID: 38163063 PMCID: PMC10755466 DOI: 10.3389/fmicb.2023.1292526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Context Viral and bacterial infections are major causes of morbidity and mortality worldwide. The oropharyngeal microbiome could play an important role in preventing invasion of viral and bacterial pathogens by modulating its content and the host's innate immune response. Next Generation Sequencing (NGS) technologies now enable in-depth study of the genomes of microbial communities. The objective of this review is to highlight how metagenomics has contributed to establish links between changes in the oropharyngeal microbiome and emergence of bacterial and viral diseases. Method Two search engines, PubMed and Google scholar were used with filters to focus searches on peer-reviewed original articles published between January 2010 and September 2022. Different keywords were used and only articles with metagenomic approaches were included. Results This review shows that there were few articles studying the link between oropharyngeal microbiome and infectious diseases. Studies on viruses using metagenomic techniques have been growing exponentially in recent years due to the Covid-19 pandemic. This review shows that most studies still focus on the basic identification of microorganisms in different disease states and multiple microorganisms (Alloprevotella, Prevotella, Bacteroides, Haemophilus, Streptococcus, Klebsiella sp., Acinetobacter sp…), have been associated with development of infections such as childhood wheezing, influenza, Covid-19, pneumonia, meningitis, and tuberculosis. Conclusion The oropharyngeal microbiome, despite its importance, remains poorly studied. A limited number of articles were identified but this number has increased exponentially since 2020 due to research conducted on Covid-19. These studies have shown that metagenomic has contributed to the unbiased identification of bacteria that could be used as biomarkers of various diseases and that further research is now needed to capitalize on those findings for human health benefit.
Collapse
Affiliation(s)
- Kanny Diallo
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire (CSRS), Abidjan, Côte d’Ivoire
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Kouassi Firmin Missa
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire (CSRS), Abidjan, Côte d’Ivoire
- Université Félix Houphouët Boigny de Cocody, Abidjan, Côte d’Ivoire
| | - Jeremie Kolotioloman Tuo
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire (CSRS), Abidjan, Côte d’Ivoire
- Institut National Polytechnique Félix Houphouët-Boigny (INP-HB), Yamoussoukro, Côte d’Ivoire
| | | | - Brice K. Bla
- Université Félix Houphouët Boigny de Cocody, Abidjan, Côte d’Ivoire
| | - Bassirou Bonfoh
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire (CSRS), Abidjan, Côte d’Ivoire
| |
Collapse
|
44
|
Fu X, Wang Q, Ma B, Zhang B, Sun K, Yu X, Ye Z, Zhang M. Advances in Detection Techniques for the H5N1 Avian Influenza Virus. Int J Mol Sci 2023; 24:17157. [PMID: 38138987 PMCID: PMC10743243 DOI: 10.3390/ijms242417157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Avian influenza is caused by avian influenza virus infection; the H5N1 avian influenza virus is a highly pathogenic subtype, affecting poultry and human health. Since the discovery of the highly pathogenic subtype of the H5N1 avian influenza virus, it has caused enormous losses to the poultry farming industry. It was recently found that the H5N1 avian influenza virus tends to spread among mammals. Therefore, early rapid detection methods are highly significant for effectively preventing the spread of H5N1. This paper discusses the detection technologies used in the detection of the H5N1 avian influenza virus, including serological detection technology, immunological detection technology, molecular biology detection technology, genetic detection technology, and biosensors. Comparisons of these detection technologies were analyzed, aiming to provide some recommendations for the detection of the H5N1 avian influenza virus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mingzhou Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China; (X.F.); (Q.W.); (B.M.); (B.Z.); (K.S.); (X.Y.); (Z.Y.)
| |
Collapse
|
45
|
Beeler JS, Bolton KL. How low can you go?: Methodologic considerations in clonal hematopoiesis variant calling. Leuk Res 2023; 135:107419. [PMID: 37956474 DOI: 10.1016/j.leukres.2023.107419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023]
Abstract
Clonal hematopoiesis (CH) is defined by the presence of an expanded clonal hematopoietic cell population due to an acquired mutation conferring a selective growth advantage and is known to predispose to hematologic malignancy. In this review, we discuss sequencing methods for CH detection in bulk sequencing data and corresponding bioinformatic approaches for variant calling, filtering, and curation. We detail practical recommendations for CH calling. Finally, we discuss how improvements in CH sequencing and bioinformatic approaches will enable the characterization of CH trajectories, its impact on human health, and therapeutic approaches to mitigate its adverse effects.
