1
|
Vaez M, Asgari M, Hirvonen L, Bakir G, Khattignavong E, Ezzo M, Aguayo S, Schuh CM, Gough K, Bozec L. Modulation of the biophysical and biochemical properties of collagen by glycation for tissue engineering applications. Acta Biomater 2023; 155:182-198. [PMID: 36435437 DOI: 10.1016/j.actbio.2022.11.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022]
Abstract
The structural and functional properties of collagen are modulated by the presence of intramolecular and intermolecular crosslinks. Advanced Glycation End-products (AGEs) can produce intermolecular crosslinks by bonding the free amino groups of neighbouring proteins. In this research, the following hypothesis is explored: The accumulation of AGEs in collagen decreases its proteolytic degradation rates while increasing its stiffness. Fluorescence Lifetime Imaging (FLIM) and Fourier-transform infrared spectroscopy (FTIR) detect biochemical changes in collagen scaffolds during the glycation process. The accumulation of AGEs increases exponentially in the collagen scaffolds as a function of Methylglyoxal (MGO) concentration by performing autofluorescence measurement and competitive ELISA. Glycated scaffolds absorb water at a much higher rate confirming the direct affinity between AGEs and interstitial water within collagen fibrils. In addition, the topology of collagen fibrils as observed by Atomic Force Microscopy (AFM) is a lot more defined following glycation. The elastic modulus of collagen fibrils decreases as a function of glycation, whereas the elastic modulus of collagen scaffolds increases. Finally, the enzymatic degradation of collagen by bacterial collagenase shows a sigmoidal pattern with a much slower degradation rate in the glycated scaffolds. This study identifies unique variations in the properties of collagen following the accumulation of AGEs. STATEMENT OF SIGNIFICANCE: In humans, Advanced Glycation End-products (AGEs) are naturally produced as a result of aging process. There is an evident lack of knowledge in the basic science literature explaining the biomechanical impact of AGE-mediated crosslinks on the functional and structural properties of collagen at both the nanoscale (single fibrils) and mesoscale (bundles of fibrils). This research, demonstrates how it is possible to harness this natural phenomenon in vitro to enhance the properties of engineered collagen fibrils and scaffolds. This study identifies unique variations in the properties of collagen at nanoscale and mesoscale following accumulation of AGEs. In their approach, they investigate the unique properties conferred to collagen, namely enhanced water sorption, differential elastic modulus, and finally sigmoidal proteolytic degradation behavior.
Collapse
Affiliation(s)
- Mina Vaez
- Faculty of Dentistry, University of Toronto, Toronto, Canada.
| | - Meisam Asgari
- Department of Mechanical Engineering, McGill University, Montreal, Canada
| | - Liisa Hirvonen
- Centre for Microscopy, Characterisation & Analysis, University of Western Australia, Perth, Australia
| | - Gorkem Bakir
- Department of Chemistry, University of Manitoba, Winnipeg, Canada
| | | | - Maya Ezzo
- Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - Sebastian Aguayo
- Dentistry School, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Christina M Schuh
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Kathleen Gough
- Department of Chemistry, University of Manitoba, Winnipeg, Canada
| | - Laurent Bozec
- Faculty of Dentistry, University of Toronto, Toronto, Canada
| |
Collapse
|
2
|
Zhu J, Li Z, Zou Y, Lu G, Ronca A, D’Amora U, Liang J, Fan Y, Zhang X, Sun Y. Advanced application of collagen-based biomaterials in tissue repair and restoration. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2022. [DOI: 10.1186/s42825-022-00102-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AbstractIn tissue engineering, bioactive materials play an important role, providing structural support, cell regulation and establishing a suitable microenvironment to promote tissue regeneration. As the main component of extracellular matrix, collagen is an important natural bioactive material and it has been widely used in scientific research and clinical applications. Collagen is available from a wide range of animal origin, it can be produced by synthesis or through recombinant protein production systems. The use of pure collagen has inherent disadvantages in terms of physico-chemical properties. For this reason, a processed collagen in different ways can better match the specific requirements as biomaterial for tissue repair. Here, collagen may be used in bone/cartilage regeneration, skin regeneration, cardiovascular repair and other fields, by following different processing methods, including cross-linked collagen, complex, structured collagen, mineralized collagen, carrier and other forms, promoting the development of tissue engineering. This review summarizes a wide range of applications of collagen-based biomaterials and their recent progress in several tissue regeneration fields. Furthermore, the application prospect of bioactive materials based on collagen was outlooked, aiming at inspiring more new progress and advancements in tissue engineering research.
Graphical Abstract
Collapse
|
3
|
Hardan L, Daood U, Bourgi R, Cuevas-Suárez CE, Devoto W, Zarow M, Jakubowicz N, Zamarripa-Calderón JE, Radwanski M, Orsini G, Lukomska-Szymanska M. Effect of Collagen Crosslinkers on Dentin Bond Strength of Adhesive Systems: A Systematic Review and Meta-Analysis. Cells 2022; 11:cells11152417. [PMID: 35954261 PMCID: PMC9368291 DOI: 10.3390/cells11152417] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023] Open
Abstract
This study aimed to identify the role of crosslinking agents in the resin–dentin bond strength (BS) when used as modifiers in adhesives or pretreatments to the dentin surface through a systematic review and meta-analysis. This paper was conducted according to the directions of the PRISMA 2020 statement. The research question of this review was: “Would the use of crosslinkers agents improve the BS of resin-based materials to dentin?” The literature search was conducted in the following databases: Embase, PubMed, Scielo, Scopus, and Web of Science. Manuscripts that reported the effect on the BS after the use of crosslinking agents were included. The meta-analyses were performed using Review Manager v5.4.1. The comparisons were performed by comparing the standardized mean difference between the BS values obtained using the crosslinker agent or the control group. The subgroup comparisons were performed based on the adhesive strategy used (total-etch or self-etch). The immediate and long-term data were analyzed separately. A total of 50 articles were included in the qualitative analysis, while 45 articles were considered for the quantitative analysis. The meta-analysis suggested that pretreatment with epigallocatechin-3-gallate (EGCG), carbodiimide, ethylenediaminetetraacetic acid (EDTA), glutaraldehyde, and riboflavin crosslinking agents improved the long-term BS of resin composites to dentin (p ≤ 0.02). On the other hand, the use of proanthocyanidins as a pretreatment improved both the immediate and long-term BS values (p ≤ 0.02). When incorporated within the adhesive formulation, only glutaraldehyde, riboflavin, and EGCG improved the long-term BS to dentin. It could be concluded that the application of different crosslinking agents such as carbodiimide, EDTA, glutaraldehyde, riboflavin, and EGCG improved the long-term BS of adhesive systems to dentin. This effect was observed when these crosslinkers were used as a separate step and when incorporated within the formulation of the adhesive system.
Collapse
Affiliation(s)
- Louis Hardan
- Department of Restorative Dentistry, School of Dentistry, Saint-Joseph University, Beirut 1107 2180, Lebanon
| | - Umer Daood
- Clinical Dentistry, Restorative Division, Faculty of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, Wilayah Persekutuan, Kuala Lumpur 57000, Malaysia
| | - Rim Bourgi
- Department of Restorative Dentistry, School of Dentistry, Saint-Joseph University, Beirut 1107 2180, Lebanon
| | - Carlos Enrique Cuevas-Suárez
- Dental Materials Laboratory, Academic Area of Dentistry, Autonomous University of Hidalgo State, Circuito Ex Hacienda La Concepción S/N, San Agustín Tlaxiaca 42160, Mexico
- Correspondence: (C.E.C.-S.); (M.L.-S.); Tel.: +52-(771)-72000 (C.E.C.-S.); +48-42-675-74-61 (M.L.-S.)
| | | | - Maciej Zarow
- “NZOZ SPS Dentist” Dental Clinic and Postgraduate Course Centre, pl. Inwalidow 7/5, 30-033 Cracow, Poland
| | - Natalia Jakubowicz
- “NZOZ SPS Dentist” Dental Clinic and Postgraduate Course Centre, pl. Inwalidow 7/5, 30-033 Cracow, Poland
| | - Juan Eliezer Zamarripa-Calderón
- Dental Materials Laboratory, Academic Area of Dentistry, Autonomous University of Hidalgo State, Circuito Ex Hacienda La Concepción S/N, San Agustín Tlaxiaca 42160, Mexico
| | - Mateusz Radwanski
- Department of Endodontics, Chair of Conservative Dentistry and Endodontics, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland
| | - Giovana Orsini
- Department of Clinical Sciences and Stomatology, School of Medicine, Polytechnic University of Marche, Via Tronto 10, 60126 Ancona, Italy
| | - Monika Lukomska-Szymanska
- Department of General Dentistry, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland
- Correspondence: (C.E.C.-S.); (M.L.-S.); Tel.: +52-(771)-72000 (C.E.C.-S.); +48-42-675-74-61 (M.L.-S.)
| |
Collapse
|
4
|
Yang L, Miura T, Kasahara M. Effectively improved 3-dimensional structural stability of atelocollagen-gelatin sponge biomaterial by heat treatment. Dent Mater J 2022; 41:337-345. [PMID: 35418547 DOI: 10.4012/dmj.2021-136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Atelocollagen-gelatin (ACG) sponge was fabricated from atelocollagen and gelatin by lyophilization without introducing toxic substances. This study aimed to investigate the effects of heat treatment on the 3-dimensional structural stability of ACG sponge biomaterial. ACG sponge samples were fabricated and heat treated at 125oC for 12 h in the vacuum. The results revealed that heat treatment did not affect porosity, pore size and mechanical compressive strength. Heat-treated ACG sponge showed decreased absorbance and peak shift of amid I (C=O) stretches, slightly higher water uptake degree and significantly decreased in vitro degradation rate. Moreover, heat-treated ACG sponge maintained good 3-dimensional surface morphology and porous microstructure throughout 7 days, while non-heat-treated ACG sponge collapsed in less than 24 h. The human mesenchymal stromal cells (hMSCs) were shown to adhere and grow well on heat-treated ACG sponges. These results indicate that heat treatment is effective and safe to stabilize 3-dimensional ACG sponge biomaterial for tissue engineering.
Collapse
Affiliation(s)
- Longqiang Yang
- Department of Pharmacology, Tokyo Dental College.,Tokyo Dental College Research Branding Project, Tokyo Dental College
| | | | - Masataka Kasahara
- Department of Pharmacology, Tokyo Dental College.,Tokyo Dental College Research Branding Project, Tokyo Dental College
| |
Collapse
|
5
|
Hamdaoui ME, Levy AM, Stuber AB, Girkin CA, Kraft TW, Samuels BC, Grytz R. Scleral crosslinking using genipin can compromise retinal structure and function in tree shrews. Exp Eye Res 2022; 219:109039. [PMID: 35339475 DOI: 10.1016/j.exer.2022.109039] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/08/2022] [Accepted: 03/13/2022] [Indexed: 01/29/2023]
Abstract
Scleral crosslinking using genipin has been identified as a promising treatment approach for myopia control. The efficacy of genipin to alter biomechanical properties of the sclera has been shown in several animal models of myopia but its safety profile remains unclear. In this safety study, we aim to investigate the effect of scleral crosslinking using retrobulbar injections of genipin on retinal structure and function at genipin doses that were shown to be effective in slowing myopia progression in juvenile tree shrews. To this end, three or five retrobulbar injections of genipin at 0 mM (sham), 10 mM, or 20 mM were performed in one eye every other day. Form deprivation myopia was induced in the injected eye. We quantified retinal function changes using full-field electroretinography and retinal structure changes using in vivo optical coherence tomography imaging and ex vivo histology. The optical coherence tomography results revealed significant thinning of the peripapillary retinal nerve fiber layer in all genipin treated groups including the lowest dose group, which showed no significant treatment effect in slowing myopia progression. In contrast, inducing form deprivation myopia alone and in combination with sham injections caused no obvious thinning of the retinal nerve fiber layer. Electroretinography results showed a significant desensitizing shift of the b-wave semi-saturation constant in the sham group and the second highest genipin dose group, and a significant reduction in b-wave maxima in the two highest genipin dose groups. The ex vivo histology revealed noticeable degeneration of photoreceptors and retinal pigment epithelium in one of two investigated eyes of the highest genipin dose group. While scleral crosslinking using genipin may still be a feasible treatment option for myopia control, our results suggest that repeated retrobulbar injections of genipin at 10 mM or higher are not safe in tree shrews. An adequate and sustained delivery strategy of genipin at lower concentrations will be needed to achieve a safe and effective scleral crosslinking treatment for myopia control in tree shrews. Caution should be taken if the proposed treatment approach is translated to humans.
Collapse
Affiliation(s)
- Mustapha El Hamdaoui
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alexander M Levy
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Aaron B Stuber
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Christopher A Girkin
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Timothy W Kraft
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brian C Samuels
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rafael Grytz
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
6
|
Chen W, Jin H, Zhang H, Wu L, Chen G, Shao H, Wang S, He X, Zheng S, Cao CY, Li QL. Synergistic effects of graphene quantum dots and carbodiimide in promoting resin-dentin bond durability. Dent Mater 2021; 37:1498-1510. [PMID: 34465445 DOI: 10.1016/j.dental.2021.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 05/09/2021] [Accepted: 07/22/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Resin-based dental adhesion is mostly utilized in minimally invasive operative dentistry. However, improving the durability and stability of resin-dentin bond interfaces remain a challenge. Graphene quantum dots (GQDs) reinforced by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) were introduced to modify the resin-dentin bond interfaces, thereby promoting their durability and stability. METHODS GQDs, EDC, and EDC+GQDs groups were designed to evaluate the effects of GQDs and EDC on collagenase activity, the interaction of GQDs with collagen, and the resin-dentin interface. First, the effects of GQDs and EDC on collagenase activity was evaluated by Collagenase (EC 3.4.24.3) reacting with its substrate. The interaction of GQDs and EDC with collagen were evaluated by cross-linking degree analysis, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, attenuated total reflection Fourier transform infrared spectroscopy and enzymatic hydrolysis. Second, the acid-etched and rinse adhesive system was used to evaluate the resin-dentin bond on the basis of microtensile bond strength, in situ zymography and fluorescence confocal laser scanning microscopy. RESULTS GQDs could inhibit collagenase activity. GQDs with the aid of EDC could cross-link collagen via covalent bonds and improve the anti-enzymatic hydrolysis of collagen. In the resin-dentin adhesion model, the μTBS of the EDC+GQDs group was significantly higher than the other control groups after thermocycling. The addition of EDC to GQDs could inhibit matrix metalloproteinase activity and promote the integrity of the bonding interfaces after thermocycling. SIGNIFICANCE This study presents a novel strategy to modify the resin-dentin interface and provides a new application for GQDs. This strategy has the potential to improve the durability of resin-based restoration in dentistry.
Collapse
Affiliation(s)
- Wendy Chen
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China.
| | - Huimin Jin
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China.
| | - Heng Zhang
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China.
| | - Leping Wu
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China.
| | - Guoqing Chen
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China.
| | - Hui Shao
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China.
| | - Shengrui Wang
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China.
| | - Xiaoxue He
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China.
| | - Shunli Zheng
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China.
| | - Chris Ying Cao
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China.
| | - Quan-Li Li
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
7
|
Wu L, Wang Q, Li Y, Yang M, Dong M, He X, Zheng S, Cao CY, Zhou Z, Zhao Y, Li QL. A Dopamine Acrylamide Molecule for Promoting Collagen Biomimetic Mineralization and Regulating Crystal Growth Direction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39142-39156. [PMID: 34433244 DOI: 10.1021/acsami.1c12412] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The reconstruction of the intra/interfibrillar mineralized collagen microstructure is extremely important in biomaterial science and regeneration medicine. However, certain problems, such as low efficiency and long period of mineralization, are apparent, and the mechanism of interfibrillar mineralization is often neglected in the present literature. Thus, we propose a novel model of biomimetic collagen mineralization that uses molecules with the dual function of cross-linking collagen and regulating collagen mineralization to construct the intrafibrillar and interfibrillar collagen mineralization of the structure of mineralized collagen hard tissues. In the present study completed in vitro, N-2-(3,4-dihydroxyphenyl) acrylamide (DAA) is used to bind and cross-link collagen molecules and further stabilize the self-assembled collagen fibers. The DAA-collagen complex provides more affinity with calcium and phosphate ions, which can reduce the calcium phosphate/collagen interfacial energy to promote hydroxyapatite (HA) nucleation and accelerate the rate of collagen fiber mineralization. Besides inducing intrafibrillar mineralization, the DAA-collagen complex mineralization template can realize interfibrillar mineralization with the c-axis of the HA crystal on the surface of collagen fibers and between fibers that are parallel to the long axis of collagen fibers. The DAA-collagen complex, as a new type of mineralization template, may provide a new collagen mineralization strategy to produce a mineralized scaffold material for tissue engineering or develop bone-like materials.
Collapse
Affiliation(s)
- Leping Wu
- Department of Plastic Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, China
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Qingqing Wang
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Yuzhu Li
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Mengmeng Yang
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Menglu Dong
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Xiaoxue He
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Shunli Zheng
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Chris Ying Cao
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Zheng Zhou
- School of Dentistry, University of Detroit Mercy, Detroit, Michigan 48208-2576, United States
| | - Yuancong Zhao
- Key Lab. of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Quan-Li Li
- Department of Plastic Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, China
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
8
|
Hardan L, Bourgi R, Kharouf N, Mancino D, Zarow M, Jakubowicz N, Haikel Y, Cuevas-Suárez CE. Bond Strength of Universal Adhesives to Dentin: A Systematic Review and Meta-Analysis. Polymers (Basel) 2021; 13:814. [PMID: 33799923 PMCID: PMC7961712 DOI: 10.3390/polym13050814] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023] Open
Abstract
Currently, the availability of a wide variety of universal adhesives makes it difficult for clinicians to choose the correct system for specific bonding situations to dentin substrate. This study aimed to determine whether there are any alternative techniques or additional strategies available to enhance the bond strength of universal adhesives to dentin through a systematic review and meta-analysis. Two reviewers executed a literature search up to September 2020 in four electronic databases: PubMed, ISI Web of Science, Scopus, and EMBASE. Only in vitro studies that reported the dentin bond strength of universal adhesives using additional strategies were included. An analysis was carried out using Review Manager Software version 5.3.5 (The Nordic Cochrane Centre, The Cochrane Collaboration, Copenhagen, Denmark). The methodological quality of each in vitro study was assessed according to the parameters of a previous systematic. A total of 5671 potentially relevant studies were identified. After title and abstract examination, 74 studies remained in systematic review. From these, a total of 61 studies were included in the meta-analysis. The bond strength of universal adhesives to dentin was improved by the use of one of the following techniques: Previous application of matrix metalloproteinases (MMP) inhibitors (p < 0.001), prolonged application time (p = 0.007), scrubbing technique (p < 0.001), selective dentin etching (p < 0.001), non-atmospheric plasma (p = 0.01), ethanol-wet bonding (p < 0.01), prolonged blowing time (p = 0.02), multiple layer application (p = 0.005), prolonged curing time (p = 0.006), and hydrophobic layer coating (p < 0.001). On the other hand, the use of a shortened application time (p = 0.006), and dentin desensitizers (p = 0.01) impaired the bond strength of universal adhesives to dentin. Most of the analyses performed showed a high heterogenicity. The in vitro evidence suggests that the application of universal adhesives using some alternative techniques or additional strategies may be beneficial for improving their bonding performance to dentin. This research received no external funding. Considering that this systematic review was carried out only with in vitro studies, registration was not performed.
Collapse
Affiliation(s)
- Louis Hardan
- Department of Restorative Dentistry, School of Dentistry, Saint-Joseph University, 1107 2180 Beirut, Lebanon; (L.H.); (R.B.)
| | - Rim Bourgi
- Department of Restorative Dentistry, School of Dentistry, Saint-Joseph University, 1107 2180 Beirut, Lebanon; (L.H.); (R.B.)
| | - Naji Kharouf
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, Biomaterials and Bioengineering, 67000 Strasbourg, France; (D.M.); (Y.H.)