Collapse
Affiliation(s)
- J Scott Beeler
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kelly L Bolton
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
46
|
Martinez ZA, Murray RM, Thomson MW. TRILL: ORCHESTRATING MODULAR DEEP-LEARNING WORKFLOWS FOR DEMOCRATIZED, SCALABLE PROTEIN ANALYSIS AND ENGINEERING. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563881. [PMID: 37986952 PMCID: PMC10659302 DOI: 10.1101/2023.10.24.563881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Deep-learning models have been rapidly adopted by many fields, partly due to the deluge of data humanity has amassed. In particular, the petabases of biological sequencing data enable the unsupervised training of protein language models that learn the "language of life." However, due to their prohibitive size and complexity, contemporary deep-learning models are often unwieldy, especially for scientists with limited machine learning backgrounds. TRILL (TRaining and Inference using the Language of Life) is a platform for creative protein design and discovery. Leveraging several state-of-the-art models such as ESM-2, DiffDock, and RFDiffusion, TRILL allows researchers to generate novel proteins, predict 3-D structures, extract high-dimensional representations of proteins, functionally classify proteins and more. What sets TRILL apart is its ability to enable complex pipelines by chaining together models and effectively merging the capabilities of different models to achieve a sum greater than its individual parts. Whether using Google Colab with one GPU or a supercomputer with hundreds, TRILL allows scientists to effectively utilize models with millions to billions of parameters by using optimized training strategies such as ZeRO-Offload and distributed data parallel. Therefore, TRILL not only bridges the gap between complex deep-learning models and their practical application in the field of biology, but also simplifies the orchestration of these models into comprehensive workflows, democratizing access to powerful methods. Documentation: https://trill.readthedocs.io/en/latest/home.html.
Collapse
Affiliation(s)
- Zachary A Martinez
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125
| | - Richard M Murray
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125
| | - Matt W Thomson
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
47
|
de Oliveira ÉM, Beltrão EMB, Pimentel MIS, Lopes ACDS. Occurrence of high-risk clones of Klebsiella pneumoniae ST11, ST340, and ST855 carrying the blaKPC-2, blaNDM-1, blaNDM-5, and blaNDM-7 genes from colonized and infected patients in Brazil. J Appl Microbiol 2023; 134:lxad242. [PMID: 37880999 DOI: 10.1093/jambio/lxad242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/28/2023] [Accepted: 10/24/2023] [Indexed: 10/27/2023]
Abstract
AIMS Determine which sequence type (ST) clones were carrying the blaKPC, blaNDM, blaVIM, blaIMP, and blaGES genes and their variants in clinical isolates of multidrug-resistant Klebsiella pneumoniae. METHODS AND RESULTS Ten K. pneumoniae isolates were obtained from the colonized and infected patients in a public hospital in the city of Recife-PE, in northeastern Brazil, and were further analyzed. The detection of carbapenem resistance genes and the seven housekeeping genes [for multilocus sequence typing (MLST) detection] were done with PCR and sequencing. The blaKPC and blaNDM genes were detected concomitantly in all isolates, with variants being detected blaNDM-1, blaNDM-5, blaNDM-7, and blaKPC-2. The blaKPC-2 and blaNDM-1 combination being the most frequent. Molecular typing by MLST detected three types of high-risk ST clones, associated with the clonal complex 258, ST11/CC258 in eight isolates, and ST855/CC258 and ST340/CC258 in the other two isolates. CONCLUSIONS These findings are worrying, as they have a negative impact on the scenario of antimicrobial resistance, and show the high genetic variability of K. pneumoniae and its ability to mutate resistance genes and risk of dissemination via different ST clones.
Collapse
Affiliation(s)
- Érica Maria de Oliveira
- Departamento de Medicina Tropical, Universidade Federal de Pernambuco-UFPE, Recife, PE 50732-970, Brazil
| | | | | | | |
Collapse
|
48
|
Kitashova A, Brodsky V, Chaturvedi P, Pierides I, Ghatak A, Weckwerth W, Nägele T. Quantifying the impact of dynamic plant-environment interactions on metabolic regulation. JOURNAL OF PLANT PHYSIOLOGY 2023; 290:154116. [PMID: 37839392 DOI: 10.1016/j.jplph.2023.154116] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
A plant's genome encodes enzymes, transporters and many other proteins which constitute metabolism. Interactions of plants with their environment shape their growth, development and resilience towards adverse conditions. Although genome sequencing technologies and applications have experienced triumphantly rapid development during the last decades, enabling nowadays a fast and cheap sequencing of full genomes, prediction of metabolic phenotypes from genotype × environment interactions remains, at best, very incomplete. The main reasons are a lack of understanding of how different levels of molecular organisation depend on each other, and how they are constituted and expressed within a setup of growth conditions. Phenotypic plasticity, e.g., of the genetic model plant Arabidopsis thaliana, has provided important insights into plant-environment interactions and the resulting genotype x phenotype relationships. Here, we summarize previous and current findings about plant development in a changing environment and how this might be shaped and reflected in metabolism and its regulation. We identify current challenges in the study of plant development and metabolic regulation and provide an outlook of how methodological workflows might support the application of findings made in model systems to crops and their cultivation.