- Department of Endodontics, Faculty of Dental Medicine, Strasbourg University, 67000 Strasbourg, France
| | - Davide Mancino
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, Biomaterials and Bioengineering, 67000 Strasbourg, France; (D.M.); (Y.H.)
- Department of Endodontics, Faculty of Dental Medicine, Strasbourg University, 67000 Strasbourg, France
| | - Maciej Zarow
- Private Practice, “NZOZ SPS Dentist” Dental Clinic and Postgraduate Course Centre, pl. Inwalidow 7/5, 30-033 Cracow, Poland; (M.Z.); (N.J.)
| | - Natalia Jakubowicz
- Private Practice, “NZOZ SPS Dentist” Dental Clinic and Postgraduate Course Centre, pl. Inwalidow 7/5, 30-033 Cracow, Poland; (M.Z.); (N.J.)
| | - Youssef Haikel
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, Biomaterials and Bioengineering, 67000 Strasbourg, France; (D.M.); (Y.H.)
| | - Carlos Enrique Cuevas-Suárez
- Dental Materials Laboratory, Academic Area of Dentistry, Autonomous University of Hidalgo State, Circuito Ex Hacienda La Concepción S/N, San Agustín Tlaxiaca, Hidalgo 42160, Mexico
| |
Collapse
|
9
|
Sarrigiannidis S, Rey J, Dobre O, González-García C, Dalby M, Salmeron-Sanchez M. A tough act to follow: collagen hydrogel modifications to improve mechanical and growth factor loading capabilities. Mater Today Bio 2021; 10:100098. [PMID: 33763641 PMCID: PMC7973388 DOI: 10.1016/j.mtbio.2021.100098] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/16/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
Collagen hydrogels are among the most well-studied platforms for drug delivery and in situ tissue engineering, thanks to their low cost, low immunogenicity, versatility, biocompatibility, and similarity to the natural extracellular matrix (ECM). Despite collagen being largely responsible for the tensile properties of native connective tissues, collagen hydrogels have relatively low mechanical properties in the absence of covalent cross-linking. This is particularly problematic when attempting to regenerate stiffer and stronger native tissues such as bone. Furthermore, in contrast to hydrogels based on ECM proteins such as fibronectin, collagen hydrogels do not have any growth factor (GF)-specific binding sites and often cannot sequester physiological (small) amounts of the protein. GF binding and in situ presentation are properties that can aid significantly in the tissue regeneration process by dictating cell fate without causing adverse effects such as malignant tumorigenic tissue growth. To alleviate these issues, researchers have developed several strategies to increase the mechanical properties of collagen hydrogels using physical or chemical modifications. This can expand the applicability of collagen hydrogels to tissues subject to a continuous load. GF delivery has also been explored, mathematically and experimentally, through the development of direct loading, chemical cross-linking, electrostatic interaction, and other carrier systems. This comprehensive article explores the ways in which these parameters, mechanical properties and GF delivery, have been optimized in collagen hydrogel systems and examines their in vitro or in vivo biological effect. This article can, therefore, be a useful tool to streamline future studies in the field, by pointing researchers into the appropriate direction according to their collagen hydrogel design requirements.
Collapse
Affiliation(s)
| | | | - O. Dobre
- Centre for the Cellular Microenvironment, University of Glasgow, Glasgow G12 8LT, UK
| | - C. González-García
- Centre for the Cellular Microenvironment, University of Glasgow, Glasgow G12 8LT, UK
| | - M.J. Dalby
- Centre for the Cellular Microenvironment, University of Glasgow, Glasgow G12 8LT, UK
| | - M. Salmeron-Sanchez
- Centre for the Cellular Microenvironment, University of Glasgow, Glasgow G12 8LT, UK
| |
Collapse
|
10
|
Bourgi R, Daood U, Bijle MN, Fawzy A, Ghaleb M, Hardan L. Reinforced Universal Adhesive by Ribose Crosslinker: A Novel Strategy in Adhesive Dentistry. Polymers (Basel) 2021; 13:704. [PMID: 33652596 PMCID: PMC7956770 DOI: 10.3390/polym13050704] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Enzymatic biodegradation of demineralized collagen fibrils could lead to the reduction of resin-dentin bond strength. Therefore, methods that provide protection to collagen fibrils appear to be a pragmatic solution to improve bond strength. Thus, the study's aim was to investigate the effect of ribose (RB) on demineralized resin-dentin specimens in a modified universal adhesive. Dentin specimens were obtained, standardized and then bonded in vitro with a commercial multi-mode adhesive modified with 0, 0.5%, 1%, and 2% RB, restored with resin composite, and tested for micro-tensile bond strength (µTBS) after storage for 24 h in artificial saliva. Scanning electron microscopy (SEM) was performed to analyze resin-dentin interface. Contact angles were analyzed using a contact angle analyzer. Depth of penetration of adhesives and nanoleakage were assessed using micro-Raman spectroscopy and silver tracing. Molecular docking studies were carried out using Schrodinger small-molecule drug discovery suite 2019-4. Matrix metalloproteinases-2 (MMP-2) and cathepsin-K activities in RB-treated specimens were quantified using enzyme-linked immunosorbent assay (ELISA). The significance level was set at α = 0.05 for all statistical analyses. Incorporation of RB at 1% or 2% is of significant potential (p < 0.05) as it can be associated with improved wettability on dentin surfaces (0.5% had the lowest contact angle) as well as appreciable hybrid layer quality, and higher resin penetration. Improvement of the adhesive bond strength was shown when adding RB at 1% concentration to universal adhesive (p < 0.05). Modified adhesive increased the resistance of collagen degradation by inhibiting MMP-2 and cathepsin-K. A higher RB concentration was associated with improved results (p < 0.01). D-ribose showed favorable negative binding to collagen. In conclusion, universal adhesive using 1% or 2% RB helped in maintaining dentin collagen scaffold and proved to be successful in improving wettability, protease inhibition, and stability of demineralized dentin substrates. A more favorable substrate is created which, in turn, leads to a more stable dentin-adhesive bond. This could lead to more advantageous outcomes in a clinical scenario where a stable bond may result in longevity of the dental restoration.
Collapse
Affiliation(s)
- Rim Bourgi
- Department of Restorative Dentistry, School of Dentistry, Saint-Joseph University, Beirut 1107 2180, Lebanon; (R.B.); (M.G.); (L.H.)
| | - Umer Daood
- Clinical Dentistry, Restorative Division, Faculty of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, Wilayah Persekutuan, Kuala Lumpur 57000, Malaysia
| | - Mohammed Nadeem Bijle
- Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, China;
| | - Amr Fawzy
- UWA Dental School, University of Western Australia, Nedlands, WA 6009, Australia;
| | - Maroun Ghaleb
- Department of Restorative Dentistry, School of Dentistry, Saint-Joseph University, Beirut 1107 2180, Lebanon; (R.B.); (M.G.); (L.H.)
| | - Louis Hardan
- Department of Restorative Dentistry, School of Dentistry, Saint-Joseph University, Beirut 1107 2180, Lebanon; (R.B.); (M.G.); (L.H.)
| |
Collapse
|
11
|
Effect of cross-linking and hydration on microscale flat punch indentation contact to collagen-hyaluronic acid films in the viscoelastic limit. Acta Biomater 2020; 111:279-289. [PMID: 32417264 DOI: 10.1016/j.actbio.2020.04.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 11/23/2022]
Abstract
The properties of the extracellular matrix (ECM) have profound impact upon cell behaviour. As an abundant protein in mammals, collagen is a desirable base material to engineer an ECM tissue scaffold, but its structural weakness generally requires molecular crosslinking or incorporation of additional ECM-based macromolecules such as glycosaminoglycans. We have performed microscopic indentation to test collagen films under dry and aqueous conditions prepared with different levels of physical and chemical crosslinking. Our technique isolates intrinsic properties of the poro-viscoelastic matrix in a regime minimizing the influence of drainage hydrodynamics and allows direct measurement of the effect of hydrating a specific sample. A doubling of the effective stress-strain stiffness under crosslinking could be directly correlated to structural changes in X-ray diffraction spectra, while electron microscopy revealed possible fibril bridging mechanisms explaining observed toughness. Overall, an intrinsic viscoelastic stress-strain response of collagen under various conditions of cross-linking was observed for both dry and wet conditions, with the latter most affected by indentation rate. Under creep testing, a three order of magnitude increase in dynamic compliance and factor three reduction in relaxation time was found going from the dry to hydrated state. When fitted to a simple viscoelastic model, crosslinking showed a tendency to decrease relaxation time in both states, but reduced dynamic compliance only in the hydrated case. This suggests a reduced role of virtual crosslinks under hydration. This is the first study reporting consistent mechanical testing of dry and hydrated ECM-derived biomaterials, accessing the intrinsic material mechanics under in vivo-like conditions. STATEMENT OF SIGNIFICANCE: This manuscript presents new insights into the effect of crosslinking on mechanical properties of dry and hydrated collagen intended for tissue scaffolding applications. A novel microscopic indentation technique allowed testing of the poro-viscoelastic matrix isolated in a regime minimizing the influence of drainage hydrodynamics, so direct comparison of the effect of hydration on the intrinsic material behaviour to could be made. A variety of experimental techniques including X-ray diffraction, infrared spectroscopy, and scanning electron and atomic force microscopy were used to augment the mechanical testing. The results of creep testing were numerically analysed using a four-component viscoelastic model. This is the first mechanical testing of dry and hydrated ECM-derived biomaterials, accessing the intrinsic material mechanics under in vivo-like conditions.
Collapse
|
12
|
Adamiak K, Sionkowska A. Current methods of collagen cross-linking: Review. Int J Biol Macromol 2020; 161:550-560. [PMID: 32534089 DOI: 10.1016/j.ijbiomac.2020.06.075] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 01/16/2023]
Abstract
This review provides a report on cross-linking methods used for collagen modifications. Collagen materials have attracted significant academic interest due to its biological properties in native state. However, in many cases the mechanical properties and degradation rate should be tailored to especial biomedical and cosmetic applications. In the proposed review paper, the structure, preparation, and properties of several collagen based materials have been discussed in general, and detailed examples of collagen cross-linking methods have been drawn from scientific literature and practical work. Both, physical and chemical methods of improvement of collagenous materials have been reviewed. In the review paper the cross-linking with glutaraldehyde, genipin, EDC-NHS, dialdehyde starch, chitosan, temperature, UV light and enzyme has been discussed. A critical comparison of currently available cross-linking methods has been shown.
Collapse
Affiliation(s)
| | - Alina Sionkowska
- Nicolaus Copernicus University in Torun, Faculty of Chemistry, Department of Biomaterials and Cosmetics Chemistry, Gagarin 7 street, 87-100 Torun, Poland.
| |
Collapse
|
13
|
Daood U, Akram Z, Matinlinna J, Fawzy A. Dentine collagen cross-linking using tiopronin-protected Au/EDC nanoparticles formulations. Dent Mater 2019; 35:1017-1030. [DOI: 10.1016/j.dental.2019.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/03/2019] [Accepted: 04/12/2019] [Indexed: 01/19/2023]
|
14
|
Charvolin J, Sadoc JF. Type-I collagen fibrils: From growth morphology to local order. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:49. [PMID: 31011856 DOI: 10.1140/epje/i2019-11812-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
The length of type-I collagen fibrils in solution increases through the development and progress of pointed tips appearing successively at the two ends of an axis-symmetric shaft with constant diameter. Those tips, respectively fine ([Formula: see text]) or coarse ([Formula: see text]) have opposite molecular orientations. The [Formula: see text]-pointed tips, the first to appear, are particularly remarkable as they all show, on most of their length, a common parabolic profile which stays constant during the growth. Assuming that the latter occurs by lateral accretion of individual molecules in staggered configuration, we propose to give account of this prominent morphological feature along a purely geometrical argument, the profile of a tip being linked to the shape of the trajectories followed all along the accretion process. Among several possible trajectories, Fermat spirals lead to a parabolic profile in perfect agreement with the one observed for [Formula: see text]-pointed tips. This is to be put in relation with the presence of such spirals in phyllotactic patterns which ensure the best packing efficiency in cases of axis-symmetry, which is indeed that of dense collagen fibrils. Moreover, those patterns are structured by concentric circles of dislocations, constitutive of the structure itself, whose behaviour might contribute to the mechanical properties of the fibrils.
Collapse
Affiliation(s)
- Jean Charvolin
- Laboratoire de Physique des Solides (CNRS-UMR 8502), Bât. 510, Université Paris-Sud (Paris-Saclay), F91405, Orsay cedex, France
| | - Jean-François Sadoc
- Laboratoire de Physique des Solides (CNRS-UMR 8502), Bât. 510, Université Paris-Sud (Paris-Saclay), F91405, Orsay cedex, France.
| |
Collapse
|
15
|
Sallent I, Capella-Monsonís H, Zeugolis DI. Production and Characterization of Chemically Cross-Linked Collagen Scaffolds. Methods Mol Biol 2019; 1944:23-38. [PMID: 30840233 DOI: 10.1007/978-1-4939-9095-5_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Chemical cross-linking of collagen-based devices is used as a means of increasing the mechanical stability and control the degradation rate upon implantation. Herein, we describe techniques to produce cross-linked with glutaraldehyde (GTA; amine terminal cross-linker), 4-arm polyethylene glycol succinimidyl glutarate (4SP; amine terminal cross-linker), diphenyl phosphoryl azide (DPPA; carboxyl terminal cross-linker), and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC; carboxyl terminal cross-linker) collagen films. In addition, we provide protocols to characterize the biophysical (swelling), biomechanical (tensile), and biological (metabolic activity, proliferation and viability using human dermal fibroblasts and THP-1 macrophages) properties of the cross-linked collagen scaffolds.
Collapse
Affiliation(s)
- Ignacio Sallent
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Héctor Capella-Monsonís
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), National University of Ireland Galway (NUI Galway), Galway, Ireland.
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway (NUI Galway), Galway, Ireland.
| |
Collapse
|
16
|
Liu G, Yu R, Lan T, Liu Z, Zhang P, Liang R. Gallic acid-functionalized graphene hydrogel as adsorbent for removal of chromium (iii) and organic dye pollutants from tannery wastewater. RSC Adv 2019; 9:27060-27068. [PMID: 35528580 PMCID: PMC9070501 DOI: 10.1039/c9ra05664e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 08/14/2019] [Indexed: 11/21/2022] Open
Abstract
The formation process of gallic acid functionalized graphene hydrogel (GA-GH).
Collapse
Affiliation(s)
- Gongyan Liu
- National Engineering Laboratory for Clean Technology of Leather Manufacture
- Sichuan University
- Chengdu 610065
- China
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education
| | - Ruiquan Yu
- National Engineering Laboratory for Clean Technology of Leather Manufacture
- Sichuan University
- Chengdu 610065
- China
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education
| | - Tianxiang Lan
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education
- Sichuan University
- Chengdu 610065
- China
| | - Zheng Liu
- Jiangsu Province Special Equipment Safety Supervision and Inspection Institute
- Wuxi 214717
- China
| | - Peng Zhang
- The State Key Laboratory of Hydraulic and Mountain River Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Ruifeng Liang
- The State Key Laboratory of Hydraulic and Mountain River Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
17
|
Sorushanova A, Delgado LM, Wu Z, Shologu N, Kshirsagar A, Raghunath R, Mullen AM, Bayon Y, Pandit A, Raghunath M, Zeugolis DI. The Collagen Suprafamily: From Biosynthesis to Advanced Biomaterial Development. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1801651. [PMID: 30126066 DOI: 10.1002/adma.201801651] [Citation(s) in RCA: 602] [Impact Index Per Article: 100.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/03/2018] [Indexed: 05/20/2023]
Abstract
Collagen is the oldest and most abundant extracellular matrix protein that has found many applications in food, cosmetic, pharmaceutical, and biomedical industries. First, an overview of the family of collagens and their respective structures, conformation, and biosynthesis is provided. The advances and shortfalls of various collagen preparations (e.g., mammalian/marine extracted collagen, cell-produced collagens, recombinant collagens, and collagen-like peptides) and crosslinking technologies (e.g., chemical, physical, and biological) are then critically discussed. Subsequently, an array of structural, thermal, mechanical, biochemical, and biological assays is examined, which are developed to analyze and characterize collagenous structures. Lastly, a comprehensive review is provided on how advances in engineering, chemistry, and biology have enabled the development of bioactive, 3D structures (e.g., tissue grafts, biomaterials, cell-assembled tissue equivalents) that closely imitate native supramolecular assemblies and have the capacity to deliver in a localized and sustained manner viable cell populations and/or bioactive/therapeutic molecules. Clearly, collagens have a long history in both evolution and biotechnology and continue to offer both challenges and exciting opportunities in regenerative medicine as nature's biomaterial of choice.
Collapse
Affiliation(s)
- Anna Sorushanova
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Luis M Delgado
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Zhuning Wu
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Naledi Shologu
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Aniket Kshirsagar
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Rufus Raghunath
- Centre for Cell Biology and Tissue Engineering, Competence Centre Tissue Engineering for Drug Development (TEDD), Department Life Sciences and Facility Management, Institute for Chemistry and Biotechnology (ICBT), Zürich University of Applied Sciences, Wädenswil, Switzerland
| | | | - Yves Bayon
- Sofradim Production-A Medtronic Company, Trevoux, France
| | - Abhay Pandit
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Michael Raghunath
- Centre for Cell Biology and Tissue Engineering, Competence Centre Tissue Engineering for Drug Development (TEDD), Department Life Sciences and Facility Management, Institute for Chemistry and Biotechnology (ICBT), Zürich University of Applied Sciences, Wädenswil, Switzerland
| | - Dimitrios I Zeugolis
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| |
Collapse
|
18
|
Gu L, Shan T, Ma YX, Tay FR, Niu L. Novel Biomedical Applications of Crosslinked Collagen. Trends Biotechnol 2018; 37:464-491. [PMID: 30447877 DOI: 10.1016/j.tibtech.2018.10.007] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 02/08/2023]
Abstract
Collagen is one of the most useful biopolymers because of its low immunogenicity and biocompatibility. The biomedical potential of natural collagen is limited by its poor mechanical strength, thermal stability, and enzyme resistance, but exogenous chemical, physical, or biological crosslinks have been used to modify the molecular structure of collagen to minimize degradation and enhance mechanical stability. Although crosslinked collagen-based materials have been widely used in biomedicine, there is no standard crosslinking protocol that can achieve a perfect balance between stability and functional remodeling of collagen. Understanding the role of crosslinking agents in the modification of collagen performance and their potential biomedical applications are crucial for developing novel collagen-based biopolymers for therapeutic gain.