Collapse
Affiliation(s)
- Anastasia Kitashova
- LMU Munich, Faculty of Biology, Plant Evolutionary Cell Biology, 82152, Planegg, Germany.
| | - Vladimir Brodsky
- LMU Munich, Faculty of Biology, Plant Evolutionary Cell Biology, 82152, Planegg, Germany.
| | - Palak Chaturvedi
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Iro Pierides
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Arindam Ghatak
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria; Vienna Metabolomics Center, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Wolfram Weckwerth
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria; Vienna Metabolomics Center, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Thomas Nägele
- LMU Munich, Faculty of Biology, Plant Evolutionary Cell Biology, 82152, Planegg, Germany.
| |
Collapse
|
49
|
Bianconi I, Aschbacher R, Pagani E. Current Uses and Future Perspectives of Genomic Technologies in Clinical Microbiology. Antibiotics (Basel) 2023; 12:1580. [PMID: 37998782 PMCID: PMC10668849 DOI: 10.3390/antibiotics12111580] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/16/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023] Open
Abstract
Recent advancements in sequencing technology and data analytics have led to a transformative era in pathogen detection and typing. These developments not only expedite the process, but also render it more cost-effective. Genomic analyses of infectious diseases are swiftly becoming the standard for pathogen analysis and control. Additionally, national surveillance systems can derive substantial benefits from genomic data, as they offer profound insights into pathogen epidemiology and the emergence of antimicrobial-resistant strains. Antimicrobial resistance (AMR) is a pressing global public health issue. While clinical laboratories have traditionally relied on culture-based antimicrobial susceptibility testing, the integration of genomic data into AMR analysis holds immense promise. Genomic-based AMR data can furnish swift, consistent, and highly accurate predictions of resistance phenotypes for specific strains or populations, all while contributing invaluable insights for surveillance. Moreover, genome sequencing assumes a pivotal role in the investigation of hospital outbreaks. It aids in the identification of infection sources, unveils genetic connections among isolates, and informs strategies for infection control. The One Health initiative, with its focus on the intricate interconnectedness of humans, animals, and the environment, seeks to develop comprehensive approaches for disease surveillance, control, and prevention. When integrated with epidemiological data from surveillance systems, genomic data can forecast the expansion of bacterial populations and species transmissions. Consequently, this provides profound insights into the evolution and genetic relationships of AMR in pathogens, hosts, and the environment.
Collapse
Affiliation(s)
- Irene Bianconi
- Laboratory of Microbiology and Virology, Provincial Hospital of Bolzano (SABES-ASDAA), Lehrkrankenhaus der Paracelsus Medizinischen Privatuniversitätvia Amba Alagi 5, 39100 Bolzano, Italy; (R.A.); (E.P.)
| | | | | |
Collapse
|
50
|
Mallawaarachchi V, Roach MJ, Decewicz P, Papudeshi B, Giles SK, Grigson SR, Bouras G, Hesse RD, Inglis LK, Hutton ALK, Dinsdale EA, Edwards RA. Phables: from fragmented assemblies to high-quality bacteriophage genomes. Bioinformatics 2023; 39:btad586. [PMID: 37738590 PMCID: PMC10563150 DOI: 10.1093/bioinformatics/btad586] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/14/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023] Open
Abstract
MOTIVATION Microbial communities have a profound impact on both human health and various environments. Viruses infecting bacteria, known as bacteriophages or phages, play a key role in modulating bacterial communities within environments. High-quality phage genome sequences are essential for advancing our understanding of phage biology, enabling comparative genomics studies and developing phage-based diagnostic tools. Most available viral identification tools consider individual sequences to determine whether they are of viral origin. As a result of challenges in viral assembly, fragmentation of genomes can occur, and existing tools may recover incomplete genome fragments. Therefore, the identification and characterization of novel phage genomes remain a challenge, leading to the need of improved approaches for phage genome recovery. RESULTS We introduce Phables, a new computational method to resolve phage genomes from fragmented viral metagenome assemblies. Phables identifies phage-like components in the assembly graph, models each component as a flow network, and uses graph algorithms and flow decomposition techniques to identify genomic paths. Experimental results of viral metagenomic samples obtained from different environments show that Phables recovers on average over 49% more high-quality phage genomes compared to existing viral identification tools. Furthermore, Phables can resolve variant phage genomes with over 99% average nucleotide identity, a distinction that existing tools are unable to make. AVAILABILITY AND IMPLEMENTATION Phables is available on GitHub at https://github.com/Vini2/phables.
Collapse
Affiliation(s)
- Vijini Mallawaarachchi
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - Michael J Roach
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - Przemyslaw Decewicz
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw 02-096, Poland
| | - Bhavya Papudeshi
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - Sarah K Giles
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - Susanna R Grigson
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - George Bouras
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
- The Department of Surgery—Otolaryngology Head and Neck Surgery, Central Adelaide Local Health Network, Adelaide, South Australia 5000, Australia
| | - Ryan D Hesse
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - Laura K Inglis
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - Abbey L K Hutton
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - Elizabeth A Dinsdale
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - Robert A Edwards
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| |
Collapse
|