Collapse
Affiliation(s)
- Lisha Gu
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Tiantian Shan
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Yu-Xuan Ma
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Franklin R Tay
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, PR China; The Dental College of Georgia, Augusta University, Augusta, GA, USA.
| | - Lina Niu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, PR China; The Dental College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
19
|
Liu G, Haiqi G, Li K, Xiang J, Lan T, Zhang Z. Fabrication of silver nanoparticle sponge leather with durable antibacterial property. J Colloid Interface Sci 2018; 514:338-348. [DOI: 10.1016/j.jcis.2017.09.049] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/09/2017] [Accepted: 09/13/2017] [Indexed: 12/14/2022]
|
20
|
Chen H, Zhao X, Berwick ZC, Krieger JF, Chambers S, Kassab GS. Microstructure and Mechanical Property of Glutaraldehyde-Treated Porcine Pulmonary Ligament. J Biomech Eng 2016; 138:061003. [PMID: 27040732 DOI: 10.1115/1.4033300] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Indexed: 01/15/2023]
Abstract
There is a significant need for fixed biological tissues with desired structural and material constituents for tissue engineering applications. Here, we introduce the lung ligament as a fixed biological material that may have clinical utility for tissue engineering. To characterize the lung tissue for potential clinical applications, we studied glutaraldehyde-treated porcine pulmonary ligament (n = 11) with multiphoton microscopy (MPM) and conducted biaxial planar experiments to characterize the mechanical property of the tissue. The MPM imaging revealed that there are generally two families of collagen fibers distributed in two distinct layers: The first family largely aligns along the longitudinal direction with a mean angle of θ = 10.7 ± 9.3 deg, while the second one exhibits a random distribution with a mean θ = 36.6 ± 27.4. Elastin fibers appear in some intermediate sublayers with a random orientation distribution with a mean θ = 39.6 ± 23 deg. Based on the microstructural observation, a microstructure-based constitutive law was proposed to model the elastic property of the tissue. The material parameters were identified by fitting the model to the biaxial stress-strain data of specimens, and good fitting quality was achieved. The parameter e0 (which denotes the strain beyond which the collagen can withstand tension) of glutaraldehyde-treated tissues demonstrated low variability implying a relatively consistent collagen undulation in different samples, while the stiffness parameters for elastin and collagen fibers showed relatively greater variability. The fixed tissues presented a smaller e0 than that of fresh specimen, confirming that glutaraldehyde crosslinking increases the mechanical strength of collagen-based biomaterials. The present study sheds light on the biomechanics of glutaraldehyde-treated porcine pulmonary ligament that may be a candidate for tissue engineering.
Collapse
|
21
|
Taguchi T, Kubota M, Saito M, Hattori H, Kimura T, Marumo K. Quantitative and Qualitative Change of Collagen of Achilles Tendons in Rats With Systemic Administration of Glucocorticoids. Foot Ankle Int 2016; 37:327-33. [PMID: 26519383 DOI: 10.1177/1071100715613138] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND It is unclear whether glucocorticoid (GC) therapy is directly related to Achilles tendon rupture (ATR), because many of the reported patients were receiving long-term GC therapy for underlying diseases. This study aimed to elucidate the mechanism by which systemic GC administration causes weakening of the Achilles tendon by biochemically, mechanically, and morphologically evaluating quantitative and qualitative changes in collagen. METHODS Male 8-week-old mice were subcutaneously treated with either prednisolone (10 mg/mL/kg; GC group) or saline (1 mL/kg; control group) for 8 weeks and then subjected to the following experiments: (1) a tensile strength test; (2) quantification of the gene expressions of type 1 collagen and lysyl oxidase; (3) quantification of collagen content, enzymatic crosslinks (immature + mature), and senescent crosslinks; and (4) measurement of collagen fiber diameter by electron microscopy. RESULTS The maximum tensile load and gene expressions of type 1 collagen and lysyl oxidase were decreased in the GC group. Collagen content was significantly decreased in the GC group compared with the control group. The content of enzymatic crosslinks was significantly lower in the GC group than in the control group. The corresponding amount of senescent crosslinks was not significantly different. The mean collagen fiber diameter was significantly smaller in the GC group than in the control group. Histogram analysis showed a decreased number of thick fibers and an increased number of thin fibers in the GC group. CONCLUSION These observations suggest that systemic GC administration causes decreased strength of the Achilles tendon by decreasing its collagen content, hindering the formation of enzymatic crosslinks and thereby keeping collagen fibers in an immature state with smaller diameters. CLINICAL RELEVANCE This animal study showed that systemic GC administration directly prevents maturation of tendon collagen fibers and decreases tendon strength, regardless of the presence or absence of underlying disease.
Collapse
Affiliation(s)
- Tetsuya Taguchi
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Makoto Kubota
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Mitsuru Saito
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Hidekazu Hattori
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Tadashi Kimura
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Keishi Marumo
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
22
|
Fluorescent nanonetworks: a novel bioalley for collagen scaffolds and tissue engineering. Sci Rep 2014; 4:5968. [PMID: 25095810 PMCID: PMC4122965 DOI: 10.1038/srep05968] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 07/16/2014] [Indexed: 11/25/2022] Open
Abstract
Native collagen is arranged in bundles of aligned fibrils to withstand in vivo mechanical loads. Reproducing such a process under in vitro conditions has not met with major success. Our approach has been to induce nanolinks, during the self-assembly process, leading to delayed rather than inhibited fibrillogenesis. For this, a designed synthesis of nanoparticles - using starch as a template and a reflux process, which would provide a highly anisotropic (star shaped) nanoparticle, with large surface area was adopted. Anisotropy associated decrease in Morin temperature and superparamagnetic behavior was observed. Polysaccharide on the nanoparticle surface provided aqueous stability and low cytotoxicity. Starch coated nanoparticles was utilized to build polysaccharide - collagen crosslinks, which supplemented natural crosslinks in collagen, without disturbing the conformation of collagen. The resulting fibrillar lamellae showed a striking resemblance to native lamellae, but had a melting and denaturation temperature higher than native collagen. The biocompatibility and superparamagnetism of the nanoparticles also come handy in the development of stable collagen constructs for various biomedical applications, including that of MRI contrast agents.
Collapse
|
23
|
Abou Neel EA, Bozec L, Knowles JC, Syed O, Mudera V, Day R, Hyun JK. Collagen--emerging collagen based therapies hit the patient. Adv Drug Deliv Rev 2013; 65:429-456. [PMID: 22960357 DOI: 10.1016/j.addr.2012.08.010] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 08/10/2012] [Accepted: 08/28/2012] [Indexed: 12/11/2022]
Abstract
The choice of biomaterials available for regenerative medicine continues to grow rapidly, with new materials often claiming advantages over the short-comings of those already in existence. Going back to nature, collagen is one of the most abundant proteins in mammals and its role is essential to our way of life. It can therefore be obtained from many sources including porcine, bovine, equine or human and offer a great promise as a biomimetic scaffold for regenerative medicine. Using naturally derived collagen, extracellular matrices (ECMs), as surgical materials have become established practice for a number of years. For clinical use the goal has been to preserve as much of the composition and structure of the ECM as possible without adverse effects to the recipient. This review will therefore cover in-depth both naturally and synthetically produced collagen matrices. Furthermore the production of more sophisticated three dimensional collagen scaffolds that provide cues at nano-, micro- and meso-scale for molecules, cells, proteins and bulk fluids by inducing fibrils alignments, embossing and layered configuration through the application of plastic compression technology will be discussed in details. This review will also shed light on both naturally and synthetically derived collagen products that have been available in the market for several purposes including neural repair, as cosmetic for the treatment of dermatologic defects, haemostatic agents, mucosal wound dressing and guided bone regeneration membrane. There are other several potential applications of collagen still under investigations and they are also covered in this review.
Collapse
Affiliation(s)
- Ensanya A Abou Neel
- King Abdulaziz University, Conservative Dental Science Department, Biomaterials Division, Saudi Arabia.
| | | | | | | | | | | | | |
Collapse
|
24
|
Manfred R, Eckhard W, Björn J, Helmut G. Free of water tanning using CO2 as process additive—An overview on the process development. J Supercrit Fluids 2012. [DOI: 10.1016/j.supflu.2012.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
25
|
Chandran PL, Paik DC, Holmes JW. Structural mechanism for alteration of collagen gel mechanics by glutaraldehyde crosslinking. Connect Tissue Res 2012; 53:285-97. [PMID: 22775003 PMCID: PMC3825191 DOI: 10.3109/03008207.2011.640760] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Soft collagenous tissues that are loaded in vivo undergo crosslinking during aging and wound healing. Bioprosthetic tissues implanted in vivo are also commonly crosslinked with glutaraldehyde (GA). While crosslinking changes the mechanical properties of the tissue, the nature of the mechanical changes and the underlying microstructural mechanism are poorly understood. In this study, a combined mechanical, biochemical and simulation approach was employed to identify the microstructural mechanism by which crosslinking alters mechanical properties. The model collagenous tissue used was an anisotropic cell-compacted collagen gel, and the model crosslinking agent was monomeric GA. The collagen gels were incrementally crosslinked by either increasing the GA concentration or increasing the crosslinking time. In biaxial loading experiments, increased crosslinking produced (1) decreased strain response to a small equibiaxial preload, with little change in response to subsequent loading and (2) decreased coupling between the fiber and cross-fiber direction. The mechanical trend was found to be better described by the lysine consumption data than by the shrinkage temperature. The biaxial loading of incrementally crosslinked collagen gels was simulated computationally with a previously published network model. Crosslinking was represented by increased fibril stiffness or by increased resistance to fibril rotation. Only the latter produced mechanical trends similar to that observed experimentally. Representing crosslinking as increased fibril stiffness did not reproduce the decreased coupling between the fiber and cross-fiber directions. The study concludes that the mechanical changes in crosslinked collagen gels are caused by the microstructural mechanism of increased resistance to fibril rotation.
Collapse
Affiliation(s)
| | - David C. Paik
- Department of Ophthalmology, Columbia University, NY
| | - Jeffrey W. Holmes
- Departments of Biomedical Engineering and Medicine, University of Virginia, Charlottesville, VA
| |
Collapse
|
26
|
Plasticity of two structural proteins: Alpha-collagen and beta-keratin. J Mech Behav Biomed Mater 2011; 4:733-43. [DOI: 10.1016/j.jmbbm.2011.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 02/08/2011] [Accepted: 02/10/2011] [Indexed: 11/22/2022]
|
27
|
Haugh MG, Murphy CM, McKiernan RC, Altenbuchner C, O'Brien FJ. Crosslinking and Mechanical Properties Significantly Influence Cell Attachment, Proliferation, and Migration Within Collagen Glycosaminoglycan Scaffolds. Tissue Eng Part A 2011; 17:1201-8. [DOI: 10.1089/ten.tea.2010.0590] [Citation(s) in RCA: 229] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Matthew G. Haugh
- Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
- Trinity Centre for Bioengineering, Department of Mechanical Engineering, Trinity College Dublin, Dublin, Ireland
| | - Ciara M. Murphy
- Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ross C. McKiernan
- Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Cornelia Altenbuchner
- Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Mechanical Engineering, University of Applied Science Regensburg, Regensburg, Germany
| | - Fergal J. O'Brien
- Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
- Trinity Centre for Bioengineering, Department of Mechanical Engineering, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
28
|
Haugh MG, Jaasma MJ, O'Brien FJ. The effect of dehydrothermal treatment on the mechanical and structural properties of collagen-GAG scaffolds. J Biomed Mater Res A 2009; 89:363-9. [PMID: 18431763 DOI: 10.1002/jbm.a.31955] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The mechanical properties of tissue engineering scaffolds are critical for preserving the structural integrity and functionality during both in vivo implantation and long-term performance. In addition, the mechanical and structural properties of the scaffold can direct cellular activity within a tissue-engineered construct. In this context, the aim of this study was to investigate the effects of dehydrothermal (DHT) treatment on the mechanical and structural properties of collagen-glycosaminoglycan (CG) scaffolds. Temperature (105-180 degrees C) and exposure period (24-120 h) of DHT treatment were varied to determine their effect on the mechanical properties, crosslinking density, and denaturation of CG scaffolds. As expected, increasing the temperature and duration of DHT treatment resulted in an increase in the mechanical properties. Compressive properties increased up to twofold, while tensile properties increased up to 3.8-fold. Crosslink density was found to increase with DHT temperature but not exposure period. Denaturation also increased with DHT temperature and exposure period, ranging from 25% to 60% denaturation. Crosslink density was found to be correlated with compressive modulus, whilst denaturation was found to correlate with tensile modulus. Taken together, these results indicate that DHT treatment is a viable technique for altering the mechanical properties of CG scaffolds. The enhanced mechanical properties of DHT-treated CG scaffolds improve their suitability for use both in vitro and in vivo. In addition, this work facilitates the investigation of the effects of mechanical properties and denaturation on cell activity in a 3D environment.
Collapse
Affiliation(s)
- Matthew G Haugh
- Department of Anatomy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | | | | |
Collapse
|
29
|
Abstract
The primary functional role of collagen is as a supporting tissue and it is now established that the aggregated forms of the collagen monomers are stabilised to provide mechanical strength by a series of intermolecular cross-links. In order to understand the mechanical properties of collagen, it is necessary to identify and quantitatively determine the concentration of the cross-links during their changes with maturation, ageing and disease. These cross-links are formed by oxidative deamination of the epsilon-amino group of the single lysine or hydroxylysine in the amino and carboxy telopeptides of collagen by lysyl oxidase, the aldehyde formed reacting with a specific lysine or hydroxylysine in the triple helix. The divalent Schiff base and keto-amine bonds so formed link the molecules head to tail and spontaneously convert during maturation to trivalent cross-links, a histidine derivative and cyclic pyridinolines and pyrroles, respectively. These latter bonds are believed to be transverse inter-fibrillar cross-links, and are tissue rather than species specific. We describe the determination of these cross-links in detail.Elastin is also stabilised by cross-linking based on oxidative deamination of most of its lysine residues to yield tetravalent cross-links, desmosine and iso-desmosine, the determination of which is also described.A second cross-linking pathway occurs during ageing (and to a greater extent in diabetes mellitus) involving reaction with tissue glucose. The initial product glucitol-lysine can be determined as furosine and pyridosine, and determination of advanced glycation end-products believed to be cross-links, such as pentosidine, are also described.
Collapse
|
30
|
Kagan HM, Reddy VB, Narasimhan N, Csiszar K. Catalytic properties and structural components of lysyl oxidase. CIBA FOUNDATION SYMPOSIUM 2007; 192:100-15; discussion 115-21. [PMID: 8575253 DOI: 10.1002/9780470514771.ch6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Key aspects of the biosynthesis and catalytic specificity of lysyl oxidase (LO) have been explored. Oxidation of peptidyl lysine in synthetic oligopeptides is markedly sensitive to the presence of vicinal dicarboxylic ami/no acid residues. Optimal activity is obtained with the -Glu-Lys- sequence within a polyglycine 11-mer, whereas the -Lys-Glu- sequence is much less efficiently oxidized. The -Asp-Glu-Lys- sequence is a very poor substrate, although this sequence is oxidized in type I collagen fibrils. These results are considered in the light of a model requiring collagen to be assembled as fibrils prior to oxidation by LO. An in vitro system for the expression of catalytically active LO has been devised. Deletion or inclusion of the cDNA coding for the propeptide region in the expressed construct results in apparently identical, catalytically active enzyme products, indicating the lack of essentiality of this region for active enzyme production. These effects are considered with respect to the conservation of the amino acid sequence of LO produced by different species.
Collapse
Affiliation(s)
- H M Kagan
- Department of Biochemistry, Boston University School of Medicine, MA 02118, USA
| | | | | | | |
Collapse
|
31
|
Haraldsson BT, Langberg H, Aagaard P, Zuurmond AM, van El B, Degroot J, Kjaer M, Magnusson SP. Corticosteroids reduce the tensile strength of isolated collagen fascicles. Am J Sports Med 2006; 34:1992-7. [PMID: 16902230 DOI: 10.1177/0363546506290402] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Overuse tendon injuries are frequent. Corticosteroid injections are commonly used as treatment, although their direct effects on the material properties of the tendon are poorly understood. PURPOSE To examine the influence of corticosteroids on the tensile strength of isolated collagen fascicles. STUDY DESIGN Controlled laboratory study. METHODS Single strands (300-500 mum) of rat-tail collagen fascicles were incubated in either high (1 mL of 40 mgmL(-1) mixed with 0.5 mL saline 9%) or low (1 mL of 40 mgmL(-1) mixed with 2 mL saline 9%) concentration of methylprednisolone acetate (Depomedrol) for 3 or 7 days, while the control segment from the same fascicle was kept in saline (N = 64). After the incubation period, the fascicles underwent displacement to failure in a mechanical test rig at 0.13 mm/s, and thereafter hydroxylysyl pyridinoline and lysyl pyridinoline cross-link content was evaluated in a high-performance liquid chromatography system. Data for each group were analyzed with a 2-way analysis of variance (time x incubation) for ultimate stress (mean +/- standard deviation). RESULTS In the high-concentration groups, strength was reduced after 3 (16.6 +/- 4.6 MPa) and 7 (8.6 +/- 1.7 MPa) days compared to the controls (30.2 +/- 5.0 MPa and 25.6 +/- 4.6 MPa, respectively; P < .05). In the low-concentration groups, strength was reduced after 3 (12.0 +/- 3.1 MPa) and 7 days (10.9 +/- 2.5 MPa) compared to the controls (31.5 +/- 5.0 MPa and 32.4 +/- 5.6 MPa, respectively; P < .05). The amount of cross-linking was unaffected by the intervention. CONCLUSION Data show that the tensile strength of isolated fascicles is markedly reduced after 3- and 7-day incubation in both high and low concentration of corticosteroids, although the observed effect on whole tendon remains unknown. CLINICAL RELEVANCE Corticosteroids may weaken specific regions of the injected tendon and leave it more prone to rupture. This weakening effect is manifested in the individual collagen fascicles that constitute the tendon.
Collapse
Affiliation(s)
- Bjarki Thor Haraldsson
- Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Bispebjerg Bakke 23, 2400 Copenhagen NV, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Robins SP. Analysis of the crosslinking components in collagen and elastin. METHODS OF BIOCHEMICAL ANALYSIS 2006; 28:329-79. [PMID: 6285140 DOI: 10.1002/9780470110485.ch8] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
33
|
Nyman JS, Reyes M, Wang X. Effect of ultrastructural changes on the toughness of bone. Micron 2005; 36:566-82. [PMID: 16169742 DOI: 10.1016/j.micron.2005.07.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2005] [Revised: 06/27/2005] [Accepted: 07/04/2005] [Indexed: 11/20/2022]
Abstract
The ultrastructure of bone can be considered as a conjunction between the biology and the biomechanics of the tissue. It is the result of cellular and molecular activities of bone formation, and its organization dominates the mechanical behavior of bone. Following this perspective, the objective of this review is to provide a current understanding of bone ultrastructure and its relationships with the toughness of the tissue. Therefore, we first provide a discussion on the organization of bone constituents, namely collagen, mineral, and water. Then, we present evidence on how the toughness of bone relates to its ultrastructure through the formation of micro damage. In addition, attention is given to how damage accumulation serves as a toughening mechanism. Finally, we describe how changes in the ultrastructure-caused by osteogenesis imperfecta, gamma irradiation, fluoride treatment, and aging affect the toughness and competence of bone.
Collapse
Affiliation(s)
- Jeffry S Nyman
- Mechanical Engineering and Biomechanics, University of Texas at San Antonio, 6900 North Loop 1604 West, San Antonio, TX 78249, USA
| | | | | |
Collapse
|
34
|
Lin YL, Brama PAJ, Kiers GH, van Weeren PR, DeGroot J. Extracellular Matrix Compositon of the Equine Superficial Digital Flexor Tendon: Relationship with Age and Anatomical Site. ACTA ACUST UNITED AC 2005; 52:333-8. [PMID: 16109099 DOI: 10.1111/j.1439-0442.2005.00742.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The objectives of the present study were to test the hypotheses that: (1) the composition of the extracellular matrix of the equine superficial digital flexor tendon (SDFT) shows great functional similarities with articular cartilage, i.e. that significant differences exist in biochemical composition of differently loaded areas (which in the case of tendons may be more apparent as tendon shows more obvious differences than cartilage); and (2) that, as in articular cartilage, no substantial alterations in biochemical composition take place during ageing once adulthood has been attained. Tendon samples were taken from 60 adult slaughter horses from a central area at cross-section in the mid-metacarpal region and at the height of the proximal sesamoid bones (sesamoid region) of the SDFT. Contents of collagenous and non-collagenous components were determined. None of the parameters were correlated with age in either region, except for a significant increase in pentosidine cross-links with age in the sesamoid region. Between the two anatomical regions, there were significant differences in all variables, except for hydroxylysylpyridinoline cross-links. It was concluded that in the equine SDFT, similar to articular cartilage, most molecular parameters are not influenced by age in mature horses, indicating a low remodelling rate. Tendon composition is clearly different between regions, apparently reflecting different specific modes of biomechanical loading at the points sampled.
Collapse
Affiliation(s)
- Y L Lin
- Department of Equine Sciences, Faculty of Veterinary Medicine, Yalelaan 12, 3584 CM Utrecht, the Netherlands.
| | | | | | | | | |
Collapse
|
35
|
Wiesmann HP, Meyer U, Plate U, Höhling HJ. Aspects of collagen mineralization in hard tissue formation. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 242:121-56. [PMID: 15598468 DOI: 10.1016/s0074-7696(04)42003-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Collagen is the dominant fibrous protein not only in connective tissues but also in hard tissues, bone, dentin, cementum, and even the mineralizing cartilage of the epiphyseal growth plate. It comprises about 80-90% (by weight) of the organic substance in demineralized dentin and bone. When collagen fibers are arranged in parallel to form thicker bundles, as in lamellar bone and cementum, interior regions may be less mineralized; in dentin, however, the collagen fibers form a network and collagen fibers are densely filled with a mineral substance. In the biomineralization of collagen fibers in hard tissues, matrix vesicles play a fundamental role in the induction of crystal formation. The mineralization of matrix vesicles precedes the biomineralization of the collagen fibrils and the intervening ground substance. In addition, immobilized noncollagenous fibrous macromolecules, bound in a characteristic way to the fibrous collagen surface, initiate, more intensely than collagen, mineral nucleation in the hard tissue matrix.
Collapse
Affiliation(s)
- H P Wiesmann
- Department of Cranio-Maxillofacial Surgery, University of Münster, D-48149 Münster, Germany
| | | | | | | |
Collapse
|
36
|
Malone JP, George A, Veis A. Type I collagen N-Telopeptides adopt an ordered structure when docked to their helix receptor during fibrillogenesis*. Proteins 2003; 54:206-15. [PMID: 14696182 DOI: 10.1002/prot.10526] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The in vitro rate and specificity of fibrillogenesis in type I collagen depends on the integrity of the amino (N)-telopeptide domain. In vivo an intact N-telopeptide domain is also required for normal fibril assembly. Although Chou-Fasman predictions and NMR studies suggested that a type I beta-turn could be induced in alpha1(I) N-telopeptide chains, computer modeling did not identify ordered structures. Nevertheless, X-ray analysis and electron tomography studies have shown that the N-telopeptide is in one of the most highly ordered fibril domains. This study was undertaken to determine if the docking of the N-telopeptide to its helix receptor domain could induce the telopeptides to take up a specific conformation. With use of molecular modeling suite of programs, a (Gly-Pro-Pro)(n) triple-helical structure was built on the basis of high-resolution X-ray crystallographic coordinates and then replaced with the actual bovine collagen residues 924-938, the triple-helical alpha1(I)-N-telopeptide-receptor sequences. Energy minimization produced a modified triple-helical conformation. The bovine alpha1(I) N-telopeptide sequence was similarly minimized and docked to this receptor. The docking induced an ordered conformation with a stabilizing hydrogen bond in the N-telopeptide and, importantly, a reciprocal reordering of the triple-helical conformation in the binding domain. This docked structure placed Lys residues in both telopeptide and helix in the correct locations for cross-link formation. The modeling has been extended to the three-chain N-telopeptide domain and finally to the construction of the Hulmes-Miller quasi-hexagonal packing structure. Each N-telopeptide domain can form linkages with two adjacent, aligned helix receptor domains. The telopeptides and the order of staggering of the three chains in the helix play crucial roles in the packing and intrafibrillar cross-linking patterns and the relative azimuthal orientations of adjacent molecules in the fibril. The models confirm the high order in the N-telopeptide 4D overlap zone.
Collapse
Affiliation(s)
- James P Malone
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
37
|
Zivanovic S, Buescher R, Kim S. Mushroom Texture, Cell Wall Composition, Color, and Ultrastructure as Affected by pH and Temperature. J Food Sci 2003. [DOI: 10.1111/j.1365-2621.2003.tb12343.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Orgel JP, Miller A, Irving TC, Fischetti RF, Hammersley AP, Wess TJ. The in situ supermolecular structure of type I collagen. Structure 2001; 9:1061-9. [PMID: 11709170 DOI: 10.1016/s0969-2126(01)00669-4] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND The proteins belonging to the collagen family are ubiquitous throughout the animal kingdom. The most abundant collagen, type I, readily forms fibrils that convey the principal mechanical support and structural organization in the extracellular matrix of connective tissues such as bone, skin, tendon, and vasculature. An understanding of the molecular arrangement of collagen in fibrils is essential since it relates molecular interactions to the mechanical strength of fibrous tissues and may reveal the underlying molecular pathology of numerous connective tissue diseases. RESULTS Using synchrotron radiation, we have conducted a study of the native fibril structure at anisotropic resolution (5.4 A axial and 10 A lateral). The intensities of the tendon X-ray diffraction pattern that arise from the lateral packing (three-dimensional arrangement) of collagen molecules were measured by using a method analogous to Rietveld methods in powder crystallography and to the separation of closely spaced peaks in Laue diffraction patterns. These were then used to determine the packing structure of collagen by MIR. CONCLUSIONS Our electron density map is the first obtained from a natural fiber using these techniques (more commonly applied to single crystal crystallography). It reveals the three-dimensional molecular packing arrangement of type I collagen and conclusively proves that the molecules are arranged on a quasihexagonal lattice. The molecular segments that contain the telopeptides (central to the function of collagen fibrils in health and disease) have been identified, revealing that they form a corrugated arrangement of crosslinked molecules that strengthen and stabilize the native fibril.
Collapse
Affiliation(s)
- J P Orgel
- Centre for Extracellular Matrix Biology, Department of Biological Sciences, University of Stirling, FK9 4LA, Stirling, United Kingdom.
| | | | | | | | | | | |
Collapse
|
39
|
Slatter DA, Paul RG, Murray M, Bailey AJ. Reactions of lipid-derived malondialdehyde with collagen. J Biol Chem 1999; 274:19661-9. [PMID: 10391905 DOI: 10.1074/jbc.274.28.19661] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Malondialdehyde is a product of fatty acid oxidation (e.g. from low density lipoprotein) implicated in the damage of proteins such as collagen in the cardiovascular system (Chio, K. J., and Tappel, A. L. (1969) Biochemistry 8, 2821-2827). Its concentration is raised in diabetic subjects probably as a side effect of increased protein glycation. Collagen has enzyme-catalyzed cross-links formed between its individual molecules that are essential for maintaining the structure and flexibility of the collagen fiber. The cross-link dehydro-hydroxylysinonorleucine reacts irreversibly with 10 mM malondialdehyde at least 3 orders of magnitude faster than glucose reactions with lysine or arginine, such that there is little cross-link left after 1 h at 37 degrees C. Other cross-links and glycated elements of collagen are also vulnerable. Several possible products of malondialdehyde with collagen cross-links are proposed, and the potential involvement of collagenous histidine in these reactions is discussed. We have also isolated Ndelta-(2-pyrimidyl)-L-ornithine from collagenous arginine reacted with malondialdehyde. The yields of this product were considerably higher than those from model reactions, being approximately 2 molecules/collagen molecule after 1 day at 37 degrees C in 10 mM malondialdehyde. Collagenous lysine-derived malondialdehyde products may have been present but were not protected from protein acid hydrolysis by standard reduction techniques, thus resulting in a multitude of fragmented products.
Collapse
Affiliation(s)
- D A Slatter
- Collagen Group, Division of Molecular and Cellular Biology, University of Bristol, Langford, BS40 5DS, United Kingdom
| | | | | | | |
Collapse
|
40
|
Bailey AJ, Knott L. Molecular changes in bone collagen in osteoporosis and osteoarthritis in the elderly. Exp Gerontol 1999; 34:337-51. [PMID: 10433388 DOI: 10.1016/s0531-5565(99)00016-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- A J Bailey
- Collagen Research Group, Division of Molecular and Cellular Biology, University of Bristol, Langford, UK.
| | | |
Collapse
|
41
|
The mechanisms and consequences of the maturation and ageing of collagen. J CHEM SCI 1999. [DOI: 10.1007/bf02869896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
42
|
Abstract
The deleterious age-related changes in collagen that manifest in the stiffening of the joints, the vascular system and the renal and retinal capillaries are primarily due to the intermolecular cross-linking of the collagen molecules within the tissues. The formation of cross-links was elegantly demonstrated by Verzar over 40 years ago but the nature and mechanisms are only now being unravelled. Cross-linking involves two different mechanisms, one a precise enzymically controlled cross-linking during development and maturation and the other an adventitious non-enzymic mechanism following maturation of the tissue. It is this additional non-enzymic cross-linking, known as glycation, involving reaction with glucose and subsequent oxidation products of the complex, that is the major cause of dysfunction of collagenous tissues in old age. The process is accelerated in diabetic subjects due to the higher levels of glucose. The effect of glycation on cell-matrix interactions is now being studied and may be shown to be an equally important aspect of ageing of collagen. An understanding of these mechanisms is now leading to the development of inhibitors of glycation and compounds capable of cleaving the cross-links, thus alleviating the devastating effects of ageing.
Collapse
Affiliation(s)
- A J Bailey
- Collagen Research Group, University of Bristol, Langford, UK.
| | | | | |
Collapse
|
43
|
Birch HL, Bailey AJ, Goodship AE. Macroscopic 'degeneration' of equine superficial digital flexor tendon is accompanied by a change in extracellular matrix composition. Equine Vet J 1998; 30:534-9. [PMID: 9844973 DOI: 10.1111/j.2042-3306.1998.tb04530.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Injuries to the superficial digital flexor tendon are common in horses required to gallop and jump at speed. Partial rupture of this tendon usually occurs in the central core of the midmetacarpal region and may be preceded by localised degenerative changes. Post mortem examination of apparently normal equine flexor tendons has revealed an abnormal macroscopic appearance in the central core, characterised by a reddish discolouration. We have previously shown that there is also physical damage to the collagen fibres. In the present study we tested the hypothesis that the abnormal appearance is accompanied by changes in the composition of the extracellular matrix of the tendon. Biochemical analysis of the extracellular matrix demonstrated an increase in total sulphated glycosaminoglycan content, increase in the proportion of type III collagen and decrease in collagen linked fluorescence in the central core of 'degenerated' tendons relative to tissue from the peripheral region of the same tendon. Dry matter content and total collagen content were not significantly different between tendon zones or normal and 'degenerated' tendons. These changes suggest a change in cell metabolism and matrix turnover in the central core of the tendon and are likely to contribute to a decrease in mechanical properties in this part of the tendon, predisposing to the characteristic partial rupture of the tendon.
Collapse
Affiliation(s)
- H L Birch
- Veterinary Basic Sciences, Royal Veterinary College, North Mymms, Hatfield, UK
| | | | | |
Collapse
|
44
|
Knott L, Bailey AJ. Collagen cross-links in mineralizing tissues: a review of their chemistry, function, and clinical relevance. Bone 1998; 22:181-7. [PMID: 9514209 DOI: 10.1016/s8756-3282(97)00279-2] [Citation(s) in RCA: 440] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bone collagen cross-links are now widely used to assess bone resorption levels in many metabolic bone diseases. The post-translational modifications of bone and other mineralizing collagens are significantly different from those of other type I collagen matrices, a fact that has been exploited during recent advances in the development of biochemical markers of bone resorption. The enzymatic collagen cross-linking mechanism is based upon aldehyde formation from specific telopeptide lysine or hydroxylysine residues. The immature ketoimine cross-links in bone form via the condensation of a telopeptide aldehyde with a helical lysine or hydroxylysine. Subsequent maturation to the pyridinoline and pyrrole cross-links occur by further reaction of the ketoimines with telopeptide aldehydes. In mineralizing tissues, a relatively low level of lysyl hydroxylation results in low levels of hydroxylysyl pyridinoline, and the occurrence of the largely bone specific lysyl pyridinoline and pyrrolic cross-links. The collagen post-translational modifications appear to play an integral role in matrix mineralization. The matrix of the turkey tendon only mineralizes after a remodeling of the collagen and the subsequent formation of a modified matrix more typical of bone than tendon. Further, disturbances in the post-translational modification of collagen can also affect the mineralization density and crystal structure of the tissue. In addition to their use as a convenient measure of matrix degradation, collagen cross-links are of significant importance for the biomechanical integrity of bone. Recent studies of osteoporotic bone, for example, have demonstrated that subtle perturbations in the pattern of lysine hydroxylation result in changes in the cross-link profile. These alterations, specifically changes in the level of the pyrrolic cross-link, also correlate with the strength of the bone. Further research into the biochemistry of bone collagen cross-links may expand current understanding and their clinical application in metabolic bone disease. This review also demonstrates the potential for further study into this area to provide more subtle information into the mechanisms and etiology of disease and aging of mineralizing tissues.
Collapse
Affiliation(s)
- L Knott
- Collagen Research Group, Division of Molecular and Cellular Biology, University of Bristol, Langford, UK.
| | | |
Collapse
|
45
|
Keane DP, Sims TJ, Abrams P, Bailey AJ. Analysis of collagen status in premenopausal nulliparous women with genuine stress incontinence. BRITISH JOURNAL OF OBSTETRICS AND GYNAECOLOGY 1997; 104:994-8. [PMID: 9307523 DOI: 10.1111/j.1471-0528.1997.tb12055.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To determine if differences exist in the collagen status of premenopausal nulliparous women with genuine stress incontinence compared with continent controls. DESIGN Thirty-six premenopausal nulliparous women with urodynamically-proven genuine stress incontinence were compared with 25 controls. All the women studied had a periurethral vaginal biopsy taken of approximately 30-50 mg in wet weight. This biopsy was then analysed to determine the collagen content, the type I:III collagen ratio and the collagen cross-link content. SETTING A tertiary referral urodynamic unit. RESULTS The nulliparous women with genuine stress incontinence had significantly less collagen in their tissues (P < 0.0001) compared with the continent controls. In addition, there was a decreased ratio of type I to type III collagen (P = 0.0008), and the cross-link content was also significantly reduced in the women with genuine stress incontinence (P < 0.0001). CONCLUSION Genuine stress incontinence is present in a significant number of women before childbirth. The aetiology of their incontinence appears to be due to a defect in their connective tissue, with both a quantitative and qualitative reduction in their collagen.
Collapse
Affiliation(s)
- D P Keane
- Bristol Urological Institute, Southmead Hospital, UK
| | | | | | | |
Collapse
|
46
|
Knott L, Tarlton JF, Bailey AJ. Chemistry of collagen cross-linking: biochemical changes in collagen during the partial mineralization of turkey leg tendon. Biochem J 1997; 322 ( Pt 2):535-42. [PMID: 9065774 PMCID: PMC1218223 DOI: 10.1042/bj3220535] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
With age, the proximal sections of turkey leg tendons become calcified, and this phenomenon has led to their use as a model for collagen mineralization. Mineralizing turkey leg tendon was used in this study to characterize further the composition and cross-linking of collagen in calcified tissues. The cross-link profiles of mineralizing collagen are significantly different from those of other collagenous matrices with characteristically low amounts of hydroxylysyl-pyridinoline and the presence of lysyl-pyridinoline and pyrrolic cross-links. However, the presence of the immature cross-link precursors previously reported in calcifying tissues was not supported in the present study, and was found to be due to the decalcification procedure using EDTA. Analysis of tendons from young birds demonstrated differences in the cross-link profile which indicated a higher level of hydroxylation of specific triple-helical lysines involved in cross-linking of the proximal tendon. This may be related to later calcification, suggesting that this part of the tendon is predestined to be calcified. The minimal changes in lysyl hydroxylation in both regions of the tendon with age were in contrast with the large changes in the cross-link profile, indicating differential hydroxylation of the helical and telopeptide lysine residues. Changes with age in the collagen matrix, its turnover and thermal properties in both the proximal and distal sections of the tendon clearly demonstrate that a new and modified matrix is formed throughout the tendon, and that a different type of matrix is formed at each site.
Collapse
Affiliation(s)
- L Knott
- Division of Molecular and Cellular Biology, University of Bristol, Langford, U.K
| | | | | |
Collapse
|
47
|
Paul RG, Bailey AJ. Glycation of collagen: the basis of its central role in the late complications of ageing and diabetes. Int J Biochem Cell Biol 1996; 28:1297-310. [PMID: 9022289 DOI: 10.1016/s1357-2725(96)00079-9] [Citation(s) in RCA: 245] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The most serious late complication of ageing and diabetes mellitus follow similar patterns in the dysfunction of retinal capillaries, renal tissue, and the cardiovascular system. The changes are accelerated in diabetic patients owing to hyerglycaemia and are the major cause of premature morbidity and mortality. These tissues and their optimal functioning are dependent on the integrity of their supporting framework of collagen. It is the modification of the properties by glycation that results in many of the damaging late complications. Initially glycation affects the interactions of collagen with cells and other matrix components, but the most damaging effects are caused by the formation of glucose-mediated intermolecular cross-links. These cross-links decrease the critical flexibility and permeability of the tissues and reduce turnover. In contrast to the renal and retinal tissue, the cardiovascular system also contains a significant proportion of other fibrous connective tissue protein elastin, and its properties are similarly modified by glycation. The nature of these glycation cross-links is now being unravelled and this knowledge is crucial in any attempt to inhibit these deleterious glycation reactions.
Collapse
Affiliation(s)
- R G Paul
- Division of Molecular and Cellular Biology, University of Bristol, Langford, U.K
| | | |
Collapse
|
48
|
|
49
|
Abstract
The main structural component in collagen is the triple helix which is generally composed of the amino acid sequence repeat (X-Y-Gly)n with proline and hydroxyproline often present at positions X and Y. Non-globular, fibrillar proteins like most collagens are difficult to work with from a structural perspective. An alternative approach to collagen structural elucidation is to study considerably shorter fragments of the triple helix. To date, various triple helical model peptides such as (Pro-Pro-Gly)n and (Pro-Hyp-Gly)n have been investigated by various physical and spectroscopic techniques. The advent of easy solid phase peptide synthetic methodology and the development of multi-dimensional heteronuclear and high field NMR technologies have promoted significant advances in the structure elucidation of a number of triple helix peptides. Here, the main focus is to review and to address the current state of knowledge in the field of NMR and x-ray analysis of triple helical model peptides.
Collapse
Affiliation(s)
- K H Mayo
- Department of Biochemistry, University of Minnesota, Minneapolis, 55455, USA
| |
Collapse
|
50
|
Knott L, Whitehead CC, Fleming RH, Bailey AJ. Biochemical changes in the collagenous matrix of osteoporotic avian bone. Biochem J 1995; 310 ( Pt 3):1045-51. [PMID: 7575401 PMCID: PMC1136000 DOI: 10.1042/bj3101045] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
No detailed biochemical analysis has been carried out of the compositional changes in the collagen matrix of avian bone in relation to increased bone fragility in osteoporosis. We have shown that osteoporosis in avian bone is certainly not just a simple loss of apatite and collagen, but involves significant changes in the biochemistry of the collagen molecule and consequently in the physical properties of the fibre. The decreased mechanical strength and the change in the thermal stability can be directly related to changes in post-translational modifications, i.e. lysine hydroxylation and the intermolecular cross-link profile. The increased hydroxylation and change in cross-linking are consistent with increased turnover of the collagen, possibly in an attempt to initiate a repair mechanism which, in fact, leads to an acceleration in the increase in fragility of the bone. Clearly there are post-translational modifications of the newly synthesized collagen in avian osteoporosis, and these changes may play a role in the pathogenesis of the disease.
Collapse
Affiliation(s)
- L Knott
- Division of Molecular and Cellular Biology, University of Bristol, U.K
| | | | | | | |
Collapse
